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Abstract

Snow is a crucial element of the sea ice system, affecting the sea ice growth and decaydue to its low thermal conductivity
and high albedo. Despite its importance, present-day climate models have a very idealized representation of snow, often
including just one-layer thermodynamics, omitting several processes that shape its properties. Even though sophisticated
snow process models exist, they tend to be excluded in climate modeling due to their prohibitive computational costs.
For example, SnowModel is a numerical snow process model developed to simulate the evolution of snow depth and
density, blowing snow redistribution and sublimation, snow grain size, and thermal conductivity in a spatially
distributed, multilayer snowpack framework. SnowModel can simulate snow distributions on sea ice floes in high
spatial (1-m horizontal grid) and temporal (1-hour time step) resolution. However, for simulations spanning over large
regions, such as the Arctic Ocean, high-resolution runs face challenges of slow processing speeds and the need for large
computational resources. To address these common issues in high-resolution numericalmodeling, data-driven emulators
are often used. However, these emulators have their caveats, primarily a lack of generalizability and inconsistency with
physical laws. In our study, we address these challenges by using a physics-guided approach in developing our emulator.
By integrating physical laws that govern changes in snowdensity due to compaction,we aim to create an emulator that is
efficient while also adhering to essential physical principles. We evaluated this approach by comparing three machine
learning models: long short-term memory (LSTM), physics-guided LSTM, and Random Forest, across five distinct
Arctic regions. Our evaluations indicate that all models achieved high accuracy, with the physics-guided LSTMmodel
demonstrating the most promising results in terms of accuracy and generalizability. Our approach offers a computa-
tionally faster way to emulate the SnowModel with high fidelity and a speedup of over 9000 times.

Impact Statement

Snow on sea ice is a critical component of the earth system; however, its current representation in climate models
is limited because of the high computational needs of models like SnowModel. This work introduces a
data-driven approach to emulate SnowModel while following the underlying physics of the snowpack evolution.
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1. Introduction

Snow is a critical component of the Arctic sea ice system, with unique thermal and optical properties
that control sea ice thermodynamics. Snow has low thermal conductivity values that hinder sea ice
growth in winter (Sturm et al., 2002; Macfarlane et al., 2023), and high albedo that delays the sea ice
from melting in summer. Both the thermal and optical properties of snow are affected by the state of
the snowpack, i.e., the snow depth, density, and the snow grain size and type of different snow
layers. Information on the spatial distribution and temporal evolution of the snowpack states is
important for both process modeling and remote sensing applications. A big challenge associated
with scaling is that snowpack states demonstrate large spatial variations at scales of a few meters that
are beyond the coarse spatial resolution of both satellite observations and large-scale sea ice models.

SnowModel is a numerical process model that simulates the evolution and spatial distribution of snow
physical properties and structural characteristics in a multilayer snowpack framework (Liston and Elder,
2006). It is applicable to any environment experiencing snow, including sea ice applications (Liston et al.,
2018). SnowModel is a collection of modeling tools designed to be versatile in terms of spatial domain
(from regional to global applications), temporal domain (for past, current, and future climates), spatial
resolution (e.g., 1m to 100 km), and temporal resolution (e.g. 1 hour to daily).Meteorological information
is required as an input to drive the SnowModel. It specifically requires meteorological station, or
atmospheric datasets, that include air temperature, relative humidity, precipitation, wind speed, and wind
direction. Topography information is also required for simulating snow distributions because in Snow-
Model snow is blown and redistributed by the wind, accumulating in the lee side of wind obstruction
features.

A significant limitation of physical numerical models, like SnowModel, lies in their high
computational requirements, which makes them less feasible for some practical applications due
to the high resources required. SnowModel specifically is written in Fortran 77 and has no model
components that can be run in parallel, making its performance even slower. On the other hand,
machine learning (ML) has shown potential in enhancing climate models, particularly in replacing or
supplementing components of traditional models. This is evident in applications such as simulating
cloud convection using random forests and deep learning models (Beucler et al., 2023) and in
emulating ocean general circulation models through neural networks (Agarwal et al., 2021). In the
cryosphere, recent developments include the creation of emulators for Ice Sheet Models to project
sea level rise using Gaussian processes (Berdahl et al., 2021) and long short-term memory (LSTM)
networks (Van Katwyk et al., 2023).

Despite the progress made with ML, data-driven emulators face their own set of challenges. First,
there is the concern of generalizability: these models often struggle to extend their applicability beyond
the conditions and data they were trained on Jebeile et al. (2023). Second, the opacity of ML models
poses a significant issue. Often referred to as “black box”models, they lack transparency, offering little
to no insight into the reasoning behind their predictions (McGovern et al., 2022). Third, a critical
limitation is their inability to adhere to fundamental physical laws, including the conservation of mass,
which is an important principle in process-guided models (Kashinath et al., 2021; Sudakow et al.,
2022). To tackle these challenges, physics-guided ML has recently emerged as a promising approach.
This involves incorporating physical laws within the ML framework. It can be achieved by softly
constraining the loss function of the model, thereby guiding it to make predictions that are not only
accurate but also consistent with physical principles (Kashinath et al., 2021). In broader climate science,
recent studies have demonstrated that physics-guided ML models exhibit robustness and have a higher
adherence to physical principles. Additionally, these models demonstrate increased data efficiency,
requiring fewer data points for training compared to traditional ML models that do not incorporate
physical constraints (Kashinath et al., 2021; Beucler et al., 2021). In our work, we develop and evaluate
ML-based emulators of SnowModel for modeling snow on sea ice. Our key contributions are as
follows:
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• We develop and compare ML architectures for predicting the density of snow on sea ice.
• We explore the use of physics-guided loss functions to constrain the emulator using the underlying
physics of snowpack formation.

2. Methods

2.1. Study region and dataset construction

We utilized the SnowModel to generate a comprehensive dataset covering the snow dynamics in various
regions in the Arctic. Due to the lack of availability of high-resolution sea-ice topography data, we
synthetically created ice topographic features in these regions by generating random sea-ice ridges based
on the minimum, maximum, and standard deviation of the sea ice ridges described in Sudom et al. (2011).
The dataset for the emulator was created by running the SnowModel across five distinct Arctic regions
(Figure 1) over 10 years. The selected regions spanned over different Arctic Seas that are influenced by a
wide range of atmospheric conditions (Central Arctic, Beaufort, Chuckhi, Laptev, and Barents Seas),
resulting in a broad variety of snowpack characteristics.

2.2. SnowModel configuration

We used NASA’s Modern Era Retrospective Analysis for Research and Application Version 2 (MERRA-
2; Global Modeling and Assimilation Office (GMAO), 2015) as meteorological forcing to SnowModel.

Figure 1. Arctic study regions.
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Specifically, SnowModel was forced with 10-m wind speed and direction, 2-m air temperature and
relative humidity, and total water-equivalent precipitation from MERRA-2 (Table 1). The simulations
began in August 2010 and ran through August 2020. Temporal resolution was 3 hours to capture diurnal
variations of the snow properties. The outputs were saved daily at the end of each day.

2.3. LSTM architecture

LSTM networks are a special class of recurrent neural networks (RNNs) that are designed to address the
challenge of learning long-term dependencies in sequential data (Hochreiter and Schmidhuber, 1997).
Traditional RNNs often struggle with the vanishing or exploding gradient problem, which hampers their
ability to retain information over extended sequences (Bengio et al., 1994). LSTMs mitigate this issue
through a unique architecture consisting of memory cells and multiple gates. Each LSTM unit contains
three gates: input, forget, and output. The input gate controls the influx of new information into the cell
state, the forget gate manages the retention or removal of information, and the output gate influences the
contribution of the cell state to the output. This gating mechanism is used for preserving information
across long sequences, allowing LSTMs to effectively learn tasks involving sequential data, such as time-
series data. In our model, the input layer accommodates the five primary features. This is followed by two
LSTM layers with 128 units each, for capturing the sequential patterns in the data. Dropout layers, set at a
rate of 0.25, are used after each LSTM layer to prevent overfitting. A dense layer with 64 units featuring a
ReLU activation function is integrated, succeeded by a dropout layer at a rate of 0.25. The final output
layer is structured to predict snowdensity and two additional variables, snowdepth and snow temperature.
We use these additional variables while constructing the physics-constrained loss function for the LSTM.
The models were implemented in Python using PyTorch (Paszke et al., 2019).

2.4. Physics-guided LSTM

We developed a loss function to incorporate the physics of snowpack formation in the LSTM model. As
snow accumulates, the lower layers of the snowpack are subjected to increasing pressure due to theweight
of the snow above. This pressure causes the snow grains in the lower layers to compact or press closer
together. As a result, the density of the snow in these lower layers increases. This process of density
increase due to compaction is included in SnowModel’s SnowPack component and it provides key
equations explaining the snow compaction dynamics (Liston and Elder, 2006). The equation for density
increase due to compaction is given by

∂ρs
∂t

¼A1 �h∗w �
ρs exp �B Tf �Ts

� �� �
exp �A2ρsð Þ (1)

where ρs is the snow density (kg/m3), t represents time (s), h∗w ¼ 1
2hw is the weight of snow defined as half

of the snow water equivalent hw, Tf is the freezing temperature of water (K), and Ts is the average snow-

Table 1. Variables driving SnowModel and inputs for emulators

Source Feature

MERRA2 Precipitation
2 m air temperature
Wind speed
Relative humidity
Day of year

Synthetically generated Topography
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ground interface and surface temperatures (K). ConstantsA1,A2, andB are derived from empirical studies:
A1 ¼ 0:0013 m�1 s�1, A2 ¼ 0:021 m3 kg�1, and B¼ 0:08 K�1.

The snow water equivalent, hw (m), is defined as

hw ¼
ρs,phys
ρw

� ζ s,pred (2)

Here, ρw is the density of water (kg/m3), and ζ s is the snow depth (m).
In other words,

ρs,phys tþΔtð Þ¼ ρs,phys tð Þþ0:5 �Δt �A1 �
ρs,pred tð Þ

ρw
� ζ s,pred tð Þ �ρs,pred tð Þexp �B Tf �Ts,pred tð Þ� �� �

exp �A2ρs,pred tð Þ
� � (3)

To align the LSTM model’s predictions with these physical principles, we constructed a physics-
informed loss function, Lphysics. This loss function consists of the mean squared errors (MSE) between the
model’s predicted values for snow density, depth, and temperature, and their corresponding values from
the SnowPack equations.

The combined loss function is therefore expressed as

Ltotal ¼ LLSTMþ λLphysics (4)

where LLSTM represents the initial loss from the LSTM model predictions, and λ is a regularization
parameter that balances the contribution of the physics-informed loss in the overall objective function.
This objective function was then used in the LSTM architecture described in Section 2.3.

Ltotal ¼ LLSTMþ λ MSE ρs,pred,ρs,phys
� �h i

(5)

2.4.1. Training details
In both the LSTM architectures, we used Adam optimizer, with a learning rate of 0.001, for training the
models for 150 epochs with a batch size of 32. We used an early stopping mechanism, considering the
validation loss after 10 epochs, to prevent overfitting. We selected model hyperparameters (number of
layers, dropout, batch size, and epochs) by random search with 5-fold cross-validation. We gave the
random search a budget of 50 iterations for each model.

2.5. Random forest

We chose Random Forest to compare our LSTM-based emulators. Random Forest (Breiman, 2001) is an
ensemble learningmethod used for classification and regression. It operates by constructingmultiple decision
trees at training timeandoutputting the class, that is, themodeof the classes (classification) ormeanprediction
(regression) of the individual trees. This method is effective for prediction tasks because it reduces the risk of
overfitting by averagingmultiple trees, thus improving themodel’s generalizability.We used RandomForest
to predict snow density. The Random Forest model was configured with 500 trees.

3. Results

3.1. Predictive performance

For training and testing our emulator models, we used a cross-validation approach, specifically opting for
a leave-one-out cross-validation (LOOCV) method. In this method, data from four out of five Arctic
regions were used for training, while the remaining fifth region’s data served for testing purposes. This
process was systematically rotated, ensuring each region was used as a test set in turn, thus providing a
comprehensive assessment of themodels across variedArctic conditions.We chose the LOOCVapproach
as opposed to a time-based split because the distinct climatic and geographical characteristics of each
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Arctic region can significantly influence the model’s performance. A time-based split would not
adequately capture these spatial variabilities and could lead to models that are well-tuned for temporal
patterns but less robust to spatial differences. LOOCVensures that eachmodel is tested against the unique
conditions of an unseen region, enhancing our ability to generalize our findings across the different
regions, despite the diverse environmental conditions present within each region.

While evaluating the models, we also calculated the daily climatology of snow density in every region.
This climatology served as a baseline for us to compare and contrast the emulatormodels’ predictionswith
a standard reference point that reflects typical conditions.

For assessing the predictive performance of our emulators (Table 2), we consider the Root mean
squared error (RMSE). RMSE provides a measure of the average magnitude of the models’ prediction
errors, and it is defined as

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi�byið Þ2
s

(6)

where yi is the observed value, byi is the predicted value, and n is the number of observations.
The results showed that all of the model’s predictions closely matched the SnowModel outputs in all

regions. All of the emulators performed better than the climatological baseline. Figures 2 and 3 show a
comparison of the SnowDensity as predicted by the SnowModel and physics-guided LSTM for Region 2.
During this evaluation, the emulator was trained with data from Regions 1, 3, 4 and 5, and Region 2 was
the test site. The emulator’s prediction aligns closely with the SnowModel which shows that the emulator
can generalize to regions where it has not been trained before. The LSTM with the physics-guided Loss
function performed better than the LSTMwith onlyMSE loss in four out of five regions. The overall better
performance of the PG-LSTM across the other Arctic regions suggests that incorporating physical
constraints through the physics-guided loss function was generally beneficial. However, every region
has its own unique characteristics in terms of meteorology, topography, and snowpack evolution

Table 2. Comparison of RMSE across the study regions for different emulator models. Lower values
are better

Climatology Random forest LSTM Physics-guided LSTM

Region 1 79.7 45.3 41.1 40.1
Region 2 81.1 47.8 42.5 41.5
Region 3 80.3 46.5 41.7 40.7
Region 4 82.5 42.9 47.3 48.4
Region 5 83.2 49.0 44.6 43.6

Figure 2.Predicted average snow density across all the points in Region 3 by emulator compared with the
snow density from SnowModel.
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dynamics. In Region 4, there may have been some conditions or processes that deviated from the
assumptions made by the physics constraints used to guide the LSTM model. On the other hand, the
Random Forest, being an ensemble of decision trees, has a more flexible model structure allowing to
better perform in that region without being bound by explicit physical constraints.

3.2. Runtime

We conducted a runtime analysis (Table 3) by comparing the Python runtime for all of the emulators with
the Fortran runtime of the original SnowModel. The runtime measurements were conducted on a high-
performance computing system with NVIDIA Volta V100 GPU and Xeon Gold 6230 CPUs with 2 ×
20 cores operating at 2.1 GHz. The LSTM-based models took 8 hours to train. We measured the time
required to process the data for one region of resolution 1500 × 1500 in the SnowModel. As shown in
Table 3, the speed-up achieved by theMLmodels is significant. The RandomForest, LSTM, and physics-
guided LSTM models demonstrated speed-ups of 2400, 13,714, and 9931 times, respectively, compared
to the SnowModel.

Figure 3. Spatial maps showing snow density as predicted by the emulator and compared with those from
the SnowModel for Region 2. The third column shows the error percentage (lower values are better),
highlighting the differences between the SnowModel and the emulator.

Table 3. Comparison of runtime between SnowModel and emulators. Lower values are better

Model SnowModel Random forest LSTM Physics-guided LSTM

Time (s) 28,800 12 2.1 2.9
Speed-up — 2400 13,714 9931
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4. Feature importances

To identify the most influential variables in estimating snow density within the physics-guided LSTM
model, we used permutation importance. This method involved systematically shuffling the values of
each feature within the dataset for each specific Arctic site independently. We repeated this shuffling
process multiple for 10 iterations to ensure reliability and measured the effect on the model’s accuracy by
observing the increase in the RMSE. This increase in RMSE, plotted on the y-axis in Figure 4,
quantitatively represents the impact of each feature’s disruption on model performance. We found that
air temperature and the day of the year were critical for capturing the seasonal variations in snow density,
reflecting their direct influence on thermodynamics. Similarly, topography significantly affected spatial
variations, influencing patterns of snow accumulation and melting due to its role in redistributing snow
across the landscape. These features align with the dynamic processes in SnowModel, where snow
density evolves under the influence of overlying snow weight (compaction), wind speed, sublimation of
non-blowing snow, and melting processes.

5. Conclusion

In this work, we explored the use of ML to emulate SnowModel. We developed and assessed various ML
frameworks—Random Forest, LSTM, and physics-guided LSTM—to effectively emulate the SnowMo-
del. The physics-guided LSTM model, in particular, showed significant improvement in prediction
accuracy, as indicated by a lower RMSE. Moreover, it demonstrated a notable increase in computational
speed, operating approximately 9000 times faster than SnowModel. It is worth noting that while the
LSTMmodel benefited from incorporating the physics of snowpack formation, due to the nature of these
“soft” regularizations, the constraints are not required to be strictly satisfied during runtime. In our study,
we focused on emulating snowdensity; a similar approach could be used for emulating other variables like
snow depth in SnowModel.

A potential direction for future research could be the integration of the emulator within a climatemodel
to improve simulations of snow on sea ice, which are currently limited by the computational demands of
numerical models like SnowModel. Additionally, the emulator itself could be developed further by
exploring recent ML architectures like Fourier Neural Operators, which are capable of operating at
arbitrary resolutions without requiring resolution-specific training. Enhancing the interpretability of these

Figure 4. Feature importance derived from permutation shuffling in the physics-guided LSTM.
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models could also be a valuable direction to ensure a clearer understanding of the model predictions and
their alignment with physical processes.
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