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1. Introduction

Let d(<0) denote a squarefree integer. The ideal class group of the imaginary
quadratic field Q(y/d) has a cyclic 2-Sylow subgroup of order ^ 8 in precisely the
following cases (see for example [5] and [6]):

(i) d = - p, p = 2g2 -h2 = l(mod 8), (g/p) = + 1;
(ii) d-—2p,p = u2 — 2v2 = l(mod8) with u chosen so that u = l(mod4), (u/p) = +1;
(iii) d=-2p,P = l5(modl6);
(iv) d= -pq, p=l(mod4), q = 3(mod4), (q/p)=+l, (-q/p)*= +1,

where p and q denote primes and g, h, u and v are positive integers. The class number of
Q(y/d) is denoted by h(d) and in the above cases h(d) = 0(mod 8). For cases (i), (ii) and
(iii) the authors [6] have given necessary and sufficient conditions for h(d) to be divisible
by 16. In this paper we do the same for case (iv) extending the results of Brown [4].

As the ideal class group of Q{-J—pq) is isomorphic to the group (under composition)
of classes of integral positive-definite binary quadratic forms (a, b, c) = ax2 + bxy + cy2 of
discriminant b2—4ac=—pq, we can work with forms rather than ideals. In order to
determine h(—pq) modulo 16 we construct explicitly a form / of discriminant — pq
whose square is in the ambiguous class containing the form (p,p,Up + q)) (see Theorem 1
in Section 2). The form / is given in terms of a solution in positive integers X, Y, Z of
the Legendre equation

pX2 + qY2-Z2 = 0 (1.1)

satisfying

(X,Y) = (Y,Z) = (Z,X)=l,ptYZ,qtXZ, (1.2)

and

X odd, Y even, Z= l(mod 4). (1.3)
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That there is a solution of (1.1) satisfying (1.2) follows immediately from Legendre's
theorem in view of (iv). However we must justify that we can always find a solution with
Z = l(mod 4). In order to see this we let R + S^/q be the fundamental unit (> 1) of the
real quadratic field Q(^/q). As q = 3(mod 4) we have

R2-qS2= + L

It is well known that

R = 2(mod8), S=l(mod2), if g = 3(mod8),

K5E0(mod8), S = l(mod2), if q = 7(mod8),

and hence

2 2 R2-qS2=+l.

Hence if Z is even (so that X and Y are both odd) we can replace the solution (X, Y, Z)
of (1.1) by the solution (X1,Yl,Zl) given by

Xt=X, Y^RY + SZ^^qSY + RZ,

for which Zj is odd. Further if Z = 3(mod 4) (in which case X is odd and Y is even) we
can replace the solution (X, Y,Z) by the solution (X2, Y2,Z2) given by

for which Z2 = I(mod4).
Our main result is the following theorem.

Theorem 2. If p and q are primes such that

p = l(mod 4), q = 3(mod 4), (?) = +1, (^\ = +1, (1.4)

and (X, Y,Z) is any solution in positive integers of (I. I) which satisfies (1.2) and (1.3), then

h(-pq) =

We remark that (Z/p)4 is well-defined as (Z/p)= + l and p s i (mod 4). To see that
(Z/p)= +1 we perform the following calculation: letting Y=2"Y1, Yi odd, we have, using
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(1.1) and (1.2),

'Z \ (Z2\ fqY2

P) \P A \P

(as n = 1 when p = 5(mod 8))

(as p = l(mod 4))
'A P JA Yi

-9\ fz2'

= + 1. (by (1.4)).

2. Square root of (/>,/»,

In this section we construct a form/ of discriminant — pq such that f2~(p,p,$(p + q)).
As (X, Y) = 1 there exists an integer u0 such that u0X = l(mod Y). If the integer

e = (u0X —1)/7 is odd we set u = u0. If the integer (u0X — \)/Y is even then the integer

(uQ + Y)X-l
e=

is odd and we set u = u0 + Y. Thus the integers u and e satisfy

uX = l(modY), u odd, e = (uX-l)/Y odd. (2.1)

Next, appealing to (1.1) and (2.1), we have

so that, as (X, Y)= 1, we have

pX-uZ2 = 0{modY).

Hence we can define a positive integer a and an integer b by

a = Z, b = (pX-ua2)/Y. (2.2)

From (2.2) we obtain

PX-bY = ua2. (2.3)
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Also using (1.1), (2.1) and (2.2) we get

bX + qY=-ea2, (2.4)

and

From (1.4) and (2.1) we see that pe2 + qu2 = 0(mod 4) so we can define an integer c by

c = (pe2+qu2)/4. (2.6)

Thus, from (2.5) and (2.6), we have

b2-4a2c=-pq, (2.7)

showing that the form (a,b,ac) has discriminant — pq. We note that (2.7) shows that b is
odd.

With a, b and c as defined in (2.2) and (2.6) we prove the following theorem.

Theorem 1. (a,b,ac)2~(p,p,(p + q)/4).

Proof. We define integers v, a and /? by

v = 2Y, a = (u + e)/2, P = X+Y. (2.8)

Appealing to (1.1), (2.3) and (2.7) we obtain, on completing the square for u,

a2u2 + buv + cv2 = p, (2.9)

and appealing to (2.3), (2.4), (2.7) and (2.8), we obtain

bu + 2cv=-j(bua2

1 ., ,

~
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that is

bu + 2cv=-pe. (2.10)

Hence from (2.3), (2.8) and (2.10) we have

a=(pu-bu-2cv)/2p, P=(2ua2 + bv + pv)/2p. (2.11)

Thus from (2.9) and (2.11) we obtain

up-m=l (2.12)

and

p. (2.13)

Hence from (2.7), (2.9) (2.12) and (2.13) and the identity

(2a2ua + bup + bva + 2cvP)2 - 4(a2u2 + buv + ct>2)(a2a2 + bafi + cfi2) = {up - va)2(b2 - 4a2c),

we deduce

a2a2 + baP + cB2={p + q)/4. (2.14)

Hence the unimodular transformation with matrix[" £] changes the form (a2, b, c) into

(a2u2 + buv + cv2, 2a2uct + bufl + bva. + 2cvfi, a2a2 + ba.fi + cB2) = (p,p,(p + q)/4).

Thus we have (see for example [3, p. 185])

(a, b, ac)2 ~ (a2, b, c)~(p,p,(p + q)/4),

which completes the proof of Theorem 1.

3. Determination of h(—pq)modu\o 16; Proof of Theorem 2

By Theorem 1 the class of the form (a,b,ac) is of order 4 and so as the 2-Sylow
subgroup of the class group of forms of discriminant — pq is cyclic, the form (a,b,ac) is
equivalent to the square of a form (r,s,t), where we may take {r,2pqac) = l. Hence
(a, b, ac) represents r2 primitively so that there are integers x and y such that

r2 = ax2 + bxy+acy2, x>0, (x,y)=l. (3.1)

We define non-negative integers S and T by

S = \2Xx-aey\, T = \2Yx-auy\. (3.2)
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Appealing to (1.1), (2.1), (2.2), (2.6) and (3.1) we obtain

4ar2=pS2 + qT2. (3.3)

From (3.3) we easily deduce that S and T are positive.
We now show that S and T have no odd common divisors greater than 1. Suppose k

is an odd prime divisor of both S and T. Then k divides

u(2Xx — aey) — e(2 Yx—auy)

= 2x(uX-eY)

= 2x (by (2.1)),

that is k\x. Further from (3.3) we have k\ar2 so that k\a or k\r. If k\a from (3.1) we have
k\r contradicting (r,a) — 1. If k\r by (3.1) we have k\acy2 contradicting (r,ac) = (x,y) = 1.

Similarly we can show that T and apr have no odd common divisors greater than 1.
We note that as a is represented by (a, b, ac) and the class of the form (a, b, ac) is in the

principal genus we have

Further by (1.3) and (2.2) we have

a = l(mod4). (3.5)

Then

W W 4 V P / 4

P / A P A

that is (by (1.4))

'r\/a\ fT\ (2\"(t
(3.6)

PJ \PJ \PJ

where

T = 2"t, todd. (3.7)
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t

Aar2

Now set

so appealing to (3.1) and (3.5) we have

giving

(by (3.3))

(by (3.5))

(by (3.7))

(by (3.5))

(by (3.1)).

odd,

PJ \a
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Next as bY=pX—ua2 and using (3.4) we have

so

\3J-\zJ W
giving

(p)=(p)"S)m+n+1(i)(p)4' (18)

Taking (1.1) modulo 8 we obtain p + <j(Y2sl(mod8), so that

psl(mod8)=>FsO(mod4),

p = 5(mod 8)=> Y = 2(mod 4).

We now treat the case p= l(mod 8): we have

m = 0=>y odd=>T odd=>n=0;

m = l=>2||y=>2||r=>n=l;

/2\
m^3=>8\y=>x odd=>a=l(mod8)=> - 1=+ 1;

\ZJ
so that in each case

p)\z)

For the case p = 5(mod 8) we have

WJ = O=>J; odd=>rodd=>n = 0;

m = l=>2||y=>4|S, 2\\T=>pS2 + qT2 = 12(mod 16)

= 3(mod 4), which is impossible;

/ 2 \
= 2=>x odd, 4||y=>a = 5(mod8)=> — ) = - 1 ;
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m^3=>x odd,

" 4 I ^
so that again in each case we have

exr-
Hence by (3.8) we have

Now by a theorem of Bauer [1] (see also [2, Theorem 6])

h{ - pg) = 0(mod 16)<*( - J = +1

so we have

This completes the proof of Theorem 2.

We remark that Theorem 2 of Brown [4] is the special case of our Theorem 2 which
arises when (1.1) has a solution with X=l.

4. Examples

Example 1. p = 5, q = 19.
Here

A solution of (1.1)—(1.3) is given by

X = l, 7 = 2, Z = 9

so
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and Theorem 2 implies /i(-p<j) = /i(-95) = 8(mod 16). Indeed h(-95) = 8.

Example 2. p = 37, q = ll.
Here

We start with a solution of (1.1) and (1.2) for which Z is even, say,

X=l, 7 = 7, Z = 24,

in order to illustrate how to obtain a solution which satisfies (1.3) as well. Since the
fundamental unit of Q(N/Tl) is 10+ 3^/11 we have

R = 10, S = 3, /?! = 199, Sx =60.

First we transform the solution (X, Y,Z) into a solution (A^, YUZ^) with Zt odd:

A- 1 = X=1, Y1=RY + SZ=l42, Zl=qSY + RZ = 47\.

As Z1 = 3(mod4) we transform the solution (Xl; Y1,Zl) into a solution (Z2, i^>^2
Z2 = l(mod4):

Z2 = qSi Y1 + R1Z1 = 187449,

so that

Z 2 \ /187449\ / 7 \ / 8 1 \— I = - ^ = — =1 — 1 =1 — 1 = + 1,
V 51 /A.

and Theorem 2 implies /z(-pq) = /i(-407)sO(mod 16). Indeed /i(-407) = 16.

Example 3. p = 5, q = 79.
Here

A solution of (1.1) and (1.2) is given by

X = 3, Y=2, Z = 19.
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As Z = 3(mod4) we transform this solution into one for which Z= I(mod4) obtaining

X = 3, 7 = 52958, Z = 470701,

so that

and Theorem 2 implies fc(-pg) = fc(-395) = 8(mod 16). Indeed /i(-395) = 8.
This example illustrates Theorem 2 in a situation where (1.1) has no solution with

X = \ as
u2-79v2 = 5

is insolvable in integers u and v (see for example [7, Theorem 109]).
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