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Abstract The regular Sturm–Liouville problem

τy := −y′′ + qy = λy on [0, 1], λ ∈ C,

is studied subject to boundary conditions

Pj(λ)y′(j) = Qj(λ)y(j), j = 0, 1,

where q ∈ L1(0, 1) and Pj and Qj are polynomials with real coefficients. A comparison is made between
this problem and the corresponding ‘reduced’ one where all common factors are removed from the bound-
ary conditions. Topics treated include Jordan chain structure, eigenvalue asymptotics and eigenfunction
oscillation.
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1. Introduction

This is the first of two papers in which we study certain factorization questions for the
regular Sturm–Liouville problem

τy := −y′′ + qy = λy on [0, 1], λ ∈ C, (1.1)

subject to boundary conditions

Pj(λ)y′(j) = Qj(λ)y(j), j = 0, 1, (1.2)

where q ∈ L1(0, 1) and Pj and Qj are polynomials with real coefficients. Here we discuss
the problem from the differential equation viewpoint, and factorization enters, at least
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initially, via an appropriately defined characteristic function (see (2.3)). It turns out that
some of the ensuing analysis will also be important for our sequel, where we shall consider
an operator theoretic setting, and, in particular, operator factorization.

Sturm–Liouville problems with λ-dependent boundary conditions have been studied by
many authors. The reference lists of [5,9,10,17] give some idea of the scope, both applied
and theoretical, of this activity. While most investigations have concerned polynomials Pj ,
Qj of degree 1, various authors (see, for example, [2,7,8,16]) have studied polynomials of
higher degree. In general, these conditions have been assumed in reduced form, i.e. such
that, for each fixed j, Pj and Qj have no common factors. In [3,13], however, mention
was made of the case in which P1 and Q1 have a common root. Moreover, as will be seen
in the sequel, even when (1.2) is in reduced form, the operator factorization mentioned
above naturally leads to associated non-reduced problems.

More specifically, operator factorization and commutation (see, for example, [6]) have
provided a modern perspective on the Darboux–Crum transformation, which has been
widely used (see, for example, [14]). It turns out that the transformation is ‘almost’
isospectral [6, Theorem 12]. In the sequel, we shall study the analogous factorization and
commutation for an operator formulation of (1.1), (1.2) (see [16]). It will be seen that this
necessarily leads to problems with reducible boundary conditions even in the classical case
when (1.2) is independent of λ. Moreover, the original problem has the same spectrum as
the transformed reducible one, whereas the reduced version of the transformed problem
is again ‘almost’ isospectral to the original. In the following we shall discuss the relations
between these three problems in detail. Here we study reducible and reduced problems
in their own right and this will also serve as a foundation for our second paper.

An eigenvalue for our problem is a value of the parameter λ for which (1.1), (1.2) can
be solved non-trivially for y. Even though the boundary conditions are separated, it
turns out that the eigenvalues may be (geometrically) non-simple and/or (algebraically)
non-semisimple. For example, if P0 and Q0 have a common root ξ, then λ = ξ will be
an eigenvalue since (1.2) is satisfied for j = 0 and λ = ξ. It is therefore sufficient for y

to satisfy (1.1), and the terminal condition (1.2) with j = 1, at λ = ξ. If ξ is also a root
of P1 and Q1, then ξ will be a eigenvalue of geometric multiplicity 2.

Suppose, for some λ, that it is possible to construct a Jordan chain of length m of
associated eigenfunctions, i.e. that there exist functions y[0], . . . , y[m−1] satisfying

(τ − λ)y[0] = 0, (τ − λ)y[r] = y[r−1], (1.3)

and the boundary conditions

0 =
r∑

i=0

1
i!

[P (i)
j (λ)y[r−i]′(j) − Q

(i)
j (λ)y[r−i](j)], j = 0, 1, (1.4)

for r = 1, . . . , m − 1. If m is the greatest integer with these properties, then λ has
algebraic multiplicity m (see [15, § 2.3] for details). If m = 1, then λ is called semisimple.
As we shall see, regardless of their geometric multiplicity, eigenvalues may or may not
be semisimple.
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By definition, the ‘reduced’ problem arising from (1.1), (1.2) is that in which (1.2) is
replaced by

P̂j(λ)y′(j) = Q̂j(λ)y(j), j = 0, 1, (1.5)

where P̂j and Q̂j are obtained from Pj and Qj by the removal of all common factors of
the form (λ − ξ)k. Thus, P̂j and Q̂j have no common roots.

In § 2 we study the relationship between the Jordan chain structures of (1.1), (1.2) and
the reduced problem. It turns out that there are interesting ‘interference’ effects when
there are common roots of (1.2) that are also eigenvalues of the reduced problem (see
Theorem 2.3). We give asymptotic developments for the eigenvalues of (1.1), (1.2) in § 3.
The results resemble those for the standard case of λ-independent boundary conditions
but there is now an index shift. The associated oscillation theory for the eigenfunctions
is presented in § 4. Again there is an index shift, but it may be different from the pre-
vious one. To the best of the authors’ knowledge, these results are new, at least in this
generality. We conclude in § 5 with an example which illustrates some of the above ideas.

2. Comparison of Jordan structures

Let ϕ and ψ be the solutions of (1.1) satisfying the initial conditions

ϕ(0, λ) = 1, ψ(0, λ) = 0, (2.1)

ϕ′(0, λ) = 0, ψ′(0, λ) = 1, (2.2)

and define the characteristic function D by

D(λ) = P1(λ)[Q0(λ)ψ′(1, λ)+P0(λ)ϕ′(1, λ)]−Q1(λ)[Q0(λ)ψ(1, λ)+P0(λ)ϕ(1, λ)]. (2.3)

Then D(λ) is an entire function of order 1
2 since ϕ, ϕ′, ψ and ψ′ are of order 1

2 [11,
Appendix]. The eigenvalues of (1.1), (1.2) are the solutions of D(λ) = 0, here the order,
ν(λ), of the zero of D at λ coincides with the algebraic multiplicity of λ as an eigenvalue
of (1.1), (1.2) (see [15, § 2.3]).

For an entire function f , let µ(f ; λ) denote the order of λ as a root of f = 0, with
µ(f ; λ) = 0 if f(λ) �= 0. Thus, as above, we have

ν(λ) = µ(D; λ), (2.4)

and we also define
ζj(λ) = min{µ(Pj ; λ), µ(Qj ; λ)}. (2.5)

In general, we shall use ν(λ) to denote the algebraic multiplicity of λ for arbitrary
λ ∈ C with ν(λ) = 0 indicating that λ is not an eigenvalue of (1.1), (1.2). The spectrum
of (1.1), (1.2) then consists of all eigenvalues repeated according to algebraic multiplicity.

In what follows, it will be convenient to regard chains of length 0 as non-existent. For
example, if the Jordan structure at λ consists of two chains of lengths 0 and m > 0, it is
to be understood that λ has only one chain (of length m).

Our first result compares the Jordan structure at λ = ξ of two problems, one of which
is partially reduced at ξ in the sense that Pj and Qj do not have ξ as a common root,
while the other has Pj(λ) and Qj(λ) replaced by (λ − ξ)kj Pj(λ) and (λ − ξ)kj Qj(λ).
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Proposition 2.1. Let ξ ∈ C be such that |Pj(ξ)| + |Qj(ξ)| �= 0, j = 0, 1. If ν(ξ) = m,
then the boundary-value problem with equation (1.1) and boundary conditions

(λ − ξ)kj Pj(λ)y′(j) = (λ − ξ)kj Qj(λ)y(j), j = 0, 1, (2.6)

where kj ∈ N0 := N ∪ {0}, k0 + k1 � 1, has ξ as an eigenvalue of algebraic multiplicity
m + k0 + k1. The Jordan structure at ξ for (1.1), (2.6) consists of two chains of lengths
m+max{k0, k1} and min{k0, k1}. The chain of greater length commences with a solution
of τy = ξy that satisfies (1.1) for j = 0 (respectively, j = 1) when k0 � k1 (respectively,
k0 � k1).

Proof. Without loss of generality we assume 0 � k0 � k1. Let

y
[0]
1 (x) = P0(ξ)ϕ(x, ξ) + Q0(ξ)ψ(x, ξ)

such that y
[0]
1 satisfies (1.2) for λ = ξ, j = 0. Let y

[0]
0 be another solution of τy = ξy

linearly independent of y
[0]
1 and put z[0] = Ay

[0]
1 + By

[0]
0 . Now choose a particular solu-

tion z[r] to τz[r] = ξz[r] + z[r−1], r = 1, 2, . . . (for example, using variation of parameters
with y

[0]
0 , y

[0]
1 as a fundamental pair of solutions to τy = ξy).

We shall show that the z[r] form a Jordan chain for (1.1), (2.6) of length m + k1

if B = 0, and of length k0 otherwise. To this end, we examine the boundary conditions

0 =
r∑

i=0

1
i!

∂i

∂λi
[(λ − ξ)kj [Pj(λ)z[r−i]′(j) − Qj(λ)z[r−i](j)]]λ=ξ, (2.7)

for j = 0, 1 and r = 0, 1, . . . . For r = 0, . . . , k0 − 1, (2.7) is automatically satisfied, while
for r = k0, j = 0, (2.7) becomes

P0(ξ)z[0]′(0) − Q0(ξ)z[0](0) = 0,

which holds only if B = 0. Hence, when B �= 0, the chain z[0], . . . , z[k0−1] cannot be
extended without violating (2.7).

Assume, then, that B = 0 and, without loss of generality, A = 1 such that z[r] = y
[r]
1 .

For r � k0, the right-hand side of (2.7) becomes

r∑
i=0

1
i!

i∑
p=0

(
i

p

)[
∂i−p

∂λi−p
(λ − ξ)kj

∂p

∂λp
[Pj(λ)y[r−i]

1
′
(j) − Qj(λ)y[r−i]

1 (j)]
]

λ=ξ

=
r∑

i=kj

1
i!

(
i

i − kj

)
kj ![P

(i−kj)
j (ξ)y[r−i]

1
′
(j) − Q

(i−kj)
j (ξ)y[r−i]

1 (j)]

=
r∑

i=kj

1
(i − kj)!

[P (i−kj)
j (ξ)y[r−i]

1
′
(j) − Q

(i−kj)
j (ξ)y[r−i]

1 (j)]

=
r−kj∑
i=0

1
i!

[P (i)
j (ξ)y[(r−kj)−i]

1

′
(j) − Q

(i)
j (ξ)y[(r−kj)−i]

1 (j)]. (2.8)
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By the construction of the functions y
[r]
1 , (2.8) vanishes for j = 0 and r = k0, . . . .

Recall that y
[0]
1 , . . . , y

[m−1]
1 is a Jordan chain at ξ for (1.1), (1.2) and hence for j = 1,

(2.8) vanishes for r − k1 = 0, . . . , m − 1. Thus, relative to (1.1), (1.5), ξ has a Jordan
chain, commencing with y

[0]
1 , of length at least m + k1. If it were possible to extend this

chain, then we could find y
[m+k1]
1 satisfying (2.7) for j = 1 and r = m + k1. However,

(2.8) would then show that, relative to (1.1), (1.2), ν(ξ) > m: a contradiction. �

The next result shows that the two problems (1.1), (1.2) and (1.1), (2.6) have Jordan
structures which differ only at ξ.

Proposition 2.2. Suppose that for (1.1), (1.2), ξ has Jordan chains

Cs : y[0]
s , . . . , y[ms−1]

s , ms � 0, s = 0, 1.

Let fj be entire functions with fj(ξ) �= 0, j = 0, 1. Then C0 and C1 are also Jordan
chains for (1.1) with boundary conditions

fj(λ)Pj(λ)y′(j) = fj(λ)Qj(λ)y(j), j = 0, 1.

Proof. Since τy
[0]
s = ξy

[0]
0 and τy

[r]
s = ξy

[r]
s + y

[r−1]
s for r = 1, . . . , ms − 1, it remains

to show that, for s = 0, 1,

r∑
i=0

1
i!

∂i

∂λi
[fj(λ)[Pj(λ)y[r−i]

s

′
(j) − Qj(λ)y[r−i]

s (j)]]λ=ξ (2.9)

vanishes for r = 0, . . . , ms − 1, j = 0, 1, and that, for any solution y
[ms]
s of

τy[ms]
s = ξy[ms]

s + y[ms−1]
s ,

(2.9) does not vanish for at least one value of j = 0, 1. Now (2.9) can be expressed as

r∑
i=0

1
i!

∂i

∂λi
[fj(λ)[Pj(λ)y[r−i]

s

′
(j) − Qj(λ)y[r−i]

s (j)]]λ=ξ

=
r∑

i=0

1
i!

i∑
k=i

(
i

k

)
f

(k)
j (ξ)[P (i−k)

j (ξ)y[r−i]
s

′
(j) − Q

(i−k)
j (ξ)y[r−i]

s (j)]

=
r∑

k=0

f
(k)
j (ξ)
k!

r∑
i=k

[
P

(i−k)
j (ξ)
(i − k)!

y[r−i]
s

′
(j) −

Q
(i−k)
j (ξ)

(i − k)!
y[r−i]

s (j)
]

=
r∑

k=0

f
(k)
j (ξ)
k!

[r−k∑
n=0

(
P

(n)
j (ξ)
n!

y[(r−k)−n]
s

′
(j) −

Q
(n)
j (ξ)
n!

y[(r−k)−n]
s (j)

)]
. (2.10)

For r = 0, . . . , ms − 1, the internal summation in (2.10) vanishes since Cs is a Jordan
chain for (1.1), (1.2) of length ms. If y

[ms]
s is found with the properties described, then,
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for r = ms, (2.10) reduces to

fj(ξ)
ms∑
n=0

(
P

(n)
j (ξ)
n!

y[ms−n]
s

′
(j) −

Q
(n)
j (ξ)
n!

y[ms−n]
s (j)

)
.

This cannot vanish for both j = 0 and j = 1, since fj(ξ) �= 0, by hypothesis, and Cs has
length ms. �

The combination of the two propositions above leads to the main result of this section,
in which we compare the problem (1.1), (1.2) with its reduced version (1.1), (1.5).

Theorem 2.3. For the reduced problem (1.1), (1.5), let ν̂(λ) denote the algebraic
multiplicity of λ. Then, in the notation of (2.4) and (2.5),

ν(λ) = ν̂(λ) + ζ0(λ) + ζ1(λ).

All eigenvalues of (1.1), (1.5) are geometrically simple and relative to (1.1), (1.2),
the Jordan structure at λ consists of two chains with lengths min{ζ0(λ), ζ1(λ)} and
ν̂(λ) + max{ζ0(λ), ζ1(λ)}. The chain of greater length must have as its zeroth element
a solution of (1.1) which satisfies (1.5) for j = 0 (respectively, j = 1) if ζ0(λ) � ζ1(λ),
(respectively, ζ0(λ) � ζ1(λ)).

Proof. For (1.1), (1.5) let D̂(λ) denote the expression corresponding to D(λ) for (1.1),
(1.2). Then, clearly,

µ(D; λ) = µ(D̂; λ) + ζ0(λ) + ζ1(λ).

Since ν(λ) = µ(D; λ) and ν̂(λ) = µ(D̂; λ), the first claim is immediate. The remainder of
the theorem follows from Propositions 2.1 and 2.2. �

3. Spectral asymptotics

In this section we produce asymptotic expressions for the eigenvalues, λn, of (1.1), (1.2).
This extends the results of [4], where only reduced problems were considered, and albeit
with only one λ-independent boundary condition. The eigenvalues of (1.1), (1.2) will be
labelled λn, n � 0, repeated according to algebraic multiplicity and listed by increasing
real parts.

We write

Pj(λ) = aj
0λ

dj + · · · + aj
dj

, (3.1)

Qj(λ) = bj
0λ

dj + · · · + bj
dj

, (3.2)

where dj = max{deg(Pj), deg(Qj)}, such that |aj
0| + |bj

0| �= 0, j = 0, 1.
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Theorem 3.1. For sufficiently large n, λn is real and is given by

λn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n̂2π2 − 2
b1
0

a1
0

+ 2
b0
0

a0
0

+
∫ 1

0
q + O

(
1
n

)
, a0

0 �= 0 �= a1
0,

(n̂ + 1
2 )2π2 + 2

a1
1

b1
0

+ 2
b0
0

a0
0

+
∫ 1

0
q + O

(
1
n

)
, a0

0 �= 0 = a1
0,

(n̂ + 1
2 )2π2 − 2

b1
0

a1
0

− 2
a0
1

b0
0

+
∫ 1

0
q + O

(
1
n

)
, a0

0 = 0 �= a1
0,

(n̂ + 1)2π2 + 2
a1
1

b1
0

− 2
a0
1

b0
0

+
∫ 1

0
q + O

(
1
n

)
, a0

0 = 0 = a1
0,

where n̂ = n − d0 − d1.

Proof. We rely on the following asymptotic expressions as |λ| → ∞ for the functions
ϕ(1, λ), ϕ′(1, λ), ψ(1, λ) and ψ′(1, λ) (see [11] for details):

ϕ(1, λ) = cos
√

λ +
sin

√
λ

2
√

λ

∫ 1

0
q + O

(
e|Im

√
λ|

λ

)
,

ϕ′(1, λ) = −
√

λ sin
√

λ +
cos

√
λ

2

∫ 1

0
q + O

(
e|Im

√
λ|

√
λ

)
,

ψ(1, λ) =
sin

√
λ√

λ
− cos

√
λ

2λ

∫ 1

0
q + O

(
e|Im

√
λ|

λ3/2

)
,

ψ′(1, λ) = cos
√

λ +
sin

√
λ

2
√

λ

∫ 1

0
q + O

(
e|Im

√
λ|

λ

)
.

The expressions for ψ(1, λ), ψ′(1, λ) given in [11] involve only the leading terms above, but
the more accurate asymptotics can readily be obtained using the methods of [11] by which
the quoted expressions for ϕ(1, λ) and ϕ′(1, λ) were generated (see also [4, Appendix]).

We may write

Pj(λ) = λdj

(
aj
0 +

aj
1

λ
+ O

(
1
λ2

))
,

Qj(λ) = λdj

(
bj
0 +

bj
1

λ
+ O

(
1
λ2

))
.

Consider the cases for which a0
0 �= 0. Then (2.3) and the above expressions lead to

−D(λ)
a0
0λ

d0+d1
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1
0

[√
λ sin

√
λ +

(
b1
0

a1
0

− b0
0

a0
0

− 1
2

∫ 1

0
q

)
cos

√
λ + O

(
e|Im

√
λ|

√
λ

)]
, a1

0 �= 0,

b1
0

[
cos

√
λ +

(
b0
0

a0
0

+
a1
1

b1
0

+ 1
2

∫ 1

0
q

)
sin

√
λ√

λ
+ O

(
e|Im

√
λ|

λ

)]
, a1

0 = 0.

(3.3)
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Figure 1. τn in the ξ-plane.

When a1
0 �= 0, we put

c =
b1
0

a1
0

− b0
0

a0
0

− 1
2

∫ 1

0
q

and write (3.3) as

D(λ)
λd0+d1

= −a1
0a

0
0

[√
λ sin

√
λ + c cos

√
λ + O

(
e|Im

√
λ|

√
λ

)]
. (3.4)

For large n ∈ N,

D((n + 1
2 )2π2) = −a1

0a
0
0(nπ + 1

2π)2(d0+d1)+1
[
(−1)n + O

(
1
n

)]
,

which oscillates in sign with n. Thus, there is µn = nπ + δn, |δn| < 1
2π with D(µ2

n) = 0.
From (3.4) we obtain

(nπ + δn)(−1)n sin δn + c(−1)n cos δn = O

(
1
n

)
, (3.5)

showing that sin δn = O(1/n) and, hence, δn = γn/n, where γn = O(1). Now (3.5) yields

γn = − c

π
+ O

(
1
n

)
,

and, hence,

µn = nπ − c

nπ
+ O

(
1
n2

)

which gives the existence of eigenvalues of the desired asymptotic form. It remains to
show that all eigenvalues of large modulus are of the form µ2

n and to determine the index
of µ2

n in the listing λ0, λ1, . . . . To this end we use Rouché’s theorem.
Let R be the entire function

R(λ) = −a1
0a

0
0λ

d0+d1
√

λ sin
√

λ
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and let Γn be the path in the complex plane

Γn = {λ = ξ2 | ξ ∈ τn},

where τn is the path in the ξ-plane connecting −iζn to iζn by three line segments, as
shown in Figure 1. Here

ζn = (n − 1
2 )π, n = 1, 2, 3, . . . .

There is a positive constant κ (independent of n) such that, for λ ∈ Γn,

|R(λ)| � κ|
√

λ|2d0+2d1+1e|Im
√

λ|,

and, as
D(λ) − R(λ) = O(λd0+d1e|Im

√
λ|),

on Γn, for n large, we have
|D(λ) − R(λ)| < |R(λ)|.

Rouché’s theorem shows that D and R have the same number of zeros enclosed by Γn,
namely n + d0 + d1. Moreover, the region between Γn and Γn+1 contains precisely one
zero of D, namely µ2

n. The upshot is that the µ2
n form all the zeros with large modulus

of D, and that
λd0+d1+n = µ2

n.

This completes the proof for the case a0
0a

1
0 �= 0.

For the case a0
0 �= 0 = a1

0 (such that b1
0 �= 0), we observe from (3.3) that D(n2π2) oscil-

lates in sign with n, so that D(µ2
n) = 0, where

µn = (n + 1
2 )π + δn,

with |δn| < 1
2π. Setting

c =
b0
0

a0
0

+
a1
1

b1
0

+ 1
2

∫ 1

0
q,

we arrive at

(−1)n+1 sin δn +
c(−1)n cos δn

(n + 1
2 )π + δn

= O

(
1
n2

)
,

such that
δn =

γn

(n + 1
2 )π

, where γn = O(1).

It then follows that γn = c + O(1/n) and

µ2
n = (n + 1

2 )2π2 + 2
a1
1

b1
0

+ 2
b0
0

a0
0

+
∫ 1

0
q + O

(
1
n

)
.

The Rouché argument now uses the entire function

R(λ) = −b1
0a

0
0λ

d0+d1 cos
√

λ

and the path Γn with ζn = nπ. We leave the remaining details to the reader.
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When a0
0 = 0 �= a1

0 (so that b0
0 �= 0) we consider the problem

−Y ′′(x) + q(1 − x)Y (x) = λY (x), (3.6)

−P1(λ)Y ′(0) = Q1(λ)Y (0), (3.7)

−P0(λ)Y ′(1) = Q0(λ)Y (1). (3.8)

Of course, this problem is equivalent to (1.1), (1.2) via Y (x) = y(1 − x). However, the
analysis of the previous case applies, and we readily obtain the claim of the theorem.

For the case a0
0 = 0 = a1

0 we have

D(λ)
b0
0b

1
0λ

d0+d1−1 =
√

λ sin
√

λ + cos
√

λ

(
a0
1

b0
0

− a1
1

b1
0

+ 1
2

∫ 1

0
q

)
+ O

(
e|Im

√
λ|

√
λ

)
.

The argument now follows lines similar to that for the case a0
0a

1
0 �= 0 and we leave the

details to the reader. �

4. Oscillation theory

To study the oscillation theory associated with (1.1), (1.2), we assume in this section
that n is large enough for λn to be a simple real eigenvalue. That this is possible follows
from Theorem 3.1. We aim to determine the number of zeros in (0, 1) of the eigenfunction
for λn. We shall rely heavily on the Prüfer angle θ, for which [1] gives the essential theory.
This angle satisfies the first-order equation

θ′ = cos2 θ + (λ − q) sin2 θ (4.1)

and is related to (1.1) via cot θ = y′/y. We impose an initial condition θ(0) = α, 0 � α <

π, on (4.1) and we write θ(x, λ, α) to display the dependence of θ on λ and α. Evidently,
θ is increasing in both λ and α. The oscillation number associated with λn is the unique
integer kn � 0 for which

θ(1, λn, αn) ∈ (knπ, (kn + 1)π].

Here and below, we will use

αn = cot−1
(

Q0

P0
(λn)

)
, βn = cot−1

(
Q1

P1
(λn)

)
,

where we take the principal value of cot−1 so that αn, βn ∈ (0, π).
When (1.1) is subject to the boundary conditions

y′

y
(0) = cot α,

y′

y
(1) = cot β, 0 � α < π, 0 < β � π,

the resulting eigenvalues λα,β
n , n � 0, have asymptotic developments

λα,β
n = (n + ν)2π2 − 2 cot β + 2 cot α +

∫ 1

0
q + O

(
1
n

)
,
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where ν = 0 if α �= 0 and β �= π; ν = 1
2 if α = 0 and β �= π or if α �= 0 and β = π;

and ν = 1 if α = 0 and β = π. Moreover,

θ(1, λα,β
n , α) = nπ + β.

With this background, we present our first result. For convenience we shall continue
to use

n̂ = n − d0 − d1.

The value of kn depends on whether the limits as λ → ∞ of (Qj/Pj)(λ), j = 0, 1,
are finite, +∞ or −∞. This apparently gives nine cases, although there are only three
outcomes.

Theorem 4.1. For large n, the oscillation number associated with λn is kn = n̂ +
η0 + η1, where

η0 =

⎧⎨
⎩

1 if lim
λ→∞

Q0

P0
(λ) = −∞,

0 otherwise,

and

η1 =

⎧⎨
⎩

1 if lim
λ→∞

Q1

P1
(λ) = ∞,

0 otherwise.

Proof. We shall rely heavily on the relations

cot θ(1, λn, αn) =
Q1

P1
(λn),

θ(1, λn, αn) = knπ + βn.

(i) Suppose Qj/P j(λ) → +∞, j = 0, 1, as λ → ∞, such that αn ↓ 0 and βn ↓ 0. By
Theorem 3.1,

λn = (n̂ + 1)2π2 + c + q̄ + O

(
1
n

)
, (4.2)

where c is a constant and we write q̄ =
∫ 1
0 q. Then, for large n,

λ
0,π/2
n̂ < λn < λ

π/2,π
n̂+1 ,

and so

(n̂ + 1
2 )π = θ(1, λ

0,π/2
n̂ , 0) < θ(1, λn, αn) < θ(1, λ

π/2,π
n̂+1 , 1

2π) = (n̂ + 2)π.

Since βn > 0, we have kn = n̂ + 1.
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(ii) Suppose Q0/P 0(λ) → const. and Q1/P 1(λ) → ∞ as λ → ∞, such that
αn → α �= 0, π, βn ↓ 0. Then, by Theorem 3.1,

λn = (n̂ + 1
2 )2π2 + c + q̄ + O

(
1
n

)

> n̂2π2 + 2 cot(α − ε) + q̄ + O

(
1
n

)
(for smallε > 0)

= λ
α−ε,π/2
n̂ + O

(
1
n

)
. (4.3)

Hence, for large n,
λ

α−ε,π/2
n̂ < λn < λ0,π

n̂ ,

and so

(n̂ + 1
2 )π = θ(1, λ

α−ε,π/2
n̂ , α − ε) < θ(1, λn, αn) < θ(1, λ0,π

n̂ , 0) + π = (n̂ + 2)π.

Since
θ(1, λn, αn) = knπ + βn,

where βn ↓ 0, we have kn = n̂ + 1.

(iii) Suppose Q0/P 0(λ) → const. and Q1/P 1(λ) → −∞ as λ → ∞, such that αn →
α �= 0, π, βn ↑ π. Then (4.3) holds and, for small ε > 0 and large n,

λn < (n̂ + 1)2π2 + 2 cot(α + ε) + (c − 2 cot(α + ε) + 2) − 1 + O

(
1
n

)

= λα+ε,β
n̂+1 − 1 + O

(
1
n

)
,

where β is defined in (0, π) by −2 cot β = c − 2 cot(α + ε) + 2. Hence,

λ0,π
n̂−1 < λn < λα+ε,β

n̂+1 ,

and so

n̂π = θ(1, λ0,π
n̂−1, 0) < θ(1, λn, αn) < θ(1, λα+ε,β

n̂+1 , α + ε) = (n̂ + 1)π + β.

Since
θ(1, λn, αn) = knπ + βn,

where βn ↑ π, we see that kn = n̂.

(iv) Suppose Q0/P 0(λ) → ∞ and Q1/P 1(λ) → −∞ as λ → ∞, such that αn ↓ 0,
βn ↑ π. By Theorem 3.1,

λn < (n̂ + 1)2π2 + c + 2 + q̄ − 1 + O

(
1
n

)
= λα,β

n̂+1 − 1 + O

(
1
n

)
,
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where α and β are defined in (0, π) by 2 cotα = 1
2c + 1 and −2 cot β = 1

2c + 1. Thus, for
large n,

λ
0,π/2
n̂ < λn < λα,β

n̂+1,

and so

(n̂ + 1
2 )π = θ(1, λ

0,π/2
n̂ , 0) < θ(1, λn, αn) < θ(1, λα,β

n̂+1, α) = (n̂ + 1)π + β.

Since
θ(1, λn, αn) = knπ + βn,

where βn ↑ π, we have kn = n̂.

(v) Suppose [Q0/P 0](λ) → −∞ and [Q1/P 1](λ) → ∞ as λ → ∞, so that αn ↑ π and
βn ↓ 0. By Theorem 3.1,

λn > (n̂ + 1)2π2 + c − 2 + q̄ + 1 + O

(
1
n

)
= λα,β

n̂+1 + 1 + O

(
1
n

)
,

where α and β are defined in (0, π) by 2 cotα = 1
2c − 1 and −2 cot β = 1

2c − 1. Thus, for
large n,

λ
0,π/2
n̂+1 > λn > λα,β

n̂+1,

and so

(n̂ + 5
2 )π = θ(1, λ

0,π/2
n̂+1 , 0) + π > θ(1, λn, αn) > θ(1, λα,β

n̂+1, α) = (n̂ + 1)π + β.

Since
θ(1, λn, αn) = knπ + βn,

where βn ↓ 0, we have kn = n̂ + 2.

(vi) Suppose Qj/P j(λ) → const., j = 0, 1, as λ → ∞, so that αn → α �= 0, π, βn →
β �= 0, π. Then

λn = n̂2π2 + c + q̄ + O

(
1
n

)
,

and, for small ε > 0 and large n,

(n̂ − 1
2 )2 + 2 cot(α − ε) + q̄ + O

(
1
n

)
< λn < (n̂ + 1

2 )2 + 2 cot(α + ε) + q̄ + O

(
1
n

)
< λn

and thus
λα−ε,π

n̂−1 < λn < λα+ε,π
n̂ ,

so
n̂π = θ(1, λα−ε,π

n̂−1 , α − ε) < θ(1, λn, αn) < θ(1, λα+ε,π
n̂ , α + ε) = (n̂ + 1)π.

Hence, kn = n̂.
The remaining cases can be obtained from cases (i)–(iii) by using a reflection argument

and considering the problem (3.6)–(3.8) as in the proof of Theorem 3.1. �
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5. Example

We consider the problem

−y′′ = λy, (5.1)

λy′(0) = −λ2y(0), (5.2)

λ2y′(1) = λ3y(1). (5.3)

5.1.

The corresponding reduced problem has (5.2) and (5.3) replaced by

y′(0) = −λy(0), y′(1) = λy(1). (5.4)

It is a straightforward exercise to show that (5.1), (5.4) has a sequence of eigenvalues µ2
n

with corresponding eigenfunctions yn, where

µ0 = 0, y0(x) = 1;

tanµn =
2µn

µ2
n − 1

, yn(x) = sin(µnx) − µ−1
n cos(µnx), n � 1.

⎫⎬
⎭ (5.5)

We note (taking µn � 0 for convenience) that µn = (n − 1)π + εn, where 0 < εn =
O(1/n). By applying Theorem 3.1 to the reduced problem, we see that these are the only
eigenvalues of (5.1), (5.4) and, moreover, that each eigenvalue is simple. Note that this
does require proof, since (5.4) does not satisfy the ‘right-definiteness’ condition of [3] (in
fact a self-adjoint operator formulation, as in, say [16], would require a Pontryagin space
of index 2).

5.2.

For the non-reduced problem, Proposition 2.2 shows that the only difference in Jordan
structure will occur at λ = 0, and then (5.1) has general solution y = Cx + D. Thus, we
can start a Jordan chain for (5.1)–(5.3) with y[0](x) = Cx + D. The equation for y[1] is
−y′′ = Cx + D, which has solution

y(x) = − 1
3!

Cx3 − 1
2!

Dx2 + Ex + F.

The boundary conditions to be satisfied are y[0]′(0) = 0, which requires C = 0, and a
null condition at x = 1. Thus, unless C = 0, the chain terminates with y[0] and so has
length 1.

When C = 0, we can, without loss of generality, take D = 1, and then

y[1](x) = − 1
2!

x2 + Ex + F.

The equation for y[2] is

−y′′ = − 1
2x2 + Ex + F,
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which has solution

y(x) =
1
4!

x4 − E

3!
x3 − F

2!
x2 + Gx + H.

The boundary conditions are 0 = y[1]′(0) + y[0](0), which forces E = −1, and y[0]′(1) = 0,
which is automatically satisfied.

Thus, we now have

y[2](x) =
1
4!

x4 +
1
3!

x3 − 1
2!

Fx2 + Gx + H.

The equation for y[3] is −y′′ = y[2] with boundary conditions 0 = y[2]′(0) + y[1](0), which
forces G = −F , and y[1]′(1) = y[0](1), which requires −2 = 1: an impossibility. Hence,
this chain terminates with y[2] and so has length 3.

For (5.1)–(5.3), the eigenvalue λ = 0 generates two chains, one of length 3 and the
other of length 1, thus λ = 0 has algebraic multiplicity 4. This is in accord with the
results of § 2, since λ = 0 is an algebraically simple eigenvalue of (5.1) with boundary
conditions (5.4), but in the notation of (2.5), ζj(0) = 1 and ζj(1) = 2.

5.3.

Now we can turn to the results of §§ 3 and 4. Counting λ0 four times (as above) we
have λn = µ2

n+4 for n � 1 in the notation of Theorem 3.1 (P and Q being unreduced)
so there is an index shift of 4 in the asymptotics. To illustrate Theorem 4.1, we consider
the oscillation of yn for large n. Note that sin(µnx) has n − 1 zeros in (0, 1) and the
−µ−1

n cos(µnx) term adds an extra zero of yn near x = 0. Finally,

yn(1) = cos(µn)
(

tanµn − 1
µn

)
=

µ2
n + 1

µn(µ2
n − 1)

from (5.5), so no extra zero is added near x = 1. Thus, yn has n zeros in (0, 1), and the
index shift for oscillation is 5. This exceeds the shift for asymptotics, a phenomenon which
cannot happen for right-definite [3] or λ-independent boundary-condition [12] problems.
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