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ABSTRACT

Recursions are derived for a class of compound distributions having a claim frequency
distribution of the well known (a,b)-type. The probability mass function on which the
recursions are usually based is replaced by the distribution function in order to obtain
increasing iterates. A monotone transformation is suggested to avoid an underflow in
the initial stages of the iteration. The faster increase of the transformed iterates is
diminished by use of a scaling function. Further, an adaptive weighting depending on
the initial value and the increase of the iterates is derived. It enables us to manage an
arbitrary large portfolio. Some numerical results are displayed demonstrating the
efficiency of the different methods. The computation of the stop-loss premiums using
these methods are indicated. Finally, related iteration schemes based on the
cumulative distribution function are outlined.
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1. INTRODUCTION

Compound distributions are used extensively in modeling the total amount of
claims, X, in an insurance portfolio. Based on a claim frequency distribution
satisfying the recursion

\ n)

the probability mass function g(x) = P(X — x),x € N, is often evaluated recur-
sively as

/ =1V x'

starting with

g(O)=po,

where/(/), / € N, denotes the probability mass function of the iid claim sizes Y\,
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Applying this well known recursion (see, e.g., Panjer and Willmot (1992), Sundt
(1991) for details) to a portfolio with a large number of contracts, the initial value
g(0) is close to zero. This fact may cause an underflow (on a computer with standard
software) followed by an abort or irregular running of the procedure. Panjer and
Willmot (1986) (and Waldmann (1994, 1995) within the setting of an individual life
model) suggest the use of a scaling function to stabilize the algorithm with respect to
underflow/overflow. Moreover, Panjer and Wang (1993) study the stability of this
type of recursion from a more theoretical point of view.

To overcome the problem of underflow in the initial and final stages of the
iteration, we reformulate iteration scheme (2) with the probability mass function
g(x) replaced by the distribution function G(x) — P(X < x). The resulting recur-
sion has the nice property of producing increasing values lying within the unit
interval. However, an underflow of the initial values is still possible. Therefore we
transform G(x) to H(x) = [G(x) - G(0)]/G(0) avoiding an underflow in the initial
stage of the algorithm. The stronger increase of the transformed values H(x) may
lead to an overflow in the final stage of the algorithm. This difficulty, however, can
be partially managed by retransforming H{x) to G(x) for some xo G N and
continuing with the iteration scheme for G(x). Moreover, the increase of the
transformed values H(x) can be diminished by use of a scaling function of type
exp( -a — fix) for suitable constants a and (3. Scaling functions of this type
considerably extend the range of applicability of the recursion but cannot avoid a
breakdown by letting the expected number of claims tend to infinity. Therefore, we
also present an adaptive transformation of G(x), x G N, which enables us to manage
an arbitrary large portfolio. The flexibility of the transformation results from its
recursive definition depending on the initial value and the increase of the iterates. It
is realized by dividing the range of G(0), G(l), . . . into L layers and iterating in
these layers successively. To make each layer representable on the computer, a
scaling function is used, which is constant within a layer and suitably adapted by
switching from layer £ to £ + 1.

The paper is organized as follows. The iteration scheme is given in Section 2.
Section 3 contains the transformed iteration schemes. Some numerical results are
displayed in section 4 demonstrating the efficiency and applicability of the different
methods. In Section 5 we extend our approach to a claim frequency distribution
satisfying recursion (1) for n = m+ I, m + 2, . . . and some m € N only. The
calculation of the stop-loss premiums using the methods of Sections 2 and 3 are
indicated in section 6. Finally, Section 7 is devoted to a set of iteration schemes
based on the cumulative distribution function G(x) := X^=o ^(0-

2. AN ITERATION SCHEME FOR G(X)

In the following let an empty sum YM= I • • • be defined to be zero. By slightly
modifying a standard approach in deriving the iteration scheme for g(x), x £ N, we
are in a position to obtain the following recursion for G(x).
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Theorem 1: G(x), x € N, can be evaluated recursively as

xG(x) = rl(x) + r2(x). (3)

where G(0) = po and, for all x € N,

= a ]T/(;>2(x - /) + (a + b)J2 ift)G{x - i) (4)
1 = 1 i = i

with r\ (0) = 0.

Proof. Introduce the generating functions <fi(z) = J2™=og(x)zx, 3>(z)
=X™=oG{*V, and Hz) = Z7=0G(x)z-\ Note that $(z) = <p{z)/{\ - z),
$(2) = $(z)/( l - z). Further, let *(z) = X)^= oA^)2* b e t h e generating function

of the claim size distribution.
To derive the recursion formula for G{x) we start with the well known identity

f(z) — Y1T= 0P"® (ZT' w n i c n c a n be rewritten as

n = 0

Differentiating both sides with respect to z we obtain

n= 1
00

n = 1

= a*(z)[(l - z)&(z) - $(z)] + (a + £)tf'(z)(l - z)$(z)

Now, multiplying both sides by z/(l — z), the last equation can also be written as

Finally, using z<fr'(z) = ^^°= 1 xG(x)zx and an analogous representation
a comparison of the coefficients of zx, x e N, leads to the identity

where

7 = 0
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x-l x-i-\

(x - i)G(x - i) - E G(J) + (a + b) E '
7=0 J 1=1i = l

i E/(*>2(* - 0 + (a + b) E iMG(x - i) (5)
1 = 1 / = i

It easily follows from (3) that r\(x) and ri{x) are nonnegative and increasing
functions of x. r\ (x) can be implemented as a single number to be adapted at each
step of iteration. Additionally, if both a and a + b are nonnegative, which holds for
the important cases of a Poisson counting distribution (a = 0, b = A) and a negative
binomial counting distribution (a = p,b = p(j — 1)), r2(x) is the result of additions
and multiplications of nonnegative real-valued numbers.

It is not necessary to recursively determine riix). By rearranging its defining
terms in (5) we obtain

Corollary 1: G(x), x e N, can be evaluated as in Theorem 1 with (4) replaced by

r2(x) = -a E/lOn(* " 0 + X > * + W)G(* " 0 (4')
; = 1 ; = 1

Note, however, that the numbers to be added/multiplicated in (4') are no longer
nonnegative.

Looking at the binomial counting distribution (a = —p/{\ — p), b — — (n + \)a),
(4) and (4') have both positive and negative terms. The numerical results, however,
which will be displayed in section 4 below give no hint for an instability with
respect to rounding errors.

For a geometric counting distribution the recursion for G(x) can already be found
in Sundt (1991), p. 114.

Corollary 2: In case of a geometric counting distribution (a = p, b = 0) it holds that

i)G(x-i) (6)
/ = l

with G(0) = 1-/7.

Proof. With (10.14) in Sundt (1991) and r\ (x) as in Theorem 1 we infer by induction

on x

G(x) - p E/(/)G(x - i) = - ( r, (x) - p ; T > > i (x - i) ) = 1 - p,
i = i x \ 1 = 1 /

which is the desired result. •
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3. STABILIZATION OF THE ALGORITHM WITH RESPECT TO UNDERFLOW/OVERFLOW

The recursion for G(x) has the nice property of being monotone, but the initial value
po may cause an underflow followed by an abort or irregular running of the
procedure. Our first step in guaranteeing a regular running of the procedure is
based on the following Theorem.

Theorem 2: The transformed values H(x) = [G(x) - G(0)]/G(0), x € N, can be
computed recursively via

xH(x)=hl(x) + h2(x), (7)

where H(0) = 0, and, for x € N,

ho(x)=ho(x- \)+xj\x)

h2{x) = (a + b)ho(x) + a

with A0(0) = 0 and Ai(0) = 0.

Proof. Set /jo(0) = /j,(0) = h2(0) = 0. Then, together with Theorem 1, for x e N,

h(x) := [r,(x) - JCG(O)]/G(O) = hi(x - 1) + [G(x - 1) - G(O)]/G(O)

= [JC G(x) - x G(0) - ri(x) + x G(O)]/G(O)

= r2(x)/G(0)

•(a + b)f] if(i)[(G(x - i) - G(0)) + G(O)]/G(O)

x-1 [x-l

1 = 1

giving the desired recursion. •
The function ho(x) avoids that the sequence H(x) degenerates to a sequence that

has all its elements equal to zero. ho(x) is further a measure for the increase of the
iterates. Since H(x) —» (1 — po)/po f° r x ~^ °°> it may be necessary to retransform
H{x) to G(x) for some x o € N and to continue with the recursive computation of
G(x), x > XQ.

Moreover, the increase of H(x) can be diminished by weighting H(x) by
exp( - (a + /3x) for suitable parameters a £ R := (—oo, oo), f3 > 0. The resulting
recursion is given in the following Theorem.
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Theorem 3: For a e R, j3 > 0, the transformed values H(x) = H{x)e.~{a+Iix\ x € N,
can be evaluated recursively as

xH{x)=hx(x)+h2(x) (8)

where H(0) = 0, and, for x € N,

ho(x)=ho(x-l) + xf(x)

hl(x)=e-li[hl{x-l)+H(x-l)\
X-1 X-1

1 = 1 1 = 1

with ho(x) = 0 and hy (0) = 0.
The parameter a of the scaling function exp(—a - (3x) gives a constant weight to

/zo(x) and can be used to reduce the order of ho(x). In addition, the parameter (3 can
be utilized to diminish the increase of ho(x) and the resulting H(x). The parameter
(3, however, is much more sensitive than a. If (3 is too large, isotonicity of H(x)
does no longer hold for all x e N. In such a case things may change and the
transformation may lead to an earlier abort on account of an underflow.

The use of an exponential scaling function considerably extends the range of
applicability of the recursion but cannot avoid a breakdown by letting the expected
number of claims tend to infinity. We next present an adaptive transformation of
G(x), x € N, which enables us to manage an arbitrary large portfolio. The flexibility
of the transformation results from its recursive definition depending on the initial
value and the increase of the iterates. It is realized by dividing the range of G(0),
G(l),... into L layers and iterating in these layers successively. To make each layer
representable on the computer, a scaling function is used, which is constant within a
layer and suitably adapted by switching from layer £ to £ + 1.

Let UJ and fl denote the smallest and greatest positive numbers, respectively, that
can be represented on the computer using standard software. We interpret the
interval [u>, Q] as the size of a layer. Further we introduce a subinterval [10"',
107] of [u>, fi) for suitable constants t, T > 0. The interval [10"', 107] is the region
in a layer, in which the iteration is started (resp. restarted) and continued (up to some
value greater than 107). Clearly, to avoid rounding errors, the set [10"', 107] has to
be chosen 'smaller' than [u>, Q\.

In addition to t and T, the number L of layers depends on PQ. Set

c : = -Iog10/70

(i.e. 10~e = po). Then L can be chosen such that

t + (L-2)(T+t) <c<t+(L-l)(T+t)

holds. If L = 1, i.e. po > 10"', there is no need for a transformation. Therefore
assume L > 1. Finally, let £ be the largest x e N with/(x) > 0 (and oo if there is no
such one).

The resulting transformed iterates G*(0), G*(l), . . . can now be recursively
defined as follows:
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(a) Layer 1. Set

G*(0) = 10"'

and compute G*{\), G*(2), . . . up to some x\, say, with G*(x\) > 10r accord-
ing to

xG*{x) = r\{x)+r\{x), (9)

where

r*2(x) = a f > K ( x - 0 + (a + b) £ if(i)G*(x - i)
1 = 1 1 = 1

withrJ(O) = 0.

(b) Layer I (2 < I < L - 1). Reset

G*(x) = lO-{T+t]G*{x)

C(x) = lO-^r:(x), I / € { 1 , 2}

for all :ty_i - ^ < x < xt~\ (with G*(x), r\{x), r\{x) equal to zero if they are
less than ui) and compute G*(xe-\ + 1), G*(x^_i + 2), . . . up to some X(, say, with
G*{xe) > 10r according to (9).

(c) Layer L. Set 7 = c - f - (L - 2 ) (T+ <). Reset

for all x/._i - ^ < x < XL-\ and compute G*(x/,_i + 1), G*(XL-I + 2 ) , . . .
according to (9).

Summarizing the steps of iteration we immediately obtain

Theorem 4: Let L > 1. Evaluate G*(0), G*(l), . . . as above. Then, for all
x > xL_i - C.

Further, for all s = 1, . . . , L - 1, and all XL-J-I - £, < x < xL_s -

G(x) = lO-^-

rv(x) = lO-Tl

(with x0 = 0 and G(x') = 0 for x' < 0).
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4. NUMERICAL RESULTS AND DISCUSSION

Our numerical results are ascertained with a computer program written in Turbo
Pascal 5.0. We used real-valued variables of type 'extended' having a range from
1.9 * 10"4951 to 1.1 * 104932. Thus u = 1.9 * 10"4951 and fi = 1.1 * 104932.

We consider as a starting point the portfolio of n = 31 independent life insurance
policies discussed in Gerber (1979), p. 53. Each policy is supposed to have an
amount at risk i € / = 1 , . . . , 5 and a mortality rate cjj with_/ £ / = 1 , . . . , 4. Further
ny denotes the number of all policies with amount at risk / and mortality rate Ijj.
Note that the expected number of claims is 1.4.

This individual life model is approximated by a compound Poisson model with

a = 0, b = n\ = E/e/Eye/«y% a n d A*) = Eye./%ty/"A> ' e 7' a n d by a c o m -
pound binomial model with a = —A/(l — A), b = {n + 1)A/( 1 - A), and f(i) as
in the compound Poisson model (cf., e.g., Kuon, Radke, and Reich (1993)).

Since the portfolio consists of 31 policies only, there is no need for a stabilization
of (3) with respect to underflow. We therefore expand the portfolio by considering
kriij policies in place of ny (for all i 6 / and j e J).

The recursions (7) and (8) on which our transformed iterates H(x) and H{x) are
based have been carried out up to some XQ £ N guaranteeing G(JCO) > 10"4000. For
x > xo, after retransforming the relevant data, recursion (3) has been applied to
determine G(x) directly. Moreover, we have distinguished between recursions (4)
and (4') when calculating ri(x). Based on (4) and (4') also the transformed iterates
H(x) and H{x) have been studied separately.

We say that a recursion is stable if the algorithm does not stop with an under
flow or overflow and that both | E{X) - E"{X) | /E"(X) < 10"5 and
| Var'(X)1/2 - Var"(Z)1/2 | /Var"(lO1/2 < 10~5 hold, where E(X) and Var'(A0
are determined with the help of the probability mass function of X and E"(X),
Var"(X) result from the moments of the counting distribution and claim size
distribution together with the properties of expectation and variance. The maximal
k and the associated number of policies we have obtained in this way are displayed
in Table 2. Although the recursions for G(x) and H(x) nearly work within the same
range of k, there is an essential difference. By increasing k, the recursion for G(x)
aborts with an underflow resulting from the initial value G(0), the one for H(x)
starts with stable initial values and aborts with an overflow. The reduction of the

TABLE 1
GERBER'S SAMPLE PORTFOLIO OF 31 POLICIES

Mortality Rate

0.03
0.04
0.05
0.06

1

2
-
-
-

2

3
1
2
2

Amount at Risk

3

1
2
4
2

4

2
2
2
2

5

_

1
2
1
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TABLE 2
STABILITY OF THE ITERATION SCHEMES (3), (7) AND (8)

recursion compound Poisson model compound binomial model

G(x)
H(x)
H{x), a
H(x), a

= 10000, (3
= 10000, (3

= 0
= 0.5

maximal k

8000
8000
15 000
65 000

number of
policies

248 000
248 000
465 000

2 015 000

maximal k

7000
7000

14 000
62 000

number of
policies

217 000
217 000
434000

1922 000

increase of H{x) as realized by use of H(x) then gives for both the compound
Poisson model and the compound binomial model (independent of the use of (4) or
(4')) stable solutions for a portfolio with nearly 2 million contracts.

We already mentioned that an L layer model can be applied to an arbitrary large
portfolio. To give some insight into the increase of the number L of layers when the
number of contracts is increased, we have used the interval [10~r, 107] = [10~4000,
1O+4OOOJ for c a r r y m g o u t the iterations.

For/t= 104, 105, 106 (which corresponds to 3.1 • 105, 3.1 • 106, 3.1 • 107 contracts)
the number L of layers needed is displayed in Table 3.

5. MODIFICATION OF THE CLAIM NUMBER DISTRIBUTION

The class of counting distributions can be extended by supposing the recursion

pn = (a + -jpn_ i, n = m+ 1, m + 2, ... (10)

to hold for some m e N o : = 0 , l , 2 , . . . only. In this more general situation the
iteration scheme for the probability mass function of X, g(x), reads (cf., e.g., Panjer
and Willmot (1992), Corollary 6.16.1)

TABLE 3
THE NUMBER L of layers

claim frequency distribution

Poisson binomial

104 L = 1
105 L = 8
106 L = 77

https://doi.org/10.2143/AST.26.2.563220 Published online by Cambridge University Press

https://doi.org/10.2143/AST.26.2.563220


222 KARL-HEINZ WALDMANN

where/"* denotes the n-fold convolution of/with itself and where qn is defined by

b\+ -

Essentially the same arguments as in the proof of Theorem 1 give

Theorem 5: G(x), x € N, can be evaluated recursively as

xG(x) = rl(x) + r2(x)1

where

rx{x) = n(x - 1) + G(x - 1) + J2 In x f (x ) , x 6 N,
n = 1

(with G(0) =/>0, n(0) = 0) and r2(x) as in (4)).
Being interested in extending Theorem 2, we only have to replace the recursion

for hx{x) by hl(x) = hi(x-\)+H(x-\) + J2™=l(qn/po)xr(x). Analo-
gously, in Theorem 3, we have to redefine h\{x) by
A,(i) = e-^[Mi - 1) + % - 1)] +e-<«*) E ; = ,(?»/^) x f (i). The L-
layer approach does not work in case of the claim frequency distribution (10).

6. EVALUATION OF THE STOP-LOSS PREMIUMS

Let us begin with the claim frequency distribution (1). It is well known that the stop-
loss premium SL(r), SL(r) := X^U+iC* ~~ TM-V)> w i m retention r e N can be
written as

SHT)=E{X)-T+G{T-\), reN. (11)

Using Theorem 1 to determine G(x), then r\(x) = G(x - 1) is obtained as a
byproduct. Thus the results of Sections 2 and 3 can also be utilized to compute
the stop-loss premiums for specified retentions. In particular, using Theorem 1,
SL(T) = E(X) - r + ri(r) . Using the transformed iterates H(x) and H(x), r\(x)
follows from r\ (x) = (h\ (x) + x)po and r\ (x) = [ea + P*h\ (x) + x]po, respectively.
Applying the L-layer method, r\(x) results from r\(x) and is given explicitly in
Theorem 4.

In case of the more general claim frequency distribution (10),
n{x) = G(x-\) + Y%= i qn YA= I if*li)- The transformed iterates H(x) and
H(x) (with the recursions for h\(x) and h\(x) as defined in Section 5) give r\(x)
as in the case of the claim frequency distribution (1). The L-layer approach,
however, does not work.

https://doi.org/10.2143/AST.26.2.563220 Published online by Cambridge University Press

https://doi.org/10.2143/AST.26.2.563220


MODIFIED RECURSIONS FOR A CLASS OF COMPOUND DISTRIBUTIONS 2 2 3

7. ITERATION SCHEMES BASED ON G(X)

The iteration schemes which will be presented in this section are based on the
cumulative distribution function G(x). Forming the first and second differences of
G(x), AG(x) := G{x + 1) - G(x) = G(x+l) and A2G(x) := AG(x + 1)
-AG(x) — g(x + 2), we immediately obtain the distribution function G(x) and
the probability mass function g(x), respectively.

Note that G(x) has the nice property of being an increasing and convex function.
In case of the claim frequency distribution (1) the recursion reads

Theorem 6: Let m = 0. Then G(x), x e N, can he evaluated recursively as

xG(x) = f{(x) + f2(x), (12)

where G(0) = po and, for all x S N,

fl(x)=fl(x-l)

P2(x) = a ][>-)M* " 0 + (a +

with h (0) = 0.

Proof. Starting with the identity (cf. proof of Theorem 1)

similar arguments as in the proof of Theorem 1 give the desired recursion. •
Since (3) and (12) (formally) differ in a factor 2 only, the methods of Section 3

can be adapted easily. Using (11) also the stop-losis premiums follow immediately
by retransforming the transformed iterates H{x), H(x) and G*{x), say, to G(x).

In case of the more general claim frequency distribution (10) the iterates G(x)
and its transformed versions can be obtained in a straightforward manner following
the approach given in section 5.
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