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Abstract

In this paper we present an adaptive boundary-element method for a transmission prob-
lem for the Laplacian in a two-dimensional Lipschitz domain. We are concerned with
an equivalent system of boundary-integral equations of the first kind (on the transmission
boundary) involving weakly-singular, singular and hypersingular integral operators. For
the h-version boundary-element (Galerkin) discretization we derive an a posteriori error
estimate which guarantees a given bound for the error in the energy norm (up to a multiplic-
ative constant). Then, following Eriksson and Johnson this yields an adaptive algorithm
steering the mesh refinement. Numerical examples confirm that our adaptive algorithms
yield automatically good triangulations and are efficient.

1. Introduction

The problem of constructing an adaptive mesh-refining procedure is of practical
importance in the numerical analysis of partial differential equations. Since the
pioneering work of Babuska and Miller [1] and Eriksson and Johnson [10, 11] adaptive
finite-element methods are well established. We extend our analysis of adaptive
boundary-element methods [3, 4] to boundary-integral equations for elliptic interface
problems. We prove a posteriori error estimates for the Galerkin boundary-element
solution and develop various adaptive mesh-refinement algorithms.

In this paper we convert the interface problem for harmonic functions ux in Qt and
u2 in £22 into a system of boundary-integral equations on the interface boundary F
between the bounded interior domain Qt and the unbounded exterior £22 := K2/£2,.
We prescribe the jumps U\—u2 and rfc - jf on the interface F (^ denotes the normal
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[2] Adaptive boundary-element methods for transmission problems 337

derivative) and obtain a system of boundary integral equations of the first kind for
the unknown traces u\ | r and ^ | r - Our solution procedure for the original interface
problem consists now in solving this system of integral equations for U\ | r and ^ | r .
then using the values for the jumps to compute «2|r and j£\r and finally computing
Ui(x) for x € £2, with the representation formula as a combination of single-layer
and double-layer potentials acting on the traces M,|r and fjflr- This procedure is
explained in detail in [7], where we analyzed the solvability of the system of boundary
integral equations (see also Theorem 1 below). This system, (4) below, consists of the
operators of the single-layer potential and the double-layer potential and their normal
derivatives. Thus, the corresponding integral operators have weakly-singular, singular
and hypersingular kernels, respectively. The system can be solved approximately by
the Galerkin method (see [7]). For the implementation of this method see Section 7
below. Since our system of boundary-integral operators is a strongly-elliptic system
of pseudodifferential operators on P [7] (note that the single-layer potential operator
V is a strongly-elliptic operator from //~1/2(P) into Hl/2(T) and the normal derivative
of the double layer potential W is a strongly elliptic from //I /2(P) into //~1/2(P)) the
Galerkin boundary-element solution converges quasioptimally (see Theorem 2 below)
towards the exact solution of our system of integral equations on P.

It was shown in [7] that the rate of convergence of the corresponding boundary-
element Galerkin solution is restricted by the regularity of the exact solution of the
boundary-integral equations. In [7], the h-version of the boundary-element method
was analyzed on quasi-uniform meshes where the trace of the solution of the original
interface problem was approximated by piecewise-linear continuous elements and
its normal derivative by piecewise-constant functions. Here, we present an adaptive
scheme for the h-version where a local mesh refinement is performed and therefore
higher accuracy is achieved for the computed Galerkin solution than with quasi-
uniform meshes. Our adaptive refinement strategy is related to Eriksson and Johnson's
approach for FEM and is based on an a posteriori estimate (Theorem 5) which endows
the weighted residues in the H' (P) x L2 (P)-norm. The proof of the a posteriori error
estimate is different from that in [3, 4]. Applying this error indicator our adaptive
process is steered by first computing a new mesh and then a corresponding Galerkin
solution which is afterwards used to create a new mesh via local residues and so forth.
This technique had turned out to be successful for integral equations of the first kind
(with weakly singular and hypersingular kernels) in [4]. Our numerical results show
improved convergence of the Galerkin solution and underline the efficiency of the
adaptive method.
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2. The transmission problem

In this section we study the solvability of the boundary integral equation for a
transmission problem of harmonic functions in R2. First let us introduce some notation
before we formulate the transmission problem. Let £2i c R2 be a bounded domain
with Lipschitz boundary F and let Q2 '•= R2 \ £2, be its complement. Let HS(T)
be the usual Sobolev spaces on the interface F [15] such that H°(£2) = L2(F) and
H~S(V) is the dual space of HS(F), s > 0, with respect to the duality (,) which is
defined for smooth functions u, v by

(M, V) = I u • v ds.

Note that //1/2(F) is the trace space of # '(f i ,) and //;J,C
Then the transmission problem under consideration reads as follows:

Given f e //1/2(F) and g e / / " ' ^ ( D find

with

A M , = 0 in Qj 0 = 1,2) (1)

and

dut du2ut=u2 + f, -— = —-+g on T (2)
dn dn

such that there exists b € R with

l im(«2(jc)-^-log|jc |) = 0. (3)

REMARK 1. (i) The trace uj\r is defined for uj\r e ^ ( f i ; ) with the well-known trace
theorems.
(ii) The normal derivatives ^ , n being the normal on F pointing from Q{ into Q2, is
defined via Green's formula

,v\r\ (y = 1,2),

where uj e H^iQj) and v € H\Qj) have compact support defining |^-|r 6
[7].
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(iii) The condition (3) is given detailed consideration in [7].
(iv) Transmission problems of this type are analyzed in [7] in a quite general setting
including scattering problems arising in electrostatics. The transmission problem
(l)-(3) is a model problem in this field and the results below carry over to other
transmission problems in [7, 8].

Following [7] we rewrite the transmission problem as a boundary-integral equation
where we use some pseudodifferential operators. Given v e Hl/2(F) and (f> e
//~I/2(F), define for z e F the boundary-integral operators

: = - - [<KS)log\z-S\dst,
x Jr

(Kv)(z):=-- / " « ( ? ) / - l o g | z - f | <
n Jr dn(

:= -- f <t>iK)^~(K'cf>Kz) := - - f <t>iK)^~ log \z -
n J dn

£ / ( O ^ g |n anz Jr dn$

which are bounded and linear in the spaces (see [6, 7])

V : H'~l/2{r) -+ Hs+l/2(r),

K : H'+l/2(T) -+ HS+X/\T),

K' : HS-XI2(T) - • //J"1/2(F),

W : Hs+l/2(r) -»• H'-l/2(T),

where (since we allowed F to be a Lipschitz boundary) s e [-1/2, 1/2]. Moreover
the single-layer potential V is symmetric, the double-layer potential K has the dual
K' and the hypersingular operator W is symmetric. Note that V and W are strongly
elliptic in the sense that they satisfy a Girding inequality (in the above spaces with
s = 0; see [7]).

Define H : H^2{T) x //-1/2(F) -*• #I / 2(F) x //"1/2(F) by

»••{-: :)•

The operator H is linear, bounded and a Fredholm operator of index zero [7]. The
following theorem describes the connection between the operator H and the original
problem (l)-(3).

THEOREM 1. (a) The transmission problem (1)—(3) is equivalent to the boundary
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integral equation

in the following sense:

(i) If(u\, M2) G Hx (fij) x H,]OC(£22) solves the transmission problem (l)-(3) then

(5)
on / r

solves the boundary integral equation (4).
(ii) If{v, <p) € HI/2(V) x H'l/2(T) solves the boundary integral equation (4)

then the transmission problem (l)-(3) has a solution (uu u2) satisfying (5).

(b) The operator H is bijective so that the transmission problem (l)-(3) as well as
the integral equation (4) have unique solutions.
(c) Given f € # ' (F ) and g e L2(F) the solution (v,4>) of (A) satisfies (v,<p) G

PROOF. The theorem follows from the results in [7] by setting a = 0 , Ai = A2 and
/j. = 1. In particular H is bijective if and only if the two conditions (A) and (A) are
satisfied (see [7]). In our model problem this is easily verified. For / 6 / / ' (F) and
g e L2(T) the right-hand side of (4) lies in H1 (O x L2(r) [6] such that [7, Theorem
6.1] yields (t>,</>) e // ' (T) x L2{T).

We conclude the following result which is important for the derivation of a posteri-
ori error bounds for the boundary-element Galerkin solution of the system of integral
equations (4).

COROLLARY 1. The linear operator H maps H\T) x L2(F) bijectively and continu-
ously onto itself. Its inverse is also bounded, mapping Hl(F) x L2(F) onto itself.

PROOF. From the above-mentioned properties of V, K, K', W (proved in [6, 7]) we
have that H maps H1 (F) x L2(F) continuously into itself. Let Q e H] (F) x L2(F).
If HQ = 0 then Q = 0 since H : HX'2(T) x / /-"2(F) -> //1/2(F) x H-X'2{T) is
injective. Since H : # I / 2 (F) x / /- | / 2 (F) - • HU2{T) x //-1/2(F) is bijective, given
(I) e H'(F) x L2(F) then some Q) e Hl'2(D x //- '/2(F) with HQ) = Q . Due
to Theorem l(c), Q e / / ' (F) x L2(F). Thus, H maps H\T) x L2(F) onto itself
and the claimed properties of H are already proved. The properties of its inverse are
then included using the inverse mapping theorem.
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3. A boundary-element method for the transmission problem

In order to obtain quasi-optimal convergence of a Galerkin discretization of the
boundary-integral equation (4), the strong ellipticity of the single-layer potential and
the hypersingular operator is sufficient.

Let(//A
l/2x//A~l/2 : h e /) be a family of finite-dimensional subspaces of Hl/2(T)x

/ / - 1 / 2 ( r) such that UhelH
l
h

/2 x H~m is dense in Hxl2(T) x H^I2(Y), I c (0, oo)
with 0 e / .

For h G / consider the following Galerkin procedure introduced and analyzed in
[7]:

Find (vh, (ph) e Hi12 x H^'2 such that

forall(wh,rlfh)eHl/2xH-i/2.

Here (, )H'/Hr)xH->'Hn iS defined by

for v, w e HS(V) and <j>,xj/ e H~S(F) where 0 < s < 1 and (,) denotes duality
between HS(F) and H~s(r). The following result holds which shows the quasi-
optimality of the Galerkin error.

THEOREM 2 ([7]). There exists h0 > 0 such that for all h e / with h < h0 the Galerkin
equation (6) has a unique solution (vh, (j>h). If (v,<t>) solves the boundary-integral
equation (4) then

holds with c0 > 0 independent ofh.

From Theorem 2 the Galerkin solution in //A
1/2(r) x H^l/2(F) is only unique for

sufficiently small h. This is not appropriate for an adaptive method where the mesh
size h may vary substantially. In the following we will show how to modify the
Galerkin procedure to obtain a unique Galerkin solution for all h. The key is to
eliminate the constant solutions; this is achieved by demanding that v and vh have
integral mean zero; for <j> and (j>h this property holds automatically as Lemma 1 below
shows.
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DEFINITION 1. Define

H0-*(r) := W € H~s(D : (f, 1) = 0},

for 0 < s < 1. Wfe define HS(F) by (complex) interpolation [2]. Given the above
family offinite-dimensional subspaces (HXJ2 x H^l/2 : h e I), let

H'1'2 := H^2 fl tf-'V).

The following lemma shows that the integral of cf> (which is the normal derivative
of the potential u\ on the inner side of the boundary F) around T is zero and it gives
the corresponding result for the Galerkin descretization <j>h of </>.

LEMMA 1. If(v, (f>) e HX/2(T) x H~l/2(V) solves the boundary-integral equation (4)
and (vh, <j>h) £ a]!1 x H^l/2 solves its discretization (6), then

<t> € / / 0 ( D , <(>h e H~h
xl2,

provided 1 € HXJ2.

PROOF. We only give the proof for the discrete case <ph € HQU2(D, <j> e HQ1/2(T)

being proved analogously. Letting wh := 1 and \jfh = 0 in (6), then from the definition
of H

0 = (Wvh, 1) + {K'<j>h, 1) - l-{(g, 1) + (Wf, 1) + (K'g, 1)}

= <W1, vh) + {</>„, Kl) - l-[(g, 1) + (Wl, f) + (g, ATI)}.

Note that (1,0) are Cauchy data for the constant function 1 so that its Calderdn
projector maps (1,0) onto (1,0) (see [7, Theorem 3.11]), that is, Q = HQ, proving
Kl = - l a n d Wl = 0 .

Using this, we get from the above that

0 = -{fa, 1), whence <ph e H;l/2(D.

REMARK 2. In view of Lemma 1 we are led to reduce the trial functions for the
tractions to H^/2 because the tractions belong to this space automatically.

Consider the piecewise-constant solution u\ = 1 and u2 = 0 of the problem (l)-(3)
for / = 1 and g = 0. By Theorem 1 tfQ = Q , which yields
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for all w e / / 1 / 2 (F) and x/r e H0~
l/2(T). Consequently, the displacements of the

corresponding Galerkin solutions are then determined only up to an additive constant.
In order to fix this constant (as zero in the integral mean) we are led to the trial spaces

Lemma 1 and Remark 2 motivate the following modified Galerkin procedure.

Find (vh, <t>h) € Hoi2 x Hoh'2 such that

-I(i + mO.fr)) =o
2 \gj \xlrhj Iw./2(r)xW-i/2(n

for all (wh, xj,h) e Hof x ff"1/2.

The relation between the Galerkin procedures (6) and (7) are given in the following
theorem.

THEOREM 3. (a) //(«», fa) € Hx
h

12 x H~l/2 solves (6), then (vh, fa) e Hof x H~h'
12

solves (7), where vh := vh — vOh e //0'/2 with the constant vOh := (vh, 1) / (1, 1) e R.
(b) Convewefy, i/(w», </>/,) € //0'/

2 x //0- | /2
 JO/VM (7), then (vh, fa) € Hi'2 X / / ; 1 / 2

solves (6), vv/ier^ vh = vh + u0/, and fAe constant vOh is given as

(l,i(K-l)f-\Vg + Vfa-Kvh)
von •= ^ € R.

PROOF. If vOh e K is constant and vh = vh + VOH, then

for any (iofc, ^A) € //A
l/2 x //A"1/2. Hence, if (vh, fa) € //A

1/2 x //A"1/2 solves (6), then
(7) is satisfied by (vh, fa) as well, and this proves (a), because tyh, fa 6 H^12 (see
Lemma 1) in (8).

Conversely, if (yh, fa) e //0'/2 x H^12 solves (7), then define vh as in (b). Due to
(8), (6) is satisfied whenever (wh, \//h) G //J/2 x H^12. Thus, it remains to directly
check (6) for (wh, *„) = (1,0) and (wh, *„) = (0, 1). Using HQ = \(\ + H)(f

g),
we have in the first case

\
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since K\ = — 1 and (<ph, 1) = 0 by the present choice of the trial functions and
(</>, 1) = 0 by Lemma 1. In the second case

vOh

4- K(vh - vh0) + V4>h - - ( 1 - K)f-H
= vh0(l, [,V4>h-Kvh + -(K-l)f--Vg

which is zero due to the definition of vh0. Altogether, (6) is satisfied for all (wh, x//h) e
Hl

h'
2 x #~1/2 which proves (b).

The proof of the following lemma can be concluded from [13, 19, 16].

LEMMA 2. The single-layer potential V is positive definite on HQ{/2{T) and the hyper-
singular operator W is positive definite on Ho (T), that is, there exists some constant
c > 0 such that

(Ww,w)>c-\\w\\2
Hl,

for all w € //0
1/2(r) and all f e H~

As an application of Lemma 2 we obtain the quasi-optimality of the modified
Galerkin procedure (7).

THEOREM 4. There exists c0 > 0 such that for all h e I the (modified) Galerkin
equation (7) has a unique solution (ii

v-vh

<P - 4>h <c 0
inf (l~-7)\

holds, where (v, <p) is the solution o/(4) and v := v - (1, v) / (1, 1) € HQ/2(F).

PROOF. Note that, due to Lemma 2, the bilinear form

; •>w./2(r)x#-i/»(r) : ~l/2(x H0~
l/2(r))

is (symmetric and) positive definite. For all (u, 0) e //o
l/2(r) x //0"1/2(r),

{H0t0)={wvtv)+{y*'4>) -c-\0
The proof is concluded by standard arguments.

//O
l/2(r)x//o-|/2(r)
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REMARK 3. Combining Theorem 4 with Theorem 3 we get in Theorem 2 that h0 = oo,
that is, there is no restriction on h in order to guaranteee a unique solution of the
Galerkin procedure and the error estimate.

4. An a posteriori error estimate

In order to state the a posteriori estimate for the h-version of the boundary-element
method (7) we need some notation about the mesh used, that is, on the discrete function
spaces.

DEFINITION 2. Let T = dQ. be a polygonal boundary. Given k > 0, ck > 0 and
integers p\ > 1 and p0 > 0, the class Et ,Q Pl Po is the set of all triples (T, S°, Sl

h)
where
(al) T = [T,•. : i = 1 , . . . , nT} is a set of interval domains (that is, straight lines)
of F which partition F. Let hj > 0 be the Euclidean length of the element F,, j =
1 , . . . , nT. Define VnT+j = Fj and hnT+J = hj for any integer j , that is, use the
indices modulo nT. Then, assume that for any integers i, j

hJ

holds.
(a2) 5^ and S° are piecewise polynomials of degree p\ and p0, respectively, that is,

Sl
h := [r] e C(F) : r)\v. is a polynomial of degree < P\, j = I, ... , nT)

S°h := {r} € L°°(r) : r)\r. is a polynomial of degree < p0, j = 1 nT}.

Given (T, S°, Sl
h) € 2t.CtlPl.Po let

Pi : L \ T ) - > S{, ./ = 0 , l ,

be the L2 projection onto SJ
h and let h(T) € L°°(r) be piecewise constant with the

value of the element length, that is, h(T)\r. := hj, j = I, ... , nT. With Sl
h and 5° we

associate the trial spaces H^2 := Hll2(T) D 5^ and H^'2 := //0"1 /2(r) D S°.

REMARK 4. Note that quasi-uniform meshes are included in Eti(.ttPliPo for which it is
well known that P^ is stable in L2 and / / ' , that is, the mappings

Pi : L2(D -> L 2 ( D and />„' : H\D - • / / ' ( O

are continuous. It is proved, for example in [9], for the one-dimensional case that this
holds for meshes with (9) as well. Compare [9, Theorem 2] and the references therein
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for former results. In our one-dimensional case (without homogeneous but with
periodic boundary conditions) the stability of the L2-projection follows immediately
from that result.

For the above-mentioned meshes we have the following a posteriori estimate.

THEOREM 5. Let (v, (f>) e H^(V) x L2(F) solve the boundary integral equation (4)
andletv := v—(1, v) / (1, 1). Let(vh, <j)h) e H^2x H^12 solve the discrete boundary
integral equation (7), where H^2 := H^\F) n Sl

h, H^12 := H~h
1/2(F) n S°h and

(7\ S£, S'h) € £*.O./>I,PO-

Then, there exists a constant c > 0 depending only on k, ck, pu p0 with

II^-^IIWJ + I I^ -^HW) (10>
<c(\\h(T) • RWlmnWRWlmn + \\h(T)

where

Ri := 2 ( / ~Kf + V8) ~ V<f>h + Kvh,

R2 •=^8 + K'g + Wf) - Wvh - K'4>h.

5. Proof of the a posteriori estimate

The proof of Theorem 5 is related to Lemma 3 and Lemma 5.

LEMMA 3. There exists a constant c > 0, depending on Sjt,Ct,p,,Po, such that for all
(T, S°h, Si) e £*.*.„.„, / e H<>(F)andg € Hl(F)

(f,8-

PROOF. We start proving that the continuous function e := g — gh, gh := P^g has at
least one zero at the closure of F, U ry+i for any j = I,... ,n (recall that we use the
lower indices here modulo n := nT). Assume that this is false, that is, assume that e
is positive, say, on F, U FJ+i. Since e is continuous we easily construct a nonnegative
function r) e Sj, (for example, piecewise linear), rj ^ 0, with support in the closure of
Fj U Fj+1 such that e — r) is still positive on Fj U FJ+l. Then we have that

[ \e - r)\2ds < I \e\2ds

which contradicts gh ( and not gh — rf) being the L2-projection of g onto Sl
h.
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Hence we may define a second partition f i , . . . , f m of F (not necessarily straight
lines, but at least a union of two straight lines) such that the endpoint of f, is the
beginning of FJ+i and is a zero of e. We may assume that m is chosen maximal such
that tj has positive length. Then, we have proved above that the length of ft is smaller
than CihkU) where k(j) € {1 , . . . , nT] is fixed with minimal hk and f, D Fk ^ 0, that
is,

hkU) = xmn{hk :Tkr\tj ^ <d}.

Note that cx depends only on k and ck (see (9)). Note also that / f e'ds = 0 due to

the construction of the partition f,,... , fm.
Since (/, 1) = 0 we may define F e Hl(F) by piecewise integration of / along

F. Note that, if we start with F(x0) =: coatxo e Fu then F is continuous and we can
determine c0 uniquely such that F e HQ(F) and F' = f.

Next we construct a simple function r) e L2(F) which is constant on any F, with the
value of the continuous function F at the beginning of fy. Hence, by the fundamental
theorem of calculus,

Due to /f. e'ds = 0 we have / r e' • r\ ds = 0. Using this and integration by parts we
have

m p

= Y, / (i - FV

\

wn

by Cauchy's inequality. Next we define h := h(T) which is constant with value hj on
F; and h constant with value hk(j) on F;. By the construction of k(j) we have h > h
a.e. on F. Thus

which leads to

/ ,g - 8H) < ci\\g' - g'h\\mn\\h(T) • f\\LHr).
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Because of this and Cauchy's inequality, we conclude from the stability of Pi (compare
Remark 4) that, for fixed / e H$(F), the linear mapping

7) : ff'(D-• Dl, g»{f,g-P*g)

is bounded for 5 = 0, 1. Interpolating the corresponding bounds gives the bound

for the norm of 7} in the case s = 1/2 [2]. Note that c2 depends on cx and on
the stability constants of the L2-projections, that is, on k, ck, p0, p\- This proves the
lemma.

We need also an analog of Lemma 3 where the projection works in the first
component, that is, a projection on 5° acting in H~l(T). In order to do this we
need further notation.

LEMMA 4. After changing to an equivalent norm in H$x (F), there exists an isomorph-
ism I : HQ1(T) -> L2(T) with

for all 4> € L2(T), where prime denotes differentiation. In other words, differentiation
is an isomorphism between L2(F) and T/J"'(F) with an inverse I.

PROOF. Let / : H°(F) -> HQ(F) denote the integration used in the proof of Lemma
3, that is, for all 0 € H°(V), (7(0))' = <j> and 7(0) € H*{T) holds. It is easily
seen that / : 77°(r) —> 77O' (F) is linear and bounded if we consider the //"'-norm in
HQ (P) and L2-norm in HQ (T). Hence we may extend / uniquely to a bounded linear
mapping

It is not hard to see that / is the inverse of differentiation and hence / is an isomorphism
if we endow /70~' (F) with the equivalent norm

DEFINITION 3. Given (T, S£, Sl
h) e Dt,Ct.Pl,Po let Pj; be the L2-projection on

Sl
h := [r] e C(F) : r)\r. is a polynomial of degree < p0 + 1, j = 1 , . . . , nT}.

We define P° : H^ (F) -+S% by

PS := /-' o Pi o I.
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REMARK 5. Note that P° : //0"'(r) -> S£ is a projection and, according to the stability
of Pi (see Remark 4), we have that the norm of P° : H^S{T) ->• H^'iT) is bounded
by a constant which depends on E/t,c,iP,,p0 for s = 0, 1.

LEMMA 5. There exists a constant c > 0 depending on £*,Ci,Pl,p0 such that for all
f e H°0{V) andg e H\T)

(f ~ P*/, *) < c\\f\\H->,Hr)J\\g'\\LHr)-\\h(T)-g'\\LHr) .

PROOF. The proof is quite similar to the proof of Lemma 3 and is outlined using the
above notation.

Let fh := P°f and e := If - Ifh = If - Px
hIfh- As in the proof of Lemma 3

we conclude that the continuous functions e has some zeros which leads to a partition
f i , . . . , fm of F. Concerning the values of the continuous function g we find a
function r\ constant on each Fj with ( / — fh, g) = (f — fh, g — t)) and

U ~ *?IW,) < j

Arguing as in the proof of Lemma 3 we then conclude that

( / - /*, g) < c2\\f - MmnWhiT) • g'\\LHr).

Integration by parts shows that

since / is an isomorphism.
Thus, using the stability of Pjf (see Remark 5) we have proved that, for fixed

g € / / ' ( r ) , the linear mapping

Tg :

is bounded for s = 0, 1. Interpolating the corresponding bounds yields the bound

g'\\LHn

for the norm of Tg in the case s = 1/2 [2].

PROOF OF THEOREM 5. Define d := v - vh e Hl(r), d := v - vh e //o'(r) and
e :=</> — <f>h e HQ(T). According to Lemma 2 we have a constant C\ > 0 such that
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(recall Wl = 0)

-(\\d\\2
H,/Hn + \\e\\2

H-,nin) < (e, Ve) + (Wd, d)

where the projection property of the Galerkin procedure is used for arbitrary dh e Hx
h

12

and eh G H^l/2. According to the definition of H we have

+ \\e\\\

= (e - e», Ve - Kd) + (Wd + K'e, d - dh)

= (e- eh, Ve - Kd) + (Wd + K'e, d-dh).

We may choose dh := P^d and eh := Pjfe as in Lemma 3 and Lemma 5, which
concludes the proof since

#, = Ve - Kd, R2 = Wd + K'e € H°(F).

6. The adaptive procedure

In this section the class E := £*,<:,,po.Pi °f discretizations (T, 5", 5 )̂ of P is
considered and the adaptive procedure explained. Throughout this section we fix
k, ck, p0, pu writing S instead of St,etiW,Pl.

REMARK 6. Given TOL > 0, we cannot look for (T, S°, Sl
h) e S such that

<TOL (11)

because in general we do not know (v, </>). Instead Theorem 5 leads us to look for
(7\ Sj, Sfr e E such that

\\h(T) • R[\\LHr)\\R\\\mr)+ \\h(T) • RjWmnWRiWmr) < TOL2

which guarantees (11) up to a multiplicative constant c > 0. Since the constant c
in the a posteriori estimate in Theorem 5 is unknown we cannot compute an error
estimate. Hence, the goal of this contribution is only to hint how to obtain good
meshes in practice.
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We are concerned with the following problem in order to steer the mesh refinement.

DEFINITION 4. Given TOL > Ofind (T, S%, Sl
h) e E such that nT is minimal and the

related Galerkin solution (vh, <ph) of (7) satisfies

\\h<J)R\\\LHT)\\R[\\LHr) + ||ft(r)*2||il(r)||*2lk*(r) < TOL2, (12)

where R\, R2 are defined as in Theorem 5. If such optimal (7\ S£, Si) € E exists it is
called an efficient discretization (with respect to the error estimator of Theorem 5).

REMARK 7. The notion of efficient meshes is to compare two discretizations satisfying
the estimate (12) with the same TOL. In view of Theorem 5 the same guaranteed
error estimate is obtained with the a posteriori error c • TOL. Clearly, c • TOL is
unknown, but our goal is to compare the two meshes in view of computational costs
for the related Galerkin solutions. That is, to compare the related number of degrees
of freedom (for simplicity) of two meshes which yield the same guaranteed (but
unknown) error c • TOL. Hence, a mesh is optimal (with respect to the error estimator
of Theorem 5) if it is related to an efficient discretization in the sense of Definition 4.

The following theorem shows that the adaptive discretization method based on (12)
is operative in the sense of [11, 14] (and the work of Eriksson and Johnson quoted
there).

THEOREM 6. For any TOL we can find (T,S%,Sl
h) € E such that the related Galerkin

solution (vh, 4>h) of (7) satisfies (12), where R\, R2 are defined as in Theorem 5.

PROOF. Because of Theorem 1 for quasi-uniform meshes we get from [7, p.407] that

<t>/ \4>hJ HHDxLHD \ 0 /

that is, stability of the Galerkin projector in the space H1 (T) x L2(T). Consequently,
(vh, 4>h) is bounded in Hl(T) x L2(V) uniformly in h so that (Ru R2) are uniformly
bounded in / / ' (F) x L2(T). Hence, the left-hand side of (12) tends towards zero if

tends towards zero.

It remains to show how the minimization problem (4) can be solved, at least
approximately. We follow the procedure as introduced in the finite-element case by
Eriksson and Johnson (see the literature in [14]) and obtain the following scheme for
the boundary-element case.

Adaptive procedure. Given TOL > 0 and k, ck, p0, P\, start with a quasi-
uniform mesh where ck bounds the quotient of all mesh-sizes and Jk > 1. Given
(7\ S£, 5 )̂ € E we compute some new mesh (T, S£, Si) e E as follows:
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(1) Compute the Galerkin solution of the integral equation (7) with respect to the
discrete spaces //0'/

2 := //0
1/2(F) n S\ and H~h

l/2 := H~l/\r) n S°h using some
standard boundary-element program.

(2) Use some postprocessing to compute, at least approximately, the residues /?i and
R2 (as explained in detail in Section 7). Thereby, for any element F; e T, obtain
the summands

l|*2IU»(ry)

of the estimate (12). Compute \\R[ \\LHn and ||fl2llz.*(r). If TOL > 0 is the given
tolerance (such that the unknown value c • TOL should be the prescribed error)
choose hj > 0 maximal such that hj/ hj is a natural number and

l̂ 'illz.2(T) ~\~ JII 2̂II z.2(r,) II 2̂II z.2(n I — TOL/wr-

If hj = hjfor all j = 1, . . . , nT we stop the process or change TOL.
(3) Given hj we construct a new triangulation T of F such that we keep all knots

and possibly refine the mesh on some element F, if hj < hj. This gives a new
partition f of F.

(4) Check (9) and refine the mesh again such that (9) is satisfied. For simplicity,
assume ck = 1, k > 1 and check all the neighbor elements in f in order that
they satisfy

-F-1-. - r 1 <k (j = l , . . . ,nf).

> k (hj+i/hj > k) then refine f, (f;+1).
(5) If one has found a new mesh which satisfies (9) then this defines T. Restart with

(1).

7. Numerical example

We present numerical results for the solution of the integral equation (4) using
the h-version of the Galerkin method (7). In all cases we take, as the simplest case,
continuous piecewise-linear constant trial functions corresponding to p0 = 0 and
pi = I. We start with some remarks on the numerical realization. As in [3, 4] we
omit the restrictive condition (9) on the mesh and run a modified adaptive procedure,
namely the algorithm (A4) and compare with further modifications (A1)-(A3).

7.1. The discrete problem As explained in [12, 17], the inner integral of the single-
layer potential and the inner integral of the adjoint of the double-layer potential can
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be computed explicitly for piecewise polynomials. Hence, the stiffness matrix of the
single-layer potential operator V with a typical entry

log |* - y\dsydsx

can be computed using 32-point Gaussian quadrature over Tk which requires 32
evaluations of / r log \x — y\dsy. Similarly, the inner integral of the adjoint of the
double-layer potential K' can be implemented explicitly so that the stiffness matrix
of K' (which is the transpose of K) can be computed numerically by using a 32 point
Gaussian quadrature rule for the outer integration. Using W = —JJ^JJ [16] the
entries of the stiffness matrix of the hypersingular integral operator can be reduced
to the terms appearing in the integration of the stiffness matrix of the single-layer
potential. Thus, (Wrjj, rjj) = (Vfy', r)'^ for piece wise-constant functions 77J and rfj.

The right-hand sides of the integral equations appearing in the previous sections
are computed with 32-point Gaussian quadrature formulas.

The resulting linear systems of Galerkin equations are solved by a direct Gaussian
elimination solver.

7.2. Energy norms and residuals Because of Lemma 2 we compute the "energy"
norm,

HVIIv := y/{Vrlr,\jf) (f e /T 1 / 2 ( r ) ) ,

is computed, which is an equivalent norm on H~i/2(F). Also, we compute the energy
norm

I'vllwr := J{Wv,v) (v e Hl/2(F))

which is an equivalent norm on HQ/2(T). Then we combine both equivalent norms and
consider the norm \\v\\w + HiMlv for (u, VO 6 HQ/2(T) X H~l/2(r) being equivalent
to that in #0

1/2(r) x H~^2(r). If

a n d w * : = " * "

then \\{v-vh,<j>- 4>h)\\2
H,,HnxH-WHn is equivalent to

(W(v - vh), (v - vh))

V~VII\ (V~Vh

M
-IH

\
= W - 4>h, Ri) + {v - vh, R2),

where ^?i, R2 are the residuals defined in the previous section. Given / , g and knowing
v, <j> the L2(X) scalar products of ($ — <ph) with / , V<ph, Kf, Kvh, and Vg and (u — vh)
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with g, K'g, Wf, Wvh, and K'<t>h are computed with 32-point Gaussian quadrature
rules. Here v — vh, 4> — (j>h, and / and g are given directly, whereas the evaluation of
Kf, Vf, and Vg again involves an integration over F which is done approximately
with a 32-point Gaussian quadrature rule. Finally, using W = — j^V-^ again [16],
Wf and Wvh are rewritten as derivatives of — Vf and — Vv'h computed by numerical
differentiation with respect to the arc length.

The norms of the appearing residuals ||̂ ?2lli.2(ry) and \\R[ WLHVJ) are computed ele-
mentwise with a 10-point Gaussian quadrature rule, where the derivative in \\R[ WLHVJ)

is evaluated by numerical differentiation.

7.3. Numerical examples Let Qt be the L-shaped domain with vertices (0,0),
(0, 1), ( - 1 , 1), ( - 1 , - 1 ) , (1, -1) and (1, 0). The data / and g in the transmission
problem are given by (2) and

ux =r2/3 sinf -<p\, u2 = log
2(

with polar coordinates (r, <p) and Cartesian coordinates (JCI, x2).
We consider four adaptive algorithms as motivated in [4]. The first is considered for

the present example in [3]. For a given "triangulation" of the boundary F = U?=l F;

we can compute an approximation of the contribution aj := \\R\ || L2(rj) + || R21| ̂ p.) of
one element F; as explained in the previous subsections.

Then, ignoring the constant c > 0, we have that the error in the energy norm is
bounded by

N

where hj := |F ; | is the length of the element F,. Using this notation our numerical
experiments are performed with the following algorithms (Al), (A2), (A3), and (A4)
which depend on the parameters 6,0 < 6 < 1, and TOL > 0.

Adaptive Algorithm (Ak).

Starting with a given quasi-uniform coarse initial mesh, take the actual partition
F i , . . . , FN, and perform (l)-(3) until termination.

(1) Solve the Galerkin equations with a trial space of piecewise polynomials with
respect to the actual partition Fi, . . . , FN.

(2) Compute at,... , aN, h\,... ,hN and the related quantities in (13). Decide:
stop and terminate or refine and continue with (3).

(3) For j = I,... , N refine F, by the rule (Ak) and continue with the new mesh in
(1):
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(Al) Halve Yj if and only ifaj • hj >9 • max*=i N ak • hk.
(A2) Halve Yj if and only ifaj • yfh] > 9 • max*=i N ak • *fh~k.
(A3) Divide Yj in kj pieces of the same length, where kj is the smallest integer

> 1 with

hj/kj < -==, a :=
Oj • VN • a \

(A4) Divide Yj in kj pieces of the same length, where kj is the smallest integer
> 1 with

hj/kj < (TOL/Najf .

REMARK 8. (i) Algorithms (Al) and (A2) are motivated by the goal to reach a uni-
form distribution of the element contributions aj. Note that 9 = 0 gives a uniform
triangulation and with increasing 9 the number of refined elements in the present step
decreases. Algorithms (A3) and (A4) are motivated in the previous section,
(ii) Algorithms (A2) and (A4) can be justified connecting the results in [4] with
Lemmas 3 and 5.
(iii) Although pseudodifferential operators are non-local we hope that a refinement of
Yj leads to improved bounds for the error.

The numerical results of the adaptive algorithms are shown in Table 1 for the
uniform mesh and our four adaptive algorithms (Al), (A2), (A3), (A4) related to the
paremeters 9 = 0.5, 9 = 0.5, TOL = 3.4, and TOL = 15.0, respectively.

In Table 1, N denotes the number of degrees of freedom (chosen by the algorithm;
a new row corresponds to a new refinement step in the adaptive algorithm), eN

denotes the corresponding relative error in the energy norm (see above) and aN is the
experimental convergence rate computed as

aN = log{eN./eN)/\og(N/N'),

where N' and e'N are the corresponding values of the previous row. We define an
experimental approximation for the constant c > 0 in (10)

Y N -

where notation from Section 7.2 and Section 7.3 has been used. Values for yN are
given for the uniform meshes, (Al), and (A3) which are related to (10). The values
yN are bounded, as claimed in Theorem 5.

From Table 1 we see also that a uniform mesh yields a convergence rate near the
expected value 2/3. The convergence achieved by the adaptive algorithm is improved:
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TABLE 1. Numerical results

Uniform mesh

N eN aN YN

16
32
64
128
256

0.3802
0.1994
0.1244
0.0783
0.0448

0.93
0.68
0.67
0.81

.082

.067

.061

.056

.046

(Al) for 9 = 0.5 (A2) for 6 = 0.5
N eN aN yN N eN aN

16
28
44
68
124
208

0.3802
0.2122
0.1322
0.0806
0.0458
0.0232

1.04
1.05
1.14
0.94
1.31

.082

.063

.054

.043

.034

.022

16
28
44
64
104
184

0.3802
0.2122
0.1322
0.0814
0.0468
0.0231

1.04
1.05
1.30
1.14
1.23

(A4) for TOL= 15.0
(A3)forTOL=3.4

Ar N eN a N

N eN a N yN16 0.3802 .082
32 0.1678 1.18 .053
52 0.0820 1.48 .036
84 0.0462 1.19 .025
116 0.0184 2.85 .012

16
20
28
32
52
84

0.3802
0.2391
0.1671
0.1318
0.0616
0.0254

2.08
1.07
1.78
1.56
1.85
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for example, to obtain a relative error of 5/100 we need 256 degrees of freedom with
a uniform mesh but only 124, 108, 84 and 84 degrees of freedom using the adaptive
algorithms with the mentioned parameters in 5, 5, 4 and 5 refinement steps. From this
we conclude that the meshes obtained by our adaptive schemes are of high interest
not only to improve asymptotic convergence rates but also to improve the error with
only a few degrees of freedom. The most efficient algorithm in this example is (A3).
The corresponding meshes for this situation are shown in Figure 1.

In order to compare the adaptive algorithms for various parameters the data is
compressed using figures. Each of the four adaptive algorithms has a different figure,
namely Figure 2 for (Al), Figure 3 for (A2), Figure 4 for (A3), and Figure 5 for (A4).
In the figures an entry corresponds to a symbol (like A, V, O etc.) depending on the
parameter. The entries belonging to the same parameter are connected by a straight
line. The ^-coordinate of a symbol is log (N), where N is the number of degrees
of freedom corresponding to a mesh, and the related Galerkin solution has a relative
error eN. Then, the y-coordinate of the symbol is log (eN). However, the numbers
shown on the axis are eN and N.

The values for TOL are chosen after some experiments. From Figures 2 - 5 we
see that the convergence rates are improved for all adaptive algorithms presented in
this paper: the mean experimental convergence order for (Al) and (A2) is nearly 1.2
while the order for (A3) and (A4) approaches the optimal value 1.5.

7.4. Conclusion From the numerical experiments, we conclude that adaptive meth-
ods are important tools for an efficient numerical solution of transmission or interface
problems. Compared with a coupling of finite elements and boundary elements, we
claim from the experiments in [5] that the adaptive numerical treatment of the trans-
mission problem via the boundary integral element method considered here is more
efficient. The asymptotic convergence rates are improved as well as the quality of the
Galerkin solutions corresponding to only a few degrees of freedom. This points to
the efficiency of the adaptive algorithm and hence to the significance and sharpness
of the a posteriori error estimate.
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