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Abstract
We study random unlabelled k-trees by combining the colouring approach by Gainer-Dewar and Gessel
(2014) with the cycle-pointing method by Bodirsky, Fusy, Kang and Vigerske (2011). Our main applica-
tions are Gromov–Hausdorff–Prokhorov and Benjamini–Schramm limits that describe their asymptotic
geometric shape on a global and local scale as the number of (k+ 1)-cliques tends to infinity.

2020 MSC Codes: Primary 60C05; Secondary 05C80, 05A16

1. Introduction
A k-tree, or k-dimensional tree, may be defined recursively: it is either a complete graph on k ver-
tices or a graph obtained from a smaller k-tree by adjoining a new vertex together with k edges,
connecting it to a k-clique of the smaller k-tree. This concept naturally generalizes trees that corre-
spond to the special case k= 1.Wemay distinguish k-trees whose vertices are labelled by elements
of some fixed set, and unlabelled k-trees, which are k-trees considered up to graph isomorphism.
It is customary to index k-trees by their number of (k+ 1)-cliques, which are called hedra in this
context. Thus, the number of vertices in a k-tree having n hedra is given by n+ k. For instance,
there are five different 2-trees with four hedra: see Figure 1. A k-clique in a k-tree is usually called
a front.

The counting problem of the class of k-trees has a long history. The number of labelled k-
trees of any fixed size was obtained by Beineke, Pippert, Moon and Foata [2, 11, 20], and the
enumeration of unlabelled 1-trees is a classical result attributed to Otter [21]. Subsequently, unla-
belled 2-trees were counted by Harary and Palmer [15, 16] as well as Fowler, Gessel, Labelle
and Leroux [12] using the dissimilarity characteristic theorem. However, counting general unla-
belled k-trees (k� 3) was a long-standing open problem, which was only recently solved by
Gainer-Dewar [13] using�-species. A simpler proof that combines front-colourings with hedron-
labellings was later discovered by Gainer-Dewar and Gessel [14]. The advantage of this approach
is that front-colouring breaks the symmetry of unlabelled k-trees and avoids the use of compatible
cyclic orientation of each (k+ 1)-clique in a k-tree. Based on the simplified generating functions
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Figure 1. All unlabelled 2-trees with four hedra (triangles).

from [14], Drmota and the first author [7] have undertaken a systematic asymptotic analysis of
unlabelled k-trees using singularity analysis.

In the present work we establish a substraction-free combinatorial decomposition of unlabelled
k-trees (see (5.8)). This is motivated by the fact that all prior analyses of unlabelled k-trees (for
k� 2) are based on double-counting arguments in the form of a dissymmetry theorem. The sub-
straction operation in the resulting functional equations of generating series severely complicates
any follow-up probabilistic analyses, since the corresponding Boltzmann sampling procedures
have to employ a costly rejection process. In order to tackle this, we combine the front-colouring
method by Gainer-Dewar and Gessel [14] with the framework of unlabelled R-enriched trees by
the second author [27] and the cycle-pointing method by Bodirsky, Fusy, Kang and Vigerske [5].
The latter approach is based on the idea of considering graphs marked at a cyclic permutation of
some of the vertices, such that the cycle appears in at least one automorphism. A similar approach
was also used in [28] for unlabelled trees with vertex-degree restrictions, and the present work
intersects with this paper precisely for the case of unrestricted 1-trees. The decomposition in [28]
is not suitable for k-trees if k� 2. Conversely, the decomposition established in the present work
is not suitable for accommodating vertex-degree restrictions of 1-trees.

With the help of a rejection-free sampling procedure, we conduct a probabilistic study of
the random k-tree Un = Un,k chosen uniformly at random among all unlabelled k-trees with n
hedra. Our main results are a Gromov–Hausdorff–Prokhorov scaling limit (Theorem 2.1) and a
Benjamini–Schramm limit (Theorem 2.3) for Un as n tends to infinity, which will be presented in
detail in Section 2 along with a brief probabilistic background on the graph limits.

The rest of this paper is organized as follows. In Sections 3 and 4 we review some previous
results on unlabelled k-trees, namely the front-colouring approach and the study of unlabelled
R-enriched trees. In Section 5 we develop a substraction-free decomposition of unlabelled k-trees
via the cycle-pointing method, which enables us to prove our main results in Section 6.

Notation. Throughout, we set [n]= {1, 2, . . . , n} for all integers n� 0. The random variables
appearing in this paper are either canonical or defined on a common probability space whose
measure we denote by P. All unspecified limits are taken as n becomes large. We let d−→ denote
convergence in distribution, and denote equality in distribution by d= . The total variation distance
of measures and random variables is denoted by dTV. That is, ifX and Y are random variables with
values in a common metric space, then

dTV(X, Y)= sup
A

|P(X ∈A)− P(Y ∈A)|, (1.1)

with the index A ranging over all Borel-measurable subsets of the target space. An event (that
depends on n) holds with high probability if its probability tends to 1 as n tends to infinity. We say
it is exponentially unlikely if there are constants C, c> 0 such that its probability is bounded by
C exp (− cn) for all n. Likewise, we say it is exponentially likely if its complement is exponentially
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unlikely. For any integer n� 0 and any power series f (z), we let [zn]f (z) denote the coefficient of
zn in f (z).

2. Probabilistic background andmain results
2.1 Scaling limits: what a random graph looks like when viewed from far away
A precise statement of the scaling limits of random unlabelled k-trees is established in
Theorem 2.1. The reader familiar with the scaling limits may skip Sections 2.1.1, 2.1.2 and 2.1.3.

2.1.1 Gromov–Hausdorff–Prokhorov convergence

We briefly recall some probabilistic background following Miermont [19, Section 6]. Suppose
that X = (X, dX) and Y = (Y , dY ) are compact metric spaces, and the diameter of a space X is
denoted by

D(X)= sup
x,x′∈X

dX(x, x′).

A correspondence between the spaces X and Y is a subset R⊂ X × Y such that for any x ∈ X
there is a point y ∈ Y with (x, y) ∈ R, and conversely for any y ∈ Y there is a point x ∈ X with
(x, y) ∈ R. We let C(X, Y) denote the collection of all correspondences between X and Y . We also
define the subset Cc(X, Y)⊂ C(X, Y) of all correspondences that are compact. The distortion of the
correspondence Rmay be defined as the supremum

dis(R)= sup{|dX(x1, x2)− dY (y1, y2)| | (x1, y1), (x2, y2) ∈ R}.
Suppose that we are additionally given a Borel probability measure μX on X and a Borel prob-
ability measure μY on Y . A coupling of μX and μY is a probability measure ν on the product
space X × Y such that the pushforward measures along the restrictions πX : X × Y → X and
πY : X × Y → Y are equal to μX and μY . That is, ν(A× Y)= μX(A) for all Borel-measurable
subsets A⊂ X, and ν(X × B)= μY (B) for all Borel-measurable subsets B⊂ Y . We let M(X, Y)
denote the collection of such couplings ν. Informally, a coupling should be viewed as a clever
way to jointly construct a μX-distributed random variable together with a μY-distributed ran-
dom variable. The Gromov–Hausdorff–Prokhorov distance between the measured metric spaces
(X, dX ,μX) and (Y , dY ,μY ) may be defined by

dGHP((X, dX ,μX), (Y , dY ,μY ))

= inf{ε > 0 | ∃R ∈ Cc(X, Y), ν ∈M(X, Y) : dis(R)� 2ε, ν(R)> 1− ε}. (2.1)

The collection K of (representatives of isometry classes of) compact measured metric spaces
equipped with the Gromov–Hausdorff–Prokhorovmetric is a Polish space, meaning that standard
probabilistic notions like distributional convergence of random elements apply.

2.1.2 Consequences of Gromov–Hausdorff–Prokhorov convergence

Suppose that (Xn, dXn ,μXn) is a sequence of random compact measured metric spaces satisfying
(Xn, dXn ,μXn)

d−→ (X, dX,μX) in the Gromov–Hausdorff–Prokhorov sense for some random com-
pact measured metric space (X, dX,μX). The well-known continuous mapping theorem ensures
that, for any Polish space Y and any function f : K→ Y whose points of continuity � ⊂K satisfy
P((X, dX,μX) ∈ �)= 1,

f (Xn, dXn ,μXn)
d−→ f (X, dX,μX).
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In particular, this applies to the diameter D( · ) which is continuous onK, yielding

D(Xn, dXn ,μXn)
d−→D(X, dX,μX). (2.2)

Let r� 2 denote a fixed integer and suppose that the compact metric space (X, dX) addition-
ally has r distinguished compact subsets C1, . . . , Cr , resulting in an r-pointed space X•r . Likewise,
let D1, . . . ,Dr denote r distinguished compact subsets of the space Y , resulting in an r-pointed
space Y•r . We let C•(X•r , Y•r ) denote the collection of correspondences R ∈ C(X, Y) that addition-
ally satisfy Ci ×Di ∈ C(Ci,Di) for all 1� i� r. The marked Gromov–Hausdorff distance between
these marked spaces is defined by

d•
GH(X

•r , Y•r )=max
(
1
2

inf
R∈C•

c (X,Y)
dis(R)

)
.

This makes the collection of (representatives of mark-preserving isometry classes of) marked
compact metric spaces a Polish space, hence standard notions of convergence of random elements
apply.

Now suppose as before that (Xn, dXn ,μXn)
d−→ (X, dX,μX) in the Gromov–Hausdorff–

Prokhorov sense. Consider the space X•r
n obtained by marking r independently μXn-distributed

points (xi,n)1�i�r of Xn. Likewise, let X•r be marked at independent μX-distributed points
(xi)1�i�r . It was shown in [19, Proposition 10] that the distributional convergence in the
Gromov–Hausdorff–Prokhorov sense entails that

X•r
n

d−→ X•r

in the marked Gromov–Hausdorff sense. By the continuous mapping theorem, this implies

(dXn(xi,n, xj,n))1�i,j�r
d−→ (dX(xi, xj))1�i,j�r . (2.3)

2.1.3 The Brownian tree

A famous and universal distributional limit object is Aldous’s Brownian tree (Te, dTe ,μTe). The
construction is as follows. Consider a Brownian excursion (et : 0� t� 1) of duration 1. A possible
construction of this continuous stochastic process is to start with a Brownian motion (or Wiener
process) (B(t) : t� 0) and consider the last time τ− that B(t) hits zero before time t = 1, and the
first time τ+ it hits zero after time t = 1. We may then set

et = |B(τ−(1− t)+ τ+t)|√
τ+ − τ−

for 0� t� 1.

With probability 1 this is a well-defined continuous function. For all x, y ∈ [0, 1] with x� y, we set

d̄(x, y)= ex + ey − 2 inf
x�t�y

et . (2.4)

If x> y we set d̄(x, y) := d̄(y, x). Topologically, the Brownian tree Te is defined as a random
quotient metric space Te = [0, 1]/ ∼ with the equivalence relation ∼ defined by

x∼ y if and only if d̄(x, y)= 0.

The distance d̄ is lifted to a distance dTe along the canonical surjection π : [0, 1]→ [0, 1]/ ∼. The
Borel probability measure on Te is defined as the pushforward of the Lebesgue measure λ on the
unit interval [0, 1]. That is, for any Borel-measurable subset A⊂ Te we set μTe(A) := λ(π−1(A)).
By (2.4), the diameter D(Te) admits the expression

D(Te)
d= sup

0�t1�t2�1
(e(t1)+ e(t2)− 2 inf

t1�t�t2
e(t)). (2.5)
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If we sample two points v1 and v2 of the Brownian tree Te independently according to the
measure μTe , then by construction

dTe(v
1, v2) d= d̄(x1, x2),

with x1 and x2 denoting two independent and uniformly selected points of the unit interval. The
Brownian tree is known to satisfy a re-rooting invariance as stated by Aldous [1, equation (20)],
meaning that the coset 0̄ of 0 ∈ [0, 1] satisfies (Te, v1)

d= (Te, 0̄). Hence

dTe(v
1, v2) d= d̄(0, x1)= ex1 . (2.6)

It is a well-known fact (see e.g. [9, Proposition 3.4]) that the standardized Brownian excur-
sion evaluated at a uniformly and independently selected point of the unit interval follows the
distribution

P(ex1 ∈A)=
∫
A
4s exp (− 2s2) ds (2.7)

for A a Borel subset of [0,∞[. Hence 2ex1 follows the Rayleigh distribution with probability
density s exp (− s2/2).

Now we are ready to state our first main result.

2.1.4 Scaling limits of random unlabelled k-trees
Our first main result establishes the Brownian tree (Te, dTe ,μTe) as the Gromov–Hausdorff–
Prokhorov scaling limit of the random unlabelled k-tree Un.

Theorem 2.1 Let μn denote the uniform measure on the set of vertices of Un. Then there is a
constant ck > 0 such that

(Un, ckn−1/2dUn ,μn)
d−→ (Te, dTe ,μTe)

in the Gromov–Hausdorff–Prokhorov sense.

The scaling constant is given by

ck = kHk

√√√√1+ k
∞∑
i=2

B̄′
1k(ρ

i
k)ρ

i
k. (2.8)

Here Hk = ∑k
i=1 i−1 denotes the kth harmonic number. B̄1k(z) is the unique power series

satisfying

B̄1k(z)= z exp
(
k

∞∑
i=1

B̄1k(zi)
i

)
,

and ρk denotes its radius of convergence. See Table 1 for numerical approximations up to k= 10.∗
It follows from [7, Theorem 3] that

ρk = 1
ek

− 1
2e3k2

+O
(
1
k3

)
and k

∞∑
i=2

B̄′
1k(ρ

i
k)ρ

i
k =O

(
1
k

)

∗The numerical approximation of the constant ρk in Table 1 was done by taking m := 30, calculating a truncation B̄[m]
1k (z)

up to order m of B̄1k (z) via the recursive relation derived from equation (4.1), and numerically solving the truncated system
x exp (k

∑m
i=2 i−1B̄[m]

1k (xi))= 1/(ek).
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Table 1. Numerical approximations of constants for unlabelled k-trees.

k ck ρk ck/(kHk)

1 1.102725 0.338321 1.102725

2 3.126190 0.177099 1.042063

3 5.643857 0.119674 1.026155

4 8.491071 0.090334 1.018928

5 11.585821 0.072539 1.014816

6 14.878854 0.060597 1.012166

7 18.337291 0.052031 1.010319

8 21.937615 0.045585 1.008957

9 25.662173 0.040561 1.007912

10 29.497218 0.036533 1.007085

as k becomes large, yielding

ck = (1+O(k−1))kHk.

The diameter D( · ) is a Gromov–Hausdorff continuous function. Hence, using (2.2) and (2.5),
Theorem 2.1 implies that

ckn−1/2D(Un)
d−→D(Te)

d= sup
0�t1�t2�1

(e(t1)+ e(t2)− 2 inf
t1�t�t2

e(t)), (2.9)

with e= (et)0�t�1 denoting the Brownian excursion of length 1. Let v1n and v2n denote two
independently and uniformly selected vertices of Un. Using (2.3), (2.6) and (2.7), the Gromov–
Hausdorff–Prokhorov convergence of Theorem 2.1 implies that

2ckdUn(v1n, v
2
n)/

√
n d−→ Rayleigh(1), (2.10)

with the limiting Rayleigh(1) distribution having density x exp (− x2/2), x� 0. In fact, it also
implies a scaling limit for the vector of pairwise distances for any finite fixed number of vertices
that are uniformly and independently sampled.

It is important to keep inmind that in the present work we treat unlabelled k-trees, whose study
is severely complicated by the presence of symmetries. Our results parallel a list of properties of
random labelled k-trees, but do not encompass them and are not encompassed by them. The
Rayleigh distribution has been observed to arise as scaling limit of the distance of independent
random vertices in random labelled k-trees by Darrasse and Soria [6], but the scaling constant of
(2.10) differs from the labelled case. Drmota and both authors [8] gave a scaling limit for random
labelled k-trees, of course also with a different scaling constant.

In order to deduce convergence of the moments of D(Un) and dUn(v1n, v2n), it is sufficient to
verify p-uniform integrability of the diameter D(Un) for arbitrarily large integers p� 1. For this
it suffices to show that for each p� 1 the Lp-norm of the rescaled diameter D(Un)/

√
n remains

bounded as n→ ∞. And this is is ensured by the following sharp tail bound, which will be proved
in Section 6.

Theorem 2.2 There are constants C, c> 0 such that, for all n� 1 and x� 0,

P(D(Un)� x)� C exp (− cx2/n).
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This entails that for any fixed integer p� 1 we obtain

E[D(Un)p]∼ c−p
k np/2E[D(Te)p] and E[dUn(v1n, v

2
n)

p]∼ np/22−p/2c−p
k �(1+ p/2) (2.11)

as n becomes large. The moments of the diameter of Te are known and given by

E[D(Te)]= 4
3
√

π/2, E[D(Te)2]= 2
3

(
1+ π2

3

)
, E[D(Te)3]= 2

√
2π ,

E[D(Te)k]= 2k/2

3
k(k− 1)(k− 3)�(k/2)(ζ (k− 2)− ζ (k)) for k� 4.

Here ζ refers to the Riemann’s zeta function, and � to Euler’s gamma function. See [1, Section 3.4]
and [25, Section 1.1].

2.2 Benjamini–Schramm limits: zooming in on a random vertex in a random graph
A precise statement of the Benjamini–Schramm limits of random unlabelled k-trees is established
in Theorem 2.3. The reader familiar with the local limits may skip Section 2.2.1.

2.2.1 Local convergence

Consider two connected, rooted and locally finite graphs G• = (G, vG) and H• = (H, vH). For any
integer k� 0 we may define the k-neighbourhood Uk(G•) as the vertex-rooted subgraph of G•
induced by all vertices with distance at most k from vG. We construct the distance

d(G•,H•)= 2− sup{k∈N0 |Uk(G•)�Uk(H•)}

with Uk(G•)�Uk(H•) denoting isomorphism of rooted graphs. This defines a pre-metric on the
collection of all rooted locally finite connected graphs. Two such graphs have distance zero if and
only if they are isomorphic. Hence this yields a metric on the collection of (representatives of) all
unlabelled, connected, rooted, locally finite graphs. The resulting space B is Polish, meaning that
standard probabilistic convergence concepts apply. For example, a random rooted graph G• ∈B

is the local weak limit of a sequence G•
n = (Gn, vn), n ∈N of random elements of this space if it is

the weak limit with respect to this metric; that is, if

lim
n→∞ E[f (G•

n)]=E[f (G•)]

for any bounded continuous function f : B→R. The neighbourhood projections (Uk( · ))k�0

form a convergence determining family, meaning that G•
n

d−→ G• is equivalent to

lim
n→∞ P(Uk(G•

n)�G•)= P(Uk(G•)�G•) (2.12)

for any rooted graph G• and all integers k� 0. If we use the conditional distribution of vn given
that the graph Gn is uniform on the vertex set V(Gn), then the limit G• is often also called the
Benjamini–Schramm limit of the sequence (Gn)n.

2.2.2 Local convergence of random unlabelled k-trees
Our second main result is a local weak limit for Un that describes the asymptotic behaviour of
the r-neighbourhoods Ur(Un, v∗) of a uniform random vertex v∗ of the graph Un. We even obtain
convergence in total variation of these neighbourhoods when r = rn depends on n and satisfies
rn = o(

√
n). More precisely, we have the following.
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Theorem 2.3 The random rooted unlabelled k-tree (Un, vn) converges in the Benjamini–Schramm
sense towards a random infinite rooted k-tree Û. Furthermore, for each sequence rn = o(

√
n),

dTV(Urn(Un, vn),Urn(Û))→ 0,
where vn denotes a uniformly selected vertex of Un.

In other words,
lim
n→∞ sup

A
|P(Urn(Un, vn) ∈A)− P(Urn(Û) ∈A)| = 0,

with the index A ranging over all countable collections of finite rooted graphs.
This strengthened form of convergence is best possible: Theorem 2.2 asserts that the diameter

of the random unlabelled k-tree Un has order
√
n. Since the diameter of Û is almost surely infinite,

the local convergence of Un towards Û fails for rn-neighbourhoods if n−1/2rn does not converge
to zero.

We emphasize again that we treat random unlabelled k-trees. The second author [23] estab-
lished a Benjamini–Schramm limit that describes the asymptotic behaviour of the vicinity of a
typical vertex in random labelled k-trees.

2.3 Asymptotic enumeration
The cycle-pointing approach also allows us to recover the asymptotic expression

un ∼ (kρk)−k

k2k!√2π

(
1+ k

∑
��2

B̄′
1k(ρ

�
k )ρ

�
k

)3/2
n−5/2ρ−n

k

for the number un of unlabelled k-trees with n hedra that was proved by Drmota and the first
author in [7, Theorem 3] via the dissymmetry equation. See Section 5.4 for details. Unlabelled
graphs were recently studied using the cycle-pointing method in [24], but the results do not apply
to k-trees for k� 2.

3. The Gainer-Dewar–Gessel decomposition
3.1 Vertex colourings, hedron labellings and a bijection with k-coding trees
We recall some results and terminology from [13, 14]. Any two hedra h1 and h2 in a k-tree that
intersect at a front f are termed adjacent. If this is the case, then a front f1 of h1 and a front f2 of
h2 are calledmirror with respect to f if f1 ∩ f = f2 ∩ f .

A coloured hedron-labelled k-treewith n hedra is a k-tree where the hedra are labelled by distinct
integers from [n] and the fronts are coloured with integers from [k+ 1]. We require that any two
distinct fronts that belong to the same hedron must have distinct colours, and any two distinct
fronts that are mirror with respect to some other front must have the same colour. This way, the
k+ 1 fronts belonging to any single hedron are coloured with distinct integers from [k+ 1]. See
Figure 2 for two examples where labels are denoted by boxed integers.

It is not hard to see that the colours of all fronts of any single hedron already determine the
colours of all other fronts in the k-tree. However, the total number of front-colourings may vary
according to the k-tree we consider.

We now introduce k-coding trees. A (coloured and labelled) k-coding tree is an unordered tree
with a proper bipartition of its vertex set into white and black vertices. We require that each black
vertex has precisely k+ 1 white neighbours. The n black vertices are labelled with distinct integers
from [n], and to each white vertex we assign a colour from [k+ 1], such that each black vertex has
precisely one neighbour with colour i for all i ∈ [k+ 1].
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Figure 2. Two coloured hedron-labelled 2-trees with four hedra.

Figure 3. Two 2-coding trees that respectively correspond to the 2-trees in Figure 2.

There is a bijection φ between the set Kn,k of coloured hedron-labelled k-trees with n hedra,
and the set Tn,k of (coloured and labelled) coding trees with n black vertices; see [14], which is
analogous to the following [13, Theorem 3.4].

To construct a k-coding tree from a coloured hedron-labelled k-tree, we assign to each hedron a
black vertex with the same label and to each front a white vertex with the same colour.We connect
a white vertex with a black vertex by an edge if the front corresponding to the white vertex is a
k-subset of the hedron corresponding to the black vertex.

For the inverse map, note that in order to construct a k-tree from a k-coding tree we require
knowledge of the colouring. There are multiple ways to glue two front-coloured hedra together at
a specified front colour, but only one way such that afterwards any pair of fronts that are mirror
with respect to the resulting shared front have the same colour. For example, Figure 3 depicts
two 2-coding trees that differ only in the colouring. Figure 2 shows the corresponding coloured
hedron-labelled 2-trees. Note that the 2-trees in this example remain different even if we forget
about their colours and labels.

For any integer n� 0 we let Sn denote the symmetric group of degree n. The groups Sn and
Sk+1 both operate on the set Kn,k of coloured hedron-labelled k-trees, and the two actions com-
mute. This induces an action of the group Sn on the set Kn,k/Sk+1 of orbits, which may be
identified with k-trees on labelled hedra.

Any graph isomorphism between k-trees also induces a bijection between their sets of hedra.
Thus, any two hedron-labelled k-trees are identical as unlabelled graphs if and only if one may
be obtained from the other via relabelling of hedra. Thus the Sn-orbits of the induced action
correspond precisely to the unlabelled k-trees with n hedra.

Since the two actions onKn,k commute, it follows that there is also a canonical correspondence
between unlabelled k-trees and orbits of the group action ofSk+1 on the setKn,k/Sn. Elements of
Kn,k/Sn correspond to k-trees that are unlabelled but coloured. Hence we refer to theSk+1-orbits
of this group action as colour-orbits of unlabelled k-trees.

As the bijection φ is compatible with the actions of both groupsSn andSk+1, this reduces the
study of unlabelled k-trees to the study of colour-orbits of unlabelled k-coding trees, that is, orbits
of the group action ofSk+1 on Tn,k/Sn.
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3.2 Burnside’s lemma
The enumeration of colour-orbits of unlabelled k-trees and k-coding trees is undertaken using
Burnside’s lemma, which we briefly recall in this section. Given a permutation σ ∈Sm, its cycle
type λ = (1λ1 2λ2 · · · mλm) is defined by letting λi denote the number of cycles of length i in
the cycle decomposition of σ . Sometimes we simply write the parts of λ in a weakly decreasing
manner, that is,

λ =
⎛
⎝m, . . . ,m︸ ︷︷ ︸

λm

, . . . , 2, . . . , 2︸ ︷︷ ︸
λ2

, 1, . . . , 1︸ ︷︷ ︸
λ1

⎞
⎠ .

We will also omit the parentheses when there is no risk of confusion. Sincem= λ1 + 2λ2 + · · · +
mλm, the cycle type λmay be identified with a partition ofm. That is, a permutation with λi cycles
of length i for each i corresponds to the partition in which the multiplicity of i as a part is λi. We
write λ m to denote that λ is a partition ofm, and set

zλ = 1λ1λ1!2λ2λ2! · · ·mλmλm!, (3.1)

so thatm!/zλ is the number of permutations inSm with cycle type λ. Moreover, for any d� 1, we
let λd denote the cycle type of the dth power of a fixed permutation with cycle type λ.

We let A⊂R[[z]] denote the subset of all formal power series whose coefficients are non-
negative. Suppose that we are given a non-empty set S together with a weight-function ω : S→
A, such that the sum

∑
s∈S ω(s) is well-defined in A. That is, for any n� 0, the coefficients

([zn]ω(s))s∈S form a summable family of non-negative real numbers. Suppose that we are addi-
tionally given a group action of the symmetric group Sm on S that preserves weights. Thus, all
elements of a common orbit O have the same ω-weight, which we denote by ω(O) and call the
weight of the orbit O. For each permutation σ ∈Sm, we let Fix(σ )= {s ∈ S | σ .s= s} denote the
set of fixed points of σ . The corresponding inventory Fixλ := ∑

s∈Fix(σ ) ω(s) only depends on
the cycle type λ m of σ .

Lemma 3.1 (Burnside’s lemma for the symmetric group). The sum of the weights of allSm-orbits
is given by ∑

O∈S/Sm

ω(O)=
∑
λm

Fixλ

zλ
.

Suppose that for each type λ m we fix some permutation σλ ∈Sm with type λ. Let

Zm =
∑

O∈S/Sm

ω(O)

denote the sum of the weights of all orbits. The following probabilistic application of Burnside’s
lemma will turn out to be useful.

Lemma 3.2 Suppose that all ω-weights are positive real numbers. We may sample a random type
λ m with probability

P(λ = λ)= z−1
λ Z−1

m Fixλ

and then select an element s from Fix(σλ) with probability proportional to its ω-weight. Then the
orbit O corresponding to s is distributed according to

P(O=O)= ω(O)Z−1
m .
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Proof. Let O ∈ S/Sm be an arbitrary orbit. Clearly the symmetric group Sm also operates on O,
and applying Burnside’s lemma (Lemma 3.1) to this operation yields

ω(O)=
∑
λm

z−1
λ

∑
s∈Fix(σλ)∩O

ω(s).

Hence

P(Ō=O)=
∑
λm

P(λ̄ = λ)P(s̄ ∈ Fix(σλ)∩O | λ̄ = λ)

=
∑
λm

(
Fixλ

Zm zλ

)( ∑
s∈Fix(σλ)∩O

ω(s)
Fixλ

)

= Z−1
m ω(O).

The operation of the group Sm on the set S induces an operation on the set M(S) of all finite
multi-sets of elements in S. The weight-function ω on S extends in a natural way to M(S) by
defining the weight of amulti-set to be the product of the weights of its elements (with repetitions).
For any σ ∈Sm, we let FixM(S)(σ ) denote the set of allM ∈M(S) satisfying σ .M =M.

Lemma 3.3 ([14, Lemma 2]). For each σ ∈Sm,∑
M∈FixM(S)(σ )

ω(M)= exp
(∑
i�1

1
i

∑
s∈FixS(σ i)

ω(s)i
)
. (3.2)

In [14, Lemma 2] a similar result was stated. However, instead of taking the power ω(s)i on the
right-hand side, the substitution operation ω(s)(zi) was employed. (This makes no difference for
the special cases in which this result is applied in [14], because there ω(s) is always some power of
z and the two operations coincide.)

Proof of Lemma 3.3. A multiset M ∈M(S) is fixed by σ if and only if it is a multi-set union of
orbits of S under the action of the generated subgroup 〈σ 〉. So let (Oj)j∈J denote the collection of
these orbits. For each j ∈ J, we set rj = |Oj| and select a representative sj ∈Oj. AnyM ∈M(S) may
be written uniquely as a multi-set union of �j � 0 copies of Oj for all j ∈ J, with

∑
j∈J �j < ∞. It

follows that ∑
M∈FixM(S)(σ )

ω(M)=
∏
j∈J

∑
�j�0

ω(sj)�jrj =
∏
j∈J

1
1− ω(sj)rj

. (3.3)

Here we have used the assumption that the family (ω(s))s∈S is summable, which implies that all
products with infinitely many factors �= 1 in equation (3.3) vanish. That is, we really only sum up
weights of finite multi-sets. Applying the logarithm operator to equation (3.3) yields

log
( ∑
M∈FixM(S)(σ )

ω(M)
)

=
∑
j∈J

∑
��1

ω(sj)�rj

�
. (3.4)

We now focus on the argument of the exponential operator on the right-hand side of equation
(3.2). Clearly we may write

∞∑
i=1

1
i

∑
s∈FixS(σ i)

ω(s)i =
∑
j∈J

∑
i�1

1
i

∑
s∈Oj∩FixS(σ i)

ω(s)i.
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It holds that Oj ⊂ FixS(σ i) if i is a multiple of rj, and Oj ∩ FixS(σ i)=∅ otherwise. Hence

∑
j∈J

∑
i�1

1
i

∑
s∈Oj∩FixS(σ i)

ω(s)i =
∑
j∈J

∑
��1

ω(s)�rj
�

.

Together with equation (3.4), this verifies equation (3.2).

3.3 Generating functions
We letU(z) denote the generating series of unlabelled (uncoloured) k-trees indexed by their num-
ber of hedra. Equivalently, we may state that U(z) is the generating series of colour-orbits of
unlabelled (coloured) k-coding trees, indexed by their number of black vertices. The dissymme-
try theorem proved by Gainer-Dewar and Gessel [14, Lemma 5, 6] expresses this function by the
equation

U(z)= B(z)+ C(z)− E(z). (3.5)

Here B(z), C(z) and E(z) denote the generating functions for colour-orbits of unlabelled
(coloured) k-coding trees that are rooted at a black vertex, a white vertex and an edge, respec-
tively. That is, the coefficient of zn in these series counts the number ofSk+1-orbits of unlabelled
(coloured) k-coding trees T of size n (having n black vertices) that are rooted at v, which is a black
vertex, a white vertex or an edge.

Our goal in Section 5 is to provide a substraction-free alternative (equation (5.8)) to equation
(3.5), based on the results of Gainer-Dewar and Gessel [13, Theorem 7] concerning k-coding trees
rooted at a black or a white vertex. These classes may be decomposed by applying Lemma 3.3
and Burnside’s lemma (Lemma 3.1) to recolouring operations on rooted, unlabelled and coloured
objects. We briefly recall the arguments in [14], as we are going to use these decompositions
(rather than just the resulting equations of generating functions) later on.

For any cycle type λ  k+ 1, we fix a permutation πλ ∈Sk+1 having type λ and let Bλ(z) denote
the generating function of coloured, unlabelled black-rooted k-coding trees that are invariant
under πλ. Furthermore, for any i� 1 we recall that λi denote the cycle type of (πλ)i. This notion
does not depend on the choice of πλ. Burnside’s lemma (Lemma 3.1) yields

B(z)=
∑

λk+1

Bλ(z)
zλ

. (3.6)

Each colour-orbit of a C-object contains a coloured, unlabelled coding-tree where the white
root vertex has colour k+ 1. Thus the colour-orbits of the action of Sk+1 on all white-rooted,
coloured, unlabelled k-coding trees correspond precisely to the colour-orbits of the action of
Sk on coloured, unlabelled k-coding trees marked at a white vertex with colour k+ 1. Applying
Burnside’s lemma to this action ofSk yields

C(z)=
∑
μk

Cμ(z)
zμ

, (3.7)

with Cμ(z) denoting the generating series of all coloured unlabelled k-coding trees that are rooted
at a white vertex with colour k+ 1 and that are invariant under recolouring by a fixed (but
arbitrary) permutation σμ ∈Sk with cycle type μ.

We define the generating function B̄μ(z) in the same way as Cμ(z), but only count the k-coding
trees where the white root with colour k+ 1 has precisely one black neighbour. This black neigh-
bour may be interpreted as a black root vertex and B̄μ-objects are termed black-rooted reduced
k-coding trees.
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We may view a white-rooted, coloured, unlabelled k-coding tree whose root has colour k+ 1
as a multi-set of black-rooted reduced k-coding trees. Hence Lemma 3.3 applies, yielding

Cμ(z)= exp
( ∞∑

i=1

B̄μi(zi)
i

)
. (3.8)

If we delete the root of a B̄μ-object, we are left with kwhite-rooted unlabelled coloured k-coding
trees T1, T2, . . . , Tk whose roots are coloured from 1 to k. For any cycle c= (c1, c2, . . . , c�) of σμ,
the trees Tc1 , Tc2 , . . . , Tc� belong to the same colour-orbit, and each is invariant under relabelling
by σ�

μ. Setting d =min (c1, c2, . . . , c�), the result of switching the colour d with the colour k+ 1
in the tree Td yields a reduced tree, that together with the cycle c already contains all information
on the trees Tc1 , Tc2 , . . . , Tc� . Hence the trees corresponding to c are enumerated by Cμ�(z�), and
the generating series for B̄μ-objects is given by

B̄μ(z)= z
∏
i∈μ

Cμi(zi), (3.9)

with the index i ranging over all parts of the type μ. Similarly, we may argue that

Bλ(z)= z
∏
i∈λ

C(λi)−(zi), (3.10)

with (λi)− denoting the cycle type obtained by removing one part of length 1 from λi. In fact,
by definition Cλi(zi)= C(λi)−(zi) and λi contains at least one part of length 1. For example, when
k= 2, we have B̄2(z)= zC1,1(z2) and B2,1(z)= zC1,1(z2)C2(z).

4. k-trees rooted at a front of distinguishable vertices
We let ρk denote the radius of convergence of the generating series U(z) of unlabelled k-trees.
Drmota and the first author [7] established the following result, which shows the dominating role
of the cycle type 1k in this context.

Lemma 4.1 ([7, Theorem 3]). The series C1k(z) and B̄1k(z) have a dominant singularity of square-
root type at z = ρk < 1 and it holds that B̄1k(ρk)= k−1. The series Cμ(z) and B̄μ(z) are analytic at
ρk if μ �= 1k. The series U(z) has a dominant singularity of type (1− z/ρk)−3/2.

The class of labelled k-trees admits a recursive decomposition [8] that is based on k-trees rooted
at a front of distinguishable vertices. Two such elements are considered isomorphic if there is a
graph isomorphism that pointwise preserves the root-front. Hence the corresponding cycle-index
sums do not count front-rooted unlabelled k-trees, but unlabelled k-trees that are rooted at a front
of distinguishable vertices.

This relates to the present setting as follows. The k-trees counted by B̄1k(z) are unlabelled and
coloured, with a root-front of colour k+ 1 that is contained in a unique hedron. The colours 1
to k of the remaining fronts of this hedron uniquely determine the front-colouring of the entire
k-tree, and may be interpreted as a labelling of the k vertices of the root-front. That is, B̄1k(z)
counts unlabelled uncoloured k-trees that are rooted at a front of k distinguishable vertices that is
contained in a unique hedron. The series C1k(z) counts such objects without the restraint that the
root-front belongs to a unique hedron. By (3.8) and (3.9) these series satisfy the equations

B̄1k(z)= z exp
(
k

∞∑
i=1

B̄1k(zi)
i

)
and C1k(z)= exp

( ∞∑
i=1

B̄1k(zi)
i

)
, (4.1)
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which agree with the cycle-index sums associated to the decomposition of labelled k-trees in [8].
In [27] k-trees rooted at a front of distinguishable vertices were studied as special cases of

unlabelledR-enriched trees. Let ck be defined as in (2.8).

Lemma 4.2 ([27, Section 6.5]). Let Gn be either the uniform n-hedra k-tree from the class
B̄1k or C1k . Let μGn denote the uniform measure on the vertices of Gn. Then the rescaled space
(Gn, ckn−1/2dGn ,μGn ) converges in the Gromov–Hausdorff–Prokhorov sense towards the Brownian
tree.

Furthermore, there are constants C, c> 0 such that P(D(Gn)� x)� C exp (− cx2/n) for all
n and x� 0. Let vn be a vertex sampled according to μGn . There is an infinite rooted ran-
dom graph Ĝ such that for any sequence rn = o(

√
n) the rn-neighbourhood Urn( · ) satisfies

dTV(Urn(Gn, vn),Urn(Ĝ))→ 0.

Here the limit graph Ĝ does not depend on whether we consider random elements of the class
B̄1k or of the class C1k . Note that the Gromov–Hausdorff convergence of Gn to the Brownian
tree was established in [27], but it is not hard to see that the arguments may be extended to
obtain the Gromov–Hausdorff–Prokhorov convergence. The scaling constant ck is explicit in [27,
first display after equation (7.29)] and may be seen to be identical to the expression in (2.8) by
straightforward calculations.

5. A substraction-free decomposition
5.1 Cycle-pointing
Letm� 0 be an integer. Recall that any permutation σ ∈Sm may be decomposed in a unique way
into a product of disjoint cycles. The cycles correspond to the orbits of the action of the generated
subgroup 〈σ 〉 ⊂Sm on the set of integers [m]. Here we count fixed points as 1-cycles.

Suppose that the symmetric group Sm acts on a set S. We may consider the cycle-pointed set
S◦ of all pairs (s, c) of any element s ∈ S together with a marked cycle c, for which at least one
permutation σ ∈Sm satisfies σ .s= s and σ has c as one of its cycles. Naturally, the groupSm acts
on S◦ via ν.(s, c)= (ν.s, νcν−1) for all ν ∈Sm and (s, c) ∈ S◦.

There is a well-defined map S◦/Sm → S/Sm that sends the orbit of an element (s, c) ∈ S◦ to
the orbit of s. By [5, Theorem 15], the pre-image of any orbit in S/Sm has precisely m elements.
This completely reduces the task of counting S/Sm to the task of counting S◦/Sm. The latter may
be easier, as the marked cycle provides a point of reference.

Recall that the groups Sn and Sk+1 operate on the class Kn,k of coloured hedron-labelled k-
trees, and that the two operations commute.Wewould like to study unlabelled, uncoloured k-trees
that correspond bijectively to the elements of the collection (Kn,k/Sn)/Sk+1 of colour-orbits of
unlabelled, coloured k-trees.

We have to take great care when trying to apply the cycle-pointing method to this setting, as
there are luring pitfalls. For example, we could apply the cycle-pointing operation to the operation
ofSn on the set Kn,k, resulting in a set K◦n

n,k. The orbits from K◦n
n,k/Sn are in an n to 1 correspon-

dence to the unlabelled coloured k-trees from Kn,k/Sn, but this relation breaks when passing to
the colour-orbits. That is, in general the orbits from (K◦n

n,k/Sn)/Sk+1 no longer satisfy an n to 1
correspondence to the unlabelled, uncoloured k-trees from (Kn,k/Sn)/Sk+1. A counter-example
where this relation fails is already given for the special case n= 5 and k= 1. See Figure 4.

Let Un denote the set of all unlabelled (uncoloured) k-trees with n hedra. We are going to
consider the action of the symmetric group Sn on the set Kn of n-hedron k-trees with hedra
labelled from 1 to n. Clearly there is a bijection from Kn/Sn to Un, and consequently an n to 1
correspondence from Vn :=K◦

n/Sn to Un. See Figure 5.
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(a) (b)

Figure 4. (a) All possible ways to first colour and then cycle-point a fixed unlabelled, uncoloured 1-tree with n= 5 hedra
(edges). (b) The three corresponding colour-orbits. This demonstrates that if we colour before applying the cycle-pointing
operation, we break the n to 1 relation between pointed and non-pointed objects.

Figure 5. The four possible cycle-pointings of
a 2-tree with four hedra.

We are going to partition the set Vn into three classes. We define the first class V (1)
n ⊂ Vn to be

the subset of all unlabelled k-trees that are cycle-pointed at a single hedron. Hence the complement
Vn \ V (1)

n consists of all unlabelled cycle-pointed k-trees whose marked cycle has length at least 2.
Elements of the complement have a centre of symmetry or cycle-centre that may be either a hedron
(as in Figure 6) or a front (as in Figure 7). The idea is that there is a common centre of paths that
join consecutive atoms of the cycle in an associated k-coding tree.

Let us make this precise. Let V ∈ Vn \ V (1)
n be an unlabelled (uncoloured) cycle-pointed k-tree

V ∈ Vn whose marked cycle has length �� 2. We may select a labelled version (K, c) ∈K◦
n of V ,

and then a front-coloured (labelled) version (Kcol, c) ∈K◦
n,k of (K, c). Note that c need not be a

cycle of an automorphism of K that preserves the colours; see Figure 7 for an example.
The labelled, coloured k-tree Kcol ∈Kn,k corresponds to a labelled, coloured k-coding tree

T ∈ Tn,k. We may form the tree Tuncol by removing the colour-indicators from the white ver-
tices. The pair (Tuncol, c) is a cycle-pointed tree (with labels on vertices instead of hedra) that no
longer contains all information about the k-tree V . (We would require knowledge of the colours
to reconstructV .) Wemay consider the � paths that join consecutive atoms of the marked cycle in
Tuncol. Each of these paths has odd length since its ends are black vertices. It follows by a general
principle for cycle-pointed trees [5, Proposition 24] that all connecting paths share a common
centre, which may be either a black or a white vertex. We say that the corresponding hedron or
front in V is the cycle-centre (or centre of symmetry) of V . This notion does not depend on the
choices of colours and labels in the intermediate steps.

Hence we may split Vn into a disjoint union

Vn = V (1)
n � V (2)

n � V (3)
n . (5.1)

The first part corresponds to unlabelled k-trees with a marked hedron. The second part corre-
sponds to unlabelled k-trees with a marked cycle of length at least 2, such that the cycle-centre is
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(a) (b) (c) (d)

Figure 6. (a) V is a cycle-pointed unlabelled uncoloured 2-tree from the set V (2)
6 . The cycle-centre (a hedron) is drawn in

bold. (b,c) (K, c) denotes one of the cycle-pointed hedron-labelled (uncoloured) versions of V , and (Kcol, c) is one of the
front-coloured versions of (K, c). (d) (Kunl,col, c) is obtained by dropping the labels of (Kcol, c).

a hedron, and the third part to the case where the cycle-centre is a front. We let V(z), and V(i)(z),
i= 1, 2, 3 denote the corresponding generating series. That is,

V(i)(z)=
∑
n�1

|V (i)
n |zn and V(z)=

∑
n�1

|Vn|zn.

5.2 Structural analysis of the summands
The generating series and bijective arguments of Section 3.3 may be interpreted in terms of k-
coding trees (rooted for example at black or white vertices) and in terms of k-trees (rooted at a
hedron or a front). In order to avoid confusion, we are going to interpret everything in terms of k-
trees from here on. In particular, we regard B(z) as the generating series of unlabelled, uncoloured
k-trees rooted at a hedron, and C(z) as the generating series of unlabelled, uncoloured k-trees that
are rooted at a front. A front-colouring of a k-tree will always be subject to the restraints stated in
Section 3.1, that is, the fronts of any hedron are coloured from 1 to k+ 1 and the fronts that are
mirror to each other receive the same colour.

5.2.1 Hedron-rooted k-trees
It is clear that V (1)-objects are exactly unlabelled uncoloured hedron-rooted k-trees, that is,

V(1)(z)= B(z). (5.2)

5.2.2 Cycle-pointed k-trees with a hedron cycle-centre
In this subsection we show that there are only very few cycle-pointed k-trees with a hedron cycle-
centre.

Lemma 5.1 There are constants C, c> 0 that do not depend on n such that

|V (2)
n |

|Vn| � C exp (− cn).

Proof. For this it suffices to show that the radius of convergence of the generating series V(2)(z) is
strictly larger than the radius of convergence ρk of the generating series V(z). Indeed, if this is the
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case, then there is an ε > 0 such that V(2)(ρk + ε)< ∞ and hence |V (2)
n |(ρk + ε)n → 0. As

|Vn| = n[zn]U(z)∼ akn−3/2ρ−n
k

for some fixed ak > 0 by Lemma 4.1 (or equation (5.9) below), we know that |Vn|(ρk + ε/2)n →
∞. So

|V (2)
n |

|Vn| = o(1)
(

ρk + ε/2
ρk + ε

)n

tends exponentially fast to zero as n becomes large, as desired.
It remains to verify that V(2)(z) is analytic at z = ρk. Let V ∈ V (2)

n be a cycle-pointed unlabelled
uncoloured k-tree whose cycle-centre is a hedron. Then there is a hedron-labelled, uncoloured
k-tree K with an automorphism σ and a marked cycle c of σ such that (K, c) looks like V , up to
relabelling. See Figure 6 for a corresponding example in this proof.

We may view K as rooted at the cycle-centre hedron. Hence K consists of a root hedron whose
fronts are identified with the root-fronts of k+ 1 front-rooted k-trees C1, . . . , Ck+1. If σ sends the
label of a hedron contained in Ci to the label of a hedron contained in Cj, then it already holds that
the restriction of σ to the label set of Ci is an isomorphism from Ci to Cj. As the cycle centre is a
hedron, it follows that there are branches Ci1 , . . . , Ci� (each having at least 1 hedron) with �� 2
such that σ cyclically permutes the label sets of the branches. That is, σ induces an isomorphism
from Cij to Cij+1 if 1� j< � and to Ci1 if j= �.

Let Kcol denote any fixed front-coloured version of K (such that fronts of any hedron are
coloured from 1 to k+ 1 and fronts that are mirror to each other receive the same colour).
The automorphism σ is not required to respect the colouring in the sense that σ .K =K, but we
know that when we relabel the hedra of Kcol according to σ , then the result σ .Kcol must be some
coloured version of K. Hence there is a bijection τ ∈Sk+1 such that

σ .Kcol = τ .Kcol.

That is, the relabelled version σ .Kcol equals the recoloured version τ .Kcol. See Figure 6 for
an example of a cycle-pointed 2-tree (Kcol, c) with c= (13), where σ .Kcol = τ .Kcol holds for
τ = (1)(23) and σ = (13)(2)(46)(5).

Let A ∈ [n] be the label of the cycle-centre hedron in Kcol and let B ∈ [n] be the label of some
hedron of Cij that is next to the cycle-centre hedron. Then τ must map the colour aij ∈ [k+ 1] of
the unique front contained in the hedra (corresponding to) A and B to the colour of the unique
front contained in the hedra (corresponding to) σ (A)=A and σ (B). Thus (ai1 , . . . , ai�) is one of
the disjoint cyclic factors of the permutation τ . As �� 2, this implies that τ does not have cycle
type 1k+1.

Let Kunl,col denote the result of dropping the labels of Kcol but retaining the colours. We
know that τ .Kcol = σ .Kcol is a relabelled version of Kcol, so Kunl,col is invariant under recolouring
according to the permutation τ . Thus V is formed by dropping the colours of Kunl,col and cycle-
pointing it in one of the at most n ways such that the cycle centre is the root hedron. This shows
that

|V (2)
n |� n[zn]

∑
λk+1
λ �=1k+1

Bλ(z)= [zn−1]
∑

λk+1
λ �=1k+1

B′
λ(z). (5.3)

By Lemma 4.1 and equation (3.10) it follows that the series B′
λ(z) has radius of convergence strictly

larger than ρk for all λ �= 1k+1. This concludes the proof.
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(a) (b) (c) (d)

Figure 7. (a) A cycle-pointed unlabelled 2-tree V ∈V (3),sym
7 . The cycle-centre (a front) is drawn in bold. (b) (K, c) denotes

a hedron-labelled version of V , and C∗ and C denote the marked and unmarked part of (K, c). (c,d) Kcol is a front-coloured
version of K and Kunl,col is obtained by dropping the hedron-labels of Kcol.

5.3 Cycle-pointed k-trees with a front cycle-centre
Treating this case will require us to split it up into two subcases (see (5.4)).

LetV ∈ V (3)
n be a cycle-pointed unlabelled uncoloured k-tree whose cycle-centre is a front. Then

there is a hedron-labelled uncoloured k-tree K together with an automorphism σ and a marked
cycle c of σ such that V is the unlabelled version of (K, c).

We consider K as rooted at the cycle-centre front. Hence K consists of a set of front-rooted
hedron-labelled uncoloured k-trees where the root-front is contained in a unique hedron. We
may decompose K into branches that contain hedra of the marked cycle c and branches that do
not. Thus K actually consists of two front-rooted components C∗ and C that are glued together at
their root-fronts, with C∗ the subgraph induced by all the branches containing hedra of the cycle
c and C the subgraph induced by the branches that do not. We call C∗ themarked part and C the
unmarked part of K. See Figure 7 for a corresponding example.

If the automorphism σ sends the label of a hedron contained in a branch C1 of K to a label
of a hedron contained in another branch C2, then the restriction of σ to the label set of C1 is an
isomorphism from C1 to C2. In particular, σ can be restricted to an automorphism of C∗ and
consequently also to an automorphism of C.

Let us fix a version Kcol of K that is properly front-coloured such that fronts of any hedron
are coloured from 1 to k+ 1 and fronts that are mirror to each other receive the same colour.
We additionally require that the root-front has colour k+ 1. We know that the result of rela-
belling Kcol according to σ is a coloured version of K, where the root-front still has colour k+ 1.
Consequently, there is a bijection π ∈Sk such that σ .Kcol = π .Kcol, that is, the relabelled version
σ .Kcol equals the recoloured version π .Kcol. Figure 7 illustrates an example where c= (14) and
σ .Kcol = π .Kcol holds for π = (12)(3) and σ = (14)(23)(57)(6).

Let V (3),sym
n ⊂ V (3)

n be the subset of all cycle-pointed k-trees where σ and π cannot be chosen in
such a way that π is the identity permutation. (This does not depend on the choice of Kcol.) See
Figure 8(b) for an example of an element of V (3),sym

7 . We set V (3),dec
n := V (3)

n \ V (3),sym
n , so that

V(3)(z)=V(3),sym(z)+V(3),dec(z) (5.4)

with

V(3),sym(z)=
∑
n�1

|V (3),sym
n |zn and V(3),dec(z)=

∑
n�1

|V (3),dec
n |zn.

Our first observation tells us that V (3),sym
n contains very few elements.

Lemma 5.2 There are constants C, c> 0 that do not depend on n such that

|V (3),sym
n |
|Vn| � C exp (− cn). (5.5)
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(a) (b) (c)

Figure 8. (a) The 2-tree is not cycle-pointed, since no automorphism has themarked cycle as one of its disjoint cyclic factors.
(b,c) The other two are cycle-pointed with a front as cycle-centre: (b) belongs to the classV (3),sym

7 , while (c) belongs to the
classV (3),dec

6 .

Proof. Let Kunl,col denote the unlabelled and coloured k-tree obtained by dropping the labels
but retaining the colours of Kcol. As σ .Kcol = π .Kcol, it follows that Kunl,col is invariant under
recolouring according to the permutation π . Since any unlabelled k-tree with n hedra has at most
n unlabelled cycle-pointed versions where the cycle-centre is a front, it follows that

|V (3),sym
n |� n[zn]

∑
μk
μ �=1k

Cμ(z)= [zn−1]
∑
μk
μ �=1k

C′
μ(z). (5.6)

By Lemma 4.1 we know that for each μ  k with μ �= 1k the series C′
μ(z) has radius of conver-

gence strictly larger than ρk. This implies that the generating series
∑

n�1 |V (3),sym
n |zn has radius of

convergence strictly larger than ρk. Inequality (5.5) now follows analogously to (5.3) in the proof
of Lemma 5.1.

Nowwe turn to the complement set V (3),dec
n . ForV ∈ V (3),dec

n , we may assume that the automor-
phism σ got chosen in a way that preserves the colouring of Kcol as well, that is, σ .Kcol =Kcol. We
argued above that the automorphism σ restricts to an automorphism of the marked part C∗ (and
to an automorphism of the unmarked part C). Consequently, at least one (and hence all) colour-
ings of the marked part admit a colour-preserving automorphism having the marked cycle c as one
of its disjoint cyclic factors.

This is a key observation: arbitrary elements of V (3)
n may have a marked part whose marked

cycle may only be extended to automorphisms involving some form of rotation of the root hedron
(i.e. they are not colour preserving) such as the k-tree of Figure 8(b). This imposes symmetry
constraints (i.e. invariance under non-trivial recolouring) on the unmarked part. For this reason
we could show in (5.6) that there are far fewer elements in V (3),sym

n than in V (3)
n . For elements

of V (3),dec
n there are no such symmetry constraints. If the marked cycle may be extended to an

automorphism of the marked part C∗ that preserves a front-colouring, then C may be equal to
any front-rooted unlabelled k-tree such that the total number of hedra of C and C∗ sum up to n.
(The abbreviation ‘dec’ for ‘decoupled’ intends to indicate this.) In fact, we may always choose σ

in such a way that it pointwise fixes all hedra of C. Note that, given a marked and an unmarked
part, there is in general no canonical way to glue them together at the root-front. We will get to
this in a moment.

Let us first examine the constraints on the marked part. Since σ preserves the colouring, this
means that if we distinguish the vertices of the root-front of C∗ by ordering them linearly, then C∗
consists of identical branches glued together in the unique way according to the order on the root-
front. See for example the cycle-pointed 2-tree (K, c) in Figure 9, where the branch containing
hedra 1 and 2 is identical to the branch containing 3 and 4 , while the branch containing 5
and 6 can be any front-rooted hedron-labelled 2-trees.
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(a) (b) (c) (d)

Figure 9. (a) A cycle-pointed unlabelled 2-tree V ∈V (3),dec
6 , (b) a cycle-pointed hedron-labelled version K of V , (c,d) a

front-coloured version Kcol of K and Kunl,col after dropping the labels of Kcol, where the cycle-centre (a front) is drawn in
bold.

(a)

(b)

Figure 10. Constructing a marked part with a cycle of length 8 out of four copies of a single marked branch with a cycle of
length 2.

The automorphism σ cyclically permutes the label sets of the branches of C∗. Let C1, . . . , C�,
�� 2 denote the branches of C∗ such that Ci is sent to Ci+1 by σ if i< �, and to C1 if i= �. The
disjoint cyclic factor of σ that corresponds to the marked cycle must be of the form

(a1,1, . . . , a1,�, a2,1, . . . , a2,�, . . . , ar,1, . . . , ar,�)

for some r� 1 such that for each 1� j� � the labels a1,j, a2,j, . . . , ar,j correspond to distinct hedra
of the branch Cj. Note that the restriction of the power σ� to the label set of Cj is an automorphism
of Cj, and (aj,1, aj,2, . . . , aj,�) is one of its disjoint cyclic factors. Hence, up to hedron labels, C∗
is completely determined by the number �� 2 of branches together with a single cycle-pointed
branch (Cj, (a1,j, a2,j, . . . , ar,j)). See Figure 10 for an illustration of how to construct a marked part
in this canonical way.

Note that not every marked part constructed in this way is admissible. By admissible we mean
that the marked part admits a front-colour preserving automorphism with the marked cycle as a
factor. For instance, Figure 10(b) is not admissible.

Let B̄(z) be the generating series so that [zn]B̄(z) counts the number of front-rooted unlabelled
uncoloured k-trees with n hedra where the root-front is contained in a unique hedron. Let B̄◦w(z)
count unlabelled uncoloured cycle-pointed branches that admit an automorphism that has the
marked cycle as one of its disjoint factors and preserves a given (and hence all) front-colourings.
(The ‘w’ indicates that they are ‘well’ pointed.) The generating series M(z) of the class M of
marked parts that are admissible for elements of the class V (3),dec = ⋃

n�1 V
(3),dec
n is consequently

given by

M(z)=
∑
��2

B̄◦w(z�),

with the variable z indexing the number of hedra.
As mentioned before, there may be various ways to glue an unlabelled uncoloured marked part

and a front-rooted unlabelled uncoloured k-tree together at the root-front. In order to handle this,
we use colours.
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Consider the set of all front-colourings of M-objects such that the root-front receives colour
k+ 1. Note that each branch in a coloured M-object is coloured identically, as fronts that are
mirror to each other receive the same colour. Hence a coloured M-object is constructed out of
copies of a single coloured B̄◦w-object. For each cycle type μ  k let (B̄◦w)μ(z) denote the generat-
ing series of the class of all colourings of B̄◦w-objects such that the root-front receives colour k+ 1
and such that the object is invariant under recolouring by a fixed permutation of degree k with
cycle type μ. Likewise, we letMμ(z) count μ-invariant colouredM-objects. Then

Mμ(z)=
∑
��2

(B̄◦w)μ(z�).

Furthermore, we have the following substraction-free decomposition of V (3),dec.

Lemma 5.3 It holds that

V(3),dec(z)=
∑
μk

z−1
μ Cμ(z)

∑
��2

(B̄◦w)μ(z�). (5.7)

For each μ  k, the series Mμ(z)= ∑
��2 (B̄◦w)μ(z�) has radius of convergence strictly larger

than ρk.

Proof. It is easy to see that (B̄◦w)μ(z) and B̄μ(z) have the same radius of convergence, because
any B̄μ-object with n hedra corresponds to at least 1 and at most nk! objects from (B̄◦w)μ. By
Lemma 4.1 it follows thatMμ(z) has radius of convergence strictly larger than ρk. Now, consider
the class of colourings of V (3),dec-objects where again the root-front is required to receive colour
k+ 1. Applying Burnside’s lemma (Lemma 3.1) yields (5.7).

5.4 Conclusion
The generating series we derived in equations (5.2), (5.4) and (5.7) may be summarized as follows.

Theorem 5.4 It holds that

zU ′(z)= B(z)+V(2)(z)+V(3),sym(z)+
∑
μk

z−1
μ Cμ(z)

∑
��2

(B̄◦w)μ(z�). (5.8)

This is a substraction-free alternative to the dissymmetry equation [14, Lemma 6].
Note that, using (5.8), we are able to retrieve the asymptotic number of unlabelled k-trees with

n hedra (see (5.9)) which was proved in [7, Theorem 3] using a different approach.
Since the series V(2)(z), V(3),sym(z) and∑

μk,μ �=1k
z−1
μ B̄μ(z)

∑
��2

(B̄◦w)μ(z�)

have radius of convergence strictly larger than ρk, and B̄1k(z) has a dominant singularity of square-
root type at ρk, we may apply equations (3.9) and (4.1) together with general principles (e.g. [29,
Lemma 3.2]) to deduce that

n[zn]U(z)∼ (kρk)−k

kk!
(
1+ k

∑
��2

(B̄◦w)1k(ρ�
k )

)
[zn]B̄1k+1 (z).
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In general the operations of cycle-pointing and colouring k-trees do not commute. However,
colouring ‘well’ pointed k-trees is the same as cycle-pointing coloured k-trees. That is,

(B̄◦w)1k(z)= zB̄′
1k(z).

Note that there is an asymptotic expansion

[zn]B̄1k(z)∼
√
1+ k

∑
��2 B̄′

1k(ρ
�
k )ρ

�
k

2πk2
n−3/2ρ−n

k

that may be deduced from equation (4.1) using [3, Theorem 28]. Hence

[zn]U(z)∼ (kρk)−k

k2k!√2π

(
1+ k

∑
��2

(B̄◦w)1k(ρ�
k )

)3/2
n−5/2ρ−n

k . (5.9)

6. Proof of the main theorems
In order to sample an unlabelled k-tree with n hedra uniformly at random, we may uniformly
select a cycle-pointed k-tree from Vn and then forget about the marked cycle. The decomposition
in (5.1) allows us to divide the study of Vn into three cases, depending on the cycle-centre. In the
following, we treat each part individually.

6.1 Hedron-rooted k-trees
As noted in equation (5.2), V (1)-objects are exactly unlabelled uncoloured hedron-rooted k-trees.

Lemma 6.1 Theorems 2.1, 2.2 and 2.3 hold for the uniform random unlabelled uncoloured hedron-
rooted k-tree with n hedra.

Proof. Recall that for any cycle type λ  k+ 1 we fixed a permutation πλ ∈Sk+1 with type λ. By
Lemma 3.2 it follows that in order to uniformly sample an unlabelled hedron-marked k-tree with n
hedra wemay proceed in two steps. First we draw a cycle type λ  k+ 1 at randomwith probability
given by z−1

λ ([zn]B(z))−1[zn]Bλ(z). In the second step we uniformly choose a front-coloured k-
tree with n hedra that is fixed by the permutation πλ. By Lemma 4.1 and equation (3.10) the
cycle type is exponentially likely to be equal to 1k+1. The special case B1k+1 (z)= zC1k(z)k+1 of
equation (3.10) corresponds to the fact that any B1k+1 -object may be constructed in a canonical
way by gluing the root-fronts of k+ 1 C1k-objects together to form a root-hedron. (See Section 3.3
for details.) By Lemma 4.1 it holds that [zn]C1k(z)∼ ρ−n

k n−3/2c1k(1+O(n−1)) for some constant
c1k > 0. Hence, either by direct calculations or by applying more general principles of random
partitions [26, 29], it follows that the largest C1k-component in a random B1k+1 -object of size n
has size n−O(1). By Lemma 4.2 it follows that the limits of Theorem 2.1 and Theorem 2.3 hold
for the largest C1k-component.

After rescaling edge-lengths by �(n−1/2), the small components glued to the giant C1k-
component contract to a single point. Hence, using the definition of the Gromov–Hausdorff–
Prokhorov distance in (2.1), it follows that the Gromov–Hausdorff–Prokhorov scaling limit for
a random B1k+1 -object of size n is identical to the limit of its largest C1k-component. Similarly, a
uniformly selected vertex of a random B1k+1 -object of size n lies with high probability in its largest
C1k-component, since the total number of vertices in the combined small components is stochas-
tically bounded. Moreover, for any fixed integer r� 1 the r-neighbourhood of that random vertex
with high probability does not contain any of the vertices belonging to the root front. In fact,
the Gromov–Hausdorff–Prokhorov convergence of the giant component entails that its distance
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from the root front has order
√
n. Hence, expressed in less technical terms, a myopic random ver-

tex, that can only see other vertices with distance at most r, observes with high probability only
vertices from the giant C1k-component. Using the characterization of Benjamini–Schramm con-
vergence in (2.12), it follows that the Benjamini–Schramm limit of a random B1k+1 -object of size n
is identical to the Benjamini–Schramm limit of its largest C1k-component. We have thus verified
that the limits of Theorem 2.1 and Theorem 2.3 both hold for random B1k+1 -object of size n as n
tends to infinity.

Since the cycle type in our sampling procedure is with high probability equal to 1k+1, it follows
that the limits of Theorem 2.1 and Theorem 2.3 both hold for random hedron-rooted unlabelled
k-trees, with the scaling constant of the scaling limit being equal to those for the case of unlabelled
k-trees rooted at a front of distinguishable vertices.

It remains to prove the tail bound for the diameter. By Lemma 4.2 there are constants C, c> 0
such that the probability of the k-tree diameter of a C1k-object of size n being larger than x� 0
is bounded uniformly by C exp (− cx2/n). An n-sized B1k+1 -object consists of k+ 1 components
whose sizes (number of hedra) n1, . . . , nk+1 sum up to n− 1, since none of them contain the root
hedron. Let Bn be a uniformly selected unlabelled, hedron-rooted and front-coloured k-tree with
n vertices and let C1(Bn), . . . , Ck+1(Bn) denote its components. If Bn has diameter at least x, then
at least one of its components has diameter at least x/2. Letting |Ci(Bn)| denote the number of
hedra in the component Ci(Bn), it follows that

P(D(Bn)� x)�
∑

n1+···+nk+1=n−1
P(|Ci(Bn)| = ni, i= 1, . . . , k+ 1)

k+1∑
i=1

C exp (− cx2/(4ni))

� C(k+ 1) exp (− cx2/(4n)).

We argued above that the total variation distance of uniform random coloured and uniform
random uncoloured hedron-rooted k-trees (i.e. B1k+1 -objects and B-objects) with n vertices is
exponentially small (as the partition type we considered is exponentially likely to be equal to 1k+1).
It follows that the tail bound for the diameter in Theorem 2.2 holds for the random unlabelled
uncoloured hedron-rooted k-tree with n hedra. This concludes the proof.

6.2 Cycle-pointed k-trees with a hedron cycle-centre
Lemma 5.1 readily implies that we can safely neglect the case of a hedron cycle-centre.

Lemma 6.2 A uniformly selected cycle-pointed k-tree from the class Vn is exponentially unlikely to
have a hedron as the cycle-centre.

6.3 Cycle-pointed k-trees with a front cycle-centre
Recall that we split the class V (3) into V (3),sym and V (3),dec. Lemma 5.2 and the enumerative
observations in Section 5.4 readily entail that we may safely neglect the class V (3),sym.

Lemma 6.3 A uniformly selected cycle-pointed k-tree from the class V (3)
n is exponentially unlikely

to belong to V (3),sym
n .

It remains to prove the main theorems for random elements from V (3),dec
n .
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Lemma 6.4 Theorems 2.1, 2.2 and 2.3 hold for the uniformly selected cycle-pointed k-tree from the
class V (3),dec

n .

Proof. Recall the substraction-free decomposition given in equation (5.7). Using Lemma 4.1 and
Lemma 5.3 it follows that all summands with μ �= 1k have radius of convergence strictly larger
than ρk. The summand for μ = 1k represents pairs of a C1k-object (that bijectively corresponds to
an unlabelled uncoloured k-tree rooted at a front of distinguishable vertices: see Section 4) and an
M1k-object that are glued together in a canonical way. It follows from Lemma 3.2 that there are
constants C, c> 0 such that the total variation distance between the uniformmeasure on V (3)

n and
the uniform measure on n-hedron unlabelled, uncoloured, cycle-pointed k-trees obtained from
(C1k , M1k)-pairs is bounded by C exp (− cn) for all n. Since M1k(z) has radius of convergence
strictly larger than ρk, it follows easily from the asymptotic expansion of [zn]C1k(z) (both the
dominant term and the second order term) that the marked part has stochastically bounded size
as n becomes large.

Arguing analogously as in the proof of Lemma 6.1, it follows from Lemma 4.2 that
Theorems 2.1, 2.2 and 2.3 hold for the uniformly selected cycle-pointed k-tree from the class
V (3),dec
n .

6.4 Proof of Theorems 2.1, 2.2 and 2.3
Suppose that we uniformly select a cycle-pointed k-tree Vn from Vn. Lemma 6.2 entails that Vn is
exponentially unlikely to belong to V (2)

n . Lemma 6.1 entails that Theorems 2.1, 2.2 and 2.3 hold
for the random graph obtained by conditioning Vn to belong to V (1)

n . Lemma 6.3 and Lemma 6.4
entail that this is also the case when Vn is conditioned to belong to V (3)

n . As Un is obtained from Vn
by forgetting about the marked cycle, this proves Theorems 2.1, 2.2 and 2.3.
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