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Abstract

Bivalve molluscs are a diverse group of animals with particular economic and ecological
importance. Their morphological characteristics frequently confuse their identification lead-
ing to mislabelling of edible species. Genetic diversity is critical to the resilience of marine
bivalve populations in the face of environmental stressors such as ocean acidification and
warming. In this study, we characterized the phylogeny and defined the first DNA barcodes
of six marine bivalves [Ostrea edulis (Linnaeus, 1758) Arca noae (Linnaeus, 1758), Pinctada
radiata (Leach, 1814), Venus verrucosa (Linnaeus, 1758), Calllista chione (Linnaeus, 1758) and
Ruditapes decussatus (Linnaeus, 1758)] sampled from different coastal areas of Aegean and
Ionian Seas using the molecular markers cytochrome c oxidase subunit I (COI) and 18S ribo-
somal RNA (18S rRNA). Further, COI gene was employed to investigate the population gen-
etic diversity since 18S rRNA exhibited no conspecific differences. The sequence of 18S rRNA
successfully discriminated the bivalves at family or superfamily level but occasionally proved
insufficient for species identification. Contrariwise, COI was highly informative and could
reliably distinguish all species. Population haplotype diversity was moderate to high and
was always accompanied by generally low nucleotide diversity, indicating genetically closely
related haplotypes. The invasive Pinctada radiata was found to be panmictic even among dis-
tant sampling areas, while Ostrea edulis was the only species that exhibited moderate levels of
population subdivision. Finally, here we report for the first time the presence of Ostrea sten-
tina in Thermaikos Gulf sampled among Ostrea edulis specimens, demonstrating a new inva-
sive bivalve species in Eastern Mediterranean.

Introduction

DNA barcoding is a molecular technique that is based on species-specific nucleotide variation
in standardized highly conserved genomic regions. This method was initially proposed as a
universal tool for the identification of taxonomic biodiversity (Hebert et al., 2003).
Nowadays, DNA barcoding is also utilized for environmental monitoring, exhibiting multiple
applications in food authentication and traceability (Galimberti et al., 2013) in pharmaceutical
industry, as well as in forensics (Shadrin, 2021). DNA barcodes constitute an effective tool for
studying aquatic biodiversity (Radulovici et al., 2010; Bucklin et al., 2011; Tsoupas et al., 2022)
offering the great advantage of rapid acquisition of molecular data compared to morphology-
based species identification (Frézal and Leblois, 2008). Mitochondrial DNA markers are usu-
ally targeted for population genetics and phylogenetics since mtDNA exhibits features such as
absence of introns, relative lack of recombination, increased mutation rate compared to
nuclear DNA, neutral selection pressure as well as maternal inheritance in the most marine
animals (Ladoukakis and Zouros, 2017). The universal primers for the fragment of the mito-
chondrial gene encoding for cytochrome oxidase subunit I (COI) are very robust allowing
recovery of its 5′ end for most animal phyla (Zhang and Hewitt, 1997). Furthermore, COI
appears to possess a broader range of phylogenetic signals compared to any other mitochon-
drial gene. The third-position nucleotides of COI present a high incidence of base substitu-
tions, resulting in a three-time faster rate of molecular evolution than 12S or 16S rRNA
(Knowlton and Weigt, 1998).

Molluscs are a worldwide distributed and diverse group consisting of a greater number of
species than mammals, birds, reptiles, amphibians and fishes combined (Lydeard and
Lindberg, 2003). Some morphological characters, commonly used in taxonomy of bivalve
Molluscs, such as shell structure exhibit great divergence owing to population density and
environmental effects (Lydeard and Lindberg, 2003). Oysters are among the most varying ani-
mals concerning the shell shape (Gunter, 1950). The Ostreidae family is a challenging group
for taxonomists due to the great level of phenotypic plasticity. Morphological identification of
some arcoid species is also particularly puzzling, due to the phenotypic variation and the
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presence of closely related taxa (Feng et al., 2011). Thus, DNA bar-
coding might be a useful tool for identification of oyster species
(Liu et al., 2011) and other taxa with high levels of morphological
plasticity. Veneridae is another diverse, marine bivalve subfamily.
Members of this family are worldwide distributed to benthic com-
munities of littoral environments and many of them are commer-
cially important. The utilization of shell characters alone is
questionable for investigating the phylogenetic relationships of
this group (Kappner and Bieler, 2006; Chen et al., 2011a). The
shell morphology as well as the morphometrics of pearl oysters
are also highly variable and consequently has led to taxonomy con-
fusion especially involving the species Pinctada radiata (Leach,
1814), Pinctada albino (Lamarck, 1819), Pinctada fucata (Gould,
1850) and Pinctada imbricate (Röding, 1798) (Yu and Chu,
2006). Pinctada radiata is originally distributed in the
Indo-Pacific, whereas when arriving in the Mediterranean Sea it
has been considered as one of the worst invaders (Streftaris and
Zenetos, 2006). Nowadays populations of this bivalve inhabit the
entire Mediterranean (Gavrilović et al., 2017; Theodorou et al.,
2019; Moutopoulos et al., 2021; Png-Gonzalez et al., 2021).

Pelagic larvae of marine bivalves come up with a potent dis-
persal among conspecific populations promoting extensive gene
flow. This gene flow is expected to occur over extended marine
geographical scale owing to the lack of obvious barriers to pelagic
larval scattering (Sá-Pinto et al., 2012). Passive dispersal leads to a
lack of genetic heterogeneity between distant populations
(Larsson et al., 2016). Furthermore, short duration of larval stages
often leads to strong subdivision of bivalve populations (Ye et al.,
2015). However, temporal, environmental or oceanographic fac-
tors instead of geographic factors may hamper gene flow with a
subsequent effect on population sub-structure (Banci et al.,
2017; Gutierrez et al., 2017). Genetic variability of distant popula-
tions may be affected by historical evolutionary events such as
bottleneck effects, reduction in the effective population size and
formation of barriers to gene flow (Geraghty et al., 2013).
Despite larval dispersal, the divergence of specimens belonging
to a local population is very common for marine invertebrates
having pelagic larvae. The intrapopulation genetic heterogeneity
is commonly attributed to physical or biological barriers to larval
dispersal or to selection after settlement which leads to varying
survival or fecundity of the recruits (Hedgecock, 1986).

The annual global production of bivalve molluscs for human
consumption is estimated to be above 15 million tonnes corre-
sponding to a total of 14% percentage of marine aquaculture pro-
duction, and aquaculture provides about 90% of the edible
bivalves (Wijsman et al., 2019). Bivalve mollusc aquaculture as
well as natural bivalve populations, appear to be especially vulner-
able to the threats arising from the climate change. Several factors
are accountable for mass mortalities of bivalves (Fleury and
Huvet, 2012; Soon and Zheng, 2020; Lattos et al., 2022), however,
incidents of most mass mortalities are stimulated by the synergis-
tic effects of more than one factor (Callaway et al., 2013). Harmful
impacts might immerge from the increasing sea temperature,
decreasing pH and elevated frequency of extreme climatic events,
while possible synergies with other kinds of stressors, including
diseases and harmful algal blooms could intensify the threat to
marine bivalve molluscs (Rodrigues et al., 2015) leading to
repeated mortality outbreaks. The capability of aquatic organisms
to adjust to environmental disturbances heavily depends on the
intraspecific genetic variability of the populations. Studying the
genetics of marine bivalve molluscs plays a crucial role in under-
standing their evolution and adaptation to changing environ-
ments and also provides insights into their reproductive biology,
physiology, and disease resistance, which have important implica-
tions for the sustainability of coastal ecosystems and the aquacul-
ture industry. Obtaining population genetic knowledge is

therefore crucial for both species management strategies (Sanna
et al., 2017) and also for management practices in aquaculture
(Ye et al., 2012).

Previous genetic studies of bivalves from Greece, including mito-
chondrial regions-based surveys, were mainly focused on Mytilus
galloprovincialis (Lamarck, 1819) populations both cultured and
wild ones (Kravva et al., 2000; Giantsis et al., 2012), indicating
the absence of genetic structure probably enhanced by anthropo-
genic transportations (Giantsis et al., 2014). Apart fromM. gallopro-
vincialis, the genetic composition of Modiolus barbatus (Linnaeus,
1758) has been also studied investigating COI gene sequences
from different populations from the Aegean Sea, providing the
first DNA barcodes (Giantsis et al., 2019). Nevertheless, despite
the great economic and ecological value and the great biodiversity
levels that bivalves represent in Greece, no genetic data have been
obtained for the remaining bivalve species from the Aegean and
Ionian Seas. The genetic composition of Callista chione populations
has not been investigated in any area of the Mediterranean Basin,
while regarding the rest of the selected species in this study no
research was focused on the Eastern Mediterranean.

Hence, in this study six marine bivalve species were gathered
from a total of eight sampling sites in Greece. Three of the studied
species belong to the family Veneridae [Venus verrucosa
(Linnaeus, 1758), Callista chione (Linnaeus, 1758), Ruditapes
decussatus (Linnaeus, 1758)] and the others were Arca noae
(Linnaeus, 1758), Ostrea edulis (Linnaeus, 1758) and Pinctada
radiata (Leach, 1814). All of the above species are commercially
important. Ruditapes species had a price of 19.99 EUR per kg
in the Italian market in 2021 (FAO, 2022, accessed online 24
May 2023) while the European flat oyster Ostrea edulis has an
average price 3–5 times greater than Crassostrea gigas
(Thunberg, 1793) (FAO, 2024).Venus verrucosa had in 2023 a
price of about 18 EUR per Kg in Greek markets (personal infor-
mation) while the market price in Croatia for Arca noae reached 7
EUR per kg in 2005 (Peharda et al., 2006). Furthermore, apart
from their high commercial value, all the aforementioned species
are of high export orientation.

Due to the lack of knowledge, the main objective of the present
study was the evaluation of the population genetic structure of the
aforementioned six bivalve species in different regions of Greece’s
territorial waters due to their commercial and ecological import-
ance. In addition phylogenetic analyses were performed so as to
investigate the taxonomic relationships of these bivalves with
their closely related species and the relatedness of the derived hap-
lotypes with haplotypes from other areas. Therefore, COI and 18S
rRNA were sequenced to investigate the phylogenetic relationships
and subsequently mtDNA (COI) sequences were used to assess the
levels and the patterns of genetic diversity of the populations.

Material and Methods

Sampling areas and sampling procedure

Adult marine bivalve molluscs were collected from eight areas of
Greece (Figure 1, Table 1) by professional scuba divers. Species
identification of the sampled specimens was based on morph-
ology. Samplings were performed from April 2020 to September
2022. After capturing, animals were transferred on ice to the
laboratory, where a small piece (20–30 mg) of muscle tissue was
dissected with sterilized tools from every animal and kept at
−20°C until DNA extraction.

DNA extraction, PCR amplification and sequencing

DNA extractions of all specimens were performed using the
NucleoSpin Tissue® DNA Extraction Kit (Macherey-Nagel, Düren,
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Germany) and according to the manufacturer’s protocol. Genomic
DNA was extracted from a piece of adductor muscle to avoid
co-extraction of the male-type mitochondrial DNA (Plazzi and
Passamonti, 2010; Kitada et al., 2013). Quality (260nm/280nm and
260nm/230nm) and concentration of extracted DNA were evaluated
using the Quawell UV-Vis 5000 spectrophotometer (Quawell
Technology, San Jose, CA, USA) and DNA was kept in the freezer
(−20°C) until PCR amplifications. Primers used for the amplifica-
tion of 18S rRNA and cytochrome c oxidase subunit I (COI) are
listed in Table 2. Amplifications were performed in 0.2ml PCR
tubes on a Fast Gene ULTRA Cycler (Nippon Genetics, Japan).
The reaction mixture (total volume 20 μl) contained 0.5 μl of each
primer (10 pmol μl−1), 10 μl of Fast Gene Taq 2x Ready mix
(Nippon Genetics, Europe), 30 ng of extracted DNA as template
and nuclease-free water up to 20 μl. Thermal cycling regime was
an initial denaturation step of 94°C for 3min followed by 38 cycles
of 95°C for 30 s, 48–54°C (Table 2) for 35 s and 72°C for 40 s or 1
min (Table 2) followed by a final cycle of 72°C for 8min. The size
and quality of each PCR product were checked on 1.5% agarose gel
stained with ethidium bromide. PCR products were purified using
the NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel,
Düren, Germany) and samples were subjected to Sanger sequencing.

Plylogenetic analyses and population genetics

Chromatograms obtained from Sanger sequencing were visually
checked and analyzed using BioEdit (Hall, 1999) and Finch TV
1.4.0 (Geospiza, Inc.). All sequences derived both from 18S
rRNA and from COI genes were aligned in MEGA X (Kumar
et al., 2018) using the clustal-W (Thompson, 1994) and
MUSCLE algorithm respectively, separately for each species.
The obtained haplotype sequences were then deposited in
GenBank under the accession numbers OR127258-OR127275

(18S rRNA) and OR126934-OR126983 (COI) (Supplementary
Tables 1 and 2). Sequences from GenBank database correspond-
ing to closely related species were also downloaded
(Supplementary Tables 1 and 2) and included in the dataset for
the construction of the phylogenetic trees. Total aligned
sequences in any case were subjected to test for selection of the
best fit to the data substitution model before tree construction
through the Maximum Likelihood (ML) statistical method.
Best-fit model was chosen through the Akaike Information
Criterion (AIC) which was automatically calculated by MEGAX
software. ML trees were created in MEGA X. Support for nodes
in the trees was determined with the bootstrap confidence levels
making use of 1000 replicates.

Nucleotide variation at the region amplified from the nuclear
18S rRNA gene (about 535 bp) was not informative being identi-
cal to all specimens belonging to the same species (except for one
polymorphism in Callista chione), thus these sequences were not
further considered for population genetics. Only mtDNA (COI)
sequences were used to define levels and patterns of genetic diver-
sity of the bivalves within and among the sampling sites. Genetic
heterogeneity within populations was estimated as haplotype
diversity (Hd) and nucleotide diversity (π) using DNAsp v5
(Librado and Rozas, 2009). Molecular variation and correspond-
ing PhiPT values among and within populations and also pairwise
PhiPT values were calculated through GenAlEx 6.5 (Peakall and
Smouse, 2006, 2012).

Results

Plylogenetic analyses through 18S rRNA

A 535 bp fragment from the 18S rRNA gene was sequenced and
aligned from eight specimens for each species and each collection

Figure 1. Geographic locations of the sampling sites and the species collected from each site.
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site. The derived data were used for the Maximum Likelihood tree
construction together with sequences from closely related species
which were obtained from GenBank. The phylogenetic tree of 18S
rRNA is illustrated in Figure 2. Based on the depicted phylogeny,
different families of bivalves are clustered separately as does the
superfamily of Arcoidea. Arca noae sequence from Greece pre-
sented a large similarity to two Arca navicularis (Bruguière,
1789) 18S rRNA sequences (Table 3). One SNP (99.81% similar-
ity) was detected in our sequence compared to two Arca noae
sequences from Croatia and the USA (Figure 2). Pinctada radiata
18S rRNA demonstrated over 99% sequence similarity to many
other congeneric species. Interestingly, the 18S rRNA sequences
of Pinctada fucata and Pinctada maculata (Gould, 1850) were
almost identical to our sequence, as was Pinctada radiata from
Venezuela, while slightly lower similarity was found relative
toPinctada radiata from USA (Table 3). The 18S rRNA partial
gene sequence of Ostrea edulis was identical to an Ostrea chilensis
(Küster, 1844) deposited sequence and was also very alike to
many other oyster species (Table 3). Interestingly, the invasive
Ostrea stentina (Payraudeau, 1826) collected from Thermaikos

was not clustered in the same clade but there was small node sup-
port (Figure 2). Ruditapes decussatus18S rRNA-derived sequence
led to its clustering with conspecific specimens from other areas
but Polititapes rhomboides (Pennant, 1777) and Venerupis corru-
gata (Gmelin, 1791) were also grouped within the same branch
(Figure 2). Callista chione is found within the same branch with
Callista chione from Spain and Italy, while Venus verrucosa was
grouped in the same branch both with other Venus verrucosa spe-
cimens from Europe and also with Dosinia exoleta (Linnaeus,
1758) and Venus casina (Linnaeus, 1758). The 18S rRNA
sequences retrieved from the three venerid bivalves in this study
had greater than 98.6% similarity and also all of them had large
sequence affinity to many relative species (Table 3). All the afore-
mentioned inferences indicate the invalidity of 18S rRNA gene as
a DNA barcode for marine bivalves.

Plylogenetic analyses through COI

Contrariwise to 18S rRNA, COI haplotypes in the present study
can clearly distinguish and characterize the three species

Table 1. Genetic diversity indices of the bivalve populations from the different sampling areas

Species Population n Hn Hd π

Ruditapes decussatus Vistonikos 6 3 0.6 0.00075

Callista chione Saronikos 7 3 0.67 0.00111

Maliakos 7 2 0.48 0.00070

Chalkidiki 6 2 0.33 0.00049

Total 20 3 0.47 0.00072

Venus verrucosa Saronikos 10 9 0.98 0.00654

Thermaikos 9 7 0.94 0.00537

Lesvos 8 6 0.89 0.00455

Total 27 20 0.97 0.00568

Ostrea edulis Thermaikos 5 3 0.7 0.00116

Maliakos 4 4 1 0.00770

Total 9 6 0.83 0.00513

Arca noae Thermaikos 7 4 0.81 0.00163

Lesvos 8 2 0.54 0.00076

Total 15 4 0.64 0.00111

Pinctadaradiata Evoikos 6 1 0 0

Maliakos 6 1 0 0

Kefalonia 5 1 0 0

Total 17 1 0 0

n, Sample sizes; Hn, haplotype number; Hd, haplotype diversity; π, nucleotide diversity.

Table 2. Primers, annealing temperature and extension time used for the PCR amplification

Target Sequence

Forward (5′–3′)

Reference Annealing (°C) Ext. time (s)Reverse (5′–3′)

18S rRNA GCCAGTAGCATATGCTTGTCTC Holland et al. (1991) 54 40

AGACTTGCCTCCAATGGATCC

COI GGTCAAATCATAAAGATATTGG Folmer et al. (1994) 48 60

TAAACTTCAGGGTGACCAAAAAATCA

COI (R. decussatus) GGTCAAATCATAAAGATATTGG Folmer et al. (1994) 49 60

TGTAGGAATAGCAATAATAAAAGTTAC Kappner and Bieler (2006)
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belonging to Veneridae. The different subfamilies where the
Venerids belong were clustered separately, while closely related
species were placed into different clades (Figure 3). The haplo-
types retrieved from V. verrucosa in this study were more genet-
ically related to Mediterranean haplotypes from Spain, Portugal
and Croatia than more distant Atlantic haplotypes such as ones
from west France and Ireland. Similarly, the retrieved haplotypes
of R. decussatus were more similar to the haplotypes from Turkey
and specifically from Umurbey and Izmir which are located closer
to Vistonikos Bay than Fetiye which is on the western side of
Turkey (Figure 3). In the phylogenetic tree (Figure 3) there are
two well-supported sister groups of Ruditapes decussatus whose

genetic divergence is in accordance with their geographic locality.
One group is representative of eastern Mediterranean and
includes sequences from the present study, and the second
group is representative of western Mediterranean and European
Atlantic coastlines. The three haplotypes of COI sequence
affiliated with A. noae were 98.96–99.85% similar to two A.
noae deposited sequences (Figure 4). O. edulis COI sequence
can discriminate this species from other Ostreidae since only
one species was found to possess highly similar sequence. This
species was Ostrea angasi (Sowerby, 1871) which had 98.65%
similarity to a haplotype from Maliakos (Figure 5). Calculating
the genetic distances of the first 15 most similar sequences to

Figure 2. Phylogeny of 18S rRNA haplotypes made using the maximum likelihood method. Superfamily of Arcoida and families of Margaritidae, Ostreidae and
Veneridae are depicted with different colours. Bold sequences are sequences obtained in this study. All sequences from related species which were included in
the analyses exceeded 98% similarity to the examined species. Parentheses indicate unaccepted species names as deposited in GenBank. Bootstrap values
above 50 are demonstrated on the tree.
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our O. edulis sequence and also the first 15 most similar to
O.angasi (AF540598) sequences from GenBank (these haplotypes
were not included in the tree due to visualization purposes), the
genetic distances within species was 0.0029 for O. angasi and
0.0068 for O. edulis (average 0.00485) while between species it
was 0.0167. The conspecific genetic distances did not exceed the
genetic distances between different species based on COI gene
of these oysters within Ostrea genus. Consequently a barcoding
gap exists between intraspecific and interspecific divergences.
Hebert et al. (2004) suggested a standard threshold 10x the
mean intraspecific variability for the studied group. The two oys-
ter species exhibited a 0.485% average intraspecific variability,
thus a 4.85% threshold could identify the two species.

Invasive species genetic analyses

Interestingly, one oyster haplotype from Thermaikos Gulf, which
was morphologically characterized as Ostrea edulis by the divers,
considerably differed from the rest of O. edulis haplotypes. The

18S rRNA sequence of this specimen exhibited three different
nucleotides while the aligned COI sequence revealed great differ-
ences compared to O. edulis. This sequence was subjected to
BLAST and found to possess greater than 99% sequence similarity
to many Ostrea stentina deposited sequences in GenBank. This
COI sequence was clustered within the same cluster as O. stentina
from Spain and Japan and was slightly different from USA and
Mauritus-originated haplotypes (Figure 5). With respect to the
invasive Pinctada radiata, the unique COI sequence was at least
8.5% different from the closest congeneric species (Figure 6).
The 18S rRNA sequence of Pinctada radiata was identical to
two congeneric species and extremely related to several other spe-
cies (Figure 2).

Population genetics

Veneridae
Ruditapes decussatus specimens were gathered only from
Vistonikos Bay. Two polymorphic sites were detected in COI

Table 3. 18S rRNA sequence similarity of the studied bivalves with other deposited sequences in GenBank

Specimens from Greece Species compared Sequence similarity (%) Region Accession numbers

Arca noae Arca navicularis 99.62 Australia KT757774

China JN974517

Pinctada radiata Pinctada fucata 99.62 Japan AP027119

Pinctada maculata Japan AB214455

Pinctada radiata Venezuela HQ329364

Pinctada radiata 99.44 USA HQ329365

Ostreaedulis Ostrea chilensis 100 New Zealand KU343185

Several oyster species >99

Veneridae Several Veneridae >99

Figure 3. Phylogeny of COI haplotypes from Veneridae made using the maximum likelihood method. All different subfamilies are depicted with different colour and
bold sequences correspond to sequences obtained in this study. Since all the examined species exhibited lower than 90% similarity from the closest relative, 2–3
closely related species were included from GenBank along with conspecific haplotypes. Bootstrap values above 50 are demonstrated on the tree.
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fragment of 685 bp, resulting in a nucleotide diversity of 0.00075
and three haplotypes (Table 1). The haplotype diversity was
found 0.6 among Callista chione individuals that were collected
from three areas (Table 1). A total of three polymorphic sites
were also detected in 685 bp of COI with one polymorphism
being present in all three populations and one polymorphism
only in Saronikos Gulf, yielding three different haplotypes in this
area, while two different haplotypes were detected in Maliakos
Gulf and Chalkidiki. Site nucleotide diversity and haplotype diver-
sity varied from 0.00049 to 0.00111 and 0.33 to 0.67, respectively

(Table 1). PhiPT values were negative and statistically not signifi-
cant among all areas and all molecular variances found distributed
within the populations (Table 4). Venus verrucosawas also sampled
from three areas. The greatest number of polymorphic sites (overall
18) in COI fragments was found in this species resulting in an over-
all number of 20 different haplotypes (Table 1). Haplotype diversity
of the populations was consequently great varying from 0.89 to
0.98. The lowest nucleotide diversity was estimated in Lesvos
Island and the greatest in Saronikos Gulf (Table 1). PhiPT values
were low or negative and statistically not significant between the

Figure 4. Phylogeny of COI haplotypes from Arca noaemade using the maximum likelihood method. Bold sequences with different colour correspond to sequences
obtained in this study from the different sampling areas. Since Arca noae exhibited lower than 75% similarity from the closest relative (except of Tetrarca tetra-
gona), two additional relative species were included from GenBank along with conspecific haplotypes. Bootstrap values above 50 are demonstrated on the tree.

Figure 5. Phylogeny of COI haplotypes from Ostrea edulis made using the maximum likelihood method. Bold sequences with different colour correspond to
sequences obtained in this study from the different sampling areas. Since Ostrea edulis exhibited lower than 89% similarity from the closest relative (except of
Ostrea angasi), two additional relative species were included from GenBank along with conspecific haplotypes. Phylogenetic relationship with Ostrea stentina
is also shown. Bootstrap values above 50 are demonstrated on the tree.
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populations while 3% of the observed molecular variance was
found among the three populations and 97% within the popula-
tions (Table 4).

Ostrea edulis
Ostrea edulis was gathered from two Gulfs, namely Thermaikos
and Maliakos. A total of five polymorphic sites were observed

Figure 6. Phylogeny of COI haplotype from Pinctada radiata made using the maximum likelihood method. Bold sequences with different colour correspond to
sequences obtained in this study from the different sampling areas. Since Pinctada radiata exhibited lower than 92% similarity from the closest relative, four add-
itional relative species were included from GenBank along with a conspecific haplotype from United Arab Emirates. Bootstrap values above 50 are demonstrated on
the tree.

Table 4. Analysis of molecular variance (AMOVA)

Species Locality Source of variation df SS Est. Variance % of variation PhiPT P value

Callista chione Saronikos Among population 2 0.15 0 0% −0.12 0.9

Maliakos Within population 17 4.54 0.268 100%

Chalkidiki Total 19 4.69 0.268 100%

Venus verrucosa Saronikos Among population 2 4.92 0.06 3% 0.03 0.2

Thermaikos Within population 24 45.74 1.9 97%

Lesvos Total 26 50.66 1.96 100%

Ostrea edulis Thermaikos
Maliakos

Among population 1 4.62 0.73 35% 0.35 0.02*

Within population 7 9.6 1.37 65%

Total 8 14.22 2.1 100%

Arca noae Thermaikos
Lesvos

Among population 1 0.16 0 0% −0.08 0.71

Within population 13 5.3 0.41 100%

Total 14 5.46 0.41 100%

Pinctada radiata and Ruditapes decussatus were excluded, as sequences of the former were identical in all sampling areas and the later was sampled only from one area. Asterisk (*) depicts
statistically significant differences at P < 0.05.
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in 693 bp of COI yielding a total number of six different haplo-
types. Haplotype diversity and nucleotide diversity were 0.7 and
0.00116 in Thermaikos Gulf while in Maliakos Gulf these values
were 1 and 0.0077, respectively (Table 1). PhiPT value between
these populations was 0.35 but barely statistically insignificant
(P = 0.05, Table 5). Molecular variance was shared among and
between populations, being 35% and 65%, respectively.

Arca noae
Arca noae were sampled from Thermaikos Gulf and Lesvos
Island. Three SNPs were found in COI fragment of 703 bp, yield-
ing an overall number of four haplotypes, from which two were
found in both sampling areas, while the other two haplotypes
were observed only in Thermaikos Gulf. As a result, animals ori-
ginating from Thermaikos Gulf exhibited increased haplotype and
nucleotide diversity (Table 1). PhiPT value of the two areas was
negative and not statistically significant and all estimated molecu-
lar variance was attributed within the two populations (Table 4).

Pinctada radiata
Pinctada radiata specimens were collected from Kefalonia Island,
Maliakos Gulf and Evoikos Gulf. Sequences obtained from a 679
bp fragment of COI were identical to every single specimen of the
17 sampled individuals.

Discussion

Evaluation of applicability of the different barcoding markers

The determination of species by DNA barcoding relies on the
sequence variation within and between the taxa (Mikkelsen
et al., 2007). The efficacy of barcoding is eliminated proportion-
ally from overlaps between genetic variation within species and
overlap in divergence distinguishing sister species (Meyer and
Paulay, 2005). The exclusive utilization of 18S rRNA sequencing
was not able to identify the presence of Ostrea stentina as it
had almost identical sequence with Ostrea edulis, exhibiting
only three nucleotide polymorphisms. DNA barcoding using
the COI fragment, on the other hand, proved proper for distin-
guishing two different oyster species in Thermaikos Gulf.
Hamaguchi et al. (2017) recorded for the first time the presence
of O. stentina in two distant areas of Japan employing also mito-
chondrial DNA markers. The high similarity of COI sequence
between O. angasi and O. edulis triggered our calculations of gen-
etic distances and revealed that DNA barcoding depending on
barcoding gap and the threshold approach (Hebert et al., 2004)
can effectively identify even these closely related oyster species.
Liu et al. (2011) working on mitochondrial genes (COI and 16S

ribosomal RNA) highlighted the efficacy of species identification
in Ostreidae family via DNA barcodes and phylogenetic analysis.
Hamaguchi et al. (2017) also declared a clear distinction among
native Japan oyster species by DNA barcoding using mitochon-
drial markers including COI.

As observed with the oysters in the present study, the similar
morphology as well as the sympatric distribution of some bivalve spe-
cies may frequently prevent their accurate identification.
Consequently, incorrect labelling of edible species is repeatedly
observed along the production chain (Harris et al., 2016; Giusti
et al., 2020; Parrondo et al., 2021) while proper population manage-
ment is hindered (Vierna et al., 2014). Misidentification can lead to
incorrect estimations of population size, growth, and reproductive
potential, leading to flawed management strategies and also to
inappropriate regulations, causing overexploitation or underutilization
of certain species. Additionally, undetected invasive bivalve species
can have detrimental effects on native ecosystems and their false iden-
tification, or their overlook may result in inadequate control practices,
allowing invasive species to proliferate and outcompete native species.

Food fraud often occurs in markets, where cheaper morpho-
logically similar bivalve species are sold at the prices of more
expensive species (e.g. Costa et al., 2008). COI efficacy in discrim-
inating the different bivalve species highlights this marker as a
decisive tool for detecting mislabelled or substituted species.
Since sometimes COI alone may not be informative, a second
genetic marker could be applied along with COI. As for the prov-
enance, COI could be combined with the fatty acid profile and/or
isotope analysis since they vary among different species and also
among geographic locations and have been already validated as
useful tracers in bivalves (Zhang et al., 2019; Fonseca et al.,
2022). In bivalves that are generally characterized by similar
morphology combined with low genetic differentiation, the com-
bination of at least two of the aforementioned methodologies is
generally proposed. In addition, stringent regulations and penal-
ties for food fraud should be implemented by local authorities
aiming to minimize the deliberate food fraud.

The 18S rRNA sequences were proved inappropriate for
unveiling taxonomic issues to all examined bivalves. P. fucata
and P. maculata were identical to P. radiata GenBank deposited
sequences, while P. radiata sequence including our haplotype
appeared greater than 99% similarity to many congeneric species.
On the other hand, COI sequence clearly discriminated P. radiata
from congeneric species and could be a useful marker to discrim-
inate the rest of Pinctada species. 18S rRNA sequence was also
confusing for the investigation of phylogenetics of Venerids,
Ostrea edulis and Arca noae as well. The three species of the
Veneridae family presented greater than 99% 18S rRNA sequence
similarity to many other species even from different genera, while
the similarities between them were greater than 98.6%. COI
proved an exceptional marker for delimiting the venerid species
studied herein from their closely related congeneric samples.
Chen et al. (2011b) have also proved the efficacy of COI in distin-
guishing 11 species of the Tapetinae subfamily. The efficacy of
cytochrome oxidase subunit I (COI) revealed in this study is
not unusual as its strong signal has proved to be appropriate
for resolving the phylogenetic relations of bivalves (David and
Savini, 2011). Mitochondrial genes can be particularly informative
markers, especially concerning shallow nodes (Plazzi et al., 2011;
Sharma et al., 2012).

It should be noted that despite the fact that in most animals
mtDNA is inherited strictly by maternal lineage, there is a unique
mode of mitochondrial DNA (mtDNA) transmission within
bivalve molluscs (Ladoukakis and Zouros, 2017) that is called
doubly uniparental inheritance (DUI).

DUI is defined by the existence of a female (‘F’) mitochondrial
genome transmitted from mothers to both daughters and sons,

Table 5. Analysis of pairwise PhiPT values

Species Locality comparison PhiPT P value

Callista chione Saronikos – Maliakos −0.12 0.55

Saronikos – Chalkidiki −0.1 0.19

Maliakos – Chalkidiki −0.13 0.22

Venus verrucosa Saronikos – Thermaikos −0.04 0.36

Saronikos – Lesvos 0.08 0.09

Thermaikos – Lesvos 0.06 0.14

Ostrea edulis Thermaikos – Maliakos 0.35 0.05

Arca noae Thermaikos – Lesvos −0.08 0.31

Pinctada radiata and Ruditapes decussatus were excluded, as sequences of the former were
identical in all sampling areas and the later was sampled only from one area. Asterisk (*)
depicts statistically significant differences at P < 0.05.
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and a male (‘M’) mitochondrial genome exclusively transmitted
from fathers to sons. This intriguing inheritance pattern has
been observed in several bivalve species, including the
Veneridae family (Chacón et al., 2020). The potential presence
of DUI sex-linked mitochondrial DNA should be carefully con-
sidered, as it may lead to inaccurate clustering and false calcula-
tion in population genetics indices. To avoid extracting the
male-type mitochondrial DNA, DNA extractions in this study
were performed from adductor muscle which carries very little
M-type mtDNA in DUI species (Plazzi and Passamonti, 2010;
Kitada et al., 2013). Additionally, chromatograms and obtained
sequences of COI were carefully checked before the analysis to
exclude the case of potential double peaks.

Genetic diversity and differentiation

Haplotype diversity (Hd) of Ruditapes decussatus was found in
this study 0.6. Habtemariam et al. (2015) found lower levels of
Hd and similar to us nucleotide diversity in a 503 bp fragment
of COI studying two wild populations from northern Spain.
Sanna et al. (2017) also using COI gene observed the absence
of genetic structure within the western Mediterranean and popu-
lation substructuring among the Aegean and Marmara seas and
other populations from the Mediterranean basin and the South
European Atlantic coast as well. Another study concerning R.
decussatus also revealed low intrapopulation differentiation
(Borsa et al., 1994). The divergence of Ruditapes decussatus
between the two observed groups in Figure 3 (Eastern
Mediterranean and Western Mediterranean-European Atlantic
coasts) could be suggestive of the occurrence of sister species
within R. decussatus and should be further investigated in the
future. Callista chione exhibited a total of three different haplo-
types among the three sampling locations and just lower mean
haplotype diversity than R. decussatus. All molecular divergence
detected was distributed within the populations of C. chione.
The third Venerid, Venus verrucosa exhibited high values of
nucleotide and haplotype diversity at all sampling areas, while
the majority of the observed molecular variance (97%) was
found distributed within the different populations.

P. radiata owns a relatively long-lived pelagic larval phase.
Al-Saadi (2013) found very low genetic differentiation in
Pinctada radiata among different locations across the Qatari
coast, while all variation in COI sequence was detected within
the sampling areas. In our study this species was found panmictic
at three sampling geographic areas, presenting zero differences in
the both sequences of COI and 18S rRNA. Other authors also
detected low haplotype and nucleotide diversity in P. radiata spe-
cimens among different sampling areas (Meyer et al., 2013;
Barbieri et al., 2016) while at Adriatic Sea (Sobra Bay) and at
United Arab Emirates high haplotype along with low nucleotide
diversity was found by Gavrilović et al. (2017) and Cunha et al.
(2011) respectively. Although these sequences were not analysed
in comparison to our haplotypes owing to their much shorter
available sequences, our results are in total agreement with
these inferences concerning haplotype and nucleotide diversity.
BLAST results of the P. radiata COI sequence obtained from
the three locations of Greece were 99.22–100% similar to the
ten haplotypes reported by Barbieri et al. (2016) from the
Eastern Mediterranean, while the haplotype H2 from these
authors which was the prevalent haplotype among seven geo-
graphic areas of the Eastern Mediterranean was 100% similar to
our haplotype. The low level of population subdivision seems to
be mainly assigned to the long pelagic larval stage of this bivalve.

Ostrea edulis exhibited high haplotype diversity at the two
sampling sites and was the only species whose observed molecular
variance was statistically significantly distributed both among

(35%) and within (65%) of the populations. The PhiPT value
between the sampling areas was barely statistically insignificant
(P = 0.052) which may be attributed to the small sampling size
since only nine oysters were examined in total. Studies on allo-
zyme differentiation of the flat oyster (Jaziri, 1990; Saavedra
et al., 1995) found that the overall population differentiation
was low with a notable divergence among Mediterranean and
Atlantic populations. Sobolewska and Beaumont (2005) examin-
ing neutral microsatellite loci of the European flat oyster from
Scotland, Ireland, France, Netherlands and Norway noticed a gen-
erally low genetic subdivision of the populations. Šegvić-Bubić
et al. (2020) also working on microsatellites found relatively low
to moderate differentiation between 28 individual populations
of the Adriatic Sea. The short pelagic larval duration of this spe-
cies or a differential selection after larvae settlement at the two
sampling sites could explain the observed increased molecular
variance among the studied populations. Moreover, a blockage
to bivalve larval dispersal may be present among Maliakos and
Thermaikos Gulf but this suggestion should be further investi-
gated since we did not sample other bivalve species from these
two sites.

Intraspecific genetic diversity enhances the potential of ani-
mals to overcome environmental or ecological challenges (Lind
et al., 2007). All bivalve populations examined in this study except
for Pinctada radiata exhibited medium to high haplotype diver-
sity and also a relative low nucleotide diversity in COI. These
results suggest a high number of closely related haplotypes.
Genetic knowledge of marine bivalve molluscs has the potential
to strongly support conservation efforts, enhance aquaculture pro-
duction and assist the long-term viability of these economically
and ecologically important species. The total molecular variance
of Callista chione, Arca noae and Venus verrucosa was found dis-
tributed within the populations. The different populations of the
three aforementioned species along with the panmictic P. radiata
appear to constitute a single management unit in the examined
areas. C. chione and A. noae had the lowest values of intrapopula-
tion molecular variance. On the other hand, Ostrea edulis exhib-
ited a population subdivision among Thermaikos and Maliakos
Gulf. Moreover, O. edulis had the second greater mean haplotype
and nucleotide diversity among the examined six bivalve species
since only V. verrucosa presented greater values. Employing a
more informative nuclear gene for bivalve population studies
such as internal transcribed spacer 2 (David and Savini, 2011)
or microsatellite loci, along with COI gene would lead to more
reliable conclusions concerning the population genetics of these
bivalve species across the Greek coastline.

Distribution and abundance of invasive bivalves

Pinctada radiata is ranked as one of the most successful and
widely distributed invasive marine organisms in the
Mediterranean Sea (CABI, 2016). It has spread throughout the
Mediterranean basin and has been recorded in several parts of
Greece (Theodorou et al., 2019; Moutopoulos et al., 2021). Its
simultaneous portraiture as a biofouling agent and a potential
fisheries product puzzles the situation of the impact of this inva-
sion. Although it is believed that it presents high levels of adapta-
tion in new environments (Mohamed et al., 2006; Katsanevakis
et al., 2008), the genetic profile from Greek Seas, demonstrates
extremely low levels of genetic diversity as well as a panmictic
homogeneous genetic composition. These data indicate that, yet,
Pinctada radiata has not developed a distinct genetic identity in
this marine area. Similarly, no genetic diversity has been observed
in other places where this invaded. It has been assumed that inva-
sions in different countries have different origins (Zenetos et al.,
2004). This absence of genetic diversity provides evidence for a
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generally recent migration event in parallel with the widespread
potential.

On the other hand, Ostrea stentina is an oyster species clearly
differentiated from Ostrea edulis, which inhabits several marine
areas where other oyster species such as O. edulis are distributed,
in sympatric populations. Here we report for the first time its
presence in Eastern Mediterranean, corresponding to a new inva-
sion with unknown effects. Genetic analysis showed a complete
absence of genetic distance in comparison with haplotypes from
Spain and Japan, indicating a recent migration pattern along
with a fast geographic spread as well. Although the two molecular
markers applied in the present study are not sufficient to charac-
terize the exact route of this invasion and examine if it corre-
sponds to a random via shipping invasion enhanced by the
pelagic larvae, the case of human-mediated expansion through
trade, that has been also proposed for other marine bivalves in
the area (Giantsis et al., 2019), cannot be excluded.
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be found at https://doi.org/10.1017/S0025315424000377.
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