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Abstract

We introduce two stochastic chemostat models consisting of a coupled population-nutrient
process reflecting the interaction between the nutrient and the bacteria in the chemostat
with finite volume. The nutrient concentration evolves continuously but depends on the
population size, while the population size is a birth-and-death process with coefficients
depending on time through the nutrient concentration. The nutrient is shared by the
bacteria and creates a regulation of the bacterial population size. The latter and the
fluctuations due to the random births and deaths of individuals make the population go
almost surely to extinction. Therefore, we are interested in the long-time behavior of
the bacterial population conditioned to nonextinction. We prove the global existence of
the process and its almost-sure extinction. The existence of quasistationary distributions
is obtained based on a general fixed-point argument. Moreover, we prove the absolute
continuity of the nutrient distribution when conditioned to a fixed number of individuals
and the smoothness of the corresponding densities.
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1. Introduction

For some decades, since the first work of Monod [9] and Novik and Szilar [10], [11],
see also [12], biologists have developed procedures which allow them to maintain a bacterial
population at a stationary finite size while at the same time keep a constant individual growth
rate of bacteria. The procedure is based on a chemostat: bacteria live in a growth container
of constant volume in which liquid is injected continuously. The entering liquid contains a
fixed concentration of nutrient but no bacteria (fresh liquid). In the container, the nutrient is
consumed by the bacteria. We assume that the chemostat is well stirred, so that the distribution
of bacteria and nutrient are spatially uniform. Since the container has a finite volume and fresh
liquid continuously enters, an equal amount of liquid pours out, containing both unconsumed
nutrients and bacteria.
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These chemostats are extremely useful in the study of bacterial population dynamics, in
particular in the study of the selection of the fastest growing species or the fixation of
advantageous mutations (see [4], [5], [6], [7], or [8]). In the literature, their study is mainly based
on deterministic models where both nutrient and bacteria population dynamics are described
by a coupled deterministic continuous process. Deterministic approximations for the bacterial
population’s size are justified by a large population assumption.

In this work we develop stochastic chemostat models based on a previous work of Crump and
O’Young [3], taking into account the fact that the bacteria population may not be large enough
to justify a deterministic approximation. We introduce a coupled population-nutrient process
reflecting the interaction between the nutrient and the bacteria in the chemostat. The nutrient
concentration evolves continuously but depends on the population size, while the population
size is a birth-and-death process with coefficients depending on time through the nutrient
concentration. Moreover, the time derivative of the nutrient concentration jumps simultaneously
with the population size.

We thus take into account the random fluctuations of this population size due to the individual
births and deaths. The bacteria need nutrient to reproduce. We will consider two cases. In the
first case the bacterial population dies instantaneously if the nutrient is missing. In the second
case bacteria can survive without nutrient by undergoing some kind of hibernation and may
wake up once nutrient reappears. The nutrient is shared by the bacteria. This creates an indirect
competition between bacteria and leads to a regulation of their population size. In our models,
the fluctuations due to the random births and deaths of individuals and the size regulation
make the population go almost surely to extinction. Therefore, the long-time behavior of the
population’s size is obvious and the interesting questions concern firstly the rate of extinction
and secondly the long-time behavior conditioned to nonextinction which is captured by the
notion of a quasistationary distribution.

To our knowledge, the models introduced in this paper are the first stochastic chemostat
models where interaction between bacteria is taken into account, leading to extinction. The
study of quasistationarity nevertheless gives a description of a quasistability which can happen
on a faster time scale than extinction. This work concerns monotype individuals, but could be
generalized to a multitype population.

In Section 2 we describe the two population-nutrient models described above and prove in
Section 3 their global existence. We also show the extinction of the population when time
increases. The existence of quasistationary distributions is obtained in Section 4. Our main
theorem is based on a general argument proved in [2]. In Section 5 we prove the absolute
continuity of the nutrient distribution when conditioned to a fixed number of individuals and
the smoothness of the corresponding densities.

2. The stochastic population-nutrient process

We consider a stochastic discrete population process describing the dynamics of a bacteria
population for which individuals develop and reproduce depending on the quantity of nutrient y
in the solution. The dynamics of the nutrient are related to the consumption of the individuals.
We assume that the concentration of nutrient in the injected solution (without bacteria) is a
constant equal to y∗. The chemostat has a finite volume equal to 1. The liquid enters in the
chemostat free of bacteria and pours out after being well stirred in the container. The liquid
poured out contains bacteria. The dilution coefficient of nutrient in the fresh liquid per unit of
time is D. Since the liquid is well stirred, around N(t)D bacteria will be washed out in the
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pouring out, whereN(t) is the size of the bacteria population at time t . Thus,D is also the rate
at which an individual will disappear due to the evacuation of liquid.

We consider coupled processes in which the nutrient concentration evolves continuously
while the bacteria population size evolves as a time-continuous birth-and-death process with
coefficients depending on the nutrient concentration. We assume that the nutrient is partly
consumed during the reproduction of bacteria.

We will denote by (Y (t), t ≥ 0) the concentration of nutrient and by (N(t) : t ≥ 0) the
population size process. The stochastic process Z = (Z(t) := (N(t), Y (t)) : t ≥ 0) describes
both the population size and the nutrient concentration in the chemostat.

Let us now define the parameters of the model.
If y is the quantity of nutrient then the birth and death parameters driving the dynamics of

the population are as follows.

• The birth rate per individual is b(y), where the function b : R+ → R+ is assumed to be
an increasing continuous function and such that b(0) = 0 and b(y) > 0 for y > 0. We
assume that b is bounded with an upper bound b∞.

A usual example of a function b is, for some constant K > 0,

b(y) = b∞
y

K + y
.

An extra hypothesis that we will add for some results is that b is differentiable and
db(0)/dy > 0.

• The background death rate per individual is d(y), so it is supposed to be a function of the
concentration of nutrient. The function d : R+ → R+∪{∞} is assumed to be continuous,
nonincreasing, and strictly positive, and d(0) is the unique value that can be infinite.

• The dilution makes each individual disappear at rate D independently of the birth and
death events.

• The per individual rate of consumption of nutrient for reproduction is b(y)/R, where R
denotes the biomass yield. Furthermore, individuals consume nutrient during their life
and the quantity of nutrient consumed per individual will be denoted by η ≥ 0.

We will consider two cases. In the first case, individuals need nutrient to survive. Then we
will assume that their death is instantaneous as soon as nutrient is missing; therefore, d(0) = ∞.

In the second case, bacteria enter in some kind of hibernation if nutrient is missing. That
means that d(0) can be finite. In both cases, we will set

b̃(y) = b(y)

R
+ η1{y>0}.

Let us now describe the process. In both cases the nutrient concentration process Y =
(Y (t) : t ≥ 0) evolves according to

dY (t)

dt
= D(y∗ − Y (t))− b̃(Y (t))N(t). (2.1)

The process Z has the following infinitesimal generator: for (n, y) ∈ N × R+,

Lf (n, y) = b(y)nf (n+ 1, y)+ (D + d(y))nf (n− 1, y)

− (b(y)+D + d(y))nf (n, y)

+ (D(y∗ − y)− nb̃(y))∂yf (n, y). (2.2)

We refer the reader to [1] for the numerical study of similar models.
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Below, we show that the hypotheses we gave on the coefficients leading the process guarantee
that Z is well defined and takes values in N × [0, y∗].
Proposition 2.1. The processZ is well defined and takes values in N×R+ for all positive time
t ∈ R+. Moreover, N × [0, y∗] is an invariant set for the process Z, so Y (0) ∈ [0, y∗] implies
that Y (t) ∈ [0, y∗] for all t ∈ R+.

Proof. The process N = (N(t) : t ≥ 0) has a pathwise representation driven by a point
Poisson measure N (dθ, ds) defined on R+ × R+:

N(t) = N0 +
∫

R+×(0,t]
1{θ≤b(Ys)}N (dθ, ds)−

∫
R+×(0,t]

1{b(Ys)≤θ≤b(Ys)+D+d(Ys)}N (dθ, ds),

Y (t) = Y (0)+
∫ t

0
(D(y∗ − Y (s))− b̃(Y (s))Ns) ds.

It is obvious that the process N is stochastically upper bounded by a birth process with
individual birth rate b∞. Since the birth process with constant rate has no explosion, the
process N does not explode.

Let us now study the nutrient concentration Y = (Y (t) : t ≥ 0). Note that the assumptions
on the parameters and (2.1) ensure that Y (t) ≥ 0. Indeed, the derivative of Y (t) at y = 0 cannot
be negative.

Let us show that N × [0, y∗] is invariant. Take Y (0) ∈ [0, y∗]. A standard comparison
theorem yields Y (t) ≤ v(t), where v′(t) = D(y∗ − v(t)), v(0) = Y (0). But, in that case,
v(t) = y∗ − (y∗ − Y (0))e−Dt ≤ y∗, so it remains in [0, y∗] forever, proving the invariance.

For the initial conditionN(0) ∈ N
∗ and Y (0) ∈ R+ \[0, y∗], at time t = (Y (0)− y∗)/b̃(y∗)

the process has already attained the invariant set [0, y∗] × R+ or become extinct.

3. Study of extinction

We are now interested in studying the extinction of the population or the complete consump-
tion of the nutrient or other specific states of the population-nutrient process and the associated
hitting times.

Let B(N × R+) be the class of Borel sets of N × R+, and let B(R+) be the class of Borel
sets of R+. For D ∈ B(N × R+), we denote by T D = inf{t ≥ 0 : Z(t) ∈ D} the hitting time
of D by the process, with the usual convention that inf ∅ = ∞. Let

T0 = T {0}×R+ = inf{t ≥ 0 : N(t) = 0}
be the killing time for the process N . We also denote by T≤m = T {0,...,m}×R+ =
inf{t ≥ 0 : N(t) ≤ m}, and similarly for T<m.

Note that the set {0} × R+ is an absorbing set, that is, N(t) = 0 for all t ≥ T0.
After T0 the nutrient Y (t) is absorbed linearly at y∗, in fact, Y (t) = y∗ for t ≥ T0 + (y∗ −

Y (T0))/Dy
∗ and Y (t) = Y (T0)+D(t − T0) for t ∈ [T0, T0 + (y∗ − Y (T0))/D].

Let us first study the stationary nutrient concentration states at a fixed population size.

Lemma 3.1. Consider the equation

Gn(y) = 0 with Gn(y) := D(y∗ − y)− nb̃(y). (3.1)

(i) If η = 0 then, for any n ∈ N, (3.1) has a unique simple root yn which belongs to [0, y∗].
In addition, the sequence (yn : n ∈ N

∗) of the roots decreases to 0.

(ii) If η > 0 then (3.1) has no root forn > Dy∗/η and admits a simple root yn forn ≤ Dy∗/η.
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Proof. Let us fix n. Obviously, for n = 0, (3.1) has the trivial root y0 = y∗, so we restrict n
to be in N

∗. By assumption, the function Gn is strictly decreasing, so, for each n ∈ N
∗, there

exists at most one root. Note that, for all such n, we have Gn(y∗) < 0 and so there is no root
to (3.1) in the set [y∗,∞).

Assume that η = 0. For all n, we haveGn(0) > 0. Then there exists a unique root, denoted
by yn, which satisfies Gn(yn) = 0. On the other hand, we have

Gn+1(yn) = D(y∗ − yn)− (n+ 1)b̃(yn) = −b̃(yn).
Then, Gn+1(0) > 0 and Gn+1(yn) < 0. We deduce that 0 < yn+1 < yn < y∗. Let
y∞ = limn→∞ yn. By continuity,

D(y∗ − y∞)− nb̃(y∞) = lim
n→∞D(y

∗ − yn)− nb̃(yn) = 0.

Then, necessarily, b̃(y∞) = 0 and so y∞ = 0 and b(yn) ∼ Dy∗R/n as n → ∞.
Assume that η > 0. Then, for all n > Dy∗/η, we have Gn(0) < 0 and so (3.1) has

no solution. Hence, the same argument as before gives the existence of a finite set of roots
(yn : 1 ≤ n ≤ 
Dy∗/η�) decreasing with n, where 
Dy∗/η� is the largest integer that is smaller
or equal to Dy∗/η.

Note that, when n0 = Dy∗/η, then yn0 = 0 and, if Dy∗ < η, there is no root.

From Lemma 3.1, we know that the set

S = {y ∈ R+ : there exists n ∈ N
∗,D(y∗ − y)− b̃(y)n = 0} (3.2)

is a countable set included in [0, y∗). If η = 0, it is infinite and accumulates at 0 and, if η > 0,
it is finite.

In the sequel, when we refer to yn, we will implicitly assume that it exists, namely we are
in the case η = 0 or η > 0, but n ∈ {1, . . . , 
Dy∗/η�}.
Corollary 3.1. (i) The set N × [0, y1] is invariant for the process ZT0 = (Z(t) : t ≤ T0) up to
extinction, that is, ifZ(0) = (N(0), Y (0)) ∈ N×[0, y1] thenZ(t) = (N(t), Y (t)) ∈ N×[0, y1]
for all t ≤ T0.

(ii) The set N × [0, yn] is invariant for the process ZT<n = (Z(t) : t ≤ T<n).

Proof. Let us show the first part. We have Z(t) = (N(t), Y (t)) ∈ N
∗ × [0, y1] for all

t < T0 because dY (t)/dt ≤ 0 when y ≥ y1 and n ≥ 1, and so if the trajectory arrives to y1,
the variable Y (t) immediately decreases. For n = 0, it is evident, because we stop the process
at T0, and so Y (T0) = Y (T −

0 ) but Y (T −
0 ) ≤ y1 since N(T −

0 ) = 1.
The proof of part (ii) is shown in a similar way.

Let us state a useful lemma.

Lemma 3.2. For any n0 ∈ N
∗, there exists t0 > 0 such that

inf
y∈[0,y∗], 1≤n≤n0

P(n,y)(T0 < t0) > 0.

Proof. The proof follows at once from the fact that the population process is stochastically
dominated by a birth-and-death process with birth rate b(y∗) and death rate D + d(y∗).

https://doi.org/10.1239/aap/1377868540 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868540


Stochastic models for a chemostat and long-time behavior 827
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Figure 1: The curve y(t).

Theorem 3.1. We have extinction of the population almost surely, namely, for any y ∈ [0, y∗]
and any integer n,

P(n,y)(T0 < ∞) = 1.

Proof. Note that an obvious comparison theorem as used in the previous proof cannot be
applied. Indeed, the birth and death ratesb(y∗) andD+d(y∗) could correspond to a supercritical
case. The effect of the chemostat through the nutrient is a regulation of the population.

We will exhibit an integer n0 such that the population process will spend an infinite amount
of time below n0 + 1.

Let ỹ > 0 be such that b(ỹ) < D + d(ỹ). Note that, by monotonicity, for all y ∈ [0, ỹ], we
have b(y) < D + d(y). Let us define n0 as an integer such that yn0 < ỹ if some exist or equal
to [Dy∗/b̃(0)] + 1 otherwise (see Figure 1). Let τ be the random time defined by

sup
t≥τ

N(t) ≤ n0.

Then, it follows from Lemma 3.2 and the Markov property that if P(n,y)(τ < ∞) > 0 then

P(n,y)(T0 < ∞ | τ < ∞) = 1.

Assume now that P(n,y)(τ = ∞) = 1. Let τ ′ be the random time defined by

inf
t≥τ ′N(t) > n0.

Assume that P(n,y)(τ
′ < ∞) > 0. Let y0(t) be the solution of the differential equation

dy0

dt
= D(y∗ − y0(t))− (n0 + 1)b̃(y0(t)),

with initial condition y0(0) = y∗. Let t1 > 0 be the finite solution of

y0(t1) = ỹ.
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The time t1 is finite from the choice of n0. It is easy to verify that, for any integer-valued
measurable function n(t) ≥ n0 + 1, the solution y(t) of the equation

dy

dt
= D(y∗ − y(t))− n(t)b̃(y(t)),

with initial condition y(0) ≤ y∗, satisfies

y(t) ≤ ỹ

for any t ≥ t1. On the set {τ ′ < ∞}, the process (N(t), t ≥ τ ′ + t1) is dominated by a linear
birth-and-death process with birth rate b(ỹ) and death rate D + d(ỹ) (from the monotonicity
of the functions). This birth-and-death chain attains n0 almost surely in finite time since
b(ỹ) < D + d(ỹ); see [13]. Hence, on {τ ′ < ∞}, the process (N(t), t ≥ τ ′ + t1) should also
attain n0 in finite time. This contradicts our assumption that P(n,y)(τ

′ < ∞) > 0.
It remains to consider the case τ = τ ′ = ∞ almost surely. In this case there exist two

infinite sequences of random times

T1 < S1 < T2 < S2 < · · ·
such that

N(t) ≤ n0 for t ∈ [Tj , Sj ), N(t) > n0 for t ∈ [Sj , Tj+1).

Since we visit the set {N ≤ n0} infinitely many times, and at each visit we have a uniformly
positive probability of extinction, it follows by the Markov property and the Borel Cantelli
lemma that

P(n,y)(T0 < ∞ | τ = τ ′ = ∞) = 1.

One of our main objectives of this work is to study the processes up to the moment the
population is extinct, ZT0 = (Z(t) : t ≤ T0), or before the moment of extinction, ZT

−
0 =

(Z(t) : t < T0). All the statements related to quasistationary distributions depend on ZT
−
0 .

4. Existence of quasistationary distributions

A quasistationary distribution ν (with respect to the absorbing time T0) is a probability
measure defined on N

∗ × R+ that verifies

Pν(Z(t) ∈ D | T0 > t) = ν(D) for all t ≥ 0 and all D ∈ B(N∗ × R+). (4.1)

It is known that starting from a quasistationary distribution, the time of absorption is exponential,
that is, Pν(T0 > t) = e−λt , where λ = λ(ν) > 0. Indeed, the strong Markov property implies
that

Pν(T0 > t + s) = Pν(T0 > t, P(T0 > t + s | Ft ))

= Pν(T0 > t, PYt (T0 > s))

= Pν(T0 > s)Pν(T0 > t),

where (Ft : t ≥ 0) is the natural filtration for Z. From this equality, the distribution of T0
under Pν is exponential with parameter λ(ν). The fact that λ(ν) > 0 follows from the fact that
absorption is certain.
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Let Mb = {f : N
∗ × R+ → R bounded and measurable}. Equation (4.1) can be written as,

there exists λ > 0 such that

Eν(f (Z(t)), T0 > t) = e−λt
∫ ∞

0
f (y)ν(dy) for all t > 0, f ∈ Mb. (4.2)

Define
κn = ν({n} × R+) = Pν(N(0) = n),

and define by

νn(B) = ν({n} × B | {n} × R+) = Pν(Y (0) ∈ B | N(0) = n) for all B ∈ B(R+)

the probability measure conditioned to have n individuals. Then

ν(D) =
∑
n∈N∗

κnνn(D ∩ {n} × R+), νn(R+) = 1 for all n ∈ N
∗ and

∑
n∈N∗

κn = 1.

In order that the probability measure ν is a quasistationary distribution, it must satisfy the
infinitesimal condition deduced from (4.2), which is given by, there exists λ > 0 such that

∑
n∈N∗

κn

∫ ∞

0
dνn(y)[Lf (n, y)− λf (n, y)] = 0 for all f ∈ Mb.

For the adjoint operator L† of L defined in (2.2) to be a quasistationary distribution we have,
there exists λ > 0 such that

L†ν = −λν.
Theorem 4.1. Assume that there exists 0 ≤ σ < 1 such that lim supy↘0 y

σ d(y) < ∞. Then
there exists a quasistationary distribution. Moreover, there exists at least a quasistationary
distribution such that Y is supported in [0, y∗].

Proof. It suffices to show the existence of a quasistationary distribution. In fact, the last part
of the statement follows when the existence proof is applied to the process Z taking values in
the invariant set N × [0, y∗].

The idea for showing the existence is to use the abstract Theorem 4.2 proved in [2]. We
assume that y ∈ [0, y∗]. We define a function

ϕ1(y, n) = 1{n≥1}.

Then a simple computation (the same as for a birth-and-death process since ϕ1 does not depend
on y) leads to

Lϕ1(y, n) =
{

0 if n > 1,

−D − d(y) if n = 1.

Therefore, if d is bounded above by a constant d∗ then

e−t (D+d∗)ϕ1 ≤ etLϕ1 ≤ ϕ1.

If d is not bounded, we will prove the lower bound

inf
n0≥1, y0∈[0,y∗] Pn0,y0(N(1) ≥ 1) ≥ Q for a constant Q > 0.
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By the Markov property, it suffices to prove that there exists Q > 0 such that

inf
y0∈[0,y∗] P1,y0(N(t) = 1 for all 0 ≤ t ≤ 1) ≥ Q.

Since N(t) = 1 on the whole time interval [0, 1], y(t) satisfies the differential equation

dy

dt
= D(y∗ − y)− b̃(y),

with initial condition y0. Since there is no birth and no death in the time interval [0, 1], we
obtain

P1,y0(N(t) = 1 for all 0 ≤ t ≤ 1) = exp

(
−

∫ 1

0
(d(y(t))+ b(y(t))) dt

)
.

Since b(y) is bounded uniformly in y, the above quantity does not vanish if∫ 1

0
d(y(t)) dt < ∞.

It is easy to show that there exists a constant c > 0 such that, for any y∗ ≥ y0 ≥ 0, we have
y(t) ≥ ct for any t ∈ [0, 1]. Since d(y) ≤ O(1)y−σ for small y, we obtain∫ 1

0
d(y(t)) dt ≤ O(1)

∫ 1

0
y(t)−σ dt < ∞.

It now immediately follows that
Qϕ1 ≤ eLϕ1 ≤ ϕ1.

The second function is
ϕ2(y, n) = 1{n≥1}ea(y)n,

with a(y) = αy + a0, α > 0, and a0 > 0. A simple computation for n > 1 (same as for a
birth-and-death process since ϕ2 does not depend on y) leads to

Lϕ2(y, n) = nea(y)n�(n, y),

where

�(n, y) = b(y)

(
ea(y) − 1 − αn

R

)
+ (D + d(y))(e−a(y) − 1)+Dα(y∗ − y)− αη1{y>0}.

Let us show that there exist A > 0 and N0 such that, for all n > N0,

sup
y∈[0,y∗]

�(n, y) ≤ −A.

Define ζ(y) = (D + d(y))(e−a(y) − 1)+Dα(y∗ − y)− αη1{y>0}. We choose a0 and α such
thatD(e−a0 − 1)+Dαy∗ < 0. Then ζ(0) < 0. It follows that, for all y ∈ [0, y∗], ζ(y) < −A
for some A > 0.

Consider N̂0 such that ea(y
∗) − 1 − αN̂0/R < 0. We still have, for n > N̂0, ea(y

∗) − 1 −
αn/R < 0. Then, for n > N̂0, we obtain �(n, y) ≤ −A. Therefore, for any C > 0, there
exists N(C) such that, for any n > N(C),

Lϕ2(y, n) ≤ −Cϕ2(y, n).

Therefore, for any C > 0, there exists (C) > 0 (finite) such that

Lϕ2 ≤ −Cϕ2 + (C)ϕ1

https://doi.org/10.1239/aap/1377868540 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868540


Stochastic models for a chemostat and long-time behavior 831

(the estimate for n = 1 is by direct computation, taking(C) adequately large enough). Hence,

etLϕ2 ≤ e−tCϕ2 + (C)

C
ϕ1.

In the case where d is bounded above by d∗ < ∞, we now choose C > D + d∗ and t = 1
and apply Theorem 4.2 of [2]. In the case where d is unbounded, we choose C > − logQ and
apply Theorem 4.2 of [2].

5. Properties of the quasistationary distributions

Proposition 5.1. Any quasilimiting distribution has support in N
∗ × [0, y∗].

Proof. We recall that a quasilimiting distribution ν is a probability measure on N
∗ × R+

such that, for some initial point (n0, y0) ∈ N
∗ × R+,

ν(A) = lim
t→∞ P(n0,y0)(Z(t) ∈ A | T0 > t) for all A ∈ B(N∗ × R+).

If y0 ∈ [0, y∗], the assertion follows from Proposition 2.1. Let us now assume that y0 > y∗.
We introduce the function t → v(t) defined by

dv

dt
(t) = D(y∗ − v)− b̃(y∗); v(0) = y0.

Let τ0(y0) be defined by v(τ0(y0)) = y∗. For t ≤ T0 ∧ τ0(y0), we have Y (t) ≤ v(t). It follows
from Proposition 2.1 that P(n0,y0)(Y (t) > y∗ | T0 > t) = 0 for all t ≥ τ0(y0), which concludes
the proof.

Theorem 5.1. For all n ∈ N
∗ and any quasistationary distribution, the probability measure

νn is absolutely continuous with respect to the Lebesgue measure, with C∞-density on the set
R+ \ {0, yn}.

The proof of this theorem is obtained from the following lemmas. Recall that the set S has
been defined in (3.2).

Lemma 5.1. For all n ∈ N
∗, the measure νn satisfies

dνn = cn0δ0 +
( ∑
j∈N∗

cnj δyj

)
+ un(y) dy, (5.1)

where cnj ≥ 0 for j ∈ N, and un is the density of the absolutely continuous part of νn (so it is a
nonnegative integrable function) and it is a C∞-function outside S ∪ {0}.

Proof. The measures νn satisfy in the sense of distributions the differential equations

∂y((D(y
∗ − y)− nb̃(y))νn)

= b(y)nνn−1 + (D + d(y))nνn+1 − (b(y)+D + d(y))nνn + λνn. (5.2)

Since the right-hand side is a measure, we conclude by a recursive argument that the measures
νn have a C∞-density on (S ∪{0})c. This also shows that these measures have no singular part,
and the Lebesgue decomposition theorem gives relation (5.1).

Lemma 5.2. Let I be an open interval included in (S ∪ {0})c. If there exists n ∈ N
∗ such that

νn(I ) = 0 then νj (I ) = 0 for all j ∈ N
∗.
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Proof. Assume that there is an interval I not intersecting S ∪ {0} such that, for some integer
n ∈ N

∗, νn vanishes on I . From (5.2) we deduce that νn+1 and νn−1 also vanish at I . Therefore,
we conclude recursively that νj (I ) = 0 for all j ∈ N

∗.

Lemma 5.3. The probability measure νn is absolutely continuous on R+\{0, yn} and its density
is bounded on any compact set contained in R+ \ {0, yn}.

Proof. Let us show that if j �= n, νn cannot have a Dirac mass in yj . We proceed by
contradiction, so assume that it does. Let f be aC∞-function with compact support containing
yj and such that its support does not contain any other point of S ∪ {0} except yj . By using
(5.1) we obtain

− f ′(yj )(D(y∗ − yj )− nb̃(y))−
∫
f ′(y)(D(y∗ − y)− nb̃(y))ψn(y) dy

=
∫
f (y)(b(y)n dνn−1(y)+ (D + d(y))n dνn+1(y))

+
∫
f (y)(λ− (b(y)+D + d(y))n) dνn(y). (5.3)

It is not difficult to construct a sequence of functions (fq : q ∈ N
∗) contained in C∞ with

support in a fixed, small enough neighborhood of yj and such that

f ′
q(yj ) = 1, lim

q→∞ sup
y∈R+

|fq(y)| = 0, sup
y∈R+

|f ′
q(y)| ≤ 1 for all q,

and lim
q→∞ |f ′

q(y)| = 0 for all y �= yj .

This leads to a contradiction, when we take f = fq in (5.3) and make q tend to ∞.
Now, again using (5.2), we easily deduce the boundedness of the density of νn outside a

neighborhood of {yn, 0}.
Lemma 5.4. The probability measure νn cannot have a Dirac mass in yn.

Proof. Assume that it does. Then in a neighborhood of yn, by using (5.1), since cnj = 0 for
j = 0, n, and by writing cn = cnn, we can write

dνn = cn0δ0 + cnδyn + un(y) dy.

Let f be a function C∞ with compact support containing yn but that does not contain 0. We
have

−
∫
f ′(y)(D(y∗ − y)− nb̃(y))un(y) dy

=
∫
f (y)(b(y)n dνn−1(y)+ (D + d(y))n dνn+1(y))

+
∫
f (y)(λ− (b(y)+D + d(y))n)un(y) dy

+ cnf (yn)(λ− (b(yn)+D + d(yn))n).

We now construct a sequence (fq : q ∈ N
∗) of C∞-functions with support in a fixed, small

enough neighborhood of yn such that, for some constant C′,

fq(yn) = 1 for all q, sup
y∈R+

|fq(y)| = 1, lim
q→∞ |fq(y)| = 0 for all y �= yn,
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and

sup
y∈R+

|y − yn||f ′
q(y)| ≤ C′ for all q, lim

q→∞(y − yn)f
′
q(y) = 0 for all y �= yn.

Such a sequence can be easily constructed.
Recall that νn−1 and νn+1 are absolutely continuous with C∞-density near yn. We conclude

that, if cn �= 0,
λ = (b(yn)+D + d(yn))n.

In the case where d is constant, it is known that the eigenvalue λ satisfies λ = κn(D+ d) <
D + d, and so it is strictly less than (b(yn)+D + d(yn))n and we obtain a contradiction. If d
is not constant, the proof of the contradiction is more intricate.

Returning to (5.2) for un in a neighborhood of yn but outside that point, we obtain

∂y(Gn(y)un(y)) = fn(y)Gn(y)un(y)+ hn(y),

where (see Lemma 3.1)

Gn(y) = D(y∗ − y)− nb̃(y) = βn(y − yn)+ O((y − yn)
2)

with βn < 0,

fn(y) = n
b(yn)− b(y)+ d(yn)− d(y)

Gn(y)
= O(1),

and
hn(y) = b(y)nun−1(y)+ (D + d(y))nun+1(y).

Recall that hn(y) is C∞ near yn. The only solution which is integrable near yn is given by

un(y) = 1

Gn(y)
exp

(∫ y

yn

fn(s) ds

) ∫ y

yn

exp

(
−

∫ s

yn

fn(w) dw

)
hn(s) ds.

If hn > 0 on a subset of positive measure of a small neighborhood of yn, we have un < 0,
which is a contradiction. Therefore, hn must vanish on both sides of yn. By the above result
on the support, we conclude that un vanishes in a neighborhood of yn as well as all the νj with
j �= n (see Lemma 5.2). In particular, if we consider the equation for νn+1 in this neighborhood
(see (5.2)), we obtain

0 = b(yn)cnδyn,

which contradicts cn �= 0.

Theorem 5.2. On (0, y1), the density of νn satisfies un > 0 except perhaps in yn.

The proof uses two lemmas.

Lemma 5.5. If νn+1 or νn−1 has a support dense in (0, y1) then un can be 0 only in yn.

Proof. The function Gn has a simple 0 in yn. Assume that, for z ∈ (0, y1), z �= y1,
un(z) = 0 (and Gn(z) �= 0).

Computation as in the proof of Lemma 5.4 gives

un(y) = 1

Gn(y)
exp

(∫ y

z

fn(s) ds

) ∫ y

z

exp

(
−

∫ s

z

fn(w) dw

)
hn(s) ds.

The conclusion follows.
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Let us show that the process is irreducible up to extinction and before y1.

Lemma 5.6. Starting from any initial condition on N
∗×(0, y1) the processZ has dense support

on N × (0, y1), that is, for all m ∈ N, all y′ ∈ (0, y1), and all γ > 0, there exists t (y′) > 0
such that, for all t > t (y′) and all (y0, n0) ∈ N

∗ × (0, y1),

P(n0,y0)(N(t) = m, Y (t) ∈ (y′ − γ, y′ + γ )) > 0.

Proof. In the proof we will assume that y0 < y′ (the case y0 ∈ (y′, y1) is shown similarly).
Let β > 0 be smaller than min(y0, y

′ − y0)/2, and let t̃ > 0 be fixed. Then there exists
ε = ε(n0, β) such that the following event has a strictly positive probability.

• On the interval time [0, ε] there are exactly n0 − 1 deaths and there is no other jump of
N , and so N(t) decreases from n0 to N(ε) = 1.

• Y (ε) belongs to (Y (0)− β, Y (0)+ β).

• On the interval of time [ε, ε + t̃] there is no jump of N (no birth and no death).

• On the interval of time [ε+ t̃ , ε+ t̃+β] there are exactlym−1 births and no other jump
when m > 1, there is no jump if m = 1, or there is a unique death and no other jump
when m = 0.

• |Y (ε + t̃ )+ β)− Y (ε + t̃ )| < γ/2.

For t ∈ [ε, ε+ t̃ ), we have N(t) = 1. Then in this interval of time and before the process Y (t)
has attained y′, the derivate

dY (t)

dt
= D(y∗ − Y (t))− b̃(Y (t))

is bounded below byD(y∗ −y′)− b̃(y′). Take t̃ = (y′ −Y (0)+β)/(D(y∗ −y′)− b̃(y′)), and
let us show that the number t (y′) = ε + t̃ ′ satisfies the property stated in the lemma. In fact, we
have ensured that in a time smaller than or equal to t (y′)we have attained {m}×[y′−γ, y′+γ ].
For any time larger than t (y′), it suffices to modify slightly the above argument and allow a
sequence of jumps up to the moment that Y (t) has negative derivate and in this way we can
postpone the time of attaining the set {m} × [y′ − γ, y′ + γ ] from t (y′) to a prescribed time
t > t (y′).

Proposition 5.2. For all n ∈ N
∗, the probability measure νn has a support dense in (0, y1).

Proof. Consider δn⊗νn the probability measure defined on N×R+ given by δn⊗νn({m}×
B) = δn(m)νn(B) for all B ∈ B(R+). From Lemma 5.6 and the quasistationary distribution
property (4.2), we have

Pδn⊗νn(N(0) = m, Y (0) ∈ (y′ − γ, y′ + γ ))

= e−λt
Pδn⊗νn(N(t) = m, Y (t) ∈ (y′ − γ, y′ + γ ))

= e−λt
∫

P(n,y0)(N(t) = m, Y (t) ∈ (y′ − γ, y′ + γ )) dνn(y0)

> 0.

Then the result follows.
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6. Bound on the asymptotic survival rate

Theorem 6.1. Let λ be the exponential extinction rate associated with a quasistationary
distribution ν. Then

λ < inf
n
(n(b(yn)+D + d(yn))). (6.1)

Proof. In Section 3 of [2], it was shown that this extinction rate is an eigenvalue of the dual
problem associated with the probability measure

L†ν = −λν.
For simplicity, we will prove inequality (6.1) in the case n = 1. The general case proved in a
similar way is left to the reader.

We introduce the notation

G(y) = D(y∗ − y)− b̃(y), H(y) = D + d(y).

The quasistationary distribution equation for n = 1 is given by

− d

dy
(G(y)u1(y))− (b(y)+H(y))u1(y)+ 2H(y)u2(y)+ λu1(y) = 0.

Let a ∈ (0, y1). We have, for y ∈ (0, y1),

d

dy

(
G(y)u1(y) exp

(∫ y

a

b(s)+H(s)− λ

G1(s)
ds

))

= exp

(∫ y

a

b(s)+H(s)− λ

G(s)
ds

)
2H(y)u2(y),

and integrating between a and y yields

G(y)u1(y) exp

(∫ y

a

b(s)+H(s)− λ

G(s)
ds

)
−G(a)u1(a)

= 2
∫ y

a

exp

(∫ σ

a

b(s)+H(s)− λ

G(s)
ds

)
H(σ)u2(w) dw

≥ 0.

Therefore,

u1(y) ≥ G(a)u1(a)

G(y)
exp

(
−

∫ y

a

b(s)+H(s)− λ

G(s)
ds

)
.

Let us study more carefully the quantity exp(− ∫ y
a
((b(s)+H(s)− λ)/G(s)) ds). We recall

thatGonly vanishes aty1 and thatG is decreasing sinceb is increasing. By a simple computation
we obtain

b(s)+H(s)− λ

G(s)
= b(y1)+H(y1)− λ

(s − y1)G′(y1)
+ O(1),

and, thus, ∫ y

a

b(s)+H(s)− λ

G(s)
ds = b(y1)+H(y1)− λ

G′(y1)
log |y − y1| + O(1).
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Finally, since G(y1) = 0 and G′(y1) < 0, we obtain, for y ≤ y1,

G(y) = (y − y1)G
′(y1)+ O((y − y1)

2) = |y − y1|(|G′(y1)| + O(|y − y1|)).
Therefore,

u1(y) ≥ G(a)u1(a)

G(y)
|y − y1|−(b(y1)+H(y1)−λ)/G′(y1)eO(1)

≥ G(a)u1(a)

|y − y1||G′(y1)| |y − y1|−(b(y1)+H(y1)−λ)/G′(y1)eO(1).

As we have u1(a) > 0 by Theorem 5.2, the integrability of u1 on [0, y1] implies that

1 + b(y1)+H(y1)− λ

G′(y1)
< 1.

We therefore finally obtain
λ < b(y1)+H(y1).
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