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Graphical methods and rings of invariants
on the symmetric algebra
Rebecca Bourn, William Q. Erickson , and Jeb F. Willenbring
Abstract. Let G be a complex classical group, and let V be its defining representation (possibly
plus a copy of the dual). A foundational problem in classical invariant theory is to write down
generators and relations for the ring of G-invariant polynomial functions on the space Pm(V)
of degree-m homogeneous polynomial functions on V. In this paper, we replace Pm(V) with the
full polynomial algebra P(V). As a result, the invariant ring is no longer finitely generated. Hence,
instead of seeking generators, we aim to write down linear bases for bigraded components. Indeed,
when G is of sufficiently high rank, we realize these bases as sets of graphs with prescribed number of
vertices and edges. When the rank of G is small, there arise complicated linear dependencies among
the graphs, but we remedy this setback via representation theory: in particular, we determine the
dimension of an arbitrary component in terms of branching multiplicities from the general linear
group to the symmetric group. We thereby obtain an expression for the bigraded Hilbert series of
the ring of invariants on P(V). We conclude with examples using our graphical notation, several of
which recover classical results.

1 Introduction

The motivation for this paper began, in part, with the problem of writing down
invariant functions on the space of polynomial-coefficient differential operators (i.e.,
the Weyl algebra), under the action of the general linear group. While the goal
seems modest, the combinatorial complexity of the answer is certainly not. The result
involves a correspondence between these invariants and unlabeled directed graphs. In
retrospect, it became evident that the linear change of variables for the Weyl algebra
had an analogue for the other classical groups.

The archetypal problem in nineteenth-century invariant theory was to consider the
space Sm(C2) of binary m-forms, where the group SL(2,C) acts naturally on C

2, and
to describe the ring of polynomial functions on Sm(C2) which are invariant under
the action of SL(2,C). The problem naturally generalizes to any of the classical groups
GLn , On , and Sp2n , whereC2 is replaced by the defining representation V of the group
(plus a copy of the dual representation in the case of GLn). Since the mth symmetric
power Sm(V) is finite-dimensional, Hilbert’s celebrated basis theorem guarantees that
the ring of invariants is finitely generated. Nearly every paper in early invariant theory
contained explicit, often remarkably lengthy computations of generators and relations
for rings of invariants.
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In this paper, we sum out the dependence on the degree m before looking at the
invariants; in other words, we study the invariant functions on the full symmetric
(equivalently, polynomial) algebra, rather than on a single graded component. This
idea is related to the classical study of perpetuants (or more generally subvariants,
both terms coined by Sylvester [Syl82]), which can be viewed as certain SL(2,C)-
semi-invariants of a binary form of infinite order (see also [GY10, p. 326], [Olv99,
p. 149], [KP21], and the references therein). As a result of our replacing Sm(V) by
S(V), the invariant ring is no longer finitely generated. Hence, our goal, unlike the
usual goal in classical invariant theory, is not to find generators and relations; rather,
we impose a bigradation on the invariant ring, so that each graded component is
finite-dimensional, and we aim to write down a linear basis for each component. In
particular, we grade the invariant algebra by degree d, in the usual sense for polynomial
functions, and by weight k (see Definition 2.1). By symmetrizing Hermann Weyl’s
fundamental theorems of invariant theory, we show that each bigraded component
is spanned by the invariants represented by certain graphs (directed, undirected, etc.)
with d vertices and k edges. Our first result (Algorithm 3.1) gives the explicit map
between a graph and its corresponding invariant. We emphasize that our method
easily recovers many classical results, simply by restricting our attention to m-regular
graphs (i.e., graphs in which every vertex has degree m).

Our graphs furnish a true basis whenever the parameters n, d , k fall within a stable
range, described by a simple inequality relating the rank of the group to d and k:

GLn and On ∶ n ≥ min{d , k}. Sp2n ∶ n ≥ min{⌊d
2
⌋ , ⌊ k

2
⌋} .(1.1)

Hence, for fixed d and k, our methods yield a basis for all but finitely many values of n.
(Also, at the farthest extreme from the stable range, where the defining representation
of the group is one-dimensional, we can easily describe a basis for all d and k in terms
of degree sequences of graphs (see Section 5.3).)

Outside the stable range, our methods furnish a spanning set rather than a true
basis, and therefore we would overshoot the dimension of the graded component by
merely counting graphs. The linear dependencies that arise among the graphs are quite
complicated, but nonetheless we are able to express the desired dimensions by taking
a representation-theoretic approach. Our second result (Theorem 5.1) is a dimension
formula for the bigraded components that holds even outside the stable range. The
formula is expressed as the sum of branching multiplicities from the general linear
group GLd to its subgroup Sd of permutation matrices. In this way, we can express
the bigraded Hilbert series of the invariant ring.

Although the main problem in this paper seems to be new, the use of graphical
methods is nearly as old as invariant theory itself; in fact, it was Sylvester [Syl78]
who coined the term “graph” to describe the diagrams he developed in his “algebro-
chemical” approach to invariants (see [Syl78] and [GY10, p. 366]). Subsequently,
Kempe [Kem86] and (much later) Olver and Shakiban [OS89] improved upon
Sylvester’s program by associating covariants on binary forms with directed graphs
obeying certain syzygies. Since then, the graphical approach continues to develop;
consider, for example, webs and spiders [Kup96] in the invariant theory of low-rank
Lie groups. This development of graphical notation is analogous to similar programs
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in various fields, most notably the Penrose notation in mathematical physics [Pen05]
and Lie theory [Cvi08]. In fact, the reader may like to begin by skimming the examples
in Section 6, among which are several classical results translated into our graphical
notation.

2 Preliminaries

2.1 Statement of the problem

Throughout the paper, we let Mnd ∶= Mnd(C) denote the space of complex n × d
matrices, with Mn ∶= Mnn . By the (complex) classical groups, we mean:
• the general linear group GLn ∶= GL(n,C) = {g ∈ Mn ∣ det g ≠ 0};
• the orthogonal group On ∶= O(n,C) = {g ∈ GLn ∣ gT g = I};
• the symplectic group Sp2n ∶= Sp(2n,C) = {g ∈ GL2n ∣ gT Jg = J}, where J = [ 0 I

−I 0 ].
That is, On preserves the symmetric bilinear form b on C

n given by b(v , w) = vTw,
while Sp2n preserves the skew-symmetric bilinear form ω on C

2n given by ω(v , w) =
vT Jw.

In the context of each classical group G, we will write V to denote its defining
representation, on which it acts naturally by matrix multiplication: hence, for GLn
and On , we have V = C

n , while for Sp2n , we have V = C
2n . For G = On or Sp2n ,

we let Ψ ∶= P(V) denote the space of polynomial functions on V ; for G = GLn , we
let Ψ ∶= P(V ⊕ V∗). In each case, Ψ is a representation of G in the natural way, via
g ⋅ ψ(v) = ψ(g−1v), for g ∈ G, ψ ∈ Ψ, and v ∈ V (or V ⊕ V∗). This, in turn, induces
a representation of G on P(Ψ), the space of polynomial functions on Ψ (explained
below), again via g ⋅ f (ψ) = f (g−1 ⋅ ψ) for f ∈ P(Ψ). Our goal is to describe, as
explicitly as possible, the invariant ring

P(Ψ)G ∶= { f ∈ P(Ψ) ∣ g ⋅ f = f for all g ∈ G}.

2.2 Notation

Let N ∶= {0, 1, 2, . . .}. A Greek letter α = (α1 , . . . , αn) ∈ Nn will denote a multi-index
corresponding to the exponent vector of the monomial xα1

1 ⋅ ⋅ ⋅ xαn
n . It will be natural to

regard x i as the linear functional on V dual to the ith standard basis vector. We will use
these exponent vectors α to pick out coefficients of monomials; our desired invariants
will then be polynomials in these coefficients. Below we organize the details, which
vary slightly for each of the three classical groups:
• For G = GLn :

– We have Ψ ∶= P(V ⊕ V∗) ≅ C[x1 , . . . , xn , ∂1 , . . . , ∂n]. We can regard ∂ i as the ith
standard basis element of the double dual V∗∗, although the notation ∂ i is indeed
meant as an abbreviation for the differential operator ∂/∂x i . (See Section 6 for
the motivation from the Weyl algebra, i.e., the algebra of polynomial-coefficient
differential operators. Note, however, that the analysis in this paper will not use
the non-commutative algebra structure of the Weyl algebra, which we view only
as a representation of GLn .)

– For α, β ∈ Nn , we write xα ∂β ∶= xα1
1 ⋅ ⋅ ⋅ xαn

n ∂β1
1 ⋅ ⋅ ⋅ ∂βn

n .
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– We have the monomial basis {xα ∂β ∣ α, β ∈ Nn} for Ψ.
– We define the linear functional cα ,β ∶ Ψ �→ C, which takes the value 1 on the

basis vector xα ∂β and 0 on all other basis vectors.
– Hence, we have P(Ψ) = C[cα ,β]α ,β∈Nn .

• For G = On :
– We have Ψ ∶= P(V) ≅ C[x1 , . . . , xn].
– We have the monomial basis {xα ∣ α ∈ Nn} for Ψ, where xα ∶= xα1

1 ⋅ ⋅ ⋅ xαn
n .

– We define the linear functional cα ∶ Ψ �→ C, which takes the value 1 on the basis
vector xα and 0 on all other basis vectors.

– Hence we have P(Ψ) = C[cα]α∈Nn .
• For G = Sp2n :

– We have Ψ ∶= P(V) ≅ C[x1 , . . . , x2n].
– We have the monomial basis {xα ∣ α ∈ N2n} for Ψ.
– We define the linear functional cα ∶ Ψ �→ C, just as for On above.
– Hence, we have P(Ψ) = C[cα]α∈N2n .
The span of the c’s is the graded dual Ψ○ ∶= ⊕∞i=0(Ψi)∗, where Ψi is the ith homoge-

neous graded component of Ψ with respect to polynomial degree. Note that Ψ○ is not
the same as the full dual space Ψ∗, which includes infinite linear combinations of the
c’s. The “c” notation stands for “coefficient,” since the c’s extract the coefficient of the
corresponding monomial. Hence, our desired invariants will be polynomials in these
c’s, i.e., elements of P(Ψ) ≅ S(Ψ○). As is customary in the literature, we define scaled
coefficients ĉ as follows, writing α! ∶= α1! ⋅ ⋅ ⋅ αn!:

ĉα ,β ∶= α!β! cα ,β and ĉα ∶= α! cα .

We will appeal to the graded isomorphism of G-modules Ψ ≅ Ψ○ given by
⎧⎪⎪⎨⎪⎪⎩

xα ∂β �→ ĉα ,β , G = GLn ,
xα �→ ĉα , G = On or Sp2n .

(2.1)

(See [Wal17, p. 117] and [Dol03, pp. 7–8].) From a different perspective, it is a standard
fact (see [Dol03, Remark 1.2]) that the differential operator ∂α and the monomial xα

transform dually under a classical group action; hence, in each graded component,
the isomorphism in (2.1) can equivalently be written as

⎧⎪⎪⎨⎪⎪⎩

xα ∂β �→ ∂αxβ , G = GLn ,
xα �→ ∂α , G = On or Sp2n .

Here, we regard ∂αxβ as the operator acting via ∂αxβ(xγ ∂δ) = ∂α(xγ) ⋅ ∂δ(xβ). For
example, if G = GL2 and Ψ4,3 = span{xα ∂β ∶ ∣α∣ = 4, ∣β∣ = 3}, then ∂3

1 ∂2x1 x2
2 equals

the functional ĉ(3,1),(1,2), since it takes the value 3! ⋅ 1! ⋅ 1! ⋅ 2! on the monomial
x3

1 x2∂1∂2
2 ∈ Ψ4,3, and takes the value 0 on all other monomials in Ψ4,3.

In order to obtain finite-dimensional graded components, we impose a bigradation
on P(Ψ). First is the natural gradation by degree; hence, Pd(Ψ) is the space of
homogeneous polynomials of degree d in the c’s. The second gradation is by weight.
To make this clear, we write ∣α∣ ∶= ∑i α i , and then we define the weight of a monomial
in the c’s as follows:
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Definition 2.1 For G = GLn , the weight of the monomial cα ,β ⋅ ⋅ ⋅ cψ ,ω equals 1
2 (∣α∣ +

∣β∣ + ⋅ ⋅ ⋅ + ∣ψ∣ + ∣ω∣). For G = On or Sp2n , the weight of the monomial cα ⋅ ⋅ ⋅ cω equals
1
2 (∣α∣ + ⋅ ⋅ ⋅ + ∣ω∣).

As we will see, the factor 1
2 arises due to the fact that the fundamental invari-

ants are quadratics. Now we define Pk(Ψ) to be the space of polynomials that are
homogeneous (i.e., “isobaric,” in the classical language) of weight k. Finally, we set
Pd

k(Ψ) ∶= Pd(Ψ) ∩Pk(Ψ).

2.3 Weyl’s fundamental theorems

In his monumental book [Wey39], Weyl determined generators and relations for
the ring of invariants, in the setting where a classical group G acts naturally on an
arbitrary number d of vectors (and covectors, when G = GLn). For all three classical
groups, the first fundamental theorem (FFT) states that the generators are certain
quadratic functions r i j . The second fundamental theorem (SFT) states the relations
as the determinants (or Pfaffians) of certain minors in the r i j .

Combining the FFT and the SFT, one obtains an algebra isomorphism μ♯ between
the ring of invariants, on one hand, and the coordinate ring of a certain determinantal
variety, on the other hand. (The notation μ♯ is typical in the literature, because this
map is the comorphism induced by a matrix multiplication map μ.) We will use the
notation SMd ⊂ Md for the subspace of symmetric matrices, and AMd ⊂ Md for the
subspace of alternating (i.e., skew-symmetric) matrices; we let z i j denote the natural
coordinate functions on Md . The aforementioned determinantal varieties are denoted
by

M≤n
d ∶= {X ∈ Md ∣ rank X ≤ n},

SM≤n
d ∶= {X ∈ SMd ∣ rank X ≤ n},

AM≤2n
d ∶= {X ∈ AMd ∣ rank X ≤ 2n}.

For our purposes in this paper, we present a version of the combined FFT and SFT
below (once for each classical group) in terms of matrix coordinates x i j , rather than
the coordinate-free presentation used by Weyl.

Theorem 2.1 (FFT and SFT for G = GLn) Let G = GLn , acting on Mnd ⊕Mnd ≅
V⊕d ⊕ (V∗)⊕d via g ⋅ (X , Y) = (gX , (g−1)T Y). Set

R ∶= C[x i j , y i j]1≤i≤n ,
1≤ j≤d

≅ P(Mnd ⊕Mnd).(2.2)

Then RG is generated by the quadratics

r i j ∶=
n
∑
�=1

y�i x� j , 1 ≤ i , j ≤ d .(2.3)

Moreover, we have the following isomorphism of algebras:

μ♯ ∶ P(M≤n
d ) �→ RG ,
z i j �→ r i j .

(2.4)
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Theorem 2.2 (FFT and SFT for G = On) Let G = On , acting by matrix multiplication
on Mnd ≅ V⊕d . Set

R ∶= C[x i j]1≤i≤n ,
1≤ j≤d

≅ P(Mnd).(2.5)

Then RG is generated by the quadratics

r i j ∶=
n
∑
�=1

x�i x� j , 1 ≤ i ≤ j ≤ d .(2.6)

Moreover, we have the following isomorphism of algebras:

μ♯ ∶ P(SM≤n
d ) �→ RG ,
z i j �→ r i j .

(2.7)

Theorem 2.3 (FFT and SFT for G = Sp2n) Let G = Sp2n , acting by matrix multiplica-
tion on M2n ,d ≅ V⊕d . Set

R ∶= C[x i j]1≤i≤2n ,
1≤ j≤d

≅ P(M2n ,d).(2.8)

Then RG is generated by the quadratics

r i j ∶=
n
∑
�=1
(x�i x�+n , j − x�+n , i x� j), 1 ≤ i < j ≤ d .(2.9)

Moreover, we have the following isomorphism of algebras:

μ♯ ∶ P(AM≤2n
d ) �→ RG ,

z i j �→ r i j .
(2.10)

3 Linear bases in terms of graphs

Weyl’s fundamental theorems foreshadow the effectiveness of graphical data in invari-
ant theory. Indeed, by viewing each r i j as an edge between vertices i and j, it is quite
natural to regard labeled graphs as monomials which span the invariant ring. This idea
underlies our main result in this section.

3.1 General algorithm

Our first result is the following algorithm, where the input is a certain type of graph
with d vertices and k edges, and the output is a basis element inPd

k(Ψ)G . The algorithm
takes the same form for all three classical groups. (See also the Appendix, where we
include Mathematica code to implement the algorithm.) Recall that to each classical
group G, we have already associated (in Theorems 2.1–2.3) a polynomial ring R and
the quadratics r i j ∈ R. In the following three subsections, we will specify the set Gd

k
of graphs for each group. The key to the algorithm is a G-equivariant linear operator
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φ ∶ R �→ Pd(Ψ), which (following [Stu08, p. 174]) we call the umbral operator. Again,
in the following three subsections, we will explicitly define φ for each group.

Remark 3.2 In Step 2 of the algorithm, the expression s(Γ) is the symbolic notation
for a G-invariant function, in the sense of nineteenth-century classical invariant
theory; hence our “s” notation. See [Stu08, p. 173] or [Olv99, Chapter 6] for discussions
of the symbolic method. In Step 3, the umbral operator φ then translates the symbolic
notation for an invariant into an explicit expression in terms of coefficients.

Example 3.3 To gain some intuition for Algorithm 3.1 applied to an individual graph,
let G = GLn , and set the parameters n = 4, d = 3, and k = 5:
(1) Start with the following digraph Γ ∈ G3

5 (defined below in Section 3.2); choosing
to label the vertices 1–3 from left to right, we then obtain the adjacency matrix AΓ :

(2) Reading AΓ as the degree matrix of a monomial in the quadratics r i j , we obtain

s(Γ) = r12r2
23r32r33 .

(3) Following (2.3), the expansion of s(Γ) contains 640 terms in the variables x i j
and y i j . For example, one of these terms is x22x32x3

43 y21 y2
42 y33 y43. The umbral

operator φ, as defined below in (3.1), transforms this term into a product of ĉ’s in
P3

5(Ψ)GL4 :

φ ∶ x22x32x3
43 y21 y2

42 y33 y43 �→ ĉ(0000),(0100) ĉ(0110),(0002) ĉ(0003),(0011).

https://doi.org/10.4153/S0008414X23000780 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000780


2180 R. Bourn, W. Q. Erickson, and J. F. Willenbring

Recalling the definition of ĉα ,β from Section 2.2, we can spell out this term
concretely as a function on Ψ = C[x1 , . . . , x4 , ∂1 , . . . , ∂4], as follows:

6 ⋅ (coeff. of ∂2) ⋅ (coeff. of x2x3∂2
4) ⋅ (coeff. of x3

4∂3∂4).

Carrying this out for all terms in s(Γ) and taking the sum, one obtains the
invariant φ ○ s(Γ). Since n ≥ d in this example, we are in the stable range (1.1),
and so Γ ↦ φ ○ s(Γ) is a bijection between G3

5 and a linear basis for P3
5(Ψ)GL4 .

3.2 Details: the general linear group

For G = GLn , we define Gd
k to be the set of directed multigraphs with loops, with d

vertices and k edges, up to isomorphism. The quadratics r i j are defined in (2.3). Define
the umbral operator φ ∶ R �→ Pd(Ψ) by

φ ∶ ∏
i , j

x p i j
i j yq i j

i j �→
d
∏
j=1

ĉp
● j, q

● j
,(3.1)

where p
● j = (p1 j , . . . , pn j) and q

● j = (q1 j , . . . , qn j), and extend by linearity.

3.3 Details: the orthogonal group

For G = On , we define Gd
k to be the set of undirected multigraphs with loops, with d

vertices and k edges, up to isomorphism. The quadratics r i j are defined in (2.6). Define
the umbral operator φ ∶ R �→ Pd(Ψ) by

φ ∶ ∏
i , j

x p i j
i j �→

d
∏
j=1

ĉp
● j

,(3.2)

where p● j = (p1 j , . . . , pn j), and extend by linearity.

3.4 Details: the symplectic group

For G = Sp2n , the graphs in Gd
k are more delicate to define. Let Γ be an undirected

multigraph with no loops, having d vertices. Arbitrarily choose vertex labels 1, . . . , d;
then each element σ of the symmetric group Sd determines another labeled graph
σ ⋅ Γ, obtained by permuting the original labels. The stabilizer stabSd (Γ) contains all
elements σ ∈Sd such that Γ is isomorphic to σ ⋅ Γ as a labeled graph. If {i , j} is an
edge of Γ with i < j, then we say that σ inverts {i , j} if σ(i) > σ( j). We now define the
following set of graphs for the case G = Sp2n :

Gd
k ∶= {

Γ a loopless undirected multigraph
with d vertices and k edges ∣ for all σ ∈ stabSd (Γ),

σ inverts an even number of edges }.

(3.3)

This set is independent of the initial choice of labeling for Γ, since Sd acts d-
transitively on the vertex labels. Below we present examples of the graphs in Gd

k for
d ≤ 3. (For d = 1, by definition, G1

k = ∅ since loops are not allowed.)
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Example 3.4 Let d = 2, so that any loopless graph Γ consists of k edges connecting
the two vertices. Then both elements of S2 stabilize the labeled graph Γ. Since the
nontrivial element of S2 inverts all k edges, we have that Γ ∈ G2

k if and only if k is
even. Hence, #G2

k equals 1 if k is even, and 0 if k is odd.

Example 3.5 Now suppose d = 3. Below we list the elements of G3
k for the first few

values of k. The reader can check that we have included precisely the graphs defined
in (3.3):

As for the remaining details in Algorithm 3.1 for G = Sp2n : the quadratics r i j are
defined in (2.9), and we define the umbral operator φ ∶ R �→ Pd(Ψ) by

φ ∶ ∏
i , j

x p i j
i j �→

d
∏
j=1

ĉp
● j

,(3.4)

where p● j = (p1 j , . . . , p2n , j), and extend by linearity.

4 Proof of Algorithm 3.1

The essence of the proof is the symmetrization of Weyl’s fundamental theorems: that
is, we restrict the isomorphism μ♯ (as defined in Theorems 2.1–2.3) to the subspace of
invariants under the action of the symmetric group Sd . Following [Stu08, p. 174], on
any Sd -module, we denote the symmetrization operator (i.e., the Reynolds operator
for Sd ) by a star, so that

x∗ ∶= 1
d! ∑

σ∈Sd

σ ⋅ x .

We first observe that μ♯ is Sd -equivariant, as follows. On one hand, Sd acts
on Md by simultaneous permutations of rows and columns (i.e., via conjugation
by permutation matrices). This makes P(Md) into an Sd -module, where σ ⋅ z i j =
zσ−1(i),σ−1( j) for σ ∈Sd . On the other hand, Sd acts on V⊕d by permuting copies
of V, and this makes the polynomial ring R into an Sd -module, via σ ⋅ x i j = x i ,σ−1( j)
and σ ⋅ y i j = y i ,σ−1( j). It is easy to check that μ♯ intertwines these two Sd -actions.

We provide full details for GLn , and then simply note the adjustments required
for On and Sp2n . Experts will recognize several of our isomorphisms as examples of
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polarization and restitution, to use the language of classical invariant theory [Dol03,
Section 1.2].

Proof (general linear group) Let Rk ⊂ R denote the component consisting of poly-
nomials which are bihomogeneous of degree k in the x i j and degree k in the y i j .
Note that μ♯ ∶ P(M≤n

d ) �→ RG restricts to a linear isomorphism between graded
components Pk(M≤n

d ) �→ RG
k . Now we consider the following diagram, where we

claim that all six vertical arrows (in particular, the two thick arrows on the right-hand
side) are linear isomorphisms:

(4.1)

The two vertical arrows to the right of the map μ♯ are successive restrictions of μ♯.
Since μ♯ is Sd -equivariant, its first restriction is a linear isomorphism; moreover, as
observed above the diagram, the second restriction of μ♯ is also a linear isomorphism
between graded components.

The three vertical arrows to the right of the map φ in (4.1) are successive restrictions
of φ. It is clear from its definition in (3.1) that φ ∶ R �→ Pd(Ψ) is Sd -invariant. In
fact, its restriction to the subspace of Sd -invariants defines a linear isomorphism
φ̃ ∶ RSd �→ Pd(Ψ), which we can see by exhibiting its inverse: for α1 , β1 , . . . , αd ,
βd ∈ Nn , we have

φ̃−1 ∶
d
∏
j=1

ĉα j ,β j �→
⎛
⎝

d
∏
j=1

n
∏
i=1

xα j
i

i j yβ j
i

i j
⎞
⎠

∗

.

Next, in order to prove that this isomorphism restricts to an isomorphism between
G-invariant subspaces, it suffices to show that φ is G-equivariant. As a G-module, we
have

R ≅ P(V⊕d ⊕ (V∗)⊕d) ≅ ⊗d P(V ⊕ V∗) = ⊗d Ψ.

This equivalence of G-modules R �→⊗d Ψ is given by

d
∏
j=1

n
∏
i=1

x p i j
i j yq i j

i j �→
d
⊗
j=1

n
∏
i=1

x p i j
i ∂q i j

i
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on monomials, and extended by linearity. Identifying Ψ with Ψ○ as in (2.1), we now
have an equivalence of G-modules defined by the isomorphism

R �→⊗d Ψ○,

∏
i , j

x p i j
i j yq i j

i j �→
d
⊗
j=1

ĉp
● j, q

● j .

Composing this with the canonical projection⊗d Ψ○ �→ Sd(Ψ○) ≅ Pd(Ψ) preserves
G-equivariance, and in fact yields the umbral operator φ. Hence, φ is G-equivariant,
and so the middle arrow in the bottom row of (4.1) is an isomorphism. Finally, it is
clear from (3.1) and Definition 2.1 that φ carries monomials in Rk to monomials of
weight k, that is, monomials in the component Pd

k . Hence, the second thick arrow in
(4.1) is a linear isomorphism.

To bring the graphs into the picture, we consider the following diagram, where the
three steps of Algorithm 3.1 are denoted by the circled numbers:

(4.2)

(By slight abuse of notation, we write μ♯ and φ to denote their restrictions above.) Let
Ĝd

k denote the set of labeled digraphs, with vertices labeled 1, . . . , d. Letting AΓ denote
the adjacency matrix of a graph Γ ∈ Ĝd

k , we define

z(Γ) ∶=
d
∏
i , j=1

zAΓ
i j

i j .

If n ≥ d, then M≤n
d = Md and so z(Ĝd

k) is a basis for Pk(M≤n
d ). In general, P(M≤n

d )
has a basis consisting of monomials of width ≤ n, with “width” in the sense of [Stu90,
Lemma 7]; but the width of a monomial is necessarily less than or equal to its degree,
and so if n ≥ k, then z(Ĝd

k) is still a basis for Pk(M≤n
d ). Therefore, in the stable range

n ≥ min{d , k}, the set z(Ĝd
k) is a basis for Pk(M≤n

d ); otherwise, it is only a spanning
set.

Note that Sd acts on Ĝd
k by permuting vertex labels, and that z is Sd -equivariant.

Hence, the symmetrization z(Γ)∗ ∈ Pk(M≤n
d )Sd is independent of the labeling of Γ,

and the entire diagram commutes. In particular, z(Γ)∗ is well defined on Gd
k (this is

the dashed arrow in the diagram), and its image is a basis for Pk(M≤n
d )Sd inside the

stable range. Composing with the restriction of μ♯ followed by the restriction of φ (i.e.,
the isomorphisms depicted by the two thick arrows), we obtain the desired basis for
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Pd
k(Ψ)G . By the commutativity of the diagram, the sequence of three vertical arrows

on the right-hand side of (4.2) is equivalent to the three steps of Algorithm 3.1 (shown
by the circled numbers 1–3). ∎

Proof (orthogonal group) The entire proof for G = GLn goes through, mutatis
mutandis. For r i j , μ♯, and φ, we use the definitions in (2.6), (2.7), and (3.2), respec-
tively. In the diagram (4.1), we replace M≤n

d by SM≤n
d , and then in all the displayed

equations, we simply remove the y i j ’s, and replace each ĉα ,β by ĉα . In the diagram
(4.2), we treat Gd

k as a set of undirected graphs, and we restrict the map z to just the
upper-triangular entries, via

z(Γ) ∶= ∏
1≤i≤ j≤d

zAΓ
i j

i j ∈ Pk(SM≤n
d ).

The rest of the proof proceeds identically. ∎

Proof (symplectic group) Once again, this is just a matter of changing the obvious
details in the proof for G = GLn . For r i j , μ♯, and φ, we use the definitions in (2.9),
(2.10), and (3.4), respectively. In the diagram (4.1), we replace M≤n

d by AM≤2n
d . Note

that the stable range is different here, namely n ≥ min{⌊d/2⌋, ⌊k/2⌋}, because the
matrices in the determinantal variety have rank ≤ 2n. Recall that (3.3) defines the set
Gd

k . For a labeled graph Γ ∈ Ĝd
k , let AΓ ∈ AMd(Z) be the skew-symmetric matrix whose

upper-triangular entries are those of the adjacency matrix of Γ. We define the map z by

z(Γ) ∶= ∏
1≤i< j≤d

zAΓ
i j

i j ∈ Pk(AM≤2n
d ).

The delicate point in this proof is to show that our definition (3.3) determines the
correct subset Gd

k of graphs in order to obtain bases. Let Γ be a labeled loopless graph
with d vertices and k edges. Due to the relation z i j = −z ji in Pk(AM≤2n

d ), it follows
that

σ ⋅ z(Γ) = (−1)inv(Γ,σ) z(σ ⋅ Γ),(4.3)

where inv(Γ, σ) denotes the number of edges of Γ inverted by σ . Unlike the cases for
GLn and On , these signs make it possible for the symmetrization operator to kill z(Γ)
for certain graphs Γ.

It is true that a spanning set for Pk(AM≤2n
d ) is certainly given by the set of all z(Γ)

where Γ ranges over all loopless graphs with d (labeled) vertices and k edges; we now
show that our definition of Gd

k in (3.3) excludes those Γ that are killed by the passage
to Sd -invariants, i.e., for which z(Γ)∗ = 0. To this end, let σ ∈ stabSd (Γ). It follows
that Aσ ⋅Γ = AΓ , and so

z(σ ⋅ Γ) = z(Γ).(4.4)
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Thus, we have

z(Γ)∗ ∶= 1
d! ∑

τ∈Sd

τ ⋅ z(Γ)

= 1
d! ∑

τ∈Sd

τ ⋅ z(σ ⋅ Γ) by (4.4)

= 1
d! ∑

τ∈Sd

τ ⋅ [(−1)inv(Γ,σ)σ ⋅ z(Γ)] by (4.3)

= (−1)inv(Γ,σ) ⋅ 1
d! ∑

τ∈Sd

τσ ⋅ z(Γ)

= (−1)inv(Γ,σ) ⋅ 1
d! ∑

τ∈Sd

τ ⋅ z(Γ)

= (−1)inv(Γ,σ) ⋅ z(Γ)∗ .

Therefore, z(Γ)∗ = 0 if and only if inv(Γ, σ) is odd for some σ ∈ stabSd (Γ). This
justifies our definition (3.3) of the set Gd

k for the symplectic group. ∎

5 Hilbert series via branching multiplicities

5.1 Combinatorial difficulty outside the stable range

Inside the stable range (1.1), one could scarcely hope for a nicer combinatorial
understanding of P(Ψ)G than that given by Algorithm 3.1: specifically, we can obtain
the dimension of each graded component Pd

k(Ψ)G simply by counting the graphs in
Gd

k . Outside the stable range, however, the graph-counting approach overshoots the
true dimension, due to the complicated linear dependencies arising among the images
φ ○ s(Γ).

Taking G = GLn , for example, it is straightforward to give a linear basis for
Pk(M≤n

d ) consisting of the degree-k monomials of width at most n; the term “width”
follows the sense of Sturmfels [Stu90], which we now summarize. A pair (T , U) of
semistandard Young tableaux with the same shape, each having (say) � columns, and
filled with entries from the set [d] ∶= {1, . . . , d}, can be viewed as a product of � deter-
minants in P(Md), as follows: the ith determinant is the minor of matrix coordinates
whose rows (resp. columns) are given by the ith column of T (resp. U). It follows
that the size of T (equivalently, of U) is the degree of the corresponding function in
P(Md). The set of all such pairs (often called bitableaux in the literature) thus yields
a linear basis for P(Md). Via the straightening law of [DRS74], it can be shown that
by restricting to those bitableaux with size k and at most n rows, one obtains a linear
basis forPk(M≤n

d ). Sturmfels showed that these somewhat complicated basis elements
(an example of standard monomials) can be replaced by certain ordinary monomials
in the matrix coordinates z i j , by applying the Robinson–Schensted–Knuth (RSK)
correspondence. The RSK correspondence, described by Knuth in [Knu70, Section
3], is a bijection between the set of bitableaux and the set Md(N). In particular, the
sum of the entries in the matrix RSK(T , U) equals the size of T; moreover, when
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the support of RSK(T , U) is viewed as a subset of the poset [d] × [d], the width of
that support (i.e., the size of the largest antichain) equals the number of rows in T.
By viewing RSK(T , U) as the degree matrix of a monomial in the variables z i j , we
can thus associate each bitableau to an ordinary monomial rather than to a standard
monomial. We show this below in an example where d = 5 and n ≥ 3:

In this way, a basis for Pk(M≤n
d ) is given by those ordinary monomials whose degree

matrices have entries summing to k and width at most n. Finally, by viewing the
degree matrix as an adjacency matrix, one can represent the basis monomials by
digraphs with k edges on d (labeled) vertices. Variations of the RSK correspondence
(see [Bur74] or [Con94]) can be used to obtain similar graphical bases for Pk(SM≤n

d )
and Pk(AM≤2n

d ), corresponding to the groups On and Sp2n .
The difficulty in the present paper, however, arises from our symmetrization,

whereby one “forgets” the vertex labels in a graph. In particular, when n < d and n < k,
it is no longer clear how to parametrize a basis for Pk(M≤n

d )Sd . After all, the sense of
“width” defining the labeled graphs is inherited from the poset of matrix coordinates,
and symmetrization (by its very nature) nullifies the partial order. Outside the stable
range, therefore (and with the exception of Section 5.3), we leave it as an open problem
to exhibit a combinatorial realization of a basis ofPd

k(Ψ)G . (We have had some success
in the two border cases n = d − 1 and n = d − 2, where it is possible to obtain a basis by
deleting those graphs containing certain subgraphs; but the choice of these subgraphs
is hardly canonical, and moreover this method seems to be hopeless when d − n > 2.)

In this section, we remedy this combinatorial defect by taking a representation-
theoretic approach. Note that our goal can be restated more elegantly as follows: we
wish to understand the bigraded Hilbert series of the invariant ring P(Ψ)G , namely

Hn(q, t) ∶= ∑
d ,k

(dimPd
k(Ψ)G) qd tk .

5.2 Branching multiplicities

The facts in this section are standard in any general reference on representation
theory, such as [GW09, Section 3.2]. A polynomial representation of GLd is a group
homomorphism ρ ∶ GLd �→ GLm for some m, such that the matrix coordinates
ρ(g)i j are polynomials in the entries of g ∈ GLd . (As is typical, we will also use
the term “representation” for the complex m-dimensional vector space on which
ρ(GLn) ⊂ GLm acts.) A partition is a finite, weakly decreasing sequence of positive
integers (parts), typically denoted by a lowercase Greek letter. If d is the sum of the
parts of λ, then we write λ ⊢ d. The number of parts of λ is called its length, denoted
by �(λ). We write (d) to denote the length-1 partition of size d. We also define the set

Par(k, m) ∶= {λ ∣ λ ⊢ k and �(λ) ≤ m}.

We will speak of the rows and columns of a partition, by which we mean the rows and
columns of its associated Young diagram.
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By the theorem of the highest weight, the irreducible polynomial representations
of GLd are indexed by the partitions λ such that �(λ) ≤ d. We write F λ

d for the
irreducible representation of GLd with highest weight λ. Now consider the restriction
of GLd to its subgroup Sd , realized as permutation matrices. If μ ⊢ d, we write Y μ

d
for the irreducible representation of Sd which corresponds to F μ

d via Schur–Weyl
duality. Upon restriction to Sd , the representation F λ

d decomposes into a direct sum
of irreducible representations Y μ

d ; we write

bλ
μ ∶= dim HomSd (Y μ

d , F λ
d )(5.1)

to denote the branching multiplicity of Y μ
d in F λ

d . Hence, we have

ResGLd
Sd

F λ
d ≅ ⊕

μ⊢d
bλ

μ Y μ
d .(5.2)

Theorem 5.1 Let bλ
μ be as in (5.1). Then we have the following, for all values of n, d , k:

(1) Let G = GLn . Then dimPd
k(Ψ)G = ∑λ ,μ (bλ

μ)
2, where λ ∈ Par(k, min{d , n}) and

μ ⊢ d.
(2) Let G = On . Then dimPd

k(Ψ)G = ∑
λ

bλ
(d), where λ ∈ Par(2k, min{d , n}) with all

row lengths even.
(3) Let G = Sp2n . Then dimPd

k(Ψ)G = ∑
λ

bλ
(d), where λ ∈ Par(2k, min{d , 2n}) with

all column lengths even.

Proof (general linear group) Recall from the two thick arrows in diagram (4.1) that
we have a linear isomorphism Pk(M≤n

d )Sd ≅ Pd
k(Ψ)G . Hence, it will suffice to show

that dimPk(M≤n
d )Sd equals the sum in the theorem.

The determinantal variety M≤n
d admits an action by GLd ×GLd , via (g , h) ⋅ X =

gXh−1, which extends to P(M≤n
d ) in the usual way. Weyl’s SFT (from Section 2.3) can

be applied to obtain the decomposition below [GW09, Theorem 12.2.12.3]:

Pk(M≤n
d ) ≅ ⊕

λ∈Par(k , min{d ,n})
(F λ

d )
∗ ⊗ F λ

d .

Restricting to Sd ×Sd , we use (5.2) to write

Pk(M≤n
d ) ≅⊕

λ

⎛
⎝⊕μ⊢d

bλ
μ Y μ

d
⎞
⎠

∗

⊗ (⊕
ν⊢d

bλ
ν Y ν

d )

≅ ⊕
λ ,μ ,ν

bλ
μbλ

ν (Y μ
d ⊗ Y ν

d ) ,

since the irreducible representations of Sd are self-dual. Further restricting to the
diagonal subgroup Δ(Sd) = {(σ , σ) ∣ σ ∈Sd}, we note that the Δ(Sd)-action is
just by conjugation on M≤n

d . Therefore, we are interested in the subspace of Δ(Sd)-
invariants:

Pk(M≤n
d )Sd ≅

⎡⎢⎢⎢⎢⎣
⊕

λ ,μ ,ν
bλ

μbλ
ν (Y μ

d ⊗ Y ν
d )
⎤⎥⎥⎥⎥⎦

Δ(Sd)

= ⊕
λ ,μ ,ν

bλ
μbλ

ν (Y μ
d ⊗ Y ν

d )
Δ(Sd) .
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But by Schur’s lemma, we have dim(Y μ
d ⊗ Y ν

d )Δ(Sd) = dim HomSd (Y μ
d , Y ν

d ) = δμ ,ν .
Therefore, we keep only the summands in which μ = ν, and we obtain

Pk(M≤n
d )Sd ≅⊕

λ ,μ
(bλ

μ)
2 (Y μ

d ⊗ Y μ
d )

Δ(Sd)

DEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEG
one-dimensional

,

which proves Part 1 of the theorem. ∎

Proof (orthogonal group) In the On-analogue of the diagram (4.1), we have
an isomorphism Pk(SM≤n

d )Sd ≅ Pd
k(Ψ)G . Hence, it will suffice to show that

dimPk(SM≤n
d )Sd equals the sum in the theorem.

The determinantal variety SM≤n
d admits an action by GLn , via g ⋅ X = g−T X g−1,

which extends to P(SM≤n
d ) in the usual way. The SFT can be applied to obtain the

decomposition below [GW09, Theorem 12.2.14.3], which we decompose under the
restriction to Sd using (5.2):

Pk(SM≤n
d ) ≅⊕

λ
F λ

d

≅⊕
λ
⊕
μ⊢d

bλ
μ Y μ

d ,

where the sum ranges over all λ ∈ Par(2k, min{d , n}) with even row lengths. The
partition (d) labels the one-dimensional trivial representation of Sd , and therefore
the Sd -invariant subspace above is the sum of the trivial representations Y(d)d in the
sum:

Pk(SM≤n
d )Sd ≅⊕

λ
bλ
(d) Y(d)d

H
one-dimensional

.

This proves Part 2 of the theorem. ∎

Proof (symplectic group) As in the previous parts, from the Sp2n-analogue of the
diagram (4.1), we have an isomorphismPk(AM≤2n

d )Sd ≅ Pd
k(Ψ)G . Hence, we will find

the dimension of Pk(AM≤2n
d )Sd .

The determinantal variety AM≤2n
d admits an action by GLd , just as in the On

case. The SFT can be applied to obtain the decomposition below [GW09, Theorem
12.2.15.3], which we decompose under the restriction to Sd , using (5.2):

Pk(AM≤2n
d ) ≅⊕

λ
F λ

d

≅⊕
λ
⊕
μ⊢d

bλ
μ Y μ

d ,

where the sum ranges over all λ ∈ Par(2k, min{d , 2n}) with even column lengths.
Therefore, as in Part 2, the Sd -invariant subspace decomposes as

Pk(AM≤2n
d )Sd ≅⊕

λ
bλ
(d) Y(d)d

H
one-dimensional

,

which proves Part 3 of the theorem. ∎
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Remark 5.2 The branching multiplicities bλ
μ can be easily programmed by following

the algorithm outlined in [HSW21, Section 2]. In [Sta99, Exercise 7.74], bλ
μ is inter-

preted as the multiplicity of F λ
n in F μ(S(V)), where F μ is the Schur functor. See also

[HSW21] for an elegant proof using seesaw reciprocity. It is possible to prove all three
parts of Theorem 5.1 with this approach, by directly decomposing Pd(Ψ) and then
restricting to the G-invariant subspace.

5.3 Bases when n = 1

The theme of this section – and the motivation for looking at branching multiplicities
– has been the extreme difficulty in parametrizing a linear basis for Pd

k(Ψ)G outside
the stable range. One exception to this is actually the farthest extreme from the stable
range, namely the case when dim V = 1. This occurs when G = GL1 or O1. In this case,
the quadratics r i j are monomials, and thus so too are the expressions s(Γ) and φ ○
s(Γ). It is fairly easy to see from the definitions that when G = GL1, we have

φ ○ s(Γ) =
d
∏
i=1

ĉindeg(i),outdeg(i) ,

where indeg and outdeg denote the in-degree and out-degree of a vertex of Γ. Likewise,
when G = O1, we have

φ ○ s(Γ) =
d
∏
i=1

ĉdeg(i) ,

where deg denotes the degree of a vertex. In other words, for both GL1 and O1, the
invariant φ ○ s(Γ) is determined by the degree sequence of Γ; hence, we can actually
describe a basis for each component Pd

k(Ψ)G by replacing the graphs in our method
by simpler combinatorial objects. For GL1, we can parametrize a basis by the sets
{(a1 , b1), . . . , (ad , bd)} with a i , b i ∈ N such that ∑i a i = ∑i b i = k. For O1, we can
parametrize a basis by the partitions of 2k with at most d parts.

For the symplectic group, the parameter n = 1 corresponds to Sp2 ≅ SL(2,C). Since
the defining representation V has dimension 2, a combinatorial parametrization of
linear bases seems to be much more difficult than for GL1 and O1 above. Nonetheless,
thanks to Theorem 5.1, we do have an especially nice expression for the dimensions in
terms of a single branching multiplicity:

dimPd
k(C[x , y])SL(2,C) = b(k ,k)

(d)

for all d and k. This is because when n = 1, there is just one element (k, k) in the set of
all partitions of 2k with length at most 2, and with even column lengths.

6 Examples

We have written Mathematica code to implement Algorithm 3.1, which we used to
compute the examples below. The code is included in the Appendix.
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6.1 The general linear group

For GLn , we have Ψ = P(V ⊕ V∗), which is isomorphic (as a GLn-module) to the
associated graded algebraC[x1 , . . . , xn , ∂1 , . . . , ∂n] of the Weyl algebra, i.e., the algebra
of polynomial-coefficient differential operators on P(V). In this context, x i is the
operator that multiplies by x i , and ∂ i is the differential operator ∂/∂x i . (Of course,
the Weyl algebra itself is not commutative, since ∂ i x i = x i ∂ i + 1, but here we are
interested only in the G-module structure.) Explicitly, we have span{x1 , . . . , xn} ≅ V∗
and span{∂1 , . . . , ∂n} ≅ V as GLn-modules. (See the detailed exposition in [Pro07,
p. 39].) Thus, Ψ is of interest because the GLn-orbits are precisely the equivalence
classes of linear partial differential equations with polynomial coefficients, under
linear change of coordinates. In turn, the invariants P(Ψ)GLn are those polynomial
functions constant on the GLn-orbits. For example (n = 3), if ω(x , y) is a polynomial,
then the two-dimensional time-dependent Schrödinger equation

−i ∂u
∂t

= ∂2u
∂x2 +

∂2u
∂y2 + ω(x , y)u

corresponds to the Weyl algebra element i∂3 + ∂2
1 + ∂2

2 + ω(x1 , x2) ∈ Ψ, upon setting
x = x1, y = x2, and t = x3. See also Example 6.5 below, in which we view vector fields
as elements of Ψ.

Remark 6.1 One might further hope that the invariants separate the orbits, but this is
not true: if the closures of two orbits intersect, then any invariant function is constant
on the union of those orbits. Therefore, the correct statement is the following [Wal17,
Theorem 3.20]: for any classical group G, the G-invariants separate the closed G-orbits
in Ψ, with respect to the following topology on Ψ. We have a filtration Ψ = ⋃�∈N Ψ�,
where Ψ� is the space of polynomials of degree at most �. A proper subset of Ψ is
defined to be closed if it is a Zariski-closed subset of Ψ� for some �. The G-invariant
polynomial functions on Ψ separate the closed G-orbits since G does not change
degree. The topological aspects of invariant theory are delicate; see the excellent source
[Sha94].

Example 6.2 (d = k = 1) Let Γ be the digraph consisting of a single loop on a single
vertex; then we can use Algorithm 3.1 to compute the invariant φ ○ s(Γ) by hand.
Clearly, AΓ = [1], and so s(Γ) = r11 = ∑n

�=1 y�1x�1. We have φ(x�1 y�1) = ĉε� ,ε� , where
ε� denotes the n-tuple whose �th component is 1 with 0’s elsewhere. Summing these
up, we obtain the invariant∑n

�=1 cε� ,ε� . (Note that in this case, the factorials are all 1! so
that ĉ is no different than c.) To make this more transparent, we write [xα ∂β] in place
of cα ,β , and obtain the invariant [x1∂1] + ⋅ ⋅ ⋅ + [xn ∂n].

Example 6.3 (n = d = k = 2) In this example, we will compute a basis for P2
2(Ψ)GL2 .

Since G = GL2, we write x and y in place of x1 and x2, so that Ψ = C[x , y, ∂x , ∂y]. As
in the previous example, we write coefficients as [xa yb ∂c

x ∂d
y] rather than c(a ,b),(c ,d).

Note that our parameters n = d = k = 2 lie in the stable range, and so there is a
one-to-one correspondence between G2

2 and our desired basis. There are six directed
graphs with two vertices and two edges, and thus #G2

2 = 6 = dimP2
2(Ψ)GL2 . In Table 1,
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Table 1: A basis for P2
2(Ψ)GL2 , computed using Algorithm 3.1.

we display each of these graphs, its adjacency matrix (up to simultaneous permutation
of rows and columns), and its corresponding basis element in P2

2(Ψ)GL2 .

Remark 6.4 We observe a general phenomenon from Table 1, which follows directly
from the definition of the umbral operator in (3.1). Let Γ ∈ Gd

k , and choose an adjacency
matrix AΓ for any vertex labeling. Then, in each term

cα1 ,β1 ⋅ ⋅ ⋅ cαd ,βd (α i , β i ∈ Nn)

of the corresponding invariant φ ○ s(Γ), the d factors cα i ,β i can be rearranged so that

∣α i ∣ = ith column sum of AΓ ,
∣β i ∣ = ith row sum of AΓ(6.1)

simultaneously for each i = 1, . . . , d.
Now recall that an element ψ ∈ Ψ is a vector field if it takes the form

ψ =
n
∑
i=1

f i(x) ∂ i

with each f i(x) ∈ C[x]. In this case, cα ,β(ψ) ≠ 0 implies that ∣β∣ = 1. By the observation
(6.1), then, φ ○ s(Γ) vanishes on ψ unless AΓ contains exactly one 1 in each row, with
0’s elsewhere; equivalently, every vertex in Γ has out-degree 1. For fixed d, each such
digraph can be regarded naturally as the equivalence class of a finite dynamical system
on a d-element set.
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Figure 1: The vector fields from Example 6.5.

Table 2: Nonvanishing quadratic invariants on the vector fields ψ and g ⋅ ψ from
Example 6.5.

Example 6.5 (Quadratic invariants on two-dimensional vector fields) Let G = GL2,
and define the vector field

ψ = (x2 + y2 + 2x y + 2x + 2y + 1) ∂x + (x2 + y2 − 2x y + 4x − 4y + 4) ∂y ,

which (since all coefficients are real) we depict in Figure 1a. Let g = [ 0 −2
1 0 ] ∈ G. Then

g ⋅ ψ = −( 1
2

x2 + 2y2 + 2x y + 4x + 8y + 8) ∂x + (
1
4

x2 + y2 − x y − x + 2y + 1) ∂y ,

which we depict in Figure 1b. We will evaluate the quadratic G-invariant functions at
both ψ and g ⋅ ψ. The only graphs in Table 1 that correspond to nonvanishing invariants
on ψ are the finite dynamical systems, presented in rows 1, 4, and 6. We compute these
invariants in Table 2.

6.2 The orthogonal group

Example 6.6 We consider the familiar example of conic sections in R
2. The general

form of a conic section is

Ax2 + Bx y + Cy2 + Dx + Ey + F = 0,
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Table 3: Invariants of conic sections under the action of O(2,R).

where A, . . . , F ∈ R. (We remark that On is defined over R, and its real points
constitute the subgroup O(n,R).) In Table 3, we list the well-known invariants on
conic sections, under the action of O(2,R); the right-hand column presents the
corresponding graphs from Algorithm 3.1, where G = O2 is the complexification of
O(2,R).

6.3 The symplectic group

Let n = 1. In this case, since G = Sp2 ≅ SL2, our Algorithm 3.1 actually finds
SL2-invariants on Ψ ≅ C[x , y]. Whereas early classical invariant theory focused
on SL2-invariants on binary m-forms, i.e., on the space Sm(C2) spanned by
{xm , xm−1 y, . . . , x ym−1 , ym}, our approach comprises the SL2-invariants on the direct
sum of all these spaces, namely the entire polynomial ring C[x , y] ≅ ⊕∞m=0 Sm(C2).

In [OS89], and subsequently in [Olv99, Chapter 7], Olver describes a graphical
method for invariants (and more generally, covariants) of binary forms, which can
be regarded as a special case of our Algorithm 3.1. Specifically, when G = Sp2 and Γ
is m-regular (i.e., every vertex has degree m), our corresponding invariant φ ○ s(Γ)
restricts to an invariant on the space of binary m-forms, which coincides (up to
a constant multiple) with the invariant obtained from the same graph in Olver’s
method. (Although Olver’s graphs are directed, reversing an arrow just multiplies the
corresponding covariant by −1.)

Remark 6.7 In the n = 1 case, our quadratic r i j = x1i x2 j − x2i x1 j is just the deter-
minant of the minor corresponding to columns i and j of a 2 × d matrix, i.e., a
Plücker coordinate. In classical invariant theory, this determinant is often denoted
by [i j], or more commonly by bracketed Greek letters, and historically has been
named a symbolic determinantal factor [GY10], a bracket factor [Olv99, Wey39], or
a homogenized root [KR84].
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Table 4: Fundamental invariants of the binary quadric, cubic, and quartic.

Example 6.8 (Invariants of binary forms) In Table 4, we list the well-known funda-
mental invariants of the binary quadric, cubic, and quartic (m = 2, 3, 4), along with
their corresponding graphs from Algorithm 3.1, up to a scale factor. In place of our
c notation, we write the coefficients as capital letters A, B, . . . in descending order of
degree in x. The symbol Δm denotes the discriminant of the binary m-form. In the case
of the quartic, we follow [Olv99, p. 29] in denoting the two fundamental invariants1 by
i and j; then the discriminant is Δ4 = i3 − 27 j2. Graphically, the product of invariants
corresponds to the union of their corresponding graphs. Note that the graphs in Table
4 are indeed m-regular, with the number of vertices giving the degree of the invariant
in the coefficients.

Example 6.9 In Olver’s method, for fixed m, a graph that is not m-regular corre-
sponds to a covariant on binary m-forms (i.e., an SL2-invariant polynomial in not
just the coefficients of the form, but also in the variables x and y). For us, however,
all graphs correspond to true invariants on C[x , y]. Consequently, certain syzygies
among Olver’s graphs do not carry over into our graphs, specifically Olver’s “Rule #2”;
see illustration (7.3) in [Olv99, p. 135]. As a specific example, take the following graph
Γ ∈ G3

4, which for Olver in [Olv99, p. 135] corresponds to the zero covariant on a binary
form of degree m ≥ 3:

For us, however, Γ corresponds to a nontrivial degree-3 invariant on C[x , y]:
φ ○ s(Γ) = 16c2

12c20 − 8c11c12c21 − 48c03c20c21 + 16c02c2
21 + 72c03c11c30 − 48c02c12c30,

where we have suppressed the parentheses around the ordered pairs in the subscripts.
Observe that the vertices of Γ have degrees 2, 3, and 3; this is reflected in the fact that
each term in the corresponding invariant takes the form cα cβ cγ , where α, β, γ ∈ N2

and

∣α∣ = 2, ∣β∣ = 3, ∣γ∣ = 3.

1In [GY10, p. 205], these invariants are denoted by I and J, while their multiples are written as i ∶= 2I
and j ∶= 6J.
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Appendix: Mathematica code

A.1 General linear group

(* DEFINITIONS *)

(* Below, "chat" stands for "c_hat." *)

chat[alpha_, beta_] := Times@@Factorial@alpha * Times@@Factorial@beta * c[alpha, beta];

r[i_, j_] := Sum[y[l, i] x[l, j], {l, n}];

(* The function "s" sends a d-by-d adjacency matrix A to a product of the r[i,j]. *)

s[A_] := Product[r[i, j]ˆA[[i, j]], {i, d}, {j, d}] // Expand;

phi[term_] := (term /. {x[i_, j_] -> 1, y[i_, j_] -> 1}) *

Product[chat[Table[Exponent[term, x[i, j]], {i, n}],

Table[Exponent[term, y[i, j]], {i, n}]], {j, d}];

(* The function "invar" sends an adjacency graph A to its corresponding invariant.

When n=1, then s(A) has only one term. *)

invar[A_] := If[n == 1 || Total[A, 2] == 0, phi@s@A, phi/@s@A];

(*BEGIN ALGORITHM HERE.*)

(* Input: n-value.

Input: the d-by-d adjacency matrix A of a directed graph.

Output: the graph and its associated invariant .*)

n = 2;

A = {{1,0}, {0,1}};

d = Length@A; i = invar@A;

{AdjacencyGraph[A, DirectedEdges -> True],

i /. c[list1_, list2_] :> Subscript[c, {list1, list2}]}

A.2 Orthogonal group

(* DEFINITIONS *)

chat[alpha_] := Times@@Factorial@alpha*c[alpha];

r[i_, j_] := Sum[x[l, i] x[l, j], {l, n}];

s[A_] := Product[r[i, j]ˆA[[i, j]], {i, d}, {j, i, d}] // Expand;
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phi[term_] := (term /. x[i_, j_] -> 1) *

Product[chat@Table[Exponent[term, x[i, j]], {i, n}], {j, d}];

invar[A_] :=

If[n == 1 || Total[PadLeft@A, 2] == 0, phi@s@PadLeft@A, phi/@s@PadLeft@A];

(* "TriToSym" returns a d-by-d symmetric matrix,

given the upper-triangular entries "upper"

as a list of lists of lengths d, d-1, ... , 1. *)

TriToSym[upper_] :=

PadLeft[upper] + Transpose[UpperTriangularize[PadLeft[upper], 1]];

(* BEGIN ALGORITHM HERE *)

(* Input: n-value.

Input: the upper-triangular entries U of a symmetric d-by-d adjacency matrix.

Output: the graph and its associated invariant .*)

n = 2;

U = {{1, 2, 3}, {4, 5}, {6}};

d = Length@U; i = invar@U;

{AdjacencyGraph@TriToSym@U, i /. c[list_] :> Subscript[c, list]}

A.3 Symplectic group

(* DEFINITIONS *)

chat[alpha_] := Times@@Factorial@alpha*c[alpha];

r[i_, j_] := Sum[x[l + n, i] x[l, j] - x[l, i] x[l + n, j], {l, n}];

s[A_] := Product[r[i, j]ˆA[[i, j]], {i, Length@A - 1}, {j, i + 1, Length@A}] // Expand;

phi[term_] := (term /. x[i_, j_] -> 1) *

Product[chat@Table[Exponent[term, x[i, j]], {i, 2 n}], {j, d}];

(* "StrictTriToSkew" returns a d-by-d skew-symmetric matrix,

given the strictly upper-triangular entries "upper"

as a list of lists of lengths d-1, ..., 1. *)

StrictTriToTri[upper_] := PadLeft[Append[Prepend[0] /@ upper, {0}]];

StrictTriToSkew[upper_] := StrictTriToTri@upper - Transpose@StrictTriToTri@upper;

invar[upper_] :=

If[Total[upper, 2] == 0, phi@s@StrictTriToSkew@upper, phi/@s@StrictTriToSkew@upper];
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(*BEGIN ALGORITHM HERE *)

(* Input: n-value.

Input: the strictly upper-triangular entries U of a d-by-d adjacency matrix.

Output: the graph and its associated invariant. *)

n = 1;

U = {{2}};

d = Length@U + 1; i = invar@U;

{AdjacencyGraph[UpperTriangularize@StrictTriToSkew@U +

Transpose[UpperTriangularize@StrictTriToSkew@U]],

i /. c[list_] :> Subscript[c, list]}
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