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Abstract

Here we discuss the stability and convergence of a quadrature method for Symm's
integral equation on an open smooth arc. The method is an adaptation of an
approach considered by Sloan and Burn for closed curves. Before applying the
quadrature scheme, we use a cosine substitution to remove the endpoint singularity
of the solution. The family of methods includes schemes with any order O(hp) of
convergence.

1. Introduction

Let F be a smooth open arc in the plane. We consider the numerical solution
of the integral equation

~Jv{y)log\x-y\dsy = g(x), x e I\ (1.1)

Equation (1.1) arises for example in electrostatics, fluid dynamics and in
simulation of cracks. Computationally efficient quadrature methods for the
solution of (1.1) have recently been introduced and analysed in the case of a
closed curve. In [13] Sloan and Burn introduced a family of "unconventional"
quadrature methods. This approach was further developed and analysed by
Saranen and Sloan [10]. A different quadrature method for a closed curve,
involving subtraction of the singularity, was analysed by Saranen in [9]. On
the other hand, quadrature methods for Cauchy-singular integral equations
on open curves were investigated by Rathsfeld [8], by Prossdorf and Rathsfeld
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402 S. Prossdorf, J. Saranen and I. H. Sloan [2]

[5], and by Prossdorf and Sloan [7]. For some applications of (1.1), see e.g.
[2].

Here we propose a quadrature method which is an adaptation of the
quadrature method introduced by Sloan and Burn [13] for the closed-curve
case. To be more precise, the quadrature method is here applied after the
well-known cosine substitution. The cosine substitution was introduced al-
ready by Multhopp (1938) in [4] for the airfoil equation of Prandtl, see also
[6, Section 3.4] and [11],[12],[16]. For Symm's equation (1.1) it was recently
used by Yan and Sloan in [ 17]. It is well known that even for a smooth right-
hand side g the solution v of (1.1) may have the singularity O{\x-c\~x/2)
at the endpoint c of the arc F . The cosine substitution removes this bad
behaviour of the solution and therefore enables us to construct numerical
schemes with good stability and convergence properties. As in the case of a
smooth closed curve (see [10],[13]), the family of quadrature methods in this
paper includes schemes of arbitrarily high, but fixed order O{hp) of conver-
gence. In particular, we describe explicitly a simple method (see Example
4.1) which is stable and has the order O(h3) of convergence; the discretisa-
tion parameter h is inversely proportional to the number of the meshpoints
on T.

The cosine substitution has already been used for numerical solution of
(1.1) by Atkinson and Sloan in [1], by Joe and Yan in [3], and by Sloan and
Stephan in [15]. Atkinson and Sloan discuss a completely discrete method
which is based on a further discretisation of the Galerkin method with trigo-
nometric trial functions. Joe and Yan, and Sloan and Stephan, analyse collo-
cation methods, but only in the case of an open interval instead of a general
arc. Other methods were described by Costabel et al. in [2] and by Sloan
and Spence in [14]. All in all, from the above articles only the work [1] of
Atkinson and Sloan (in addition to our paper) gives a fully discrete system
of equations for a general open arc. Therefore we compare our result to that
of [1] in some detail in Section 4.

2. Preliminaries

For the convenience of the reader, we use the notations of Yan and Sloan
[17]. We assume that the arc F has the parametrisation

K2 - 1 < £ < 1 , (2.1)
such that d; ^ v(£,) is infinitely differentiable with \v'(£)\ > 0, - 1 < £ <
1. As the only restriction on generality, we impose the condition that the
capacity of the arc F differs from one. By this assumption (1.1) is uniquely
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solvable. For a detailed discussion of the capacity we refer to Yan and Sloan
[17]. We apply the cosine transformation given by £ = cos t, 0 < t <n, and
define a : [0, n] -» F by a(t) — v(cost). Now (1.1) becomes

- i y u ( T ) log |a (0-a(T) |</T = / ( / ) , 0<t<n, (2.2)

where
( u(t)=v(a(t))W'(cost)\\ sint\,
I f{t) = g(a(t)). l ' '

By the formulae above, the functions a(i), u(t) and f(t) may be considered
as 2n-periodic even functions defined on the whole real line R. For the
following, it is convenient to consider (2.2) as an integral equation for 2n-
periodic even functions u and / in the form

-n<t<n, (2.4)

where

(Leu)(t) = -^J* u(x)\o%\a(t)-a(x)\dx, -n<t<n. (2.5)

For the equivalence of (2.2) and (2.4), it is sufficient to observe that the kernel
function

- i log | f l (0-a(T) |

is also 27r-periodic and even with respect to both the arguments t and x.
In our analysis of the numerical method, we shall make use of the decom-

position
Leu = Aeu + Beu, (2.6)

with
1 f* - l

(Aeu)(t) = -Y~ M(r)log[2e \cost-cosx\]dx (2.7)

and

(Beu)(t)= f u(x)be(t,x)dx, (2.8)
J-n

e a(t)-a(x)
. , t ^ -x, x (mod 2n),
2 cos t - cos x ' ,~ Q\

-~— log 2 v ' ( c o s 0 > / = - T , T (mod 27r).

We notice that be(t, x) is a smooth function of / and x on R x R and is
2re-periodic and even with respect to each variable, i.e. be e C^ f ( I x R ) .
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LEMMA 2.1. If u is even then

(Aeu){t) = -± r«(T)log
71 J-n

PROOF. Since

it follows from (2.7) that

dx.

[4]

(2.10)

o . t + X . X - t
cos t - cos T = 2 sin —— sin —z—

(Aeu)(t)= -±-J\(x)log 4e
- l

sin

-1/2 .
? sin

t + X . t - X

2- sin —

dx
2e-'/2sin

2
t-x dx.

On making the substitution T = -x in the first integral and then using the
fact that u is even, the result follows immediately.

The operator Ae admits a canonical continuation A to the whole space
of L2-functions on [-n, n], defined by

dx. (2.11)

The operator A can be identified with Symm's integral operator on the circle
with the radius p = e~1^2. The aforementioned fact that the operators Ae

and A coincide in the space of the 27r-periodic even functions provides
the crucial point of our analysis (as indeed it does for most or all of the
methods which employ the cosine transformation). More precisely, in the
case where the arc T is the interval [-2e~l, 2e~l], our method turns out
to be equivalent to the method of Sloan and Burn [13] for the circle with the
radius p = e~1/2 .

In the following, the general case of the operator Le will be reduced to
the case Le = Ae by using a perturbation argument.

The equation (2.4) will be considered in Sobolev spaces of 27r-periodic
even functions. These spaces Hs

e , S G R , consist of 27r-periodic even func-
tions u (more precisely, distributions)

u(t) =

satisfying

<00,

(2.12)

(2.13)
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where

± fu{t)e-imtdt. (2.14)V ' y/lUL.

For u G Hs
e there is also the cosine type representation

12 ' °°
(2.15)

with the Fourier cosine coefficients uc(m) denned by

uc(m) = J- r u(t) cos mt dt. (2.16)
V n Jo

It is easily seen that u(m) = uc{m) for u e Hs
e because u is even. The

norm in Hs
e can therefore be expressed alternatively as

The usual Sobolev spaces Hs of 27t-periodic functions on R and the corre-
sponding norms are denned by the relations (2.12)—(2.14) without the restric-
tion that the distribution u is even. By our assumption on F , the operator
Le defines an isomorphism Le : Hs

e -» Hs
e
+X for all s € R, see Yan and

Sloan [17].

3. Description of the method

Our numerical method for the approximate solution of the equation

(Leu)(t) = f(t), -n<t<n (3.1)

(with / and u even functions) is closely related to the method proposed
by Sloan and Burn in [13]. The method yields a fully discretised system
of equations, where the unknowns are approximations of the solution u(t)
at the nodal points of a uniform mesh. Our method consists of a suitable
discretisation of a certain Petrov-Galerkin approximation.

First we define a partition of the interval / = [—n, n]. For this let TV —
2L + 1, L > 1, so that N is an odd integer. We define the uniform mesh

{<,}" o by
tj = -n + jh, 0<j<N, (3.2)

with the mesh parameter h = 2n/N.
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Next we introduce the trapezoidal approximation Le h of the operator
Le, defined by

{Lehu){t) = -±-Y^'\o%\a{t)-a{tj)\u{tj). (3.3)

The notation 5Z" i° (3.3) means

V*" — l( V*
j=0 j=\

a widely used convention. In our Petrov-Galerkin method we use cosine
functions as trial functions. First let T be the finite-dimensional space of
all trigonometric polynomials of degree < L, that is

cne
int: cn G C i . (3.4)

\ -L J
The space Te of cosine functions is defined by

T* = \v(t) = Ytancosnt:an€c\. (3.5)
I 71=0 J

Note that the space T* can be characterised as the "even part" of Th , i.e.
the function v belongs to Th

e if and only if v is even and v e Th . This
property is one of the crucial points in our approach. Correspondingly, as
test functions we use "even parts" of the usual 2n-periodic spline spaces Srf .
To be more precise, we define

Sd = {v : K-> C; v is 2re-periodic, v\{t r )€&>d ,v € Cd~X), (3.6)

where &d is the space of polynomials of degree d, and decompose (direct
sum)

where
sf = {v G Sd : v is even}, (3.8)

^ = {v G S4 : v is odd}. (3.9)

It is easy to see that the decomposition (3.7) really exists. Furthermore, the
spaces in (3.7) have the dimensions

dimS^ = N, dimS? = L + 1, dimS? = L.
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FIGURE 1

FIGURE 2

For our testspace we choose Sd
e . (Observe that the spaces Th

e and Sd
e have

the same dimension.) For the practical implementation of the method we
need a concrete set of basis functions in Sd . Let us illustrate this point in
the case of the piecewise linear continuous functions. Let v. € Sl be the
usual hat-functions (Courant's functions) satisfying

The space 5e' has a basis {v. e}^ given by

Vj,e = Vj+VN-j> 1<J<L,

V0,e = V0

and the space S^ has a basis {Vj 0}\, where

v- 0 = v.-vN_-, \<j<L. (3-12)

Since {VJ}Q~1 is a basis of Si, the decomposition (3.7) is also proved. For
L = 2, the graphs of the functions u, e and v 0 are shown in the Figures
1 and 2.

Our method is denned as a full discretisation of the following Petrov-
Galerkin method: find uh e 71* with

(Leuh,v) = (f,v), veSd
e. (3.13)

To carry out the discretisation, we replace the operator Le by the operator
Le h and use a discrete inner product instead of the L2-inner product

{u,v)= I u{t)v{i)dt.
J-n

Some notations are needed. In the interval [-j, {], we fix a symmetric
quadrature rule

M

(3.14)
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wi th t h e p o i n t s ijj such tha t 0 < ij{ < ••• < ijM < ^ a n d wi th the weights

Wj satisfying

M

E™, = 1' wj>°> 1<J<M. (3.15)
7=1

The discrete inner product (M, v)h is given by

h h (3.16)

where Qh is the composite quadrature rule for the interval [-n, n],

N-l M

Qh(f) ••= h E E wM«k + i + 1j)h - ») + f((k + \ - tij)h - n)].
k=0 j=\

Because the basic rule Q(f) in (3.14) is symmetric, we observe that the
composite rule Qh (/) is symmetric with respect to the origin t = 0. More
precisely, Qh{f) is of the form (with a certain integer P)

Qhif) -
 h E *WT/) + /(-T/)) (3-17)

1=1

where O ^ T ^ T I , 1 <l <P.
Now, our discretised method is defined as follows: find uh € Te such that

We briefly describe the matrix equation corresponding to (3.18). Having
choosen a basis vk e , 0 < k < L, of 5^ , we find that (3.18) is equivalent
to the (L + 1) x (L + 1) system of equations

2L+1

j=L+\

where

akj = ~

and where the asterisk in (3.19) indicates that the last term of the sum is
to be halved. In deriving (3.20), (3.21) we have used the fact that all the
functions appearing in (3.18) are even.
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REMARK 3.1. It is worth pointing out that (3.18) really is a quadrature method.
Namely, consider the quadrature method: find the values Uj, L + 1 < j <
2L + 1 such that

2L+1
kjuj = fk> 0<k<L, (3.22)

where the unknowns Uj can be considered as approximations Uj ^ u(tj).
However (3.18) is equivalent to (3.22), since the interpolation problem: for
given numbers Uj, L+l<j<2L+l, find uh e Th

e such that

uh(tj) = Uj, L+l<j<2L+l, (3.23)

is uniquely solvable. The solution uh of (3.23) is given by

L

"/,(') = 1*0 + X X cos"'' -n<t^n> ( 3 - 2 4 )

where
i+i

l). (3.25)

REMARK 3.2. Our analysis in Sections 4 and 5 will show (under some addi-
tional assumptions on the quadrature rule Q(f) that the problem (3.18) is
uniquely solvable if the mesh parameter h is small enough. Thus, for small
h, we have the unique solvability for the quadrature method (3.22) as well.

REMARK 3.3. The use of the cosine interpolation, described by (3.23)-(3.25),
which in effect extends (3.22) to (3.18), is a theoretical tool which, besides
the unique solvability, yields also stability results and convergence estimates
for the error.

4. A special case

Here we consider the special case where the arc T is the interval [-2e~ ,
2e~l]. For this particular arc we have Le = Ae and Le h = Ae h , where

h N a
(Aehu)(t) = -£-J2"log[2e-l\cost-cost fiuitj). (4.1)

Problem (3.18) now becomes
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We are going to show that this problem is equivalent to the problem

uheTk:(Ahuh,v)h = (f,v)h, v e s", (4.3)

assuming that / is an even function. In (4.3) the operator Ah is the trape-
zoidal approximation of the operator A given in (2.11), that is

7=0

(4.4)

Observe that the function {Ahu){t) is continuous for t ^ t,. Now, let
C2n e(BL) and C2n 0 (E) , be the space of all continuous 27t-periodic even
and odd functions respectively on K.

We shall need

LEMMA 4.1. The following assertions are true:

(i) Ahu is even, if u e C2jt><?(R),
(ii) Ahu is odd, if u € C2n '0(R),

(iii) Ahu = Ae<hu,ifueC2K<e(R).

PROOF. We use the convention
L L

;=0 j=\

By the symmetry property tN_j — —tj of our mesh, we have for even func-
tions u

h L i
(Aehu)(t) = - - ^'logl^-'lcosr-cos^lM^.). (4.5)

;=o

For the function (Ahu)(t), we may split the sum in (4.4) into two terms

(Ahu)(t) = - |
j=o

2*"* sin

- ^ f^'log 2e~l sin CA^-) I u(-tj). (4.6)

If u e C2jte(R), we thus obtain

(Ahu){t) = - £ ^ sin sin (4.7)
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Assertion (iii) follows from (4.5), (4.7) by the formula

sin a • sinb = 5[cos(a - b) — cos(a + b)].

Assertions (i), (ii) can be seen by (4.6).
Now we are able to prove

THEOREM 4.1. Assume that the problem (4.3) is uniquely solvable and that
f e Cln e{R). Then the problems (4.2) and (4.3) are equivalent.

PROOF. By Lemma 4.1 (iii), the problem (4.2) can be written as

uh£Th
e:{Ahuh,v)h = {f,v)h, vzS?. (4.8)

Since N is an odd integer, we can write the space Th (analogously with
(3.7)) as the direct sum Th = Th

e+Th
0 , where Th

0 = {u € Th : u is odd} . If
uh£ T , v G 5 , we correspondingly write

u U + U U ^ T U ^ T

If we have an even function u and an odd function v , then the symmetry
property of the rule Qh in (3.17) yields

(and similarly (v, u)h = 0 ) . By Lemma 4.1, we thus have

for all uhe T ,veS . Hence we obtain

(AhUh ' V)h = (AkUh,e>Ve)h + (AhUh,o ' Vo)h (4-10)

for all uh e Th, v e Sd.
Now, if uh £T* is a solution of (4.8) then uh e — uh and uh 0 = 0, so

by (4.10)

(AhUh ' V)h = (AhUh ' Ve)h = ( / • Ve)h = ( / ' V)h

for all v e Sd . Thus uh is also a solution of the problem (4.3).

Conversely, suppose that uh 6 Th satisfies (4.3). Then we have by (4.10)

iAk«k.e> Ve\ + (MH,O'VO)H = if. «)* = (/. «.)* (4-")

for all v G S . By choosing v = v0, we find
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Now, combining (4.9) and (4.12) we obtain

(Ahuh,o>v)h=° ' « e ^ (4-13)

Since the problem (4.3) is assumed to be uniquely solvable, we conclude that
uh 0 — 0, and therefore uh = uh e e T* . In particular, uh is a solution of
(4.2).

Methods of the form (4.3) were studied by Sloan and Burn in [13]. These
authors consider the general case of the discrete inner product which is de-
fined by using the composite rule (similar to (3.16)) composed from the basic
quadrature rule

for the interval [0,1]. Here £/=i w
y = 1 > (Oj>0, and 0 < <!;, < • • • < £y <

1. The quadrature rule (3.14) becomes a special case of (4.14) if we take
/ = 2M and define

for the indices 1 <j <M. (Note that £M = £M+l if nx = 0.)
Now, referring to the terminology of [13], we say that the method (4.2) is

stable and of order p if and only if the related method (4.3) has these prop-
erties. By the convergence result of [13] for the circle and by the equivalence
of the methods (4.2) and (4.3), we obtain

THEOREM 4.2 (Interval). Assume that the arc T is the interval F = [-2e~l,
2e~l] and let u e Hs

e be the solution of(2A) (with Le = Ae). Moreover,
suppose that the method (4.2) is stable and of order p. Then, for all f e
C2n >£(M), there exists a unique solution uh e T* of the problem (4.2) and we
have the asymptotic error estimate

\\u-uh\\t<chs-'\\u\\s, (4.16)

if
-1 <t<s <t + p, s>-\. (4.17)

By Sobolev's embedding theorem we obtain for the maximum norm

COROLLARY 4.1. Assume that u e Hs
e with s > \ + e, where e > 0. Then

we have the pointwise estimate

lu-u^Kch (i ' lMlm i n { M i + £ ) + p }- (4-18)
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In approximating linear functional of u, error estimates with respect to
the Sobolev norms of the negative order are particularly useful. Therefore
we formulate separately the following result:

COROLLARY 4.2. With the assumptions of Theorem 4.2, the estimate

\\u - uh\\-i - chS+i IMI (4-19)

holds, provided
-j<s<p-l. (4.20)

EXAMPLE 4.1. As a concrete example of the quadrature methods in (4.2), we
can make the following choice:

M=\, *, = £, t//, = i . (4.21)

In terms of the quadrature rule (4.14) this corresponds to the values
Y *\ c i K 5 . . .^ 1 iA 99\

' S j g > *»2 (}> i 2 2" \ * /

By [13] it is known that the quadrature method (4.3) with (4.22) is stable
and of order p = 3 .

In Section 5 we are going to show that the above convergence results are
true also for the general open arc. Therefore we shall compare our result to
that of Atkinson and Sloan [1, Theorem 6] already at this point. Under the
assumption u € Hs

e with s > \ + e , where e > 0, Atkinson and Sloan find
an approximation uh e T* such that

I M - M J < chs~{i+t)\\u\\ . (4.23)

In particular, the convergence becomes arbitrarily high (in the powers of
h) if the solution u is smooth. By (4.18) we have an analogous result,
except that the convergence is limited to the order O(hp). On the other
hand, our method requires less smoothness of the exact solution in order
to be convergent (if the error is measured by suitable Sobolev norms). In
addition we can use the estimates (4.19), for example, in approximating the
corresponding potential outside of the arc. Thus if

4>(JC) = - ^ - / «(T)log|x - a{x)\dx (4.24)
2rt J-n

is the potential corresponding to the solution u, we have for the approximate
potential

-a{x)\dx (4.25)
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the estimate
\O(x)-Oh(x)\<chs+l\\u\\s, (4.26)

if - \ < s < p - 1, with c depending o n x .

5. The case of the general open arc

We begin with a lemma relating the integral operator

(Ku)(t)= f k{t,x)u(x)dx, te[-n,n], (5.1)
J-n

where k e C2n(M. x R) (i.e. k is continuous and 2;r-periodic with respect to
each variable), to its trapezoidal approximation

k{t,tj)u{tj), (5.2)

for the particular case in which u is a trigonometric polynomial in T .

LEMMA 5.1. Suppose k e C2n(E x K) is m-times continuously differentiable
with respect to its second variable, and that the corresponding derivative
k[m\t, T) is Holder continuous with respect to x with exponent X, 0 < X < 1.
Then the estimate

holds for all uh&Th .

PROOF (cf. [7, Lemma 1] and [6, Sections 2.3.1-2.3.2]). For / e C2n we
may define the trigonometric interpolation operator LN , with N = 2L+ 1,
by

LNf&Th, LNf(tj)=f(tj), 0<j<N.

Then it is easy to show that, for uhe Th , Khuh can be written as

(Khuh){t) = f LNx[k{t, x)]uh(x)dx, (5.3)
J—n

where LNz[k{t, x)] stands for the operator LN applied to k{t, x) with re-
spect to the second variable T . The result (5.3) follows from the easily
verified fact that the trapezoidal rule with spacing h = 2n/N = 2n/(2L + 1)
is exact for all trigonometric polynomials of degree < 2L: since
Lm[k{t, x)\uh{x) is a trigonometric polynomial of degree < 2L for each
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fixed value of t, the integral on the right of (5.3) is equal to its trapezoidal
approximation

N N
h £ " L N x [ k { t , tj)]uh(tj) = h Y^' k{t, tj)uh{tj),

;=o y=o

and so is equal to Khuh(t).
From (5.1) and (5.3) we now have

[K - Kh)uh{t) = f (k(t, T) - LNx[k{t, x)])uh{x)dx.
J-n

The Cauchy-Schwarz inequality then gives

•-KJu^Kmax f \k(t, x)-LNx[k(t, x)]\\uh(x)\dx
' J-n

where

eh :=max\\k(t,x)-LNz[k(t,

Here ||LAr||c_L2 stands for the norm of the operator LN : C —> L2, and
Eh{C; k(t, •)) is the error of best approximation of k(t, T) (with fixed t)
by trigonometric polynomials from T with respect to the uniform norm.
Now by Jackson's theorem, Eh(C; k(t, •)) = O(hm+X). Since, as is well
known, sup^HL^H^^ < oo, we have eh — O(hm+X), and the proof is
complete.

If k(t, x) is also differentiate with respect to its first variable t, then
similar results may be obtained for the derivatives of {K - Kh)uh . By pro-
ceeding in this way we may obtain the following result, which was already
found by Saranen and Sloan in [10].

LEMMA 5.2. Let k e C ~ e(K x R) . Then, for any s,teR and 8 > 0 , there

exists a constant C > 0 (independent of uh e T*) such that

\\{K-Kh)uh\\t<ChS\\uh\\s (5.4)

holds for all uheT* .

The approximation property (5.4) provides the essential tool to discuss the
case of the general open arc.
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THEOREM 5.1. Assume that F is a smooth open arc such that its capacity
differs from 1. Let u e Hs

£ be the solution of (2.4) and suppose the method
(4.2) is stable and of order p. Then, for all fe C2n e(R) and all h sufficiently

small, there exists a unique solution uh e T* of the problem (3.18) and we
have the asymptotic error estimate

if - 1 <t<s <t + p, s> - ± .

PROOF (cf. [10]). Assume initially that (3.18) has a solution uh . By writing
/ = Leu = (Ae + Be)u and

Le,H=Ae,H+Be,h>

(3.18) becomes

for all v e S* . By Theorem 4.2 we thus have

Now, the operator / + A~xBg: H'e —• H'e is an isomorphism, so we obtain

<c\\u-uh+A;l(Beu-BeJluh)\\t

+ c\\A;\Be-BeJl)uh\\t. (5.7)

Combining (5.6) and (5.7), we have

II" - uh\\t < chs-'\)u + A~\Beu - BeJiuh)\\s + c\\A~e\Be - BeJl)uh\\t

< chs-'(\\u\\s + \\A-lBe{u - uh)\\s + \\A-\Be - Beh)uh\\s)

+ c\\A-\Be-Bttk)uk\\r (5.8)

Since the operator Be is infinitely smoothing, we conclude that

\\A-e
lBe{u-uh)\\s<c\\u-uh\\_v (5.9)

Applying Lemma 5.2 to the operator Be with the kernel be e C ^ J l x i ) ,
we find for all 5 > 0

hs-'\\A-e\Be - Beh)uh\\s + \\Aji(Be - BeJl)uh\\t

< ch'Wu^ < chS{\\u\\_x + \\u - u JL , ) . (5.10)
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Choosing d > s - t and combining (5.8)—(5.10), we obtain

l l«-M/^c A*~'(IMI, + ll«-«*ll-i) ( 5 - n )
for all - 1 < t <s< t +p, s > - \ .

Taking t — -1, we have by (5.11), for small h

\\u-uh\\_x<chs+x\\u\\s. (5-12)

Inserting (5.12) back into (5.11), we have the inequality (5.5). Above we
have assumed that the solution uh e T* exists. But (5.5) with u replaced
by zero establishes the uniqueness of the solution for small h , and from this
the existence follows immediately.
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