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Abstract

A characterization is provided here for any normal partition of the set of idempotents of a
regular semigroup S. As a by-product of the method used, a new characterization of the
greatest congruence on S corresponding to a given normal partition of its idempotents is
obtained.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 M 10.

Introduction

Any congruence on a regular semigroup S induces a partition, called a normal
partition, of its set of idempotents Eg. In her doctoral dissertation, Feigenbaum
(1975) provided a characterization for any congruence on S and for any normal
partition of Eg. The aim here is to make use of the sandwich sets of Nambooripad
(1974) to obtain a simpler characterization of a normal partition of Eg. As a
by-product of the method used, an alternative characterization of the greatest
congruence on S corresponding to a given normal partition of Eg is obtained.

1. Definitions and preliminary results :
In all that follows let S denote a regular semigroup and let Eg be its set of
idempotents. For e,f€ Eg the sandwich set of e,f is
S(e,f) ={g€Eg; ge =g =fg,e8f = ¢f}.

For a€ S Ilet V(a) denote the set of inverses of a. The following lemma is taken
from Nambooripad (1974) and Clifford (1974).

LeMMA 1.1. Suppose e,f,h,kc Eg, a,be S, a’ €V(a) and b’ € V(b). Then
® SefN)#o;

(i) if e L h and f Rk then S(e,f) = S(h,k);

(iii) if geS(d'a,bb’) then agh = ab and b’'ga’ € V(ab).

In the light of (ii) and (iii) of the lemma, define S(a,b) = S(a’a,bb’) for any
a’'€V(a) and b’ e V(b).
110
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LemMA 1.2. Let 7 be a congruence on S, a,be S, a’ € V(a) and b’ € V(b).
() If areEg,, then S(a,a)< ar.
(1)) If as” b and b* = d'ab’aa’ then a’ ¥ b* and b* € V(b).

Proor, By Lemma 1.1(iii) a’S(q, @) a’ < V(a?). If ar = (a®) v then
S(a,a) = ad’ S(a,a)a’ac aV(a®)a<ar.

Thus (i) is verified. (ii) follows directly from the observation that a2 b if and only
if aa’bb’ = bb’, bb'aa’ = aa’ and a.Z b if and only if a’ab’b = a’a, b’ba’a = b'b.

Let 7 denote an equivalence relation on Eg and let P, = {ew; ecEg}. P, is a
normal partition of Eg if and only if there is a congruence 7 on S so that the
restriction of 7 to Eg is #. Then P, = {ern Eg; ec Eg}.

Feigenbaum (1975) proved that a partition P, of Eg is a normal partition if and
only if for any e,€Eg, x,,y;€S* where i = 1,...,n, so that x,(e,n)y,0 Eg# 0,
Xp(enm) YN Eg# 0 and x(e;m)y;0X544(e5017)¥ja# 0 for j=0,...,n~1, then
there exists e € Eg so that (xy(e,7) yoUXp(€, ) y,) N EgS e

We will consider a partition P, of Eg to be a partial groupoid under the partial
binary operation * defined by en* fr = g, e,f, g € Eg, if and only if

O#(em) (fm)n Egcsgm.

Define a partial operation by S on P by en® = g, e,g€ Eg, c€S, '€ ¥(c), if
and only if 0% ¢'(em) cn EgSgn.

A partition P, of Eg is an N-partition if and only if for each e,fe Eg, c€S and
¢’ € ¥(c) then

(1) emxfm2S(ef, ef) or (ew)(fm)n Eg = 0O and

(2) en®28(c’ec, c’ec) or c'(em)cn Eg = Q.

By Lemma 1.2(j) it can be seen that a normal partition of Eg is an N-partition.
The converse will be proved in the next section.

Given a partition P, of Eg define relations &#, and £, on S by

R, = {(a,b) e Sx S; (aa') m+(Bb") 7 = (bb')m,

(bb"ym*(aa’) 7 = (ad’) for some a’ € V(a) and b’ € V(b)}
and
%, ={(a,b)eSxS; (@a)ymx(b'b)7w = (da) =,

(b'byn*(a’'a)m = (b'b) = for some a’ € V(a) and b’ € V(b)}.
Note that a %, ad’ %, aa* and a %, a'a &, a* a for any &',a* € V(a).
LemMaA 1.3, Let P, be an N-partition of Eg and e,fe Eg. Then

() e, fe £, f1if and only if S(e,f)<em [fn) and S(f, )< fr [en];
(i) &#, and %, are transitive relations.
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ProOF. Suppose S(e,f)<ewr and S(f,e)<fw. Since fS(e,f)=S(e,f) and
eS(f,e) = S(f, e) then frxemr = er and en* fr = fmr 50 e X, f.

Conversely suppose e, f and peS(e,f). Choose e S(ef, ef), reS(g,p) and
teS(qp,qp). Note that by Lemma 1.1(iii), p € V(ef) and r € ¥(gp). By the definition
of sandwich sets we have pe =p =fp so plef) =pf, (¢f)p =ep and similarly
r(gp) =rp, (gp)r =gqr. So S(ef,¢f) = S(pf,ep) and S(qp,qp) = S(rp,qr). Hence
qpf=q = epq s0 eq = q, and then t = grt = eqrt = et. Note that epge and ep are
idempotents. Since e &, f we have by condition (1) that gr = en* fr = fr and then
pr = (fp)m = faxprw = qu*pmwr = tw. Hence (ep)m = em*pmw = em*tw = tw = pm.
So (epge) w = (ge) w = gm* ewr = frr*emr = en. But then

(epge)m = (ep) m*(ge) m = paxem = (pe)w = p.

Thus pr = en. Similarly S(f, e)<fm. Thus (i) is proved.

Assume a %, b, c. Then aa’ &, bb’ &, bb* %, cc’ for some a’ € V(a), b’,b* € V(b)
and ¢’'e¥(c). Choose peS(bb*,cc’), qeS(bb',p) and reS(ad’,q). By (i) then
pr = (bb*)m, qm = (bb')7 and rw = (aa’)w. Also cc’p=p, pg=¢q and gr=r so
cc’r=r. Hence (cc’)m*(aa’)m = (aa’)w and similarly (aa’)w*(cc’)m = (cc’)n.
Dually %, is transitive.

For a partition P, of Eg define a relation 5%, on S by %, = %Z,0n%,.

Note that if P, is a normal partition of Eg induced by a congruence = on S
then aZ,b, or a.%,b, or as#,b if and only if ar Zbr, or ar ¥ br, or ar H br
respectively.

LemMMA 1.4. Let P, be an N-partition of Eg, (e,f)en and c€S. Then ecH#, fc
and ce 3¢, cf.

PRrOOF. For some ¢’ € ¥(c) let g =cc’, heS(e,g) and keS(f,g). By Lemma
1.1(iii) we may write (ec)’ = c’he€ V(ec) and (fc)' = c'kfe V(fc). So ec(ec)’ = eh,
Je(fe) =fk, (ec)ec = c’hc and (fe)' (fc) = c’kec. We will prove that eh Z, fk and
c’he &, c'ke. The proof that ce 5%, ¢f is similar.

By condition (1), (eh)w = rm where re S(fh,fh). But gh=h and fg = fkg so
Jkgh(fh)'r = r = fkr for some (fh)’ € V(fh). Hence

(fk) w¥(eh) w = (fk) w* rm = (eh) .

Likewise (eh) m*(fk)w = (fk) = so eh &, fk.

Again by condition (1) (he)m = hm*em = hmw+*fr = sw where seS(hf, hf). So
(hg) 7 = (heg) w = (he) m* gm = swgm = twr where t€S(sg,sg). For (hf) e V(kf)
and (sg) € V(sg) we have s(hf)'hf = s = sf so

t=1(sg)'sg = 1(sg')sfg = t(sg) s kg = tkg.
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Thus (hg) 7 = ta¥(kg)w = (hg) w¥(kg)= and similarly (kg)w*(hg)7 = (kg)=.
We therefore have hg %, kg. Now choose p € S(hg, kg). By Lemma 1.3(i), p € (kg) .
Recalling that gh = h and g = ¢c’ it can be readily checked that ¢’pc € S(c’he,c’kc).
Using condition (2)

(c'ke)mw = (c'kge) m = (c'pc)m = (c'phge)m = (c'p(gh) gc) =
= (c'pc) mx(c’hc) m = (c'kc) mx(c"hc) .

Likewise (¢’hc) m¥(c’kc) m = (c’hc) w. Hence (c’he) &, (c'kc).

2. Normal partitions

In this section normal partitions of Eg will be characterized and the greatest
congruences associated with these partitions will be determined.

THEOREM 2.1. Let S be a regular semigroup and P, be an N-partition of Eg. Then
P, is a normal partition and p, = {(a,b) € £, ; for each c€ S, ca ¥, cb and ac 3£, bc}
is the greatest congruence on S that induces P,.

ProoF. Clearly p,, is symmetric, reflexive and compatible and by Lemma 1.3(ii)
it is transitive. So p, is a congruence on S. If (e, f) € m then clearly e 5, f and by
Lemma 1.4 (e,f) € p,. Conversely, if (e,f) € p, N Egx Eg then e %, f. But then by
Lemma 1.3(), S(e,f)<emnfrr so ew = frr. Thus P, is the normal partition of Eg
induced by p,,. Let 7 be a congruence on S that induces P,. If (@, b) € 7 then ar 5 br
in S/r and as noted before Lemma 1.4 then a 5%, b. Therefore p, 2.

Since a normal partition of Eg is an N-partition then:

COROLLARY 2.2. P, is an N-partition of Eg if and only if it is a normal partition
of Eg.

We can refine the description of p, by using the characterization of Hall (1973) of
the greatest idempotent separating congruence p on S. Using Lemma 1.2(ii),
Hall’s definition translates to the following:

= {(a,b)e #; for some [any] &’ € V(a), b’ € V(b) and each
idempotent e<aa’ then a’ea = a’ab’aa’eb}.

Note that if = is a congruence on S, and e, f€ Eg then er <fr in §/7 if and only
if (feytrZer L (ef)7 in S/7. Hence for a normal partition P,, define ew <fr if
and only if (fe) %, e.Z ,(ef).
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THEOREM 2.3, Let S be a regular semigroup and P, be a normal partition of Eg.
Then

pn = {(a,b) e £, for some [any] a’ € V(a), b’ € V(b) and each idempotent e
so that em < (aad’) 7 then im = jm where ic S(a’ea,a’ea) and

Jje€S(a'ab’aa’eb, a’ab’aa’eb)}.

PRrOOF. Let o, be the least congruence on § inducing P, and let p,, be the greatest
idempotent separating congruence on S/o,. Then (a,b)cp, if and only if
(ac,,bo,)Eu,. By the note preceding Lemma 1.4 we have as#,b if and only if
ac, # bo,. For ecEg, ac$S and a'e€V(a) we have en<(ad)w if and only
if es,<(aa’)o,. Now suppose ecEg, a,beS, as#,b, ' eV(a), b'eV(b) and
er<(aa’)w. Then (d'ea)o, € Eg,, . Also, since ao, # bo, it can be easily checked
that (a’ab’ad’eb) o, € Eg), . Hence by Lemma 1.2(i), (a’ea) o, = (a’ab’ad’eb) o, if
and only if S(a’ea, a’ea) and S(a’ab’aa’eb, a’ab’aa’eb) are in the same w-class. The
result follows from the definition of u,.
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