NORMAL PARTITIONS OF IDEMPOTENTS OF REGULAR SEMIGROUPS

P. G. TROTTER

(Received 8 June 1977; revised 14 October 1977) Communicated by T. E. Hall

Abstract

A characterization is provided here for any normal partition of the set of idempotents of a regular semigroup S. As a by-product of the method used, a new characterization of the greatest congruence on S corresponding to a given normal partition of its idempotents is obtained.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 M 10.

Introduction

Any congruence on a regular semigroup S induces a partition, called a *normal* partition, of its set of idempotents E_S . In her doctoral dissertation, Feigenbaum (1975) provided a characterization for any congruence on S and for any normal partition of E_S . The aim here is to make use of the sandwich sets of Nambooripad (1974) to obtain a simpler characterization of a normal partition of E_S . As a by-product of the method used, an alternative characterization of the greatest congruence on S corresponding to a given normal partition of E_S is obtained.

1. Definitions and preliminary results

In all that follows let S denote a regular semigroup and let E_S be its set of idempotents. For $e, f \in E_S$ the sandwich set of e, f is

$$S(e,f)=\{g\in E_S;\,ge=g=fg,egf=ef\}.$$

For $a \in S$ let V(a) denote the set of inverses of a. The following lemma is taken from Nambooripad (1974) and Clifford (1974).

LEMMA 1.1. Suppose $e, f, h, k \in E_S$, $a, b \in S$, $a' \in V(a)$ and $b' \in V(b)$. Then

- (i) $S(e,f) \neq \square$;
- (ii) if $e \mathcal{L} h$ and $f \mathcal{R} k$ then S(e,f) = S(h,k);
- (iii) if $g \in S(a'a, bb')$ then agb = ab and $b'ga' \in V(ab)$.

In the light of (ii) and (iii) of the lemma, define S(a,b) = S(a'a,bb') for any $a' \in V(a)$ and $b' \in V(b)$.

LEMMA 1.2. Let τ be a congruence on S, $a, b \in S$, $a' \in V(a)$ and $b' \in V(b)$.

- (i) If $a\tau \in E_{S/\tau}$ then $S(a,a) \subseteq a\tau$.
- (ii) If $a \mathcal{H} b$ and $b^* = a'ab'aa'$ then $a' \mathcal{H} b^*$ and $b^* \in V(b)$.

PROOF. By Lemma 1.1(iii) $a'S(a, a) a' \subseteq V(a^2)$. If $a\tau = (a^2) \tau$ then

$$S(a, a) = aa' S(a, a) a'a \subseteq aV(a^2) a \subseteq a\tau$$
.

Thus (i) is verified. (ii) follows directly from the observation that $a\mathcal{R}b$ if and only if aa'bb' = bb', bb'aa' = aa' and $a\mathcal{L}b$ if and only if a'ab'b = a'a, b'ba'a = b'b.

Let π denote an equivalence relation on E_S and let $P_{\pi} = \{e\pi; e \in E_S\}$. P_{π} is a normal partition of E_S if and only if there is a congruence τ on S so that the restriction of τ to E_S is π . Then $P_{\pi} = \{e\tau \cap E_S; e \in E_S\}$.

Feigenbaum (1975) proved that a partition P_n of E_S is a normal partition if and only if for any $e_i \in E_S$, $x_i, y_i \in S^1$ where i = 1, ..., n, so that $x_0(e_0 \pi) y_0 \cap E_S \neq \square$, $x_n(e_n \pi) y_n \cap E_S \neq \square$ and $x_j(e_j \pi) y_j \cap x_{j+1}(e_{j+1} \pi) y_{j+1} \neq \square$ for j = 0, ..., n-1, then there exists $e \in E_S$ so that $(x_0(e_0 \pi) y_0 \cup x_n(e_n \pi) y_n) \cap E_S \subseteq e\pi$.

We will consider a partition P_{π} of E_{S} to be a partial groupoid under the partial binary operation * defined by $e\pi*f\pi=g\pi$, $e,f,g\in E_{S}$, if and only if

$$\Box \neq (e\pi)(f\pi) \cap E_{\mathcal{B}} \subseteq g\pi$$
.

Define a partial operation by S on P by $e\pi^{c'} = g\pi$, $e, g \in E_S$, $c \in S$, $c' \in V(c)$, if and only if $\Box \neq c'(e\pi) c \cap E_S \subseteq g\pi$.

A partition P_{π} of $E_{\mathcal{S}}$ is an *N-partition* if and only if for each $e, f \in E_{\mathcal{S}}$, $c \in S$ and $c' \in V(c)$ then

- (i) $e\pi * f\pi \supseteq S(ef, ef)$ or $(e\pi)(f\pi) \cap E_S = \square$ and
- (2) $e\pi^{c'} \supseteq S(c'ec, c'ec)$ or $c'(e\pi)c \cap E_S = \square$.

By Lemma 1.2(i) it can be seen that a normal partition of $E_{\mathcal{S}}$ is an *N*-partition. The converse will be proved in the next section.

Given a partition P_n of E_S define relations \mathcal{R}_n and \mathcal{L}_n on S by

$$\mathscr{R}_{\pi} = \{(a,b) \in S \times S; (aa') \pi * (bb') \pi = (bb') \pi,$$

$$(bb') \pi * (aa') \pi = (aa') \pi$$
 for some $a' \in V(a)$ and $b' \in V(b)$

and

$$\mathscr{L}_{\pi} = \{(a,b) \in S \times S; (a'a) \pi * (b'b) \pi = (a'a) \pi,$$

$$(b'b)\pi*(a'a)\pi=(b'b)\pi$$
 for some $a'\in V(a)$ and $b'\in V(b)$.

Note that $a\mathcal{R}_n aa' \mathcal{R}_n aa^*$ and $a\mathcal{L}_n a'a \mathcal{L}_n a^*a$ for any $a', a^* \in V(a)$.

LEMMA 1.3. Let P_n be an N-partition of E_S and $e, f \in E_S$. Then

- (i) $e \mathcal{R}_{\pi} f [e \mathcal{L}_{\pi} f]$ if and only if $S(e, f) \subseteq e\pi [f\pi]$ and $S(f, e) \subseteq f\pi [e\pi]$;
- (ii) \mathcal{R}_{π} and \mathcal{L}_{π} are transitive relations.

PROOF. Suppose $S(e,f) \subseteq e\pi$ and $S(f,e) \subseteq f\pi$. Since fS(e,f) = S(e,f) and eS(f,e) = S(f,e) then $f\pi * e\pi = e\pi$ and $e\pi * f\pi = f\pi$ so $e\mathcal{R}_{\pi}f$.

Conversely suppose $e \mathcal{R}_{\pi} f$ and $p \in S(e,f)$. Choose $q \in S(ef,ef)$, $r \in S(q,p)$ and $t \in S(qp,qp)$. Note that by Lemma 1.1(iii), $p \in V(ef)$ and $r \in V(qp)$. By the definition of sandwich sets we have pe = p = fp so p(ef) = pf, (ef) p = ep and similarly r(qp) = rp, (qp) r = qr. So S(ef,ef) = S(pf,ep) and S(qp,qp) = S(rp,qr). Hence qpf = q = epq so eq = q, and then t = qrt = eqrt = et. Note that epqe and ep are idempotents. Since $e \mathcal{R}_{\pi} f$ we have by condition (1) that $q\pi = e\pi * f\pi = f\pi$ and then $p\pi = (fp)\pi = f\pi * p\pi = q\pi * p\pi = t\pi$. Hence $(ep)\pi = e\pi * p\pi = e\pi * t\pi = t\pi = p\pi$. So $(epqe)\pi = (qe)\pi = q\pi * e\pi = f\pi * e\pi = e\pi$. But then

$$(epqe)\pi = (ep)\pi * (qe)\pi = p\pi * e\pi = (pe)\pi = p\pi.$$

Thus $p\pi = e\pi$. Similarly $S(f, e) \subseteq f\pi$. Thus (i) is proved.

Assume $a\mathcal{R}_{\pi}b\mathcal{R}_{\pi}c$. Then $aa'\mathcal{R}_{\pi}bb'\mathcal{R}_{\pi}bb'\mathcal{R}_{\pi}cc'$ for some $a' \in V(a)$, b', $b^* \in V(b)$ and $c' \in V(c)$. Choose $p \in S(bb^*, cc')$, $q \in S(bb', p)$ and $r \in S(aa', q)$. By (i) then $p\pi = (bb^*)\pi$, $q\pi = (bb')\pi$ and $r\pi = (aa')\pi$. Also cc'p = p, pq = q and qr = r so cc'r = r. Hence $(cc')\pi*(aa')\pi = (aa')\pi$ and similarly $(aa')\pi*(cc')\pi = (cc')\pi$. Dually \mathcal{L}_{π} is transitive.

For a partition P_{π} of E_S define a relation \mathscr{H}_{π} on S by $\mathscr{H}_{\pi} = \mathscr{R}_{\pi} \cap \mathscr{L}_{\pi}$.

Note that if P_{π} is a normal partition of E_S induced by a congruence τ on S then $a\mathcal{R}_{\pi}b$, or $a\mathcal{L}_{\pi}b$, or $a\mathcal{H}_{\pi}b$ if and only if $a\tau\mathcal{R}b\tau$, or $a\tau\mathcal{L}b\tau$, or $a\tau\mathcal{L}b\tau$ respectively.

LEMMA 1.4. Let P_{π} be an N-partition of E_S , $(e,f) \in \pi$ and $c \in S$. Then $ec \mathcal{H}_{\pi} fc$ and $ce \mathcal{H}_{\pi} cf$.

PROOF. For some $c' \in V(c)$ let g = cc', $h \in S(e,g)$ and $k \in S(f,g)$. By Lemma 1.1(iii) we may write $(ec)' = c'he \in V(ec)$ and $(fc)' = c'kf \in V(fc)$. So ec(ec)' = eh, fc(fc)' = fk, (ec)'ec = c'hc and (fc)'(fc) = c'kc. We will prove that $eh \mathcal{R}_n fk$ and $c'hc \mathcal{L}_n c'kc$. The proof that $ce \mathcal{H}_n cf$ is similar.

By condition (1), $(eh)\pi = r\pi$ where $r \in S(fh, fh)$. But gh = h and fg = fkg so fkgh(fh)'r = r = fkr for some $(fh)' \in V(fh)$. Hence

$$(fk) \pi * (eh) \pi = (fk) \pi * r\pi = (eh) \pi.$$

Likewise $(eh) \pi * (fk) \pi = (fk) \pi$ so $eh \mathcal{R}_{\pi} fk$.

Again by condition (1) $(he)\pi = h\pi * e\pi = h\pi * f\pi = s\pi$ where $s \in S(hf, hf)$. So $(hg)\pi = (heg)\pi = (he)\pi * g\pi = s\pi * g\pi = t\pi$ where $t \in S(sg, sg)$. For $(hf)' \in V(hf)$ and $(sg)' \in V(sg)$ we have s(hf)'hf = s = sf so

$$t = t(sg)'sg = t(sg')sfg = t(sg)'sfkg = tkg.$$

Thus $(hg) \pi = t\pi * (kg) \pi = (hg) \pi * (kg) \pi$ and similarly $(kg) \pi * (hg) \pi = (kg) \pi$. We therefore have $hg \mathcal{L}_{\pi} kg$. Now choose $p \in S(hg, kg)$. By Lemma 1.3(i), $p \in (kg) \pi$. Recalling that gh = h and g = cc' it can be readily checked that $c'pc \in S(c'hc,c'kc)$. Using condition (2)

$$(c'kc)\pi = (c'kgc)\pi = (c'pc)\pi = (c'phgc)\pi = (c'p(gh)gc)\pi$$

= $(c'pc)\pi*(c'hc)\pi = (c'kc)\pi*(c'hc)\pi$.

Likewise $(c'hc)\pi*(c'kc)\pi=(c'hc)\pi$. Hence $(c'hc)\mathcal{L}_{\pi}(c'kc)$.

2. Normal partitions

In this section normal partitions of E_S will be characterized and the greatest congruences associated with these partitions will be determined.

THEOREM 2.1. Let S be a regular semigroup and P_{π} be an N-partition of E_S . Then P_{π} is a normal partition and $\rho_{\pi} = \{(a,b) \in \mathcal{H}_{\pi}; \text{ for each } c \in S, \text{ ca } \mathcal{H}_{\pi} \text{ cb and ac } \mathcal{H}_{\pi} \text{ bc}\}$ is the greatest congruence on S that induces P_{π} .

PROOF. Clearly ρ_{π} is symmetric, reflexive and compatible and by Lemma 1.3(ii) it is transitive. So ρ_{π} is a congruence on S. If $(e,f) \in \pi$ then clearly $e \mathcal{H}_{\pi} f$ and by Lemma 1.4 $(e,f) \in \rho_{\pi}$. Conversely, if $(e,f) \in \rho_{\pi} \cap E_S \times E_S$ then $e \mathcal{H}_{\pi} f$. But then by Lemma 1.3(i), $S(e,f) \subseteq e\pi \cap f\pi$ so $e\pi = f\pi$. Thus P_{π} is the normal partition of E_S induced by ρ_{π} . Let τ be a congruence on S that induces P_{π} . If $(a,b) \in \tau$ then $a\tau \mathcal{H} b\tau$ in S/τ and as noted before Lemma 1.4 then $a\mathcal{H}_{\pi} b$. Therefore $\rho_{\pi} \supseteq \tau$.

Since a normal partition of E_S is an *N-partition* then:

COROLLARY 2.2. P_{π} is an N-partition of E_{S} if and only if it is a normal partition of E_{S} .

We can refine the description of ρ_{π} by using the characterization of Hall (1973) of the greatest idempotent separating congruence μ on S. Using Lemma 1.2(ii), Hall's definition translates to the following:

$$\mu = \{(a,b) \in \mathcal{H}; \text{ for some [any] } a' \in V(a), b' \in V(b) \text{ and each}$$
 idempotent $e \leqslant aa' \text{ then } a'ea = a'ab'aa'eb\}.$

Note that if τ is a congruence on S, and $e, f \in E_S$ then $e\tau \leq f\tau$ in S/τ if and only if $(fe) \tau \Re e\tau \mathscr{L}(ef) \tau$ in S/τ . Hence for a normal partition P_{π} , define $e\pi \leq f\pi$ if and only if $(fe) \Re_{\pi} e \mathscr{L}_{\pi}(ef)$.

THEOREM 2.3. Let S be a regular semigroup and P_{π} be a normal partition of E_S . Then

 $\rho_{\pi} = \{(a,b) \in \mathcal{H}_{\pi}; \text{ for some [any] } a' \in V(a), b' \in V(b) \text{ and each idempotent } e$ so that $e\pi \leqslant (aa')\pi$ then $i\pi = j\pi$ where $i \in S(a'ea, a'ea)$ and $j \in S(a'ab'aa'eb, a'ab'aa'eb)\}.$

PROOF. Let σ_{π} be the least congruence on S inducing P_{π} and let μ_{π} be the greatest idempotent separating congruence on S/σ_{π} . Then $(a,b) \in \rho_{\pi}$ if and only if $(a\sigma_{\pi},b\sigma_{\pi}) \in \mu_{\pi}$. By the note preceding Lemma 1.4 we have $a \mathcal{H}_{\pi} b$ if and only if $a\sigma_{\pi} \mathcal{H} b\sigma_{\pi}$. For $e \in E_S$, $a \in S$ and $a' \in V(a)$ we have $e\pi \leqslant (aa')\pi$ if and only if $e\sigma_{\pi} \leqslant (aa')\sigma_{\pi}$. Now suppose $e \in E_S$, $a,b \in S$, $a \mathcal{H}_{\pi} b$, $a' \in V(a)$, $b' \in V(b)$ and $e\pi \leqslant (aa')\pi$. Then $(a'ea)\sigma_{\pi} \in E_{S/\sigma_{\pi}}$. Also, since $a\sigma_{\pi} \mathcal{H} b\sigma_{\pi}$ it can be easily checked that $(a'ab'aa'eb)\sigma_{\pi} \in E_{S/\sigma_{\pi}}$. Hence by Lemma 1.2(i), $(a'ea)\sigma_{\pi} = (a'ab'aa'eb)\sigma_{\pi}$ if and only if S(a'ea,a'ea) and S(a'ab'aa'eb,a'ab'aa'eb) are in the same π -class. The result follows from the definition of μ_{π} .

References

- A. H. Clifford (1974), The Fundamental Representation of a Regular Semigroup, Dept. of Maths., Tulane University, 65 pp.
- R. Feigenbaum (1975), Kernels of regular semigroup homomorphisms, Doctoral dissertation, University of South Carolina.
- T. E. Hall (1973), "On regular semigroups", J. Algebra 24, 1-24.
- K. S. S. Nambooripad (1974), "Structure of regular semigroups I", Semigroup Forum 9, 354-363.

Department of Mathematics University of Tasmania Hobart, Tasmania Australia