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Hypergraph removal with polynomial bounds
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Abstract

Given a fixed k-uniform hypergraph F, the F-removal lemma states that every hyper-
graph with few copies of F can be made F-free by the removal of few edges. Unfortunately,
for general F, the constants involved are given by incredibly fast-growing Ackermann-type
functions. It is thus natural to ask for which F one can prove removal lemmas with poly-
nomial bounds. One trivial case where such bounds can be obtained is when F is k-partite.
Alon proved that when k = 2 (i.e. when dealing with graphs), only bipartite graphs have a
polynomial removal lemma. Kohayakawa, Nagle and Rödl conjectured in 2002 that Alon’s
result can be extended to all k> 2, namely, that the only k-graphs F for which the hyper-
graph removal lemma has polynomial bounds are the trivial cases when F is k-partite. In this
paper we prove this conjecture.

2020 Mathematics Subject Classification: 05C35 (Primary)

1. Introduction

The hypergraph removal lemma is one of the most important results of extremal combina-
torics. It states that for every fixed integer k, k-uniform hypergraph (k-graph for short) F and
positive ε, there is δ = δ(F, ε)> 0 so that if G is an n-vertex k-graph with at least εnk edge-
disjoint

1
copies of F, then G contains δnv(F) copies of F. This lemma was first conjectured

by Erdős, Frankl and Rödl [5] as an alternative approach for proving Szemerédi’s theorem
[15]. The quest to proving this lemma, which involved the development of the hypergraph
extension of Szemerédi’s regularity lemma [16], took more than two decades, culminating
in several proofs, first by Gowers [8] and Rödl–Skokan–Nagle–Schacht [11, 13] and later

† During this work, LG was supported by SNSF grant 200021_196965.
‡ Supported in part by ISF Grant 1028/16, ERC Consolidator Grant 863438 and NSF-BSF Grant 20196.

1 The lemma’s assumption is sometimes stated as G being ε-far from F-freeness, meaning that one should
remove at least εnk edges to turn G into an F-free hypergraph. It is easy to see that up to constant factors,
this notion is equivalent to having εnk edge-disjoint copies of F.
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322 LIOR GISHBOLINER AND ASAF SHAPIRA

by Tao [17]. For the sake of brevity, we refer the reader to [12] for more background and
references on the subject.

While the hypergraph removal lemma has far-reaching qualitative applications, its main
drawback is that it supplies very weak quantitative bounds. Specifically, for a general k-
graph F, the function 1/δ(F, ε) grows like the kth Ackermann function. It is thus natural
to ask for which k-graphs F one can obtain more sensible bounds. Further motivation for
studying such questions comes from the area of graph property testing [7], where graph and
hypergraph removal lemmas are used to design fast randomised algorithms.

Suppose first that k = 2. In this case it is easy to see that if F is bipartite then δ(F, ε)
grows polynomially with ε. Indeed, if G has εn2 edge-disjoint copies of F then it must have
at least εn2 edges, which implies by the well-known Kővári–Sós–Turán theorem [10], that
G has at least poly(ε)nv(F) copies of F. In the seminal paper of Ruzsa and Szemerédi [14]
in which they proved the first version of the graph removal lemma, they also proved that
when F is the triangle K3, the removal lemma has a super-polynomial dependence on ε. A
highly influential result of Alon [1] completed the picture by extending the result of [14] to
all non-bipartite graphs F.

Moving now to general k> 2, it is natural to ask for which k-graphs the function δ(F, ε)
depends polynomially on ε. Let us say that in this case the F-removal lemma is polynomial. It
is easy to see that like in the case of graphs, the F-removal lemma is polynomial whenever F
is k-partite. This follows from Erdős’s [4] well-known hypergraph extension of the Kővári–
Sós–Turán theorem. Motivated by Alon’s result [1] mentioned above, Kohayakawa, Nagle
and Rödl [9] conjectured in 2002 that the F-removal lemma is polynomial if and only if
F is k-partite. They further proved that the F-removal lemma is not polynomial when F is
the complete k-graph on k + 1 vertices. Alon and the second author [2] proved that a more
general condition guarantees that the F-removal lemma is not polynomial, but fell short of
covering all non-k-partite k-graphs. In this paper we complete the picture, by fully resolving
the problem of Kohayakawa, Nagle and Rödl [9].

THEOREM 1. For every k-graph F, the F-removal lemma is polynomial if and only if F is
k-partite.

As a related remark, we note that for k ≥ 3, the analogous problem for the induced F-
removal lemma (that is, a characterisation of k-graphs for which the induced F-removal
lemma has polynomial bounds) was recently settled in [6], following a nearly-complete
characterisation given in [2].

Before proceeding, let us recall the notion of a core, which plays an important role in the
proof of Theorem 1. Recall that for a pair of k-graphs F1, F2, a homomorphism from F1 to F2

is a map ϕ : V(F1) → V(F2) such that for every e ∈ E(F1) it holds that {ϕ(x) : x ∈ e} ∈ E(F2).
The core of a k-graph F is the smallest (with respect to the number of vertices) subgraph
of F to which there is a homomorphism from F. It is not hard to show that the core of F is
unique up to isomorphism2. Also, note that the core of a k-graph F is a single edge if and

2 Indeed, suppose that F1, F2 are both cores of F. Then F1 is homomorphic to F2 (by taking a homomorphism
from F to F2 and restrincting it to V(F1)) and similarly F2 is homomorphic to F1. Also, by the minimality
of a core, both homomorphisms ϕ : F1 → F2 and ψ : F2 → F1 must be surjective. Indeed, if e.g. ϕ is not
surjective, then by composing ϕ with a homomorphism from F to F1, we get a homomorphism from F to a
proper subgraph of F2, a contradiction. So |V(F1)| = |V(F2)| and ϕ,ψ are in fact bijections. It follows that
F1, F2 are isomorphic.
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only if F is k-partite. In particular, if a k-graph is not k-partite, then neither is its core. We
say that F is a core if it is the core of itself.

Alon’s [1] approach relies on the fact that the core of every non-bipartite graph has a cycle.
It is then natural to try and prove Theorem 1 by finding analogous sub-structures in the core
of every non-k-partite k-graphs. Indeed, this was the approach taken in [2, 9]. The main
novelty in this paper, and what allows us to handle all cases of Theorem 1, is that instead of
directly inspecting the k-graph F, we study the properties of a certain graph associated with
F. More precisely, given a k-graph F = (V , E), we consider its 2-shadow, which is the graph
on the same vertex set V in which {u, v} is an edge if and only if u,v belong to some e ∈ E.
The proof of Theorem 1 relies on the two lemmas described below.

LEMMA 1·1. Suppose a k-graph F is a core and its 2-shadow contains an induced cycle of
length at least 4. Then the F-removal lemma is not polynomial.3

Note that this is a generalisation of Alon’s result mentioned above since the 2-shadow of
every non-bipartite graph F (which is of course F itself in this case) must contain a cycle.
Our second lemma is the following.

LEMMA 1·2. Suppose a k-graph F is a core and its 2-shadow contains a clique of size k + 1.
Then the F-removal lemma is not polynomial.

Note that this is a generalisation of the result of Kohayakawa, Nagle and Rödl [9] men-
tioned above since the 2-shadow of the complete k-graph on k + 1 vertices is a clique of size
k + 1.

The proofs of Lemmas 1·1 and 1·2 appear in Section 2, but let us first see why they
together allow us to handle all non-k-partite k-graphs, thus proving Theorem 1.

Proof of Theorem 1. The “if” part was discussed above. As for the “only if” part, suppose
F is a k-graph which is not k-partite and assume first that F is a core. Let G denote the 2-
shadow of F. If G contains an induced cycle of length at least 4, then the result follows from
Lemma 1·1. Suppose then that G contains no such cycle, implying that G is chordal. Since F
is not k-partite, G is not k-colourable. Since G is assumed to be chordal, and chordal graphs
are well-known to be perfect, this means that G has a clique of size k + 1. Hence, the result
follows from Lemma 1·2.

To prove the result when F is not necessarily a core, one just needs to observe that if F′
is the core of F, then (i) as noted earlier, F′ is not k-partite, and (ii) since the F′ removal
lemma is not polynomial (by the previous paragraph), then neither is the F-removal lemma
(see Claim 2·1 for the short proof of this fact).

2. Proofs of Lemmas 1.1 and 1.2

We start by introducing some recurring notions. Recall that the b-blowup of a k-graph
H = (V , E) is the k-graph obtained by replacing every vertex v ∈ V with a b-tuple of ver-
tices Sv, and then replacing every edge e = {v1, . . . , vk} ∈ E with all possible bk edges
Sv1 × Sv2 × · · · × Svk . Note that if H′ is the b-blowup of H, then the map sending Sv to v

3 The proof of this lemma also works if the 2-shadow of F contains a triangle x, y, z and |e ∩ {x, y, z}| ≤ 2
for every e ∈ E(F), but we will not require this; in fact, this case follows from Lemma 2·9.
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is a homomorphism from H′ to H. We will frequently refer to this as the natural homomor-
phism from H′ to H. We say that a k-graph H is homomorphic to a k-graph F if there is a
homomorphism from H to F. We first prove the following assertion, which was used in the
proof of Theorem 1.

CLAIM 2·1. Let F be a k-graph and let C be a subgraph of F so that F is homomorphic to
C. Then, if the C-removal lemma is not polynomial, then neither is the F-removal lemma.

Proof. Since the C-removal lemma is not polynomial, there is a function δ : (0, 1) → (0, 1)
such that 1/δ(ε) grows faster than any polynomial in 1/ε, and such that for every ε > 0
and large enough n there is an n-vertex k-graph H1 which contains a collection C of εnk

edge-disjoint copies of C but only δnv(C) copies of C altogether. Let H be the v(F)-blowup
of H1. Note that the v(F)-blowup of C contains a copy of F. Also, copies of F corre-
sponding to different copies of C from C are edge-disjoint. Hence, H has a collection
of εnk = ε(v(H)/v(F))k =�(ε · v(H)k) = ε′v(H)k edge-disjoint copies of F, for a suitable
ε′ =�(ε). Let us bound the total number of copies of F in H. Since C is a subgraph of
F, each copy of F must contain a copy of C. Let ϕ : V(H) → V(H1) be the natural homo-
morphism from H to H1 (as defined above). For each copy C′ of C in H, consider the
subgraph ϕ(C′) of H1. The number of copies C′ of C with v(ϕ(C′))< v(C) is at most
v(F)v(C) · O(nv(C)−1) ≤ δnv(C), provided that n is large enough. The number of copies C′
of C with ϕ(C′) ∼= C is at most v(F)v(C) · δnv(C) = O(δnv(C)), because H1 contains at most
δnv(C) copies of C. So in total, H contains at most O(δnv(C)) copies of C. This means that
H contains at most O(δnv(C)) · v(H)v(F)−v(C) = O(δ · v(H)v(F)) = δ′v(H)v(F) copies of F, for a
suitable δ′ = O(δ). Note that 1/δ′ is super-polynomial in 1/ε′. This shows that the F-removal
lemma is not polynomial.

Since the core of F satisfies the properties of C in the above claim, it indeed establishes
the assertion which we used when proving Theorem 1, namely that it suffices to prove the
theorem when F is a core.

It thus remains to prove Lemmas 1·1 and 1·2. We begin preparing these proofs with some
auxiliary lemmas. The following is a key property of cores that we will use in this section.

CLAIM 2·2. Let F be a core k-graph, let H be a k-graph, and let ϕ : H → F be a
homomorphism. Then for every copy F′ of F in H, the map ϕ|V(F′) is an isomorphism.

Proof. We first observe that every homomorphism from a core F to itself is an isomorphism.
Indeed, by definition, F is the core of itself, meaning that there is no homomorphism from
F to a subgraph F0 of F with V(F0) � V(F). Hence, every homomorphism from F to itself
is a bijection, and hence an isomorphism. The assertion of the claim now follows from the
fact that ϕ|V(F′) is a homomorphism from F′ (which is a copy of F) to F.

The following definition will play an important role in our proofs. Let F be a k-graph
on vertex-set [f ] and let G be an f -partite k-graph with sides V1, . . . , Vf . A canonical copy
of F in G is a copy consisting of vertices v1 ∈ V1, . . . , vf ∈ Vf in which vi plays the role of
i ∈ V(F) for each i = 1, . . . , f . Note that if G is homomorphic to F via the homomorphism
mapping Vi to i (for each i = 1, . . . , f ), and if furthermore F is a core, then every copy of F
in G is canonical; this follows from Claim 2·2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004125000155
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.110, on 23 Jun 2025 at 22:40:03, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004125000155
https://www.cambridge.org/core


Hypergraph removal with polynomial bounds 325

We now describe our approach for proving Lemma 1·1 (the approach for Lemma 1·2 is
similar). Let I ⊆ V(F) be a set of vertices so that the 2-shadow of F induced on I is a cycle
Ct, t ≥ 4. Then |I ∩ e| ≤ 2 for every e ∈ E(F). We first use a construction from [1], giving
a t-partite graph which consists of many edge-disjoint canonical copies of Ct, yet contains
only few canonical copies of Ct altogether. The second step is then to extend the graph
thus constructed into a k-graph containing many edge-disjoint copies of F yet few copies
of F. The following lemma will help us in performing this extension. For �≥ 1, two sets are
called �-disjoint if their intersection has size at most �− 1. Two subgraphs of a hypergraph
are called �-disjoint if their vertex-sets are �-disjoint. In what follows, when considering
an s-partite hypergraph with parts V1, . . . , Vs, we will refer to the edges as sets or s-tuples,
interchangeably. Moreover, we will use both set notation and s-tuple notation. For example,
for F ∈ V1 × . . .× Vs, we write F(i) for the i’th coordinate of F; and for F1, F2 ∈ V1 × . . .×
Vs, we write F1 ∩ F2 for the intersection of F1, F2 as sets.

LEMMA 2·3. Let r, s, k, �≥ 0 satisfy k ≥ � and r ≥ k − �. Let V1, . . . , Vs, Vs+1, . . . , Vs+r be
pairwise-disjoint sets of size n each. Let S ⊆ V1 × . . .× Vs be a family of �-disjoint sets.
Then there is a family F ⊆ V1 × . . .× Vs+r with the following properties:

(i) for every F ∈F it holds that F|V1×...×Vs ∈ S;

(ii) |F | =�r,s,k(|S|nk−�);
(iii) for every pair of distinct F1, F2 ∈F , if |F1 ∩ F2| ≥ k then

#{s + 1 ≤ i ≤ s + r : F1(i) = F2(i)} ≤ k − �− 1.

Proof. We construct the family F as follows. For each S ∈ S and each r-tuple A ∈ Vs+1 ×
. . .× Vs+r, add S ∪ A to F with probability 1/(Cnr−k+�) and independently, where C is a
large constant to be chosen later. (i) is satisfied by definition. Let us estimate the number of
pairs F1, F2 ∈F violating (iii); denote this number by B. We claim that

E[B] = Os,r,k

(
1

C2

)
· |S| · nk−�. (2.1)

To this end, suppose that F1, F2 ∈F violate (iii), and write F1 = S1 ∪ A1 and F2 = S2 ∪ A2,
where S1, S2 ∈F and A1, A2 ∈ Vs+1 × . . .× Vs+r. Suppose first that S1 = S2. Then there
are |S| choices for S1, S2. Also, to violate (iii), it must hold that |A1 ∩ A2| ≥ k − �. The
number of choices of A1, A2 ∈ Vs+1 × . . .× Vs+r with |A1 ∩ A2| ≥ k − � is at most nr ·( r

k−�
) · nr−k+�. Finally, the probability that F1, F2 ∈F is 1/(Cnr−k+�)2. Hence, the expected

number of violations of this type (i.e., with S1 = S2) is at most |S| · nr · ( r
k−�

) · nr−k+� ·
1/(Cnr−k+�)2 = Os,r,k

(
1/C2

) · |S| · nk−�.
Now consider the case that S1 �= S2, and put t: = |S1 ∩ S2|. As the sets in S are pairwise

�-disjoint, we have t ≤ �− 1. Also, the number of choices for S1, S2 ∈ S with |S1 ∩ S2| = t
is at most |S| · (s

t

) · n�−t, again using that the sets in S are pairwise �-disjoint. In order for
F1, F2 to violate (iii), we must have |A1 ∩ A2| ≥ k − t. The number of choices for A1, A2 ∈
Vs+1 × . . .× Vs+r with |A1 ∩ A2| ≥ k − t is at most nr · ( r

k−t

) · nr−k+t. Finally, as before, the
probability that F1, F2 ∈F is 1/(Cnr−k+�)2. Hence, the expected number of violations of
this type (i.e., with S1 �= S2) is at most
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�−1∑
t=0

[
|S| ·

(
s

t

)
· n�−t · nr ·

(
r

k − t

)
· nr−k+t ·

(
1

Cnr−k+�

)2
]

= Os,r,k

(
1

C2

)
· |S| · nk−�.

This proves (2·1). Now note that the expected size of F is |S| · nr · 1/Cnr−k+� = 1/C · |S| ·
nk−�. So by choosing C to be large enough (as a function of s,r,k), we can guarantee that
E[|F | − B] ≥ 1/2C · |S| · nk−�. By fixing such a choice of F and deleting one set F ∈F
from each violation, we get the required conclusion.

The following well-known fact is an easy corollary of Lemma 2·3.

LEMMA 2·4. Let 1 ≤ k ≤ r, and let V1, . . . , Vr be pairwise-disjoint sets of size n each. Then
there is F ⊆ V1 × . . .× Vr, |F | ≥�(nk), such that the r-sets in F are k-disjoint.

Proof. Apply Lemma 2·3 with s = �= 0 and S = {∅}.
The next lemma shows why constructing a k-graph with many edge-disjoint copies of F

but at most nv(F)−1 copies of F in total can be boosted to prove Lemmas 1·1 and 1·2. The
lemma makes crucial use of the fact that F is a core.

LEMMA 2·5. Let F be a core k-graph, and suppose that for every δ > 0 and large enough n,
there is an n-vertex k-graph H which is homomorphic to F, has a collection of at least nk−δ
edge-disjoint copies of F, but has at most nv(F)−1 copies of F altogether. Then the F-removal
lemma is not polynomial.

Proof. Let ε > 0 and let n be large enough. Let m be the largest integer satisfying mδ ≤ 1/ε,
so that m ≥ (1/ε)1/(2δ), say. Let H be the k-graph guaranteed to exist by the assumption of
the lemma, but with m in place of n. So H has m vertices, is homomorphic to F, contains a
collection F of mk−δ ≥ εmk edge-disjoint copies of F, but has at most mv(F)−1 copies of F
altogether.

Let G be the n/m-blowup of H. Each F′ ∈F gives rise to�((n/m)k) k-disjoint (and hence
also edge-disjoint) copies of F in G, by Lemma 2·4 applied with r = v(F) and with n/m in
place of n. Copies arising from different F′

1, F′
2 ∈F are edge-disjoint, because the copies in

F are edge-disjoint. Altogether, this gives a collection of εmk ·�((n/m)k) =�(εnk) edge-
disjoint copies of F in G.

Let us upper-bound the total number of copies of F in G. By assumption, there is a homo-
morphism ϕ from H to F. Let ψ be the “natural” homomorphism from G to H (as described
in the beginning of this section). Then ϕ ◦ψ is a homomorphism from G to F. By Claim 2·2,
for every copy F′ of F in G the map (ϕ ◦ψ)|V(F′) is an isomorphism from F′ to F. We claim
that this means that ψ maps every copy F′ of F in G onto a copy of F in H. Indeed, ψ |V(F′)
must be injective (otherwise (ϕ ◦ψ)|V(F′) would not be an isomorphism), and since ψ |V(F′)
must map edges to edges (on account of being a homomorphism) its image must contain a
copy of F. We thus see that every copy of F in G must come from the blown-up copies of
F in H. But each copy of F in H gives rise to (n/m)v(F) copies of F in G. Hence, the total
number of copies of F in G is at most

mv(F)−1 · (n/m)v(F) = nv(F)/m ≤ ε1/(2δ) · nv(F).

Since δ > 0 is arbitrary, this shows that the F-removal lemma is not polynomial.
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The following result is implicit in [1]. For the sake of completeness, we include a proof.

LEMMA 2·6. Let t ≥ 3. Then for every large enough n, there is a t-partite graph G with sides
V1, . . . , Vt, each of size n, such that G has a collection of n2/eO(

√
log n) = n2−o(1) 2-disjoint

canonical copies of Ct, but at most nt−1 canonical copies of Ct altogether.

Proof. Suppose that the vertices of Ct are 1, 2, . . . , t (appearing in this order along the
cycle). Take a set B ⊆ [n/t], |B| ≥ n/eO

√
log n, with no non-trivial solution to the linear

equation y1 + . . .+ yt−1 = (t − 1)yt with y1, . . . , yt ∈ B (where a solution is trivial if y1 =
y2 = · · · = yt). The existence of such a set B is by a simple generalisation of Behrend’s
construction [3] of sets avoiding 3-term arithmetic progressions, see [1, lemma 3·1]. Take
pairwise-disjoint sets V1, . . . , Vt of size n each, and identify each Vi with [n]. For each
x ∈ [n/t] and y ∈ B, add to G a canonical copy Sx,y of Ct on the vertices vi = x + (i − 1)y ∈ Vi,
i = 1, . . . , t. Note that x + (i − 1)y ≤ x + (t − 1)y ≤ n, so vi indeed “fits” into Vi = [n]. The
copies Sx,y (where x ∈ [n/t], y ∈ B) are 2-disjoint. Indeed, if Sx1,y1 , Sx2,y2 intersect in Vi and
in Vj, then x1 + (i − 1)y1 = x2 + (i − 1)y2 and x1 + (j − 1)y1 = x2 + (j − 1)y2, and solving
this system of equations gives x1 = x2, y1 = y2. The number of copies Sx,y is n/t · |B| ≥
n2/eO

√
log n.

Let us bound the total number of canonical copies of Ct in G. Fix a canonical copy with
vertices v1, . . . , vt, vi ∈ Vi. For 1 ≤ j ≤ t − 1, let xj ∈ [n/t], yj ∈ B be such that vj, vj+1 ∈ Sxj,yj .
Similarly, let xt ∈ [n/t], yt ∈ B such that v1, vt ∈ Sxt ,yt . Then we have vj+1 − vj = yj for every
1 ≤ j ≤ t − 1, and vt − v1 = (t − 1)yt. So y1 + . . .+ yt−1 = (t − 1)yt. By our choice of B,
we have y1 = . . .= yt = :y. Now, for each 1 ≤ j ≤ t − 1 we have xj = vj+1 − j · y = xj+1, so
x1 = . . .= xt = :x. So we see that the only canonical copies of Ct in G are the copies Sx,y.
Their number is at most n2 ≤ nt−1, as required.

Recall that K(s−1)
s is the (s − 1)-graph with vertices 1, . . . , s and all s possible edges. The

following construction appears implicitly in [9] (see also [2]). Again, for completeness, we
include a proof.

LEMMA 2·7. Let s ≥ 3. For every large enough n, there is an s-partite (s − 1)-graph G with
sides V1, . . . , Vs, each of size n, such that G has a collection of ns−1/eO(

√
log n) = ns−1−o(1)

(s − 1)-disjoint canonical copies of K(s−1)
s , but at most ns−1 copies of K(s−1)

s altogether.

Proof. Take a set B ⊆ [n/s], |B| ≥ n/eO
√

log n, with no non-trivial solution to y1 + y2 = 2y3,
y1, y2, y3 ∈ B. Take pairwise-disjoint sets V1, . . . , Vs of size n each, and identify each Vi

with [n]. For each x1, . . . , xs−2 ∈ [n/s] and y ∈ B, add to G a copy Kx1,...,xs−2,y of K(s−1)
s on

the vertices

x1 ∈ V1, x2 ∈ V2, . . . xs−2 ∈ Vs−2, y +
s−2∑
i=1

xi ∈ Vs−1, 2y +
s−2∑
i=1

xi ∈ Vs.

It is easy to see that these copies are (s − 1)-disjoint, because fixing any s − 1 of the s
coordinates allows to solve for x1, . . . , xs−2, y. Also, the number of copies thus placed is
(n/s)s−2 · |B| ≥ ns−1/eO

√
log n. Let us show that there are no other copies of K(s−1)

s in G.
This would imply that the total number of copies of K(s−1)

s in G is (n/s)s−2 · |B| ≤ ns−1.
So suppose that v1 ∈ V1, . . . , vs ∈ Vs form a copy of K(s−1)

s . Let x(i) = (x(i)
1 , . . . , x(i)

s−2) ∈
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[n/s]s−2 and yi ∈ B, i = 1, 2, 3, be such that {v2, . . . , vs} ∈ Kx(1),y1
, {v1, . . . , vs−1} ∈ Kx(2),y2

and {v1, . . . , vs−2, vs} ∈ Kx(3),y3
. Then x(2)

1 = x(3)
1 = v1 and

x(1)
j = x(2)

j = x(3)
j = vj for every 2 ≤ j ≤ s − 2. (2.2)

Also, vs − vs−1 = y1, vs−1 − v1 = x(2)
2 + · · · + x(2)

s−2 + y2 and vs − v1 = x(3)
2 + · · · + x(3)

s−2 +
2y3. Combining these three equations and using (2·2), we get y1 + y2 = 2y3, and so y1 =
y2 = y3 = :y by our choice of B. Also, x(1)

1 = vs−1 − (v2 + · · · + vs−2 + y) = x(2)
1 . So x(1) =

x(2) = x(3).

We now prove two lemmas, Lemmas 2·8 and 2·9, which imply Lemmas 1·1 and 1·2,
respectively. Recall that for a k-graph F and 2 ≤ �≤ k, the �-shadow of F, denoted ∂�F, is
the �-graph consisting of all f ∈ (V(F)

�

)
such that there is e ∈ E(F) with f ⊆ e.

LEMMA 2·8. Let k ≥ 2, let F be a core k-graph, and suppose that ∂2F has an induced cycle
of length at least 4. Then for every large enough n there is a k-graph H with v(F) · n vertices
which is homomorphic to F, has a collection of nk/eO(

√
log n) = nk−o(1) edge-disjoint copies

of F, but has at most nv(F)−1 copies of F altogether.

Proof. It will be convenient to write |V(F)| = t + r and assume that V(F) = [t + r], where
(1, 2, . . . , t, 1) is an induced cycle in ∂2F and t ≥ 4. It follows that |e ∩ {1, . . . , t}| ≤ 2 for
every e ∈ E(F). Take disjoint sets V1, . . . , Vt+r of size n each. Let G be the t-partite graph
with sides V1, . . . , Vt given by Lemma 2·6. Let S be a collection of n2/eO(

√
log n) 2-disjoint

canonical copies of Ct in G. Apply Lemma 2·3 to4 S with s = t and �= 2 to obtain a fam-
ily F ⊆ V1 × . . .× Vt+r satisfying Items 1-3 in that lemma. Note that r ≥ k − 2 = k − �,
because each edge of F contains at most two vertices from {1, . . . , t} and hence at least k − 2
vertices from {t + 1, . . . , t + r}. Therefore, the conditions of Lemma 2·3 are satisfied. Define
the hypergraph H by placing a canonical copy of F on each F′ ∈F . We claim that these
copies of F are edge-disjoint. Indeed, suppose by contradiction that the copies on F1, F2 ∈F
share an edge e. Then |F1 ∩ F2| ≥ k. By Lemma 2·3(iii), we have #{t + 1 ≤ i ≤ t + r : F1(i) =
F2(i)} ≤ k − 3. This implies that #{1 ≤ i ≤ t : e ∩ Vi �= ∅} ≥ 3. But this means that in F there
is an edge which intersects {1, . . . , t} in at least 3 vertices, a contradiction. So the F-copies in
F are indeed edge-disjoint. Their number is |F | ≥�(|S|nk−2) ≥ nk/eO(

√
log n), by Lemma

2·3(ii).
To complete the proof, it remains to show that H has at most nt+r−1 copies of F. Observe

that H is homomorphic to F; indeed, the map ϕ which sends Vj �→ j, j = 1, . . . , t + r, is such
a homomorphism. Let F∗ be a copy of F in H. Since F is a core and ϕ is a homomorphism
from H to F, we can apply Claim 2·2 to conclude that F∗ must have the form v1, . . . , vt+r,
with vi ∈ Vi playing the role of i for each i = 1, . . . , t + r. We claim that v1, . . . , vt form a
canonical copy of Ct in5 G. To see this, fix any 1 ≤ i ≤ t and let us show that {vi, vi+1} ∈
E(G), with indices taken modulo t. Since {i, i + 1} is an edge of ∂2F, there must be an edge

4 Strictly speaking, we apply Lemma 2·3 to the vertex-sets of the copies of Ct in S.
5 Note that the subgraph of ∂2(F∗) induced by v1, . . . , vt is a canonical copy of Ct in the 2-shadow of H. The
first key point is that this copy of Ct must appear in G. Also, note that this fact is trivial if F∗ is one of the
canonical copies of F we placed in H when defining it. The second key point is that this holds for every
copy F∗ of F in H.
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e ∈ E(F) containing i, i + 1. Then {va : a ∈ e} ∈ E(F∗) ⊆ E(H) = ⋃
F′∈F E(F′). Let F′ ∈F

such that {va : a ∈ e} ∈ E(F′). By Lemma 2·3(i), we have S′: = F′|V1×...×Vt ∈ S . Now, S′ is
the vertex set of a canonical copy of Ct in G, and hence {vi, vi+1} ∈ E(G), as required. This
proves our claim that v1, . . . , vt form a canonical copy of Ct in G. Summarising, every copy
of F in H contains the vertices of a canonical copy of Ct in G. By the guarantees of Lemma
2·6, the number of canonical copies of Ct in G is at most nt−1. Hence, the number of copies
of F in H is at most nt−1 · nr = nt+r−1, as required.

LEMMA 2·9. Let k ≥ 2, let F be a core k-graph and suppose that there are 3 ≤ s ≤ k + 1 and
a set I ⊆ V(F) such that (∂s−1F)[I] ∼= K(s−1)

s and |e ∩ I| ≤ s − 1 for every e ∈ E(F). Then for
every large enough n there is a k-graph H with v(F) · n vertices which is homomorphic to F,
has a collection of nk/eO(

√
log n) = nk−o(1) edge-disjoint copies of F, but has at most nv(F)−1

copies of F altogether.

Proof. The proof is very similar to that of Lemma 2·8. Assume that I = [s], V(F) = [s + r].
Take disjoint sets V1, . . . , Vs+r of size n each. Let G be the s-partite (s − 1)-graph with
sides V1, . . . , Vs given by Lemma 2·7. Let S be a collection of ns−1/eO(

√
log n) (s − 1)-

disjoint copies of K(s−1)
s in G. Apply Lemma 2·3 to S with �= s − 1 to obtain a family

F ⊆ V1 × . . .× Vs+r satisfying (i)-(iii) in that lemma. Define the hypergraph H by placing
a canonical copy of F on each F′ ∈F . These copies of F are edge-disjoint. Indeed, sup-
pose by contradiction that the copies on F1, F2 ∈F share an edge e. Then |F1 ∩ F2| ≥ k, and
hence #{s + 1 ≤ i ≤ s + r : F1(i) = F2(i)} ≤ k − �− 1 = k − s by Lemma 2·3(iii). But then
#{1 ≤ i ≤ s : e ∩ Vi �= ∅} = s, meaning that there is an edge of F which contains I = [s], a
contradiction to the assumption of the lemma. So the F-copies in F are indeed edge-disjoint.
Also, |F | ≥�(|S|nk−s+1) ≥ nk/eO(

√
log n), using Lemma 2·3(ii).

The map Vj �→ j, j = 1, . . . , s + r is a homomorphism from H to F. Let us bound the
number of copies of F in H. By Claim 2·2, every copy F∗ of F must be of the form
v1, . . . , vs+r, with vi ∈ Vi playing the role of i for each i = 1, . . . , s + r. We claim that
v1, . . . , vs span a copy of K(s−1)

s in G. So let J ∈ ( [s]
s−1

)
. Since (∂s−1F)[I] ∼= K(s−1)

s , there
is an edge e ∈ E(F) with J ⊆ e. Since F∗ is a canonical copy of F, we have {vi : i ∈ e} ∈
E(F∗) ⊆ E(H) = ⋃

F′∈F E(F′). Let F′ ∈F be such that {vi : i ∈ e} ∈ E(F′). By Lemma 2·3(i),

we have S′: = F′|V1×...×Vs ∈ S . Now, S′ is a canonical copy of K(s−1)
s in G, and hence

{vi : i ∈ J} ∈ E(G), as required. So we see that every copy of F in H contains the vertices
of a copy of K(s−1)

s in G. By the guarantees of Lemma 2·6, G has at most ns−1 copies of
K(s−1)

s . Hence, H has at most ns−1 · nr = ns+r−1 copies of F, as required.

Observe that Lemma 1·1 follows by combining Lemmas 2·5 and 2·8. Let us prove
Lemma 1·2.

Proof of Lemma 1·2. Let X be a clique of size k + 1 in ∂2F. Let I be a smallest subset of X
which is not contained in an edge of F. Note that I is well-defined (because X itself is not
contained in any edge of F, as |X| = k + 1). Also, |I| ≥ 3 because every pair of vertices in
X is contained in some edge, as X is a clique in ∂2F. Put s = |I|. Then (∂s−1F)[I] ∼= K(s−1)

s

and |e ∩ I| ≤ s − 1 for every e ∈ E(F), by the choice of I. Now the assertion of Lemma 1·2
follows by combining Lemmas 2·5 and 2·9.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004125000155
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.110, on 23 Jun 2025 at 22:40:03, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004125000155
https://www.cambridge.org/core


330 LIOR GISHBOLINER AND ASAF SHAPIRA

REFERENCES

[1] N. ALON, Testing subgraphs in large graphs. Random Structures Algorithms 21 (2002), 359–370.
[2] N. ALON and A. SHAPIRA, Linear equations, arithmetic progressions and hypergraph property

testing. Theory of Computing vol. 1 (2005), 177–216.
[3] F. A. BEHREND, On sets of integers which contain no three terms in arithmetic progression. Proc.

Natl. Acad. Sci. U.S.A. 32 (1946), 331–332.
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