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Abstract

In this paper "a map" denotes an arbitrary (everywhere defined, or partial, or even multi-valued)
mapping. A map is constant if any two elements belonging to its domain have precisely the same
images under this map. We characterize those semigroups which can be isomorphic to semigroups of
constant maps or to involuted semigroups of constant maps.
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A map of a set A into itself is any subset m of A X A (i.e. any binary relation on
A). If a G A, then m(a) = {ar G A: (a, ax) G m) is the set of all images of a
under m. A map is called & partial transformation of A whenever \m(a)\ < 1 for
all a G A. The set {a: m(a) =£ 0 } is the first projection (or the domain) of the
map m; we denote it as prx m. If prj m = A, the map m is called total. If m is a
map, then m~l = {(a1, a2): (a2, a±) £ m } i s called the converse map. Its domain
prx m'1 is also denoted as pr2 m and is called the second projection (or the range)
of m. If pr2 m = A, then m is called surjective.

If mx and m2 are maps then m2° mx is their composite map:

(al, a2) G m2 ° mx <=> (3a)[(al, a) e mx and ( a , a 2 ) e m 2 ] .

If B is a subset of A (i.e. B c A, which does not preclude B = A), then
m(B) = \J{m(a): a G B) is the set of all images under m of all elements of B. In
particular, m(A) = pr2 m. It is clear that m2 ° mx{B) = w2(w1(B)). In particu-
lar, m2 » wx(a) = w2(/w1(a)).
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We are writing maps as left operators. The last equality explains why the
product (composition) of two maps, m1 and m2, is written from right to left, as
m2 ° m1 rather than mx ° m2.

The set 98A of all maps on a set A forms a semigroup under composition °. If S
is a semigroup, a mapping h: S -> 98A is a homomorphism whenever h^s^s?) =
/Z(J 2 )° A(Ji) for all slt s2 e S. We call such a mapping a homomorphism (rather
than antihomomorphism) because in a product sls2 we consider Sj as the first
factor, while in the product of maps m2 ° ml it is natural to consider m1 as the
first factor.

A map m is called constant if m^a^) = m(a2) for all a1; a2 e pr: /w. Clearly, m
is a constant partial transformation if and only if |pr2 m\ < 1, and |pr2 m\ = 0 is
possible if m = 0 , the empty map.

If m,, m2 are maps and ra2 is constant, then m2 ° m1 and m1° m2 are constant,
i.e. the constant maps form an ideal of 98A.

In this paper we characterize those semigroups which are isomorphic to
semigroups of constant maps and give some properties of such semigroups. The
main results of this paper were announced (without proofs or with brief outlines
of proofs) in [4]. Theorem 5 of this paper was stated in [4] not in its right form.
Theorem 3 of this paper (for finite semigroups) was also published in [3].

The following result is both trivial and well-known, so we omit its obvious
proof.

THEOREM 1. A semigroup is isomorphic to a semigroup of constant total transfor-
mations of a set if and only if it is a right zero semigroup.

REMARK. If h: S -* 38A is defined to be a homomorphism in case h(s1s2) =
h(sx)° h(s2), then right zero semigroups should be replaced by left zero ones in
Theorem 1.

The triviality and simplicity of semigroups characterized in Theorem 1 may
suggest that semigroups isomorphic to semigroups of constant maps (i.e. semi-
groups of constant maps considered " up to isomorphism," or " from an abstract
standpoint") are rather trivial. As we shall see this is not so (even though
semigroups of constant maps do form a very restrictive class of semigroups).

A semigroup S is called a rectangular 0-band if S is a completely O-simple
semigroup with a trivial structure group. The Suschkewitsch-Rees Representation
Theorem for completely O-simple semigroups gives, as a by-product, the following
alternative definition of rectangular 0-bands.

Let A, B be nonempty sets, let m c B X A be a binary relation between the
elements of B and A. Suppose that prx m = B, pr2 m = A (here the projections of
m have the obvious meaning; e.g. 1prlm = [b e B: (3a e A)[(b, a) e m]}). Sup-
pose that 0 is an element not belonging to the Cartesian product A X B. Let [m]°
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denote the set (A X B)° = (A X B) U {0} with the following binary multiplica-
tion:

(1) if (&!, a2) e m, then (a,, bt) (a2, 62) = (a1; 62);
(2) all other products equal 0 (in particular, Ox = xO = 0 for all x e (^ X 5)°,

and (ax, bx) (a2, b2) = 0 whenever (bu a2) £ m).

PROPOSITION 1. A semigroup S is a rectangular 0-band if and only if it is
isomorphic to a semigroup of the form [m]°.

Indeed, representing m as a binary Boolean matrix P (i.e. considering B and A
as sets of rows and columns of P, respectively, with 1 standing at the intersection
of the bih row and ath column if (b, a) e m, 0 standing at the intersection
otherwise) we arrive at a regular sandwich matrix over the trivial group 1. Then
[m]° is isomorphic to the Rees semigroup J?°[A, B, 1; P] which implies Proposi-
tion 1.

An equivalent form of the following Proposition 2 can be found in [2].

PROPOSITION 2. A semigroup S is a rectangular 0-band if and only if it has a zero,
0, and satisfies the following conditions:

(1) for every x,y e 5, xyx = x or xyx = 0;
(2) for every x, y e S, x # 0, y # 0, there exists z e S such that xzy =t 0.

PROOF. Suppose S is a rectangular 0-band. Without loss of generality, S = [m]°
for suitable m c B X A. If x ory isO, then xyx = 0. Let* = (aY, bx),y = (a2, b2).
Then xyx = x if (bv a2) e m, (b2, ax) e m. Otherwise xyx = 0. Since, by as-
sumption, prlm = B and pr2w = A, there exist a e A and b e B such that
(6l7 a) & m and (6, a2) e /w. Let z = (a, 6). Then xzy = (ax, b2) # 0. Thus
conditions (1) and (2) hold for every rectangular 0-band.

Now suppose that 5 is a semigroup with zero satisfying conditions (1) and (2).
By (2) for every x e S there exists z e S such that xzx = x, i.e. 5 is regular.

Suppose e, f are idempotents of 5, e = ef = fe, f ¥= 0. Then e = fe = fef. By (1),
/<?/ is / or 0, i.e. e = 0 or e = f. Thus, every nonzero idempotent of S is primitive.
If e and/are nonzero idempotents of S, then eSf # 0 by (2). Thus S is completely
0-simple (cf. Exercise 2.7.11 of [1]).

If s, t belong to a subgroup of S, then sts belongs to the same subgroup. If
sts = 0, then s = t = 0. If sts = s, then s - t'1. Since this holds for any two
elements of the subgroup, s = t. Thus, all subgroups of S are trivial. By Proposi-
tion 1 and the Suschkewitsch-Rees Theorem S is a rectangular 0-band.

A hypergraph is any triple (A, B, h), where A and B are nonempty sets, a set of
vertices and a set of edges, respectively, while h c A X B is a binary relation

https://doi.org/10.1017/S1446788700022503 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022503


244 Boris M. Schein [4]

called the incidence relation. If (a, b) e h, the vertex a is called incident to the
edge b. This definition corresponds to definitions of hypergraphs one can find in
various sources.

Two hypergraphs (Ax, Bx, hx) and (A2, B2, h2) are called isomorphic if there
exist a bijection a of Ax onto A2 and a bijection B of Bx onto B2 such that
(ax, Z^) e h1 <=» (aCflj), ^(fc,)) e h2 for all a! e Ax, b1 e 5X.

A vertex (edge) which is not incident to any edge (vertex) is called isolated.
Suppose (A, B, h) is a hypergraph without isolated vertices and edges. Then

[h]° is a rectangular 0-band with the set (B X A)U {0} of elements.

PROPOSITION 3. Two hypergraphs (Ax, Bx, hx) and (A2, B2, h2) without isolated
vertices and edges are isomorphic if and only if the rectangular 0-bands [hx]° and
[h2]

0 are isomorphic.

PROOF. The "only i f part is trivial. To prove the " i f part, suppose / is an
isomorphism of [hx] onto [h2]. Then /(0) = 0 and f(Bx X Ax) = B2 X A2. Two
elements (bx, ax), (b2, a2) e [hx]° are ^-related (.^related) if and only if b1 = b2

(ax = a2). Since/, being an isomorphism, preserves the Green relations, f(bx, a{)
and f(b2, a2) are ̂ -related (^related) in [h2]

0 if and only if (bv aY) and (b2, a2)
are ^-related (^related) in [AJ0. Thus, there exist bijections fx; Bx^> B2 and
f2: Ax -> A2 such that f(b, a) = (fx(b), f2(a)) for all (b, a) e [hx]°. Since
(bx, axXb2, a2) * 0 if and only if (ax, b2) e hx, it follows easily that (/2, fx) is an
isomorphism of (Ax, Bx, hx) onto (A2, B2, h2).

In fact, the proof of Proposition 3 implies a stronger result: the categories of
hypergraphs without isolated vertices and edges and of rectangular 0-semigroups
are equivalent (the morphisms in each of the categories are isomorphisms). A
generalization of Proposition 3 is proved in [6].

Thus, completely 0-simple semigroups with trivial structure groups characterize
hypergraphs without isolated vertices and edges up to isomorphism.

A semigroup S is called rectangular 0-subband if S is isomorphically embedda-
ble in a rectangular 0-band.

THEOREM 2. The following conditions are equivalent for every semigroup S:
(1) S is isomorphic to a semigroup of constant partial transformations;
(2) S is isomorphic to a semigroup of constant maps;
(3) S is a rectangular 0-subband.

PROOF. Every partial transformation is a map, so the implication (1) =» (2) is
trivial.

(2) =» (3). Suppose (2) holds. It is easy to see that the semigroup of all constant
maps of any set A is a rectangular 0-band. Since 5 is isomorphically embeddable
in a semigroup of all constant maps, S must be a rectangular 0-subband.
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(3) => (1). Suppose S is isomorphic to a subsemigroup of a rectangular 0-band
T. If T is isomorphic to a semigroup of constant partial transformations, then S is
isomorphic to such a semigroup. Thus, without loss of generality, we may suppose
that S is a rectangular 0-band. Suppose S = [m]°, where m c B X A, pr : m = B,
pr 2 m = A, A n B = 0 . For every (a, ft) e 5 define/(a, ft) = (m~}(a) U {a})
X {ft}, and define/(0) = 0 . Clearly, for every x e S,f(x) is a constant partial
transformation of the set ^ U f i . It is obvious that f(a, ft) ^ 0 and that
/(•*) — f(y) implies x = y. Indeed, if x or y is 0, then f(x) = f(y) = 0 , so
x =y = 0. If* = (a1,b1),y = (a2, ft2), then {ftj} = p r 2 / ( x ) = pr2/(>>) = {ft2},
and hence bl = ft2. Also {ax} = A C\ p r x / ( x ) = A n p r j / ^ ) = {a 2 } , and hence
flj = <22, so x = y. Thus / i s one-to-one. If x ory is 0, then/(xy) = f{y)°f{x) =
0 . Let x = (flj, ftx), _y = (a2, ft2). Then xy # 0 if and only if (ft1; a 2 ) e w, i.e. if
ftx e m~\a2). On the other hand, f(y)°f(x) ^ 0 if and only if ftt e p r^C^) ,
i.e. ftj G m~\a2). Hence/(xy) = f{y)° f(x) if xy = 0. Now suppose that .xy # 0.
Thenxy = (a,, ft2) and f(xy) = ( m ^ ^ ) U {fll}) X (ft2) = / ( / ) ° / ( x ) . Thus , /
is an isomorphism of S onto a semigroup of constant partial transformations.
This completes our proof.

It follows from the Fundamental Theorem on Relation Algebras (see [5]) that
the class of all rectangular 0-subbands is a class of abstract relation algebras, and
so it can be characterized by a system of elementary axioms. The same conclusion
follows from the observation that all rectangular 0-subbands are a class of all
subalgebras of an axiomatizable class of algebras (rectangular 0-bands) and
application of a result of Tarski [7]. In what follows, we present a system of
elementary axioms for rectangular 0-subbands.

Suppose S is a rectangular 0-subband and S has no zero. It follows from
Proposition 2 that, for every x, y e S, xyx = x. Thus S is a rectangular band.
Conversely, if 5 is a rectangular band, then S° is obviously a rectangular 0-band,
hence S is a rectangular 0-subband.

Thus, rectangular 0-subbands without zero are precisely rectangular bands.
In what follows, we assume that rectangular 0-subbands to be considered

always contain zero. While inessential, this assumption simplifies our argument.
We adopt the following notation: if H is a subset of a semigroup S with zero,

then H~ denotes H\ {0}. In particular, H~= H whenever 0 <£ H. If s e S, then
(5)/ and (s)r denote the principal left and right ideals generated by s. We
introduce the following binary relations a : and a2 on 5:

a1= {(s,t)<=SxS:(Sl)~ri (s2)~r), °i = { ( V J e S x S : ^ ! ^ ) ; } ,
where A \ B means A C\ B * 0 for any two sets A and B. Clearly, both av and a2

are symmetric binary relations.
Let As be the diagonal of S X S, i.e. As = {(s, t) e S X S: s = / } . Let tri

denote the transitive closure of ai U As, i; = 1,2. Then TT, is transitive by defini-
tion, it is reflexive and symmetric because a, U As is. In other words, iti is an
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equivalence relation on S. Let IT = irl n TT2. Then IT is an equivalence relation on
S. If S is a semigroup with zero 0 satisfying the condition xyz = 0 =» (xy = 0 or
yz = 0) for all x, y, z e S, then S is called categorial at 0.

A semigroup 5 is called quasiprimitive if 7r = As.

THEOREM 3. A semigroup S is a rectangular 0-subband if and only if S is a
rectangular band or S is quasiprimitive and categorial at 0.

PROOF. AS explained above, we may assume that S has zero 0.

First suppose that S is a rectangular 0-subband, say, S c [m]° for some
m c B X A. It is easy to see that 0 e S. Suppose that x, y & S and (x, y) e av

This means (x) ; jj {y)~r, i.e. there exists w, v e S1 such that xw = jw # 0. Now, it
follows that none of x, y, u, v is 0. Suppose x = (alt bx), y = (a, b). Then
xu = uv =£ 0 implies ax = a. Now suppose (x, y) G 7 .̂ If x # _y, then there exist

5 X , 5 2 » - • • >Sn e ^ SUC^ t n a t x = s l > y = Sn> an£^ C ^ i O r il ( s i + \ ) 7 ^OT i = 1 , • • - , » — 1.
It follows that J, # 0. Let s, = (a,, &,-). Then, as we have just seen, a, = ai+l for
all i. In particular, ax = a2 = • • • — an = a. Analogously, if (x, y) e 772 and
x =£ _y, then b1 = fe. Thus, if (x, y) e 77 and x # _v, then ax = a, bx = b, i.e. x = j
which contradicts our assumption. Thus TT = As, i.e. S is quasiprimitive. Next,
suppose that xyz = 0 for x, y, z e 5. If x, >\ or z is 0, then xy = 0 or yz = 0. If
x = (ax, fex), j> = (a2, b2), z = (a3, b3) then (6^ a2) ^ w or (fo2, a3) ^ w (other-
wise xyz = (aj, 63) # 0). In the former case xy = 0, in the latter case yz = 0.
Thus 5 is categorial at 0.

Conversely, suppose that S is a quasiprimitive semigroup which is categorial at
0. We will prove that 5 is isomorphic to a semigroup of constant maps.

For each s e 5 w e define a map/(^) of the set S1 X S1 into itself.
Let v be a binary relation on Sl defined as follows:

v = {(s,t) e ^ ' x Su.st * 0 } .

Define

Us = 0, t h e n ^ s ) = 0 , and hence /(0) = 0.Us* 0, then s e w,<j>, 1 e P ( J ) ,
1 e j'"1(5>, and 5 e w2(i>. Thus ((s, 1),(1, j)) e f(s) and / ( i ) ^ 0 . Suppose
/(•^I)

 = f(s2) for J1 ; 52 G 5. If one of the elements s1( s2 is 0, then^ij) = f(s2) =
0 , and hence ^ = s2 = 0. Suppose that neither of the elements is 0. Then

/ ( J , ) # 0 * f(s2). Hence w^s^ = ^J<J2>
 a n d ^2(^1) = W2<52>- I I follows that

77(5!) = T(S2). Since vr is an equivalence relation, this means that (sv s2) G w.
However, S is quasiprimitive. Thus 5t = s2 which shows that/is one-to-one. It is
clear that f(s) is a rectangular binary relation (= a map) for every s e S. It
remains to prove that
(1) f(xy) = / ( j ) ° / ( x ) for eachx,>; e S.
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If x or y is 0 then both sides of (1) are 0 , and (1) holds. Suppose now that

x # 0, y ¥= 0. First we prove that if one par t of (1) is 0 , then (1) holds.

Clearly, f(xy) # 0 if and only if xy # 0, i.e. (x , y) G v or, equivalently,

ye.v(x) and x e c " ^ ) . Now, f(y)° f(x) *= 0 precisely when pr2/(x)
i.e. when

(2) "<*>i
If xy # 0 then>> G K * ) - Since wx is reflexive, j> G " i ( . y ) . Analogously, x belongs
to both w2(x> and v~\y). Thus (2) holds. In other words, f(xy) ¥= 0 =»
f(y)° f(x) ¥= 0. The converse implication will follow from Lemma 1.

LEMMA 1. / / (w, y) e ^ and xu =fr 0, rte« (xw, xy) G ^ a«*/ xc =£ 0. Analo-
gously, if(u, v) G 7r2 a«d wx =£ 0, f/ie/i (wx, DX) G W2 and yx =£ 0.

PROOF. Suppose that (w, t>) G 77X and xu =t 0. By the definition of mx, (u, v) G TTJ

means that there exist n and J 1 ; s2,...,sn G S such that w = j l r 5n = v and
(j,-, s /+1) e 5, U As for all / = 1 , . . . , « - 1. Now, if (j,., si + l) e As for some ;,
then 5,- = si + l and we can just make the sequence sly... ,sn shorter by skipping
si + l and considering the sequence s1,...,si, si+2,...,sn instead. Thus we may
suppose that (5,, si+1) e ax for all/ = l,...,n — I. This means that (.$,); 5 (s^^',
i.e., SjXj = si+lyj+l ¥= 0 for some x,, yi+l G 5 1 . Multiplying each of these equali-
ties by x on the left, we get (xsi)xi = (xsi+1)yi+1. Now, x^1 = xu =t 0 by our
condition. Also, sxxx * 0 because sixi ^ 0 for all /. Since S is categorial at 0, we
obtain that 0 ¥= X(J 1 X 1 ) = x(^2>'2) = (xs2)y2, hence xs2 =t 0. Thus, xs2 ¥= 0 and
52x2 ¥= 0. Since S is categorial at 0, (xs2)x2 # 0. Therefore (x^3)>'3 + 0 which
imphes xs3 ¥= 0. Going on, we obtain xs, ¥= 0 for all /. Finally x*, # 0 and
5,x, ^ 0 imply (xs,)x, =̂  0. Then (x5,)x, = (xsi+1)yi+1 ± 0 for all /. This implies
(xst, xsi+1) G ax for all i, and therefore (xsv xsn) G TTV In other words, (xu, xv)
G TTJ. Also, xv = xsn + 0. The second part of the lemma may be proved analo-
gously.

Now we get back to our proof of Theorem 3. Suppose that/(>>) ° / ( x ) + 0. As
we have seen, this means that relations (2) hold. Thus, there exist u, v G S such
that u G p(x) n Vi(y) and v G TT2<X> n v'\y). In other words, xu =f= 0 and
(y, u) G 7^; also (x, v) G TT2 and vy =£ 0. By Lemma 1 (xy, xw) G mx and (x>>, uy)
G w2 and x j # 0. Thus,/(xy) ^ 0 .

Hence/(xy) # 0 <=> f(y)° / ( x ) # 0 . Suppose one side of the above equiva-
lence does not hold. Then both sides of (1) equal 0 , i.e. (1) holds.

It remains to consider the case when/(xy) # 0 and f(y)° f(x) ¥= 0 . Suppose
s G P~\X) for some s e i 1 . This means sx # 0. Since xj> # 0 and 5 is categorial
at 0, we get sxy # 0, whence 5 G p ' ^ x y ) . Conversely, if 5 G p~\xy), then
5xy # 0, *x # 0, and 5 G I / ' ^ X ) . Thus f ' ^ x ) = v ' ^ x y ) . Analogously we may
prove that v{y) = v{xy). Now, xy # 0 and xy G ( X ) ; n (xy)~, and hence
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(x, xy) £ O [ C TTJ. Thus wx(x> = irY(xy). Analogously we may prove that w2

= ir2(xy). Since f(y)°f(x) # 0, we have f(y)°f(x) = (n^x) X v'\x)) X
(v(y) X 772<>>» = (^(xy) X v'\xy)) X (*<*>,> X ff2<xy» = f(xy). Thus (1)
always holds. We have proved that / is an isomorphism of 5 onto a semigroup of
constant maps. By Theorem 2, S is a rectangular 0-subband. This completes the
proof of Theorem 3.

Our next objective is to characterize the class of rectangular O-subbands by a
system of elementary axioms.

THEOREM 4. A semigroup S is a rectangular 0-subband if and only if it is a
rectangular band (i.e. satisfies the identity xyx = x) or S contains a zero and
satisfies the following axioms:

(C) : xyz = 0 => xy = 0 V yz = 0,

and, for every n > 1,

((?„): .50*0 = s\y\ * ° A "o'o = vih * ° A

jjXj = s2y2 ^ 0 A u1t1 = v2t2 # 0 A

'd'*n_i = 's'JH'* 6 A"Ci'l-i' = 'v'nin #'6 A
5 0 = f0 A 5n = /„ ^> So = Sn,

where V and A are //ie disjunction and conjunction connectives respectively, the
variables x, y, z, s0,... ,sn, t0,... ,tn take arbitrary values in S, while the variables
x0,...,xn_ j , yt,... ,yn, u0,...,«„_ 1; vx,..., vn take arbitrary values in S1.

PROOF. First we express the axioms C and Qn in an equivalent form. Of course,
C means just that S is categorial at 0. Now, J,JC, = si + 1yi+1 ¥= 0 means that
(st, si + l) G alt and uttt = vi + 1ti+l ¥= 0 means that (?,, ?, + 1) e a2. Thus it follows
from the antecedent of Qn that (s0, sn) e 77l5 (t0, tn) e TT2, S0 = t0, sn = tn. We
conclude that (s0, sn) 6 IT, n i:2 = sr. Now, if S is quasiprimitive, then ^0 = sn

and Qn holds. Therefore, if S is a rectangular 0-subband then, by Theorem 3, S is
categorial at 0 and quasiprimitive, and C and Qn hold.

Now suppose that S is a semigroup with 0 in which C and all Qn hold. Because
of C, S is categorial at 0. To prove that S is quasiprimitive, suppose that
(x, y) e IT for some x, y e 5. We must prove that * = y. Now, (0, s) G ff; U As

implies 0 = 5. Indeed, (0, s) e ax means that (0); $ (5);. Since (0); = 0 , (0, 5)
G Oj is impossible. Thus (0, s) G As and 0 = s. It follows that (0, s) G WJ implies
0 = 5. Therefore, if x or j is 0, then JC = >> = 0. Suppose that x # 0, >> =* 0. Then
(x, j>) G wx and (x, y) G 7T2. NOW, (X, J ) G ̂  means that there exist s0,... ,sn G S
such that JC = s0, sn = y, and (st, si+l) e ax U As for every / = 0,...,« — 1.
Analogously, (x, y) G ir2 means that there exist t0,. ..,tm e S such that x = t0,
tm = y, and (/,, ti + 1) £ a , U i s for every / = 0,... ,m - 1. Here all the elements
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s,, /, are different from 0. If (*., si+1) e As, then*, = si+1 and*, e (j .); = (si+1);,
whence ($,, sj+1) G av Thus, without loss of generality, we may suppose that
(s,, si+1) e ax for i = 0,... ,n - 1, and (*„ ti+l) e a2 for / = 0,... ,w - 1. Also,
we may suppose that m = n. Indeed, if m < n, add tm+1,... ,tn all equal to tm; if
« < m, add sn + 1, . . . ,sm all equal to sn.

Thus, without loss of generality, we may suppose that there exist so,...,sn,
(o ' . e s s u c h t h a t x = *o = W = *„ = '„, and (5,, i, + 1) G Ol, (/,., f,.+1) e a2

for all / = 0,...,n - 1. Now, (*,, si+1) e ax means (*,); } (*/+1);, i.e. s,.*,. =
*/+i^+i * 0, for certain x,, j , + 1 e S1, while (*,., r,+1) e a2 means (t,)j 0(f, + 1)7,
i.e. M,7, = vi+1ti+1 # 0 for certain «,., u/+1 e 51. Thus the antecedent of £>„ holds
for our elements s,, /„ Xj, yt, «„ u,.. By Qn, s0 = sn, i.e. x = y and S is
quasiprimitive. By Theorem 3, S is a rectangular 0-subband. This completes the
proof of Theorem 4.

REMARKS. (1) Syntactically, the axioms C and <2n are not formulas of the
first-order predicate calculus for the theory of semigroups because an extralogical
symbol 0 is used in them. Of course, one may consider 0 as a logical symbol for a
nullary operator, and instead of semigroups, consider semigroups with 0. How-
ever, it is obvious that both C and Qn are equivalent to formulas in the language
of the theory of semigroups. For example, C is obviously equivalent to xy =£ 0 A
yz # 0 => xyz # 0.

Now, any formula w ¥= 0, where w is a term (= a word) in the semigroup
language, is obviously equivalent to the formula ( 3 M ) [ W # W V uw =£ w], which
belongs to the semigroup language.

(2) We have characterized rectangular 0-subbands with and without 0 using
different systems of axioms. However, one may consider C and Qn as axioms for
all rectangular 0-subbands. If a semigroup 5 has no zero then (Vx)[x ¥= 0] is
obviously true in S (or, if one prefers the semigroup language without 0 symbol,
(Vx)(3y)[xy ¥= x V yx =# x] is always true). However, for semigroups without 0,
the infinite system of axioms produced by Theorem 4 can be substantially
simplified, while for semigroups with 0 this is not the case.

It can be proved that the system of axioms given in Theorem 4 is not equivalent
to any finite system of elementary axioms. We omit the proof because it is too
tedious. In fact, for each n > 2 we can construct a semigroup Sn which satisfies C
and Q( for / < n but which does not satisfy Qn. The semigroup Sn is finitely
presented, and the proof that Q,, i < n, hold in Sn consists of a long and detailed
checking of various conditions which may be satisfied by words representing
elements of Sn. Thus, Qn does not follow from C, Qx,..., Qn_x, which shows that
the infinite system of axioms (C, Qu Q2,...} is not equivalent to any of its finite
subsystems. By the Completeness Theorem for the first order predicate calculus it
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follows that our system of axioms is not equivalent to any finite system of
elementary axioms.

An involuted semigroup is an algebra (S; -,'1), where • is an associative binary
operation, '1 is a unary operation on the set S, and the following identities hold:
(x'1)'1 = x, ( xy ) ' 1 = y~lx~1. If $ is a nonempty set of maps which is closed
both under composition ° and conversion - 1 of maps, then ( $ ; o,"1) is an
involuted semigroup of maps.

The following result gives an abstract characterization of involuted semigroups
which are isomorphic to involuted semigroups of constant maps:

THEOREM 5. An involuted semigroup S is isomorphic to an involuted semigroup of
constant maps if and only if S satisfies the following conditions:

(1) xx~lx = x;
(2) xx'1 = yy~l and x~lx = y~ly => x = y;
(3) xy + 0 => xx~l = xyy'lx~l,

where xy # 0 means that xy is not a zero of the semigroup S (we do not assume that
S contains a zero).

PROOF. Suppose that S is isomorphic to an involuted semigroup of constant
maps. Without loss of generality, we may assume that S is an involuted semigroup
of constant maps of a set A. It is clear that x ° x~l ° x = x for every x G S. Thus,
(1) holds. Suppose that x, y e S and x'1 ° x = y'x ° y, x ° x~l = y ° y~l. Since
pr^x'1 ° x) = prxx and pr2(x ° x~l) = pr2x, it follows that p ^ x = p r ^ and
pr2 x = pr2 y. Since x and y are constant maps, it follows that x = y. Indeed, for
every a e prj x, x(a) = pr2 x = pr2 y = y(a). Thus, condition (2) holds.

To prove that (3) holds, assume that y ° x # 0 for some x, y e S. Then
y ° x # 0 . It follows that x'1» y~l ° y » x 1= 0 . Since x, y, x~l, y~l are constant

maps, x'1 ° y~l ° y ° x = x~l ° x, because x'1 ° y'1 ° y ° x = (y ° x)'1 °(y ° x) =
pr1(y°x)Xpr2(y°xy1 = pTl(y°x)Xpi1(y°x) = pixx X prxx = p^x X

pr 2 x - 1 = x~l o x.
To prove sufficiency of conditions (l)-(3) suppose that they hold for an

involuted semigroup S. Introduce two binary relations, a and p, on S~:
a = { ( s , t ) G S ' X S - - . s s ~ l = t t ~ 1 } ; n = { ( s , t ) <= 5 " X S~: s ^ t * 0 } .

Clearly, a is an equivalence relation, while /x is reflexive and symmetric. Indeed, if
5 e S~, thep 0 # s = ss^s, hence s~xs * 0 and (s, s) e jn. Also if (s, t) e p, then
s~lt =£ 0, hence t~ls = (s"1*)"1 =t 0 and (t, s) G jn.

A tolerance space is a pair (A; p), where p is a tolerance relation (i.e. a reflexive
and symmetric binary relation) on a set A. Two tolerance spaces (A; p) and
(5 ; T) are called isomorphic if there exists a bijection / : A —> B such that
(av a2) e p <=> (f(ax), f(a2) e T for all av a2 G A.
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An intersection space is a tolerance space of the form (A; p), where A is a set of
nonempty subsets of some underlying set, while {ax, a2) G p <=> ax\ a2, i.e.
subsets al and a2 are p-related if and only if they are not disjoint.

LEMMA 2. Every tolerance space is isomorphic to an intersection space,

PROOF. Let (A; p) be a tolerance space. For each a e. A define a subset/(a) of
the set A X A: f(a) = ({a} X p ( a » U (p(a) X {a}). Since p is reflexive, a G
p(a) and (a, a) G f(a). Thus,/(a) is never empty.

Consider the intersection space on the set {/(a): a G A) of subsets of A. It
follows that (al5 a2) G p » f{ax) \f{a2). Indeed, if (av a2) G p, thena2 G p(ai)
and (a2, aY) G p, hence a e p(a2), and therefore (a1; a2) G / ( # I ) n / ( a 2 ) and
/(ai)!i /(a2)- Conversely, if/C^) 5/(02) ' t n e n (ai» ^2) e P- Also,/is one-to-one:
for suppose that /(aO = /(a2)- Since (ax, ax) G /(ax), we obtain that (a1; a^ G
f(a2), whence at = a2. Thus,/is the isomorphism of (A, p) onto the intersection
space we have constructed. Lemma 2 is proved.

LEMMA 3. Ifis^, s2) G a and(t1, t2) G a, //ie« (JX, tx) G JU <=> (s2, f2)
 G M-

PROOF. Suppose that (JX, i 2) e a and (tx, t2) G a, i.e. s^f1 = 52521 and txt[
l

= t2t2\ If ( J L tx) G jx, then if1?! # 0, hence 0 ^ jf1^ = ( i f ^ X i f V ^ ' H - s r ^ i )
= sf1r1/f

1^1j>-f 1r2 = *r1?2'2
1-52i21'i- I I follows that t2

ls2 # 0, i.e. (r2, ,?2) e /x.
Therefore, (52, t2) G jn because jn is symmetric. Analogously, (s2, t2) G n =>
(51? ^ ) G ju. Lemma 3 is proved.

Consider the quotient set S ~/a of all equivalence classes modulo a. We define a
tolerance space (S'/a, jx/a) as follows:

( a ^ ) , a(i2)) G ĵ /a « (s^ s2) G /t.

By Lemma 3, this definition does not depend on the choice of representatives sl5

s2 in the equivalence classes a ^ } and a(s2).
By Lemma 2, (5" / a , /u/a) is isomorphic to an intersection space (A; p). L e t /

be an isomorphism between the two spaces. For every j e 5 " define a binary
relation g(s) = f(a(s)) Xf(a(s'1)), and let g(0) = 0 if 0 is a zero of 5.

LEMMA 4. 77?e mapping g is an isomorphism of the involuted semigroup S onto an
involuted semigroup of constant maps.

PROOF. First of all g(s) is a constant map for every J G S . Also, g is
one-to-one. Indeed, if s G 5", then g(s) =t 0 = g(0). If g(sx) = g(s2) for sv

s2 G S", then/ (a<5!» = / ( o < s 2 » a n d / ( a ( i 1 " 1 » =/(a<52-1». Since/ is one-to-
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one, we obtain a(sr) = a(s2) and o^^1) = a ^ 1 ) , i.e. (sv s2) e a and

(si1, s2
l) e a. Therefore sxs{1 = s^^1 and s[1s1 = s^s^ By condition (1) of

Theorem 4, s1 = s2.

Also, g(s~l) = g(s)~l. Indeed, if s = 0, then s'1 = 0 and g(s'1) = g(0) = 0

= 0"1 = g(O)"1. If s G S", then g^"1) = / (o^" 1 ) ) X/(a<^» = g(s)-\ It re-

mains to prove that

for all sx, s2 G 5.

If i j = 0 or s2 = 0, then both sides of (3) equal 0 . Suppose that sv s2e S~.
We have

s,s2 * 0 « (51-1,52) e M « (a ( i 1 - 1 ) , a ( 5 2 > ) e /x/a

Thus, if one side of (3) is 0 , then (3) holds. Let both sides of (3) be nonempty.

Then sxs2 * 0, and pr2 g(sx) | p ^ g(s2). Applying condition (3) of Theorem 5, we

obtain sls2($1s2y
1 = s^^^s^1 = s^i1, whence (s^^ sx) e a. Analogously,

( ( V : ) ' 1 . J21) G *• Thus g(Sls2) = /(o<*iJ2» X/Ca^ j^ ) " 1 ) ) = / ( O < J 1 » X

/(a<*2-1» = (/(a<*2» X/(a<52
1»)o( / (a(51» X / (a^" 1 ) ) ) = g ^ j o g ^ ) .

Thus (3) holds, which completes the proof of Lemma 4. Theorem 5 follows from

Lemma 4.
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