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Abstract

How to obtain a workable initial guess to start an optimal control (control parametrization)
algorithm is an important question. In particular, for a system of multi-link vertical planar
robot arms moving under the effect of gravity and applied torques (which can exhibit
chaotic behaviour), a non-workable initial guess of torques may cause integration failure
regardless of what numerical packages are used. In this paper, we address this problem by
introducing a simple and intuitive "Blind Man" algorithm. Theoretical justification as well
as a numerical example is provided.

1. Introduction

In the robotics literature, the closed-form model of the robot arm which is directly
derived from the Lagrangian equations, is usually adopted to describe the dynamics
of the system instead of using the state differential equations. However, models in
terms of state differential equations are preferred in the optimal control literature. See
[7,12] for details. In this work, we focus mainly on the computations of the optimal
control of multi-link planar robot arm systems. Hence, it is more natural to describe
the dynamics of the robot arm using state differential equations.

One can design different cost functionals to achieve different objectives, be it
minimum time, or quadratic regulator, or any more general cost functional. The
problem of finding the control (torque), as a function of time, which minimizes
this cost functional, subject to the state differential equations, with or without other
constraints, is a standard optimal control problem.

There are a number of efficient computational techniques available nowadays to
tackle this problem numerically, for example, see [2,8-11,13]. Software packages
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are also available now implementing these ideas such as MISER3.1 [3,13] which was
developed based on the method of control parametrization and nonlinear constrained
optimization techniques.

In optimal control software packages, such as MISER3.1, an initial control is
required to start the corresponding algorithm. In MISER3.1, the user needs to provide
an initial time-parametrized control function to start the algorithm.

One of the shortcomings of many of these iterative algorithms is that the user has
to supply a good guess. If the initial solution is too far from the global minimum,
the iterative algorithms may be attracted to some local minimum. It is worse if the
system exhibits some "chaotic" behaviour, in which the bad initial guess may cause
integration failures.

FIGURE 1. The planar two-link robot arm system (Double Pendulum).

Many robotic problems are inherently chaotic when controls (or torques) are not
applied to the systems. For example, a vertical planar two-link robot arm (with
gravity taken into account) is virtually a planar double pendulum when no controls (or
torques) are applied at the joints (see Figure 1). This double pendulum is one of the
early chaotic systems considered in the literature. The chaotic behaviour may not be
significant when the time horizon is small. However, when the time horizon is large,
the chaotic behaviour developed is no longer a matter that can be ignored.

For a certain fixed way of parametrization, with a "wild guess" of the control
function as an initial solution to start the iterative algorithm, it is quite likely that
the robot arms will spin chaotically and cause integration failure for the differential
equation solver. So it may not even be able to complete the first iteration successfully,
let alone compute the cost associated with that initial control function. We call this kind
of initial control function non-workable. However, if an initial control function does
not cause integration failures and the subsequent optimization task can be performed
without any integration difficulties, we call it a workable initial control function.
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[3] Optimal control of robot arms moving under gravity 197

Of course if one has enough experience with the dynamics of that particular robot
arm system, or one has enough physical insight, a "wild guess" may not be necessary.
However, such "physical insights" and "experiences" may not be easy to gain in
general. Note that the concept of a workable initial control function is different from
that of a feasible control function. An initial control function may be infeasible,
however, it could as well be a workable one if the subsequent iterates iterate back to
the feasible region and converge to the minimum.

This paper proposes a systematic way to obtain such a workable initial control
function to start the iterative optimal control algorithm. This systematic scheme, is
referred to as the Blind Man method (BM). Although this systematic method is rather
simple and intuitive, it provides a practical approach in solving many highly complex
optimal control problems involving robot arms under the effect of gravity.

A brief introduction to the formulation of the standard optimal control problem and
the control parametrization method are given in the Appendix.

2. Problem formulation

Consider a vertical planar multi-link robot arms system moving under the effects
of gravity. Its dynamics belongs to the following class of affine systems:

x = f(x) + B(x)u, (2.1)

x(0)=x0, (2.2)

where u : [0, T) h-> U C W is the control vector. The set U defines the control
bounds and it is some compact subset of Kr. Let ^ be the class of all such bounded
measurable functions u. Elements of ^ are called admissible controls, and fy is called
the class of admissible controls. The functions / : K" H* W and B : K" M>- K"xr are
given twice continuously differentiable functions. The state vector x consists of angles
of the arms and their angular velocities. For example, the dynamics of the vertical
planar two-link robot arm system are governed by (2.1) with x = [*i, JC2, *3, *4]
where X\ and x3 are the angles as indicated in Figure 1, and x2 and x4 their respective
angular velocities. The corresponding forms of the functions / and B are given,
respectively, by

x2

(((.X4H2.2 + xiHU2)x2 + (x2 + x4)x4HZ2)hc - (giH22 - g2Hu2))

f(x) =

(((-x4H2A+x,HlA)x2 - (x2+x4)x4H2J)hc - (g2Hu - g,H2A))
det(//)
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B(x) =

0

#2.2

0

#..2

det(H)
0

#1.2

det(#)
0

# u
L det(tf) det(//)J

where

ic = /n2/iC2sin(x3),

c3)+/, cos(x,)),
g2 = m2c2g cos(.x, +x3),

~#i , #1

m2c\#1.2 =

H2.\ =

#2.2 =

2/,c2

The constants /;, my, /_,-, Cj are the length, mass, moment of inertia, distance to the
centre of gravity measured from the supporting joint, of link j , respectively, for
7 = 1,2, and g is the gravitational acceleration.

The problem may also be subject to any or all of the inequality constraints and
equality constraints as specified by (A.3) and (A.4) in the Appendix. These constraints
correspond to the limitations imposed on the robotic systems due to various practical
requirements. For example, obstacles for which the robot arm system are to avoid
hitting. The software package MISER3.1 [3] is an optimal control software package
that can handle this constrained optimal control problem efficiently (see [13] for
details). However, it would have suffered from the same numerical difficulties when
the initial guess of the control function is not workable. Thus, for simplicity, we
consider the unconstrained case in this paper. The extensions to constrained cases are
straightforward.

In view of the control parametrization method (see Appendix), it is clear that once
the state differential equations (2.1) and cost functional (A.2) are fixed, one has to
supply information on u°(t), the initial guess of the control to start the algorithm. If
the initial guess u°{t) is a workable one, and all subsequent function evaluation are
workable, there are three pieces of information from the computed results after the
convergence of an outer iteration, namely:
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(i) the optimal control function u*{t) of the same class of representation as u°{t) with
a pre-specified accuracy,
(ii) the optimal trajectory (extremals) x*(t), and
(iii) the cost associated with them, J(u*).

However, if the initial guess u°(t) is not a workable one, numerical integration
failures occur.

To summarize the above, we introduce the idea of a "selective rule" M(x(0), u°,i)
for a fixed set of state differential equations and a fixed cost functional, where i e
[1, 2, 3, 4]. When i = 1, M gives the information about workability of M°, i.e. w° is
workable with respects to the initial condition x (0) if and only if M(x(0), u°, 1) = 1;
otherwise, M(JC(0), u°, 1) = 0. If MQc(O), u°, 1) = 1, then

M(x(0),u°,2) = u*(t),

M(x(0),u°,3) = x*(t),

MO(0),u°,4) = J(u*).

If M(JC(0), M°, 1) = 0, then M(x(0), u°, i) is undefined for i = 2, 3, 4.
Note that M itself is not a function. It is what we call a "selective rule". It is

an integer when i = 1, is a real number when / = 4, and is a r or n dimensional
vector-valued function of time when i — 2 or i = 3, respectively. The reason for
introducing this "selective rule" M(-, •, •) is for the ease of notation in the following
discussions, and thus makes the presentation of the "Blind Man" algorithm compact.

We can now formulate the problem of finding a workable initial guess as follows:
Subject to the dynamical system (2.1) and the cost functional (A.2) find a u° such

thatAf(jt(O),w°, 1) = 1.

3. Mathematical preliminaries

The following theorems are well known in the theory of differential equations. For
details, see [1].

3.1. Continuous dependence of solutions of Initial Conditions

THEOREM 1. Consider the system

x = h{t,x) t>s>0 (3.1.a)

where h : [0, oo) x U" H> K" is a nonlinear function. Suppose that for each fixed
but arbitrary £ e K", the function t !-»• h(t, £) is measurable on [0, oo). Moreover,
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for almost all t e [0, oo), £ H» h(t, £) is continuous on W, and that there exists a
non-negative measurable function K e L1,00 such that

\h{t,^)\<K{t)[\ + \HW for all § e R",

\h{t,$)-h(t,ri)\<K(t)\t--ri\ for all £, r, € 01".

Then (s, £) M> jc(r) w a continuous mapping from [0, f] x K" to K" /or each fixed
t > 0, and? i-> JC(O is continuous from [s, oo) to R" for fixed (s, £) 6 (0, oo) x R".

In particular, if 5 is fixed at 0, the above theorem shows that the solution of the
system (3.1) is continuously dependent on initial conditions. Consider the system
(2.1). If the control u(t) is fixed, then the system is in the form of (3.1). More
precisely,

h(t,x) = g(t,x(t),u(t)).

Hence by Theorem 1, the property of continuous dependence on initial condition
remains valid for such systems. We summarize this idea by restating the theorem as
follows.

COROLLARY 1. Given a fixed control u e ^ [ 0 , T), suppose the system (2.1) satisfies
all the conditions of Theorem 1. Then (0, f) H> x{t) is a continuous mapping from
W to W for each fixed t e (0, T] and t H> x(t) is continuous from [0, T] to R" for

fixed £ e W.

On the basis of Corollary 1 we consider system (2.1) with a fixed u e
Then for any e > 0, there exists a 8 > 0 such that

max \x(t\h) - x(f |£2)l < e whenever |£, - §2| < S.
0<r<7"

This continuity property will be a main idea behind the Blind Man method to be
proposed in this paper.

3.2. Continuous dependence of solutions on inputs (controls)

THEOREM 2. Consider the controlled system

x = g(t, x,u) t e [0, T], (3.2.a)

*(0) = JCO, (3.2.b)

where u : [0, T) i-»- U C Kr, and the set U defines the control bounds and it is some
compact subset of \Kr. Let ty be the class of all such bounded measurable function u,
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[7] Optimal control of robot arms moving under gravity 201

and let p : *%/ x ^ h-» [0, oo) be the metric on %'. Thus (?&, p) is a complete metric
space. Suppose there exists a constant K\ (possibly dependent on U) such that

^w)\<Kl[l + \^\] for all ? e T ,

2,w)\<Ki\^-^\ far all ^ f c e R " .

Then there exists a constant K2, depending only on Ku such that

\\xu -xv\\= sup \xu(t) ~ xv(t)\ < K2p(u, v)
re[0,r]

for all u,v€ %', where xu and xv denotes the responses of the system (3.2) corres-
ponding to controls u and v respectively.

4. The Blind Man (BM) method

Although the method to be proposed is rather simple and intuitive, it is practical if
one does not have any "physical insights" to get a workable initial guess.

A blind man, as we know, always checks from where he is standing before he
moves. In other words, if he is at point A and he wants to go to point B, he starts off
checking things at point A first. Then, he goes a bit further towards point B. Again,
he will check this new point out until he is sure about the point before he moves on a
bit further against towards point B.

In view of this "blind man approach", one can see that for problems with a given
x(0), a wild guess of u° may not be advisable. The first step of our approach is to
free the initial condition x(0) = x0 to a point denoted by £° for which a workable
initial control denoted by /x° can be easily obtained. Then, we shall move the initial
condition slowly towards the specified initial condition xQ in view of Corollary 1.
With this in mind, we have the following observation

If all the links of the robot arm hand at rest, pointing vertically downwards initially,
without supplying any torque for the whole time horizon, the system will remain in
this state, that is, x{t) is constant for all t e [0, T]. Of course there should be no
integration failures in this starting configuration when we keep the applied torque to
be constantly zero, or small enough in magnitude, through [0, T). Thus, for a given
vertical planar multi-link robot arm system moving under the effect of gravity together
with a specified cost functional, if §° = [=f, 0, 0 , . . . , 0]T, theM(|°, n°, 1) = 1 when
fj,0 is constantly zero, and with the control search bounds that are small enough.

If the required bounds specified in <& is too large to make M(f °, /LA0, 1) =
1, however, one can use smaller bounds on the control search space to compute

°, n°, •). If Af(£°, /x°, 2) hits the bounds, we then widen the bounds a bit, and
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reset ix° as M(£°, ix°, 2), and compute M ( | ° , /u,0, •) again with this new /x°. This
widening process is repeated until the search bounds hits the required bounds, or
M(£°, jU,0, 2) does not hit the bounds anymore. After that, reset the search bounds
as the required bounds specified in % in all the subsequent computations. We can
formalize all these bound widening processes as follows.

Recall that ^ is the class of all bounded measurable functions u : [0, T) \-> U C
Rr, where U defined the control bounds. Let

u = [w € Rr | ak < wk < 0k for k = 1, 2, . . . , r}.

In this paper, we assume that ak < 0 and fik > 0 for all k = 1,2, ... ,r. The reason
for this assumption is to ensure that the constant zero control is strictly in the interior
of <%'. We can see the relevance to this in the later part of this section. Nevertheless,
this assumption is valid in most of the practical robot arm systems. Now we can define
the set Uy as

yak < wk < ypk for k = 1, 2 , . . . , r]

and let the class ^ y be the class of all bounded measurable functions u : [0, T) i->
UY C W. In the following discussions, we assume that the control function is
parametrized by piecewise constant functions. Hence, for a certain fixed way of
parametrization, a control function fj, e %Y takes the form

for k = \,2, ... ,r, j — 0, 1, 2 , . . . , Mk, where Mk + 1 is the number of partitions
of the time-axis of the k-th element of the control, and /[,,,,,t,+,)() is the indicator
function defined as

10 otherwise.

Since n € %, for all j = 0, 1, 2 , . . . , Mk, the coefficients hkJ are bounded by

yak < hkj < YPk for k = 1, 2, . . . , r. Now, let jx be a particular control function in

tf/y with its corresponding coefficients denoted by hkj. Thus, we can define hkj as

hkJ = min {yfik - hkJ, hkJ - yak).

We can then define the sets Vkj(jx, <fry, ft) as

VkJ(jl, %, •&) = [u; e OK | (h^j - dh^j) < w < (h^ + i ? / ^
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for k = 1, 2,... ,r and j = 0,1,2,..., Mk. Hence, for each given /x. e <2/Y, with
p, not on the boundary of ^Y> w e c a n define a neighbourhood class of p. as the class
of controls given in the same form as in (4.1) with the coefficients hkJ restricted to
the set Vkj(fi, &y,$) for each k and j . We denote this neighbourhood class of p, as
%,<,(&)• Clearly, %#($) is a subset of %. Let T(%A(JJL)) denote a real number
defined by

max
min, I (hkJ - max; | (hkJ + &hkJ) J

ak

Note that r C ^ ^ / x ) ) gives the smallest y' such that ^ # ( / x ) C Wy, that is,

= arg^

Let M(-, •, • | W) denote the "selective rule" of the optimization process the same as
in M (-,-,•) but with the control search space % replaced by W.

Suppose £° = [-TT/2, 0, 0 , . . . , 0]T, and /x° = 0 for all t e [0, T). Let N > 1 be
a fixed large positive integer and e be a small positive real number, we then have the
following algorithm.

ALGORITHM 1.

step 0: Set y = 1, and /x := /x°.
step 1: If M(£°, fx, \\%) = 1, set /x := M(f, /x, 2 | "^X goto step 2;

otherwise set y := ^, goto step 1.
step 2: If ix hits the bounds of ^Y, then goto step 3;

otherwise, reset y = 1, set /x° := /x, then stop,
step 3: If y = 1, set /x° := /x, then stop;

otherwise, set y := y and rj := ^ , then goto step 4.
step 4: Set y := y + 17, if M(£°, ^, 1 | ^ x ) = 0, set >? := \, goto step 5,

otherwise set ix := M(%°, /x, 2 | ^ x ) , goto step 2.
step 5: If J7 > e, goto step 4

otherwise set # = 1, goto step 6.
step 6: Set ̂  := %.AlA- If A/(§°, /*, 1 | W) = 1, set y := r(y^),

set /x := Af(£°, /x, 2 | W), goto step 3;
otherwise, set ft := | , goto step 6.

The use of the above algorithm is to compute an appropriate fj,0, such that
M(£°, /x°, 1) = 1 regardless of the size of the bounds on the control search space
%'. Note that from step 5 to step 6, /x is not on the boundary of ^Y. As long as the
constant zero control /x0 in step 0 is in the interior of %', all subsequent tt computed
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just before executing step 6 are in the interior of each corresponding <%Y, where y
has the value just before executing step 6. Hence, the neighbourhood classes ^^ ( /x )
exist, and their constructions remain valid.

Note also that infinite loopings will note occur in the above algorithm within step 1,
and within step 6. The reasons for this follows readily from the continuous dependence
property of the system trajectory on controls discussed in Section 3. Let w = 0 for
all t € [0, T). For 0 < y < 1, there exists a metric p(-, •) defined on <%f, such that
p(u,v) decreases monotonically when y decreases for any control v e ^/y. So, by
Theorem 2, ||JCM — JCV j| can be made arbitrarily small by reducing y > 0 in order to
avoid integration failures. Hence, the loopings within step 1 will terminate at a finite
number of loops. In step 6, /x is in the interior of the neighbourhood classes ^y_6 (/x).
For 0 < 1? < 1, p(/x, w) decreases monotonically when & decreases for any control
w e fyy^iii,). Again, by Theorem 2, ||xM — xw\\ can be made arbitrarily small by
reducing i? > 0 in order to avoid integration failures. Therefore, the loopings within
step 6 will terminate at a finite number of loops as well.

The frequency of executing step 6 depends on the size of e we choose. The larger it
is, the more frequent the execute of step 6 becomes. From experience, there is hardly
any execution of step 6 of Algorithm 1 in the whole process for some arbitrarily chosen
small e. The reasons for avoiding the execution of step 6 are: (i) it is computationally
cumbersome, and (ii) any execution of this may increase the chances of finding a local
minimum.

There is another way to avoid the execution of step 6 and at the same time avoiding
infinite loopings of the Algorithm. Note that the optimization process M(-,-,• | W) is
an iterating process by itself. Let w € W denotes its search direction in each iteration
and let a e R denotes the corresponding step size. Thus, if u is the control used in
the previous iteration, u := u + aw is the control used for the current iteration. Let
a denotes the bounds on a, that is, \o\ < a. Now, replace step 5 and step 6 by the
following single step:

step 5: If r\ > e, goto step 4
otherwise, set a := | , goto step 4.

In addition, d is reset to its original value every time step 2 is executed.
Note that infinite loopings can be avoided, again by Theorem 2. However, this

modified algorithm is not recommended, as: (i) it is still possible to find a local
minimum, (ii) it usually takes a longer computational time, and (iii) changing bounds
on step size is usually not a built-in user option in optimal control software.

With Algorithm 1, we can now present the proposed BM method as follows.

ALGORITHM 2.

step 0: Set i = 0, and fix the parametrization of the control.
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step 1: Set £° = [-n/2,0,0,..., 0]T, and jt° = 0 for all t e [0, T).
Apply Algorithm 1.

step 2: Let/i'+1 = Af(£', /z', 2).
step 3: Let a — 1, and let A be any non-zero n dimensional vector small in magnitude

that makes |§' + aA - x(0)| < |§' - x(0)|.
step 4: Let£i+I = %' + aA.
step 5 : If M(£1+1, ixi+x, 1) = 1, goto step 6;

otherwise, set a := | , goto step 4.
step 6: If £'+1 = x0, then stop;

otherwise, set i := i + 1, goto step 2.

Our required «° is given by /xl+l upon the termination of the algorithm.
The remaining question is on the existence of such a non-zero term a A in step 3

of the algorithm. The answer to this question follows readily from the continuous
dependency property of system trajectory on initial conditions discussed in Section
3. To be more specific, let e > 0 represent the amount of trajectory shift that the
differential equation solver can tolerate before encountering integration failures. Then
for a fixed fi'+i, there exists a 8 > 0 such that

|M(r+1, Hi+l, 3) - M(r, nt+\ 3)1 < €

whenever |§'+ 1 — £'| < S. Hence such a non-zero a A exists as long as e > 0.
However, if there is no tolerance at all, (e = 0), the BM method will fail to work. In
fact, nothing will work for such problems that do not allow any room for tolerance.
As far as multi-link vertical planar robot arm systems are concerned, this does not
happen.

It is interesting to note that gravity is, in fact, the cause of chaotic behaviour
in the robot arm systems. However, a stable equilibrium point is known to be at
£° = [n/2, 0, 0 , . . . , 0] , and it can be readily used as a starting point for the BM
method.

Note that in step 3, the choice of A is infinite. Any A that is small enough in
magnitude such that |£'+aA—JC(0)| < |£° — JC(O)| is a valid choice. In all iteration,
if we choose A pointing in the same direction as x(0) — [—n/2, 0, 0 , . . . , 0] , this
means £' gets closer to x(0) in a straight line when i increases. However, from
experience, this choice of A is likely to end up with a lot of looping between step
4 and step 5. Although, there is no other natural restrictions for us to follow, if
x(0)j = 0 for some j e {2, 3, . . . , N}, usually, we choose the corresponding A, = 0.
Also, A is recommended to have only one non-zero element. That is to say, §' gets
closer to x(0) in a zig-zag path with each segments parallel to one of the axes of K".
From experience, this scheme of choosing A is more natural to the user and loopings
between step 4 and step 5 are less.
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5. Illustrative example

Consider the vertical planar two-link robot arm system with gravity taken into
account. The system of state differential equations is as stated in Section 2. The
physical parameters are set as follows in their appropriate units:

/, =0.45, /c,= 0.225, m, = 10, /, = 0.4,

h = 0.25, lc2= 0.125, m2 = 5, I2 = 0.1956

and the gravitational acceleration g = 9.81.
The control bounds are |u, (01 < 20 and |w2(OI < 10.
Our aim is to move the robot arms from the initial configuration

*(0) = [JC,(O), Jt2(0), JC3(O), *4(0)]T = [-70, 0, 7, 0]

such that the following cost functional is minimized:

J(u) =10[[*,(10) - 8O]2 + [x2(10)]2 + [jr3(10) - 80]2 + [x4(l0)f

•10 r - '* - 80]2 + [*2(Q]2 + [x3(t) - 80]2 + [x4(t)]
2

/o 100/ '
Jo

Iboo
where JC, (0) = -70, x2(0) = 0, x2(0) = 7, x4(0) = 0.

This cost functional attempts to get the robot arms from the initial configuration
into the configuration x = [80, 0, 80, 0] smoothly with a reasonably small amount
of control (torque) in 10 units of time. The term

- 80]2 + fo(Q]2 + [x3(t) - 80]2 + [JC4(Q]2

100

in the integrand is to penalize the far positioning of the arms and its spinning and big
swing motions, while ([«i(0]2 + [«2(O]2/1000 is to penalize the amount of torque
used.

Note that if the time horizon of the problem were just 1 unit of time instead of
10, there would not be much numerical difficulty for any initial guess of the control
function. This is due to the fact that the chaotic behaviour developed in such a small
time interval is not significant enough to cause integration failures.

We make use of the software package MISER3.1 [3] for the A/(£', \x*, •) compu-
tations to obtain \x', and to perform the control parametrization refinements for uj

https://doi.org/10.1017/S0334270000008808 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008808


[13] Optimal control of robot arms moving under gravity 207

thereafter. The software package MISER3.1 requires analytical partial derivatives of
the right hand side of (2.1) w.r.t. the state and control. This could be a tedious job,
especially when the dimensions of the system is high, or the state differential equation
is complicated. However, with the automatic differentiation program PADRE2 [4]
incorporated with MISER3.1, it is a simple task.

Since the required x2(0) and *4(0) are zeros, that is, the system should start from
rest, ^ and £j are continued to be zeros for all iterations i. The control is chosen from
the class of piecewise constant functions on 4 equal partitions.

The iterates of f J are shown in Figure 2, whereas the iterates of ^ are shown in
Figure 3. Note that the increase of both f { and £j are slow when / is ranging from 4 to
50. Certainly, there is some numerical difficulties when £' is around [—74, 0, 3, 0] .
The system becomes "very chaotic" in this region. Numerical integration within
MISER3.1 can tolerate only a very slight change in the initial condition. After passing
that region, both f J and £j move quickly to f' = [-70, 0, 7, 0] . The algorithm
terminated at the 73rd iteration. The plots of /A1 , and /u,73 are shown in Figures 4 and
5 respectively, and their associated costs are shown in Table 1. Note that both /A1 and
H13 hit the bounds. From the look of ix73 itself, it is hard to guess an initial control
"close enough" to it to avoid numerical integration failures.

FIGURE 2. The plot of £j. Rapid increases at the beginning and at the end.

Now let the time horizon be partitioned into 63 equal subintervals. Then, by using
u° = ft,13 as a workable initial solution, MISER3.1 converged successfully. The
corresponding optimal state trajectory and the controls U\ and u2 are shown in Figures
6, 7 and 8 respectively. Note that xx and x3 behave like a turnpike solution. It swings
with a small amplitude until close to the end of the time horizon, where it moves to
the desired state. The turnpike behaviour also appears in ux and u2 where most of
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60 70 80

FIGURE 3. The plot of £j. Rapid increases at the beginning and at the end.

the control effort are spent close to the end. Moreover, it is interesting to note that,
although /x13 hit the bounds, the optimal control u\ and u2 are inactive with respect to
the bounds.

FIGURE 4. The plot of fi\ (t) and n\(t). Control hits the bounds.

6. Conclusions

We consider an optimal control problem involving a vertical planar multi-link
robot arm system moving under the effect of gravity. For such an optimal control
problem, it is not an easy task to guess an initial control function such that the
numerical integration of the system would not fail. Thus, none of the gradient
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FIGURE 5. The plot of /x"(/) and

S 10

. Control hits the bounds.

based optimal control algorithms, such as the control parametrization algorithm, will
work in this situation. In this paper, we have developed a simple and intuitive
method for constructing a workable initial guess for the control function of the control
parametrization algorithm. This method is referred to as the Blind Man (BM) method.
It is developed based on the properties of continuous dependence of solutions on initial
conditions and on inputs (controls). These properties are well known and elementary
in the theory of differential equation. Theoretical justification is provided and an
illustrative example is given to demonstrate the usefulness of the method.

TABLE 1. The table lists the costs associated with various iterations and the optimal cost (with number
of partitions set to 63).

i = 1

i = 6

i = 16

i = 7 3

optimal cost

46.933

47.263

47.262

47.194

1.547
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FIGURE 6. The plot of x, (/) and *3(r) after MISER3.1 converged, with u set as a 63 equally partitioned
piecewise constant function. It exhibits a turnpike-like behaviour.

Appendix

Optimal control and control parametrization Consider a process described by
the following system on nonlinear differential equations on (0, T]:

x = g(t,x,u), (A.I.a)

where x € OS" is the state vector and u : [0, 7") h-» U c Kf is the control vector.
The set U defines the control bounds and it is some compact subset of Kr. Let fy
be the class of all such bounded measurable functions u. Elements of ^ are called
admissible controls, and ^ is called the class of admissible controls. The function
g : [0, T] x K" x Kr i-> OS" is given a nonlinear function which is continuously
differentiable with respect to all its arguments. The initial condition for the system of
differential equations (A.I.a) is

= x0. (A.l.b)

The standard optimal control problem is then formulated as:
Subject to the dynamical systems (A.I), find an admissible control u e % such

that the cost functional

J0(u) = 4>0(x(T)) + f 3fo(t, x, u) dt (A.2)
Jo

is minimised over ^ , and such that for / = 1, 2, . . . , Me, the inequality constraints

,u)dt > 0 (A.3)
Jo

https://doi.org/10.1017/S0334270000008808 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008808


[17] Optimal control of robot arms moving under gravity 211
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FIGURE 7. The plot of u*(t). Turnpike behaviour and within the bounds.

and for i = Me + 1, Me + 2,..., Me + Mh the equality constraints

/ '
Jo

Sfi(t,x,u)dt = (A.4)

are satisfied. For i =0,1,2, ..., Me + Mt, 3>, and J^ are given functions which are
continuously differentiable with respect to all their arguments.

In the control parametrization method, the control function u is approximated as a
linear combination of some basis functions partitioning the time horizon [0, T]. For
example, if these basis functions are zero order splines, this approximate representation
turns out to be a piecewise constant function. The coefficients of these basis functions
will completely characterize the control function within this particular representation.
Hence, finding an optimal control within this representation is to minimize (A.2)
with respect to the corresponding coefficients. It is, therefore, an optimal parameter
selection problem, which can be viewed as a mathematical programming problem. The
first outer iteration of the method is said to be complete, after the optimal coefficients
are obtained.

Then, a refinement of the partition of the time horizon is taken. This refinement
is taken in such a way that it contains the previous partition, resulting in a larger set
of coefficients. We can now start the second outer iteration, where, the previously
calculated coefficients are used in the initial guess for the new set of coefficients.
Optimization is performed to obtain the new set of optimizing coefficients. The second
outer iteration is said to be complete after new optimal coefficients ar& obtained.

This refining and the subsequent optimizing process are repeated until a certain
stopping criteria is satisfied.
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FIGURE 8. The plot of u\(t). Turnpike behaviour and within the bounds.

Note that from the second and other subsequent outer iterations, initial guesses are
obtained from the results of the previous iteration. However, how do we obtain an
initial guess of the first outer iteration remains a question.

For more details on control parametrization methods see [2,13].
For a vertical planar multi-link robot arms system moving under the effect of

gravity, its chaotic behaviour associated with a non-workable initial guess will cause
numerical integration failures. Thus, our aim in this paper is to develop a systematic
approach to construct an initial guess, which is workable, for the optimal control
algorithms, in particular, control parametrization algorithms.
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