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Second Quantization

In this chapter we revisit the quantum mechanical description of one-particle systems and
many-particle systems. We highlight the differences between distinguishable and indistin-
guishable, or identical, particles and bring to the front the mathematical complications that
arise when dealing with identical particles. We then introduce the second quantization for-
malism and show how to overcome these complications. The main actors of the second
quantization formalism are the field operators, which can be used to represent states and
quantum observables in the Hilbert space of identical particles.

1.1 Quantum Mechanics of One Particle

In quantum mechanics the physical state of a particle is described in terms of a ket |Ψ⟩.
This ket belongs to a Hilbert space, which is nothing but a vector space endowed with
an inner product. The dimension of the Hilbert space is essentially fixed by our physical
intuition; it is us who decide which kets are relevant to the description of the particle. For
instance, if we want to describe how a laser works we can choose those energy eigenkets
that get populated and depopulated, and discard the rest. This selection of states leads to
the well-known description of a laser in terms of a three-level system, four-level system, etc.
A fundamental property following from the vector nature of the Hilbert space is that any
linear superposition of kets is another ket in the Hilbert space. In other words, we can make
a linear superposition of physical states and the result is another physical state. In quantum
mechanics, however, it is only the “direction” of the ket that matters, so |Ψ⟩ and C|Ψ⟩
represent the same physical state for all complex numbers C . This redundancy prompts us
to work with normalized kets. What do we mean by that? We said before that there is an
inner product in the Hilbert space. Let us denote by ⟨Φ|Ψ⟩ = ⟨Ψ|Φ⟩∗ the inner product
between two kets |Ψ⟩ and |Φ⟩ of the Hilbert space. Then every ket has a real positive inner
product with itself,

0 < ⟨Ψ|Ψ⟩ <∞.
A ket is said to be normalized if the inner product with itself is 1. Throughout this

book we always assume that a ket is normalized unless otherwise stated. Every ket can be
normalized by choosing the complex constant C = eiα/

√
⟨Ψ|Ψ⟩ with α an arbitrary real

number. Thus, the normalization fixes the ket of a physical state only modulo a phase factor.
As we see in Section 1.3, this freedom is the basis of a fundamental property about the nature
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2 1 Second Quantization

Figure 1.1 Histogram of the normalized number of clicks of the detector in xn = n∆. The
height of the bars corresponds to the probabilities |Ψn|2.

of elementary particles. The notion of inner product also allows us to define the dual space
as the vector space of linear operators ⟨Φ|, which deliver the complex number ⟨Φ|Ψ⟩ when
acting on the ket |Ψ⟩. The elements of the dual space are called bra, and we can think of
the inner product as the action of a bra on a ket. The formulation of quantum mechanics
in terms of bras and kets is due to Dirac [1, 2] and turns out to be extremely useful.

According to the basic principles of quantum mechanics [2],

• With every physical observable is associated a Hermitian operator whose eigenvalues
λ represent the outcome of an experimental measurement of the observable.

• If the particle is described by the ket |Ψ⟩, then the probability of measuring λ is given
by

P (λ) = |⟨λ|Ψ⟩|2,
where |λ⟩ is the eigenket of the operator with eigenvalue λ.

• The experimental measurement is so invasive that just after measurement the particle
collapses in the ket |λ⟩.

Let us discuss the implications of these principles with an example.
Discrete formulation Suppose that we want to measure the position of a particle living

in a one-dimensional world. We can construct a detector with the property that it clicks
whenever the particle is no further away than, say, ∆/2 from the position of the detector.
We distribute these detectors on a uniform grid xn = n∆, with n integers, so as to cover
the entire one-dimensional world. The experiment consists in preparing the particle in a
state |Ψ⟩ and in taking note of which detector clicks. After the click, we know for sure
that the particle is in the interval xn ±∆/2, where xn is the position of the detector that
clicked. Repeating the experiment N ≫ 1 times, counting the number of times that a given
detector clicks, and dividing the result by N , we obtain the probability that the particle is
in the interval xn ± ∆/2, see histogram in Fig. 1.1. Quantum mechanics tells us that this
probability is

P (n) = |⟨n|Ψ⟩|2,

https://doi.org/10.1017/9781009536776.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009536776.003


1.1 Quantum Mechanics of One Particle 3

where |n⟩ is the ket describing the particle in the interval xn ± ∆/2. The experimental
setup does not allow us to say where exactly the particle is within this interval. In fact, it
does not make sense to speak about the exact position of the particle since it cannot be
measured. From the experimental output we could even argue that the one-dimensional
world is discrete! What we want to say is that in our experiment the “exact position” of the
particle is a mere speculative concept, like the gender, color, or happiness of the particle.
These degrees of freedom may also exist, but if they cannot be measured then we should
not include them in the description of the physical world. As scientists we can only assign
a ket |n⟩ to the state of the particle just after measurement, and we can interpret this ket
as describing the particle in some discrete position. The probability of finding the particle
in |n′⟩ just after the nth detector has clicked is zero for all n′ ̸= n and unity for n′ = n,
and hence,

⟨n′|n⟩ = δn′n. (1.1)

The kets |n⟩ are orthonormal and it is easy to show that they form a basis of our Hilbert
space. Suppose by absurdum that there exists another ket |χ⟩ orthogonal to all the |n⟩.
If the particle is described by this ket then the probability that the nth detector clicks is
|⟨n|χ⟩|2 = 0 for all n. This cannot be the case unless the particle is somewhere outside the
one-dimensional world – that is, in a state not included in our original description.

Let us continue to elaborate on the example of the particle in a one-dimensional world.
We said before, that the kets |n⟩ form a basis. Therefore, any ket |Ψ⟩ can be expanded as

|Ψ⟩ =
∑

n

Ψn|n⟩. (1.2)

Since the basis is orthonormal, the coefficient Ψn is simply

Ψn = ⟨n|Ψ⟩, (1.3)

and its square modulus is exactly the probability P (n):

|Ψn|2 =

(
probability of finding the particle in

volume element ∆ around xn

)
.

It is important to appreciate the advantage of working with normalized kets. Since ⟨Ψ|Ψ⟩ =
1, then ∑

n

|Ψn|2 = 1, (1.4)

according to which the probability of finding the particle anywhere is unity. The interpreta-
tion of the |Ψn|2 as probabilities would not be possible if |Ψ⟩ and |n⟩ were not normalized.

Given an orthonormal basis, the inner product of a normalized ket |Ψ⟩ with a basis
ket gives the probability amplitude of having the particle in that ket.

Inserting (1.3) back into (1.2), we find the interesting relation

|Ψ⟩ =
∑

n

⟨n|Ψ⟩ |n⟩ =
∑

n

|n⟩⟨n|Ψ⟩.

https://doi.org/10.1017/9781009536776.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009536776.003


4 1 Second Quantization

This relation is interesting because it is true for all |Ψ⟩ and hence
∑

n

|n⟩⟨n| = 1̂, (1.5)

with 1̂ the identity operator. Equation (1.5) is known as the completeness relation and
expresses the fact that the set {|n⟩} is an orthonormal basis. Vice versa, any orthonormal
basis satisfies the completeness relation.

Continuum formulation We now assume that we can construct more and more precise
detectors and hence reduce the range ∆. Then we can also refine the description of our
particle by putting the detectors closer and closer. In the limit ∆→ 0, the probability |Ψn|2
approaches zero and it makes more sense to reason in terms of the probability density
|Ψn|2/∆ of finding the particle in xn. Let us rewrite (1.2) as

|Ψ⟩ = ∆
∑

n

Ψn√
∆

|n⟩√
∆
. (1.6)

We now define the continuous function Ψ(xn) and the continuous ket |xn⟩ as

Ψ(xn) ≡ lim
∆→0

Ψn√
∆
, |xn⟩ = lim

∆→0

|n⟩√
∆
.

In this definition the limiting function Ψ(xn) is well defined, while the limiting ket |xn⟩
makes mathematical sense only under an integral sign since the norm ⟨xn|xn⟩ = ∞.
However, we can still give to |xn⟩ a precise physical meaning since in quantum mechanics
only the “direction” of a ket matters.1 With these definitions (1.6) can be seen as the Riemann
sum of Ψ(xn)|xn⟩. In the limit ∆ → 0 the sum becomes an integral over x, and we can
write

|Ψ⟩ =
∫
dx Ψ(x)|x⟩.

The function Ψ(x) is usually called the wavefunction or the probability amplitude, and its
square modulus |Ψ(x)|2 is the probability density of finding the particle in x, or equivalently

|Ψ(x)|2 dx =

(
probability of finding the particle
in volume element dx around x

)
.

In the continuum formulation the orthonormality relation (1.1) becomes

⟨xn′ |xn⟩ = lim
∆→0

δn′n

∆
= δ(xn′ − xn),

where δ(x) is the Dirac δ-function, see Appendix A. Similarly, the completeness relation
becomes ∫

dx |x⟩⟨x| = 1̂.

1The formulation of quantum mechanics using nonnormalizable states requires the extension of Hilbert spaces
to rigged Hilbert spaces. Readers interested in the mathematical foundations of this extension can consult, for
example, Ref. [3]. Here we simply note that in a rigged Hilbert space everything works as in the more familiar
Hilbert space. We simply have to keep in mind that every divergent quantity comes from some continuous limit
and that in all physical quantities the divergency is canceled by an infinitesimally small quantity.
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1.1 Quantum Mechanics of One Particle 5

The entire discussion can easily be generalized to particles with spin in three (or any
other) dimension. Let us denote by x = (rσ) the collective index for the position r and the
spin projection (say along the z axis) σ of the particle. If in every point of space we put a
spin-polarized detector which clicks only if the particle has spin σ then |x⟩ is the state of
the particle just after the spin-polarized detector in r has clicked. The position–spin kets
|x⟩ are orthonormal

⟨x′|x⟩ = δσ′σδ(r
′ − r) ≡ δ(x′ − x), (1.7)

and form a basis. Hence they satisfy the completeness relation, which in this case reads

∫
dx |x⟩⟨x| = 1̂ (1.8)

Here and in the remainder of the book we use the symbol
∫
dx ≡

∑

σ

∫
dr

to signify a sum over spin and an integral over space. The expansion of a ket in this
continuous Hilbert space follows directly from the completeness relation

|Ψ⟩ = 1̂|Ψ⟩ =
∫
dx |x⟩⟨x|Ψ⟩,

and the square modulus of the wavefunction Ψ(x) ≡ ⟨x|Ψ⟩ is the probability density of
finding the particle in x = (rσ):

|Ψ(x)|2 dr =

(
probability of finding the particle with spin σ

in volume element dr around r

)
.

Operators So far we have only discussed the possible states of the particle, and the
physical interpretation of the expansion coefficients. To say something about the dynamics
of the particle, we must know the Hamiltonian operator ĥ. The knowledge of the Hamiltonian
in quantum mechanics is analogous to knowledge of the forces in Newtonian mechanics. In
Newtonian mechanics the dynamics of the particle is completely determined by the position
and velocity at a certain time and by the forces. In quantum mechanics the dynamics of the
wavefunction is completely determined by the wavefunction at a certain time and by ĥ. The
Hamiltonian operator ĥ ≡ h(r̂, p̂, Ŝ) does, in general, depend on the position operator r̂,
the momentum operator p̂, and the spin operator Ŝ . An example is the Hamiltonian for a
particle of mass m, charge q, and gyromagnetic ratio g moving in an external scalar potential
ϕ, vector potential A, and whose spin is coupled to the magnetic field B = ∇×A:

ĥ =
1

2m

(
p̂− q

c
A(r̂)

)2
+ qϕ(r̂)− gµBB(r̂) · Ŝ, (1.9)

with c the speed of light and µB the Bohr magneton.2 Unless otherwise stated in this
book we use atomic units, so ℏ = 1, c ∼ 137, electron charge e = −1, and electron mass

2Other relativistic corrections like the spin–orbit interaction can be incorporated without any conceptual com-
plication.
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6 1 Second Quantization

me = 1. Thus, in (1.9) the Bohr magneton µB = eℏ
2mec

∼ 3.649×10−3, and charge and mass
of the particles are measured in units of e and me, respectively. To distinguish operators
from scalar or matrix quantities we always put the symbol “ ˆ ” (read “hat”) on them. The
position–spin kets are eigenstates of the position operator and of the z-component of the
spin operator:

r̂|x⟩ = r|x⟩, Ŝz|x⟩ = σ|x⟩,
with σ = −S,−S +1, . . . , S − 1, S for spin S particles. The eigenstates of the momentum
operator are instead the momentum–spin kets |pσ⟩:

p̂|pσ⟩ = p|pσ⟩.

These kets are also eigenstates of Ŝz with eigenvalue σ. The momentum–spin kets form
an orthonormal basis like the position–spin kets. The inner product between |x⟩ = |rσ⟩
and |pσ′⟩ is proportional to δσσ′ times the plane wave eip·r. In this book we choose the
constant of proportionality to be unity, so that

⟨x|pσ′⟩ = δσσ′⟨r|p⟩ with ⟨r|p⟩ = eip·r (1.10)

This inner product fixes uniquely the form of the completeness relation for the kets |pσ⟩.
We have

⟨p′σ′|pσ⟩ = δσ′σ⟨p′|p⟩ = δσ′σ

∫
dr ⟨p′|r⟩⟨r|p⟩ = δσ′σ

∫
dr ei(p−p

′)·r

= (2π)3δσ′σδ(p
′ − p),

and therefore
∑

σ

∫
dp

(2π)3
|pσ⟩⟨pσ| = 1̂ (1.11)

as can easily be verified by acting with (1.11) on the ket |p′σ′⟩ or on the bra ⟨p′σ′|.
Before moving to the quantum mechanical description of many particles, let us briefly

recall how to calculate the matrix elements of the Hamiltonian ĥ in the position–spin basis.
If |Ψ⟩ is the ket of the particle, then

⟨x|p̂|Ψ⟩ = −i∇⟨x|Ψ⟩ ⇒ ⟨Ψ|p̂|x⟩ = i⟨Ψ|x⟩←−∇,

where the arrow over the gradient specifies that ∇ acts on the quantity to its left. It follows
from these identities that

⟨x|p̂|x′⟩ = −iδσσ′∇δ(r− r′) = iδσσ′δ(r− r′)
←−
∇′, (1.12)

where ∇′ means that the gradient acts on the primed variable. Therefore, the matrix
element ⟨x|ĥ|x′⟩ with ĥ = h(r̂, p̂, Ŝ) can be written as

⟨x|ĥ|x′⟩ = hσσ′(r,−i∇,S)δ(r− r′) = δ(r− r′)hσσ′(r′, i
←−
∇′,S) (1.13)
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1.2 Quantum Mechanics of Many Particles 7

Figure 1.2 Histogram of the normalized number of simultaneous clicks of the electron and
positron detectors in xn = n∆ and xm = m∆, respectively. The height of the paral-
lelepipeds corresponds to the probabilities |Ψnm|2.

where S is the matrix of the spin operator with elements ⟨σ|Ŝ|σ′⟩ = Sσσ′ . For example,
for the one-particle Hamiltonian in (1.9) we have

hσσ′(r,−i∇,S) =
δσσ′

2m

(
−i∇− q

c
A(r)

)2
+ δσσ′qϕ(r)− gµBB(r) · Sσσ′ .

We use (1.13) over and over in the following chapters to recognize the matrix structure of
several equations.

1.2 Quantum Mechanics of Many Particles

We want to generalize the concepts of the previous section to many particles. Let us first
discuss the case of distinguishable particles. Particles are called distinguishable if one or
more of their properties, such as mass, charge, spin, etc., are different. Let us consider, for
instance, an electron and a positron in one dimension. These particles are distinguishable
since the charge of the positron is opposite to the charge of the electron.

Discrete formulation for two particles To measure the position of the electron and
the position of the positron at a certain time, we put an electron detector and a positron
detector at every point xn = n∆ of the real axis and perform a coincidence experiment.
This means that we take note of the position of the electron detector and of the positron
detector only if they click at the same time. The result of the experiment is the pair of
points (xn, xm), where xn refers to the electron and xm refers to the positron. Performing
the experiment N ≫ 1 times, counting the number of times that the pair (xn, xm) is
measured and dividing the result by N , we obtain the probability that the electron is in xn
and the positron in xm, see the histogram in Fig. 1.2. According to quantum mechanics,
the electron–positron pair collapses in the ket |n⟩|m⟩ just after measurement. This ket
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8 1 Second Quantization

describes an electron in the interval xn ± ∆/2 and a positron in the interval xm ± ∆/2.
Therefore, the probability of finding the electron–positron pair in |n′⟩|m′⟩ is zero unless
n′ = n and m′ = m; that is,

( ⟨n′|⟨m′| ) ( |n⟩|m⟩ ) = δn′nδm′m.

The kets |n⟩|m⟩ are orthonormal and form a basis since if there was a ket |χ⟩ orthogonal
to all of them then the electron–positron pair described by |χ⟩ would not be on the real
axis. The orthonormality of the basis is expressed by the completeness relation

∑

nm

( |n⟩|m⟩ ) ( ⟨n|⟨m| ) = 1̂.

This relation can be used to expand any ket as

|Ψ⟩ = 1̂|Ψ⟩ =
∑

nm

( |n⟩|m⟩ ) ( ⟨n|⟨m| ) |Ψ⟩,

and if |Ψ⟩ is normalized then the square modulus of the coefficients Ψnm ≡ ( ⟨n|⟨m| ) |Ψ⟩
is the probability represented in the histogram.

Continuum formulation for two particles As in the previous section, we could refine
the experiment by putting the detectors closer and closer. We could also rethink the entire
experiment in three (or any other) dimensions and use spin-polarized detectors. We then
arrive at the position–spin kets |x1⟩|x2⟩ for the electron–positron pair with inner product

( ⟨x′1|⟨x′2| ) ( |x1⟩|x2⟩ ) = δ(x′1 − x1)δ(x
′
2 − x2),

from which we deduce the completeness relation
∫
dx1dx2 ( |x1⟩|x2⟩ ) ( ⟨x1|⟨x2| ) = 1̂.

The expansion of a generic ket is

|Ψ⟩ =
∫
dx1dx2 ( |x1⟩|x2⟩ ) ( ⟨x1|⟨x2| ) |Ψ⟩,

and if |Ψ⟩ is normalized then the square modulus of the wavefunction Ψ(x1,x2) ≡
( ⟨x1|⟨x2| ) |Ψ⟩ yields the probability density of finding the electron in x1 = (r1σ1)
and the positron in x2 = (r2σ2):

|Ψ(x1,x2)|2 dr1dr2 =




probability of finding the electron with spin σ1
in volume element dr1 around r1 and the positron
with spin σ2 in volume element dr2 around r2


 .

Continuum formulation for N particles The generalization to N distinguishable par-
ticles is straightforward. The position–spin ket |x1⟩ . . . |xN ⟩ describes the physical state in
which the first particle is in x1, the second particle is in |x2⟩, etc. These kets form an
orthonormal basis with inner product

( ⟨x′1| . . . ⟨x′N | ) ( |x1⟩ . . . |xN ⟩ ) = δ(x′1 − x1) . . . δ(x
′
N − xN ), (1.14)
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1.2 Quantum Mechanics of Many Particles 9

and therefore the completeness relation reads
∫
dx1 . . . dxN ( |x1⟩ . . . |xN ⟩ ) ( ⟨x1| . . . ⟨xN | ) = 1̂.

Operators Having discussed the Hilbert space for N distinguishable particles, we now
consider the operators acting on the N -particle kets. We start with an example and consider
again the electron–positron pair. Suppose that there is an electric field E(r) = −∇ϕ(r)
extending across all of space and that we are interested in measuring the total potential
energy. This is an observable quantity and, hence, associated with it there exists an operator
Ĥpot. By definition the eigenstates of this operator are the position–spin kets |x1⟩|x2⟩ and
the corresponding eigenvalues are −ϕ(r1)+ϕ(r2), independent of the spin of the particles
(in atomic units the charge of the electron is q = −1 and hence the charge of the positron
is q = +1). The operator Ĥpot is then the sum of the electrostatic potential operator acting
on the first particle and doing nothing to the second particle and the electrostatic potential
operator acting on the second particle and doing nothing to the first particle:

Ĥpot = −ϕ(r̂)⊗ 1̂ + 1̂⊗ ϕ(r̂). (1.15)

The symbol ⊗ denotes the tensor product of operators acting on different particles:

Ĥpot|x1⟩|x2⟩ = −ϕ(r̂)|x1⟩1̂|x2⟩+ 1̂|x1⟩ϕ(r̂)|x2⟩ =
[
− ϕ(r1) + ϕ(r2)

]
|x1⟩|x2⟩.

The generalization of the potential energy operator to N particles of charge q1, . . . , qN is
rather voluminous

Ĥpot = q1ϕ(r̂)⊗1̂⊗ . . .⊗ 1̂︸ ︷︷ ︸
N−1 times

+q21̂⊗ϕ(r̂)⊗ . . .⊗ 1̂︸ ︷︷ ︸
N−2 times

+ . . .+qN 1̂⊗ 1̂⊗ . . .︸ ︷︷ ︸
N−1 times

⊗ϕ(r̂), (1.16)

and it is typically shortened to

Ĥpot =

N∑

j=1

qjϕ(r̂j),

where r̂j is the position operator acting on the jth particle and doing nothing to the other
particles. Similarly, the noninteracting part of the Hamiltonian of N particles is typically
written as

Ĥ0 =
N∑

j=1

ĥj =
N∑

j=1

h(r̂j , p̂j , Ŝj), (1.17)

while the interaction part is written as

Ĥint =
1

2

N∑

i ̸=j
v(r̂i, r̂j), (1.18)

with v(r1, r2) the interparticle interaction. We observe that these operators depend explicitly
on the number of particles and are therefore difficult to manipulate in problems where the
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10 1 Second Quantization

number of particles can fluctuate, such as in systems at finite temperature. As we see
later in this chapter, another disadvantage is that the evaluation of their action on kets
describing identical particles is very lengthy. Fortunately, an incredible simplification occurs
for identical particles and the expressions for operators and kets become much lighter and
easier to manipulate. To appreciate this simplification, however, we first have to understand
how the quantum-mechanical formulation changes when the particles are identical.

1.3 Quantum Mechanics of Many Identical Particles

Two particles are called identical particles or indistinguishable particles if they have the
same internal properties (i.e., the same mass, charge, spin etc.). For example, two electrons
are two identical particles. To understand the qualitative difference between distinguishable
and identical particles, let us perform the coincidence experiment of the previous section
for two electrons both with spin projection 1/2 and again in one dimension.

Discrete formulation for two particles At every point xn = n∆ we put a spin-
polarized electron detector and since the particles are identical we need only one kind of
detector. If the detectors in xn and xm click at the same time, then we can be sure that
just after this time there is one electron around xn and another electron around xm. Let
us denote by |nm⟩ with n ≥ m the ket describing the physical state in which the two
electrons collapse after measurement. For mathematical convenience we also define the
ket |nm⟩ with n ≤ m as the ket describing the same physical state as |mn⟩. Notice the
different notation with respect to the previous section, where we have used the ket |n⟩|m⟩
to describe the first particle around xn and the second particle around xm. In the case of
the electron–positron pair we could make the positron-click louder than the electron-click
and hence distinguish the state |n⟩|m⟩ from the state |m⟩|n⟩. However, in this case we only
have electron detectors and it is impossible to distinguish which electron has made a given
detector click.

In Section 1.1 we observed that the normalized ket of a physical state is uniquely defined
up to a phase factor. For our mathematical description to make sense, we then must impose
that

|nm⟩ = eiα|mn⟩ for all n, m.

Using the above relation twice, we find that e2iα = 1, or equivalently eiα = ±1. Conse-
quently, the ket

|nm⟩ = ±|mn⟩ (1.19)

is either symmetric or antisymmetric under the interchange of the electron positions. This is
a fundamental property of nature: All particles can be grouped in two main classes. Particles
described by a symmetric ket are called bosons, while those described by an antisymmetric
ket are called fermions. The electrons of our example are fermions. Here and in the rest of
the book the upper sign always refers to bosons and the lower sign to fermions. In the case
of fermions (1.19) implies |nn⟩ = −|nn⟩ and hence |nn⟩ must be the null ket |∅⟩ – that is,
it is not possible to create two fermions in the same position and with the same spin. This
peculiarity of fermions is known as the Pauli exclusion principle.
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1.3 Quantum Mechanics of Many Identical Particles 11

Figure 1.3 Histogram of the normalized number of simultaneous clicks of the detector in
xn = n∆ and in xm = m∆ for (a) two bosons and (b) two fermions. The height of the
parallelepipeds corresponds to the probabilities |Ψnm|2.

If we now repeat the coincidence experiment N ≫ 1 times, count the number of times
that the detectors click simultaneously in xn and xm, and divide the result by N we can
draw the histograms of Fig. 1.3 for bosons and fermions. The probability is symmetric under
the interchange n ↔ m due to property (1.19). The fermions are easily recognizable since
the probability of finding them in the same place is zero.

In this book we learn how to deal with systems of many identical particles, such as
molecules or solids, and therefore we do not always repeat that the particles are identical:
by particles we mean identical particles unless otherwise stated. Unlike the case of the
electron–positron pair, the probability of measuring a particle in xn′ and the other in xm′

just after the detectors in xn and xm have simultaneously clicked is zero unless n = n′ and
m = m′ or n = m′ and m = n′, and hence

⟨n′m′|nm⟩ = c1δn′nδm′m + c2δm′nδn′m. (1.20)

To fix the constants c1 and c2 we observe that

⟨n′m′|nm⟩ = ±⟨n′m′|mn⟩ = ±c1δn′mδm′n ± c2δm′mδn′n,

from which it follows that c1 = ±c2. Furthermore, since the kets are normalized we must
have for all n ̸= m

1 = ⟨nm|nm⟩ = c1.

For n = m the ket |nn⟩ exists only for bosons, and one finds ⟨nn|nn⟩ = 2c1. It is therefore
more convenient to work with a nonnormalized ket |nn⟩ so that c1 = 1 in all cases. We
choose the normalization of the bosonic ket |nn⟩ to be 2:

⟨nn|nn⟩ = 2. (1.21)

Putting everything together we can rewrite the inner product (1.20) as

⟨n′m′|nm⟩ = δn′nδm′m ± δm′nδn′m.
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12 1 Second Quantization

The inner product for the fermionic ket |nn⟩ is automatically zero, in agreement with the
fact that |nn⟩ = |∅⟩.

Let us now come to the completeness relation in the Hilbert space of two particles.
Since |nm⟩ = ±|mn⟩, a basis in this space is given by the set {|nm⟩} with n ≥ m. In
other words the basis comprises only inequivalent configurations, meaning configurations
not related by a permutation of the coordinates. The elements of this set are orthogonal
and normalized except for the bosonic ket |nn⟩, whose normalization is 2. Therefore, the
completeness relation reads

∑

n>m

|nm⟩⟨nm|+ 1

2

∑

n

|nn⟩⟨nn| = 1̂,

where the second sum does not contribute in the fermionic case. We can rewrite the
completeness relation as an unrestricted sum over all n and m using the (anti)symmetry
property (1.19). The resulting expression is

1

2

∑

nm

|nm⟩⟨nm| = 1̂,

which is much more elegant. The completeness relation can be used to expand any other
ket in the same Hilbert space:

|Ψ⟩ = 1̂|Ψ⟩ = 1

2

∑

nm

|nm⟩⟨nm|Ψ⟩, (1.22)

and if |Ψ⟩ is normalized then the square moduli of the coefficients of the expansion Ψnm ≡
⟨nm|Ψ⟩ have the standard probabilistic interpretation:

|Ψnm|2 =




probability of finding one particle in volume
element ∆ around xn and the other particle

in volume element ∆ around xm




for all n ̸= m. For n = m we must remember that the normalization of the ket |nn⟩ is 2
and therefore |Ψnn|2 gives twice the probability of finding two particles in the same place
(since the proper normalized ket is |nn⟩/

√
2). Consequently,

|Ψnn|2
2

=

(
probability of finding two particles in

volume element ∆ around xn

)
.

Continuum formulation for two particles We can now refine the experiment by putting
the detectors closer and closer. The continuum limit works exactly in the same manner as
in the previous two sections. We rewrite the expansion (1.22) as

|Ψ⟩ = 1

2
∆2
∑

nm

|nm⟩
∆

Ψnm
∆

, (1.23)

and define the continuous wavefunction Ψ(xn, xm) and the continuous ket |xnxm⟩ accord-
ing to

Ψ(xn, xm) = lim
∆→0

Ψnm
∆

, |xnxm⟩ = lim
∆→0

|nm⟩
∆

.
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1.3 Quantum Mechanics of Many Identical Particles 13

The expansion (1.23) can then be seen as the Riemann sum of Ψ(xn, xm)|xnxm⟩ and in the
limit ∆→ 0 the sum becomes the integral

|Ψ⟩ = 1

2

∫
dxdx′ Ψ(x, x′)|xx′⟩.

We can also derive the continuous representation of the completeness relation and the
continuous representation of the inner product between two basis kets. We have

lim
∆→0

1

2
∆2
∑

nm

|nm⟩
∆

⟨nm|
∆

=
1

2

∫
dxdx′|xx′⟩⟨xx′| = 1̂ (1.24)

and

lim
∆→0

⟨n′m′|nm⟩
∆2

= ⟨xn′xm′ |xnxm⟩
= δ(xn′ − xn)δ(xm′ − xm)± δ(xm′ − xn)δ(xn′ − xm). (1.25)

The generalization to higher dimensions and to particles with different spin projections
is straightforward. We define the position–spin ket |x1x2⟩ as the ket of the physical state
in which the particles collapse after the simultaneous clicking of a spin-polarized detector
for particles of spin projection σ1 placed in r1 and a spin-polarized detector for particles
of spin projection σ2 placed in r2. The set of inequivalent configurations |x1x2⟩ forms a
basis of the Hilbert space of two identical particles. In the following we refer to this space
as H2. In analogy with (1.25) the continuous kets have inner product

⟨x′1x′2|x1x2⟩ = δ(x′1 − x1)δ(x
′
2 − x2)± δ(x′1 − x2)δ(x

′
2 − x1)

=
∑

P

(±)P δ(x′1 − xP (1))δ(x
′
2 − xP (2)), (1.26)

where the upper/lower sign refers to bosons/fermions. The second line of this equation is an
equivalent way of rewriting the (anti)symmetric product of δ-functions. The sum runs over
the permutations P of (1, 2), which are the identity permutation (P (1), P (2)) = (1, 2) and
the interchange (P (1), P (2)) = (2, 1). The quantity (±)P is equal to +1 if the permutation
requires an even number of interchanges and ±1 if the permutation requires an odd number
of interchanges. In the fermionic case, all position–spin kets have the same norm since (1.26)
implies

⟨x1x2|x1x2⟩ = δ(0)2 for fermions.

Due to the possibility in the bosonic case that two coordinates are identical, the norms of
the position–spin kets are instead not all the same since

⟨x1x2|x1x2⟩ = δ(0)2 ×
{

1 if x1 ̸= x2

2 if x1 = x2
for bosons,

in agreement with (1.21).
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14 1 Second Quantization

In complete analogy with (1.24) we can also write the completeness relation according to

1

2

∫
dx1dx2|x1x2⟩⟨x1x2| = 1̂. (1.27)

Then, any ket |Ψ⟩ ∈ H2 can be expanded in the position–spin basis as

|Ψ⟩ = 1̂|Ψ⟩ = 1

2

∫
dx1dx2 |x1x2⟩ ⟨x1x2|Ψ⟩︸ ︷︷ ︸

Ψ(x1,x2)

. (1.28)

If |Ψ⟩ is normalized, we can give a probability interpretation to the square modulus of the
wavefunction Ψ(x1,x2):

|Ψ(x1,x2)|2dr1dr2 =




probability of finding one particle with spin σ1 in
volume element dr1 around r1 and the other particle with
spin σ2 in volume element dr2 around a different point r2


 .

However, in the case x1 = x2 the above formula needs to be replaced by

|Ψ(x1,x1)|2
2

dr1dr2 =




probability of finding one particle with spin σ1 in
volume element dr1 around r1 and the other particle
with the same spin in volume element dr2 around

the same point r1


 ,

due to the different normalization of the diagonal kets. We stress again that the above
probability interpretation follows from the normalization ⟨Ψ|Ψ⟩ = 1, which in the continuum
case reads [see (1.28)]

1 =
1

2

∫
dx1dx2 |Ψ(x1,x2)|2.

Continuum formulation for N particles It should now be clear how to extend the
above relations to the case of N identical particles. We say that if the detector for a particle
of spin projection σ1 placed in r1, the detector for a particle of spin projection σ2 placed
in r2, etc. all click at the same time then the N -particle state collapses in the position–spin
ket |x1 . . .xN ⟩. Due to the nature of identical particles this ket must have the symmetry
property (as usual, upper/lower sign refers to bosons/fermions):

|xP (1) . . .xP (N)⟩ = (±)P |x1 . . .xN ⟩ (1.29)

where P is a permutation of the labels (1, . . . , N), and (±)P = 1 for even permutations
and ±1 for odd permutations (thus for bosons is always 1). A permutation is even/odd if the
number of interchanges is even/odd.3 Therefore, given the ket |x1 . . .xN ⟩ with all different
coordinates there are N ! equivalent configurations that represent the same physical state.
More generally, if the ket |x1 . . .xN ⟩ has m1 coordinates equal to y1, m2 coordinates equal
to y2 ̸= y1, . . ., mM coordinates equal to yM ̸= y1, . . . ,yM−1, with m1+ . . .+mM = N ,

3The reader can learn more on how to calculate the sign of a permutation in Appendix B.
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1.3 Quantum Mechanics of Many Identical Particles 15

then the number of equivalent configurations is N !/(m1! . . .mM !). In the fermionic case,
if two or more coordinates are the same then the ket |x1 . . .xN ⟩ is the null ket |∅⟩. The
set of position–spin kets corresponding to inequivalent configurations form a basis in the
Hilbert space of N identical particles; we refer to this space as HN .

The inner product between two position–spin kets is

⟨x′1 . . .x′N |x1 . . .xN ⟩ =
∑

P

cP

N∏

j=1

δ(x′j − xP (j)),

where the cP s are numbers depending on the permutation P . As in the two-particle case,
the (anti)symmetry (1.29) of the position–spin kets requires that cP = c (±)P , and the
normalization of |x1 . . .xN ⟩ with all different coordinates fixes the constant c = 1. Hence,

⟨x′1 . . .x′N |x1 . . .xN ⟩ =
∑

P

(±)P
N∏

j=1

δ(x′j − xP (j)) (1.30)

This is the familiar expression for the permanent/determinant |A |± of a N ×N matrix A
(see Appendix B):

|A |± ≡
∑

P

(±)PA1P (1) . . . ANP (N).

Choosing the matrix elements of A to be Aij = δ(x′i − xj), we can rewrite (1.30) as

⟨x′1 . . .x′N |x1 . . .xN ⟩ =

∣∣∣∣∣∣∣∣

δ(x′1 − x1) . . . δ(x′1 − xN )
. . . . .
. . . . .

δ(x′N − x1) . . . δ(x′N − xN )

∣∣∣∣∣∣∣∣
±

. (1.31)

As in the two-particle case, these formulas are so elegant because we take the bosonic
kets at equal coordinates with a slightly different normalization. Consider N bosons in M
different coordinates of which m1 have coordinate y1, . . ., mM have coordinate yM (hence
m1 + . . .+mM = N ). Then the norm is given by

⟨
m1︷ ︸︸ ︷

y1 . . .y1 . . .

mM︷ ︸︸ ︷
yM . . .yM |

m1︷ ︸︸ ︷
y1 . . .y1 . . .

mM︷ ︸︸ ︷
yM . . .yM ⟩ = δ(0)Nm1!m2! . . .mM ! ,

as follows directly from (1.30).4 In the case of fermions, instead, all position–spin kets have
norm δ(0)N since it is not possible for two or more fermions to have the same coordinate.

Given the norm of the position–spin kets, the completeness relation for N particles is a
straightforward generalization of (1.27) and reads

1

N !

∫
dx1 . . . dxN |x1 . . .xN ⟩⟨x1 . . .xN | = 1̂ (1.32)

4According to (1.29), the order of the arguments in the inner product does not matter.
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16 1 Second Quantization

Therefore the expansion of a ket |Ψ⟩ ∈ HN can be written as

|Ψ⟩ = 1̂|Ψ⟩ = 1

N !

∫
dx1 . . . dxN |x1 . . .xN ⟩ ⟨x1 . . .xN |Ψ⟩︸ ︷︷ ︸

Ψ(x1,...,xN )

,

which generalizes the expansion (1.28) to the case of N particles. The wavefunction
Ψ(x1, . . . ,xN ) is totally symmetric for bosons and totally antisymmetric for fermions due
to (1.29). If |Ψ⟩ is normalized then the normalization of the wavefunction reads

1 = ⟨Ψ|Ψ⟩ = 1

N !

∫
dx1 . . . dxN | Ψ(x1, . . . ,xN )|2. (1.33)

The probabilistic interpretation of the square modulus of the wavefunction can be extracted
using the same line of reasoning as for the two-particle case:

|Ψ(

m1︷ ︸︸ ︷
y1 . . .y1 . . .

mM︷ ︸︸ ︷
yM . . .yM )|2

m1! . . .mM !

M∏

j=1

dRj =




probability of finding
m1 particles in dR1 around y1

...
mM particles in dRM around yM


 , (1.34)

where dRj is the product of volume elements,

dRj ≡
m1+...+mj∏

i=m1+...+mj−1+1

dri.

When all coordinates are different, (1.34) tells us that the quantity |Ψ(x1, . . . ,xN )|2dr1 . . . drN
is the probability of finding one particle in volume element dr1 around x1, . . . , and one
particle in volume element drN around xN . We could have absorbed the prefactor 1/N ! in
(1.33) in the wavefunction (as is commonly done) but then we could not interpret the quantity
|Ψ(x1, . . . ,xN )|2dr1 . . . drN as the right-hand side (r.h.s.) of (1.34) since this would amount
to regarding equivalent configurations as distinguishable and consequently the probability
would be overestimated by a factor of N !.

The reader might wonder why we have been so punctilious about the possibility of having
more than one boson with the same position–spin coordinate, since these configurations
are of zero measure in the space of all configurations. However, such configurations are
the physically most relevant in bosonic systems at low temperature. Indeed, bosons can
condense in states in which certain (continuum) quantum numbers are macroscopically
occupied and hence have a finite probability. A common example is the zero momentum
state of a free boson gas in three dimensions.

First quantization We close this section by illustrating a practical way to construct
the N -particle position–spin kets using the N -particle position–spin kets of distinguishable
particles. The procedure simply consists in forming (anti)symmetrized products of one-
particle position–spin kets. For instance, we have for the case of two particles

|x1x2⟩ =
|x1⟩|x2⟩ ± |x2⟩|x1⟩√

2
, (1.35)
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1.4 Field Operators 17

and more generally for N particles

|x1 . . .xN ⟩ =
1√
N !

∑

P

(±)P |xP (1)⟩ . . . |xP (N)⟩. (1.36)

Using the inner product (1.14), one can check directly that these states have inner prod-
uct (1.30). We refer to the above representation of the position–spin kets as kets in first
quantization since it is the representation usually found in basic quantum mechanics books.
Using (1.36) we could proceed to calculate matrix elements of operators such as the potential
energy, total energy, spin, angular momentum, density, etc. However, this involves rather
cumbersome expressions with a large number of terms differing only in the sign and the
order of the coordinates. In the next section we describe a formalism, known as second
quantization, that makes it easy to do such calculations efficiently, as the position–spin ket
is represented by a single ket rather than by N ! products of one-particle kets as in (1.36). As
we see, the merits of second quantization are the compactness of the expressions and an
enormous simplification in the calculation of the action of operators over states in HN . This
formalism further treats systems with different numbers of identical particles on the same
footing and it is therefore well suited to study of ionization processes, transport phenomena,
and finite temperature effects within the grand canonical ensemble of quantum statistical
physics.

1.4 Field Operators

The advantage of the bra-and-ket notation invented by Dirac is twofold. First of all, it
provides a geometric interpretation of the physical states in Hilbert space as abstract kets
independent of the basis in which they are expanded. For example, it does not matter
whether we expand |Ψ⟩ in terms of the position–spin kets or momentum–spin kets; |Ψ⟩
remains the same although the expansion coefficients in the two bases are different. The
second advantage is that the abstract kets can be systematically generated by repeated
applications of a creation operator on the empty or zero-particle state. This approach forms
the basis of an elegant formalism known as second quantization, which we describe in detail
in this section.

Fock space To deal with arbitrary many identical particles we define a collection F of
Hilbert spaces, also known as Fock space, according to

F = {H0,H1, . . . ,HN , . . .},

with HN the Hilbert space for N identical particles. An arbitrary element of the Fock space
is a ket that can be written as

|Ψ⟩ =
∞∑

N=0

cN |ΨN ⟩, (1.37)

where |ΨN ⟩ belongs to HN . The inner product between the ket (1.37) and another element
in the Fock space,

|χ⟩ =
∞∑

N=0

dN |χN ⟩,
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18 1 Second Quantization

is defined as

⟨χ|Ψ⟩ ≡
∞∑

N=0

d∗NcN ⟨χN |ΨN ⟩,

where ⟨χN |ΨN ⟩ is the inner product in HN . This definition is dictated by common sense:
The probability of having M ̸= N particles in an N -particle ket is zero and therefore kets
with a different number of particles are orthogonal (i.e., have zero overlap).

The Hilbert space H0 is the space with zero particles. Since an empty system has
no degrees of freedom, H0 is a one-dimensional space and we denote by |0⟩ the only
normalized ket in H0,

⟨0|0⟩ = 1.

According to the expansion (1.37), the ket |0⟩ has all cN = 0 except for c0. This state should
not be confused with the null ket |∅⟩, which is defined as the state in Fock space with all
cN = 0 and, therefore, is not a physical state. The empty ket |0⟩ is a physical state; indeed
the normalization ⟨0|0⟩ = 1 means that the probability of finding nothing in an empty space
is 1.

Field operators The goal of this section is to find a clever way to construct a basis
for each Hilbert space H1, H2, . . .. To accomplish this goal the central idea of the second
quantization formalism is to define a field operator ψ̂†(x) = ψ̂†(rσ) that generates the
position–spin kets by repeated action on the empty ket:

|x1⟩ = ψ̂†(x1)|0⟩
|x1x2⟩ = ψ̂†(x2)|x1⟩ = ψ̂†(x2)ψ̂

†(x1)|0⟩
|x1 . . .xN ⟩ = ψ̂†(xN )|x1 . . .xN−1⟩ = ψ̂†(xN ) . . . ψ̂†(x1)|0⟩

(1.38)

Since an operator is uniquely defined from its action on a complete set of states in the
Hilbert space (the Fock space in our case), the above relations define the field operator
ψ̂†(x) for all x. The field operator ψ̂†(x) transforms a ket of HN into a ket of HN+1 for all
N , see Fig. 1.4(a). We may say that the field operator ψ̂†(x) creates a particle in x and it is
therefore called the creation operator. Since the position–spin kets change a plus or minus
sign under interchange of any two particles, it follows that

ψ̂†(x)ψ̂†(y)|x1 . . .xN ⟩ = |x1 . . .xN y x⟩ = ±|x1 . . .xN xy⟩
= ±ψ̂†(y)ψ̂†(x)|x1 . . .xN ⟩,

where we recall that the upper sign in ± refers to bosons and the lower sign to fermions.
This identity is true for all x1, . . . ,xN and for all N (i.e., for all states in F), and hence

ψ̂†(x)ψ̂†(y) = ±ψ̂†(y)ψ̂†(x).

If we define the (anti)commutator between two generic operators Â and B̂ according to

[
Â, B̂

]
∓
= ÂB̂ ∓ B̂Â,
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1.4 Field Operators 19

Figure 1.4 Schematic action of the creation operator ψ̂† in (a) and of the annihilation operator
ψ̂ in (b).

we can rewrite the above relation as

[
ψ̂†(x), ψ̂†(y)

]
∓
= 0 (1.39)

Corresponding to the operator ψ̂†(x) there is the adjoint operator ψ̂(x) [or equivalently
ψ̂†(x) is the adjoint of ψ̂(x)]. Let us remind the reader about the definition of adjoint
operators. An operator Ô† with the superscript “†” (read dagger) is the adjoint of the
operator Ô if

⟨χ|Ô|Ψ⟩ = ⟨Ψ|Ô†|χ⟩∗

for all |χ⟩ and |Ψ⟩, which implies (Ô†)† = Ô. In particular, when Ô = ψ̂(x) we have

⟨χ|ψ̂(x)|Ψ⟩ = ⟨Ψ|ψ̂†(x)|χ⟩∗.

Since for any |Ψ⟩ ∈ HN+1 the quantity ⟨Ψ|ψ̂†(x)|χ⟩ is zero for all |χ⟩ with no components
in HN , the above equation implies that ψ̂(x)|Ψ⟩ ∈ HN – that is, the operator ψ̂(x) maps
the elements of HN+1 into elements of HN , see Fig. 1.4(b). Thus, whereas the operator
ψ̂†(x) adds a particle, its adjoint operator ψ̂(x) removes a particle and, for this reason,
is called the annihilation operator. Below we study its properties and how it acts on the
position–spin kets.

By taking the adjoint of the identity (1.39), we immediately obtain the (anti)commutation
relation [

ψ̂(x), ψ̂(y)
]
∓
= 0 (1.40)

The action of ψ̂(x) on any state can be deduced from its definition as the adjoint of ψ̂†(x)
together with the inner product (1.31) between the position–spin kets. Let us illustrate this
first for the action on the empty ket |0⟩. For any |Ψ⟩ ∈ F,

⟨Ψ|ψ̂(x)|0⟩ = ⟨0|ψ̂†(x)|Ψ⟩∗ = 0,
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20 1 Second Quantization

since ψ̂†(x)|Ψ⟩ contains at least one particle and is therefore orthogonal to |0⟩. We conclude
that ψ̂(x)|0⟩ is orthogonal to all |Ψ⟩ in F and hence it must be equal to the null ket

ψ̂(x)|0⟩ = |∅⟩. (1.41)

The action of ψ̂(x) on the one-particle ket |y⟩ can be inferred from (1.30) and (1.38); we
have

δ(y − x) = ⟨y|x⟩ = ⟨y|ψ̂†(x)|0⟩ = ⟨0|ψ̂(x)|y⟩∗.

Since ψ̂(x)|y⟩ ∈ H0, it follows that

ψ̂(x)|y⟩ = δ(y − x)|0⟩. (1.42)

We see from this relation that the operator ψ̂(x) removes a particle from the state |y⟩ when
x = y and otherwise yields zero.

The derivation of the action of ψ̂(x) on the empty ket and on the one-particle ket was
rather elementary. Let us now derive the action of ψ̂(x) on the general N -particle ket
|y1 . . .yN ⟩. For this purpose we consider the matrix element

⟨x1 . . .xN−1|ψ̂(xN )|y1 . . .yN ⟩ = ⟨x1 . . .xN |y1 . . .yN ⟩. (1.43)

The overlap on the r.h.s. is given in (1.31); expanding the permanent/determinant along row
N (see Appendix B), we get

⟨x1 . . .xN−1|ψ̂(xN )|y1 . . .yN ⟩

=

N∑

k=1

(±)N+kδ(xN − yk)⟨x1 . . .xN−1|y1 . . .yk−1yk+1 . . .yN ⟩.

This expression is valid for any |x1 . . .xN−1⟩ and since ψ̂(x) maps from HN only to HN−1,
we conclude that

ψ̂(x)|y1 . . .yN ⟩ =
N∑

k=1

(±)N+kδ(x− yk) |y1 . . .yk−1yk+1 . . .yN ⟩ (1.44)

We have just derived an important equation for the action of the annihilation operator on
a position–spin ket. It correctly reduces to (1.42) when N = 1 and for N > 1 yields, for
example,

ψ̂(x)|y1y2⟩ = δ(x− y2)|y1⟩ ± δ(x− y1)|y2⟩,
ψ̂(x)|y1y2y3⟩ = δ(x− y3)|y1y2⟩ ± δ(x− y2)|y1y3⟩+ δ(x− y1)|y2y3⟩.

So the annihilation operator removes subsequently a particle from every position–spin co-
ordinate while keeping the final result totally symmetric or antisymmetric in all y variables
by adjusting the signs of the prefactors.
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1.4 Field Operators 21

(Anti)commutation rule With the help of (1.44) we can derive a fundamental (anti)com-
mutation relation between the annihilation and creation operators. Acting on both sides of
(1.44) with ψ̂†(y) and denoting by |R⟩ the ket on the r.h.s., we have

ψ̂†(y)ψ̂(x)|y1 . . .yN ⟩ = ψ̂†(y)|R⟩. (1.45)

Exchanging the order of the field operators in the left-hand side (l.h.s.) of the above identity
and using (1.44), we find

ψ̂(x)ψ̂†(y)|y1 . . .yN ⟩ = ψ̂(x)|y1 . . .yNy⟩ = δ(x− y) |y1 . . .yN ⟩

+
N∑

k=1

(±)N+1+kδ(x− yk) |y1 . . .yk−1yk+1 . . .yNy⟩

= δ(x− y) |y1 . . .yN ⟩ ± ψ̂†(y)|R⟩. (1.46)

Subtraction and addition of (1.45) and (1.46) for bosons and fermions respectively then gives
[
ψ̂(x), ψ̂†(y)

]
∓
|y1 . . .yN ⟩ = δ(x− y)|y1 . . .yN ⟩,

which must be valid for all position–spin kets and for all N , and therefore

[
ψ̂(x), ψ̂†(y)

]
∓
= δ(x− y) (1.47)

The (anti)commutation relations (1.39), (1.40), and (1.47) are the main results of this section and
form the basis of most derivations in this book. As we see in Section 1.6, all many-particle
operators, such as total energy, density, current, spin, etc., consist of simple expressions in
terms of the field operators ψ̂ and ψ̂†, and the calculation of their averages can easily be
performed with the help of the (anti)commutation relations. It is similar to the harmonic
oscillator of quantum mechanics: Both the eigenstates and the operators are expressed in
terms of the raising and lowering operators â† and â, and to calculate all sorts of averages
it is enough to know the commutation relations [â, â]− = [â†, â†]− = 0 and [â, â†]− = 1.
The difference with second quantization is that we have a “harmonic oscillator” for every x.
Using the (anti)commutation properties we can manipulate directly the kets and never have
to deal with the rather cumbersome expressions of the wavefunctions; the field operators
take care of the symmetry of the kets automatically. The great achievement of second
quantization is comparable to that of a programming language. When we program we use
a nice, friendly text editor to write code that tells the computer what operations to do, and
we do not worry about whether the instructions given through the text editor are correctly
executed by the machine. A bug in the code is an error in the text of the program (the way
we manipulate the field operators) and not an erroneous functioning of some logic gate (the
violation of the symmetry properties of the many-particle kets).

Exercise 1.1 We define the density operator

n̂(x) ≡ ψ̂†(x)ψ̂(x).
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22 1 Second Quantization

Using the identities [ÂB̂, Ĉ]− = Â[B̂, Ĉ]− + [Â, Ĉ]−B̂ = Â[B̂, Ĉ]+ − [Â, Ĉ]+B̂, prove
the following relations for fermionic and bosonic field operators:

[n̂(x), ψ̂(x′)]− = −δ(x− x′)ψ̂(x), (1.48)

[n̂(x), ψ̂†(x′)]− = δ(x− x′)ψ̂†(x). (1.49)

1.5 General Basis States

In the previous section we learned how to construct states of many identical particles with a
given spin and position. The position–spin is, however, just one possible choice of quantum
numbers to characterize every single particle. We now show how the field operators can
be used to construct states of many identical particles in which every particle is labeled by
general quantum numbers, such as momentum, energy, etc.

Let us consider a normalized one-particle ket |n⟩. The quantum number n = (sτ)
comprises an orbital quantum number s and the spin projection τ along some quantization
axis. Choosing the quantization axis of the spin to be the same as that of the position–spin
ket |x⟩ = |rσ⟩, the overlap between |n⟩ and |x⟩ is

⟨x|n⟩ ≡ φn(x) = φs(r)δτσ. (1.50)

The one-particle ket |n⟩ can be expanded in the position–spin kets using the completeness
relation (1.8):

|n⟩ =
∫
dx |x⟩⟨x|n⟩ =

∫
dxφn(x)|x⟩ =

∫
dxφn(x)ψ̂

†(x)|0⟩. (1.51)

One can easily check that the normalization ⟨n|n⟩ = 1 is equivalent to saying that∫
dx|φn(x)|2 = 1. From (1.51) we see that |n⟩ is obtained by applying to the empty

ket |0⟩ the operator

d̂†n ≡
∫
dxφn(x)ψ̂

†(x) (1.52)

that is, d̂†n|0⟩ = |n⟩. We may say that d̂†n creates a particle with quantum number n.
Similarly, if we take the adjoint of (1.52),

d̂n ≡
∫
dxφ∗n(x)ψ̂(x) (1.53)

we obtain an operator that destroys a particle with quantum number n since

d̂n|n⟩ = d̂nd̂
†
n|0⟩ =

∫
dxdx′φ∗n(x)φn(x

′) ψ̂(x)ψ̂†(x′)|0⟩︸ ︷︷ ︸
δ(x−x′)|0⟩

=

∫
dx |φn(x)|2|0⟩ = |0⟩.

The operators d̂n and d̂†n, being linear combinations of field operators at different x, can
act on states with arbitrary many particles. Below we derive some important relations for
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the d̂-operators when the set {|n⟩} forms an orthonormal basis in the one-particle Hilbert
space.

We can easily derive the important (anti)commutation relations using the corresponding
relations for the field operators,

[
d̂n, d̂

†
m

]
∓
=

∫
dxdx′ φ∗n(x)φm(x′)

[
ψ̂(x), ψ̂†(x′)

]
∓︸ ︷︷ ︸

δ(x−x′)

= ⟨n|m⟩ = δnm, (1.54)

and the more obvious ones,
[
d̂n, d̂m

]
∓
=
[
d̂†n, d̂

†
m

]
∓
= 0, (1.55)

that follow similarly. It is worth noticing that the d̂-operators obey the same (anti)com-
mutation relations as the field operators, with the index n playing the role of x. This is
a very important observation since the results of the previous section rely only on the
(anti)commutation relations of ψ̂ and ψ̂†, and hence remain valid in this more general basis.
To convince the reader of this fact, we derive some of the results of the previous section
directly from the (anti)commutation relations. We define the N -particle ket

|n1 . . . nN ⟩ ≡ d̂†nN
. . . d̂†n1

|0⟩ = d̂†nN
|n1 . . . nN−1⟩ (1.56)

which has the symmetry property

|nP (1) . . . nP (N)⟩ = (±)P |n1 . . . nN ⟩,
as follows immediately from (1.55). Like the position–spin kets, the kets |n1 . . . nN ⟩ span
the N -particle Hilbert space HN . The action of d̂n on |n1 . . . nN ⟩ is similar to the action
of ψ̂(x) on |x1 . . .xN ⟩. Using the (anti)commutation relation (1.54), we can move the d̂n-
operator through the string of d†-operators:5

d̂n|n1 . . . nN ⟩ =
([
d̂n, d̂

†
nN

]
∓
± d̂†nN

d̂n

)
|n1 . . . nN−1⟩

= δnnN
|n1 . . . nN−1⟩ ± d̂†nN

([
d̂n, d̂

†
nN−1

]
∓
± d̂†nN−1

d̂n

)
|n1 . . . nN−2⟩

= δnnN
|n1 . . . nN−1⟩ ± δnnN−1

|n1 . . . nN−2nN ⟩

(±)2d̂†nN
d̂†nN−1

([
d̂n, d̂

†
nN−2

]
∓
± d̂†nN−2

d̂n

)
|n1 . . . nN−3⟩

=
N∑

k=1

(±)N+kδnnk
|n1 . . . nk−1nk+1 . . . nN ⟩. (1.57)

This result can also be used to calculate directly the overlap between two states of the
general basis. For example, for the case of two particles we have

⟨n′1n′2|n1n2⟩ = ⟨n′1|d̂n′
2
|n1n2 ⟩ = ⟨n′1|

(
δn′

2n2
|n1⟩ ± δn′

2n1
|n2⟩

)

= δn′
1n1

δn′
2n2
± δn′

1n2
δn′

2n1
,

5Alternatively (1.57) can be derived from (1.44) together with the definitions of the d̂-operators.
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24 1 Second Quantization

which is the analog of (1.26). More generally, for N particles we have

⟨n′1 . . . n′N |n1 . . . nN ⟩ =
∑

P

(±)P
N∏

j=1

δn′
j nP (j)

, (1.58)

which should be compared with the overlap ⟨x′1 . . .x′N |x1 . . .xN ⟩ in (1.30).
The states |n1 . . . nN ⟩ are orthonormal (with the exception of the bosonic kets with two

or more equal quantum numbers) and can be used to construct a basis. In analogy with
(1.32), the completeness relation is

1

N !

∑

n1,...,nN

|n1 . . . nN ⟩⟨n1 . . . nN | = 1̂,

and hence the expansion of a ket |Ψ⟩ belonging to HN reads

|Ψ⟩ = 1̂|Ψ⟩ = 1

N !

∑

n1,...,nN

|n1 . . . nN ⟩ ⟨n1 . . . nN |Ψ⟩︸ ︷︷ ︸
Ψ(n1,...,nN )

. (1.59)

If |Ψ⟩ is normalized, then the coefficients Ψ(n1, . . . , nN ) have the following probabilistic
interpretation

|Ψ(

m1︷ ︸︸ ︷
n1 . . . n1 . . .

mM︷ ︸︸ ︷
nM . . . nM )|2

m1! . . .mM !
=




probability of finding
m1 particles with quantum number n1

...
mM particles with quantum number nM


 .

We already observed that the d̂-operators obey the same (anti)commutation relations
as the field operators provided that {|n⟩} is an orthonormal basis in H1. Likewise, we
can construct linear combinations of the d̂-operators that preserve the (anti)commutation
relations. It is left as an exercise for the reader to prove that the operators

ĉα =
∑

n

Uαnd̂n, ĉ†α =
∑

n

U∗αnd̂
†
n

obey [
ĉα, ĉ

†
β

]
∓
= δαβ ,

provided that
Uαn ≡ ⟨α|n⟩

is the inner product between the elements of the original orthonormal basis {|n⟩} and the
elements of another orthonormal basis {|α⟩}. Indeed, in this case the Uαn are the matrix
elements of a unitary matrix since

∑

n

UαnU
†
nβ =

∑

n

⟨α|n⟩⟨n|β⟩ = ⟨α|β⟩ = δαβ ,
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where we use the completeness relation. In particular, when α = x we have Uxn = ⟨x|n⟩ =
φn(x), and we find that ĉx = ψ̂(x). We thus recover the field operators as

ψ̂(x) =
∑

n

φn(x)d̂n, ψ̂†(x) =
∑

n

φ∗n(x)d̂
†
n. (1.60)

These relations tell us that the expansion of the position–spin kets in terms of the kets
|n1 . . . nN ⟩ is simply

|x1 . . .xN ⟩ =
∑

n1...nN

φ∗n1
(x1) . . . φ

∗
nN

(xN )|n1 . . . nN ⟩ (1.61)

Conversely, using (1.52) we can expand the general basis kets in terms of the position–spin
kets as

|n1 . . . nN ⟩ =
∫
dx1 . . . dxN φn1

(x1) . . . φnN
(xN )|x1 . . .xN ⟩ (1.62)

Slater determinants If we are given a state |Ψ⟩ that is expanded in a general basis
and we subsequently want to calculate properties in position–spin space, such as the par-
ticle density or the current density, we need to calculate the overlap between |n1 . . . nN ⟩
and |x1 . . .xN ⟩. This overlap is the wavefunction for N particles with quantum numbers
n1, . . . , nN :

Ψn1...nN
(x1, . . . ,xN ) = ⟨x1 . . .xN |n1 . . . nN ⟩.

The explicit form of the wavefunction follows directly from the inner product (1.30) and from
the expansion (1.62), and reads

Ψn1...nN
(x1, . . . ,xN ) =

∑

P

(±)Pφn1
(xP (1)) . . . φnN

(xP (N))

=

∣∣∣∣∣∣∣∣

φn1(x1) . . . φn1(xN )
. . . . .
. . . . .

φnN
(x1) . . . φnN

(xN )

∣∣∣∣∣∣∣∣
±

. (1.63)

Since for any matrix A we have |A |∓ = |AT |∓ with AT the transpose of A, we can
equivalently write

Ψn1...nN
(x1, . . . ,xN ) =

∣∣∣∣∣∣∣∣

φn1(x1) . . . φnN
(x1)

. . . . .

. . . . .
φn1

(xN ) . . . φnN
(xN )

∣∣∣∣∣∣∣∣
±

.

In the case of fermions, the determinant is also known as the Slater determinant. For those
readers already familiar with Slater determinants we note that the absence on the r.h.s. of the
prefactor 1/

√
N ! is a consequence of forcing on the square modulus of the wavefunction

a probability interpretation, as discussed in detail in Section 1.3. The action of the d̂-
operators has a simple algebraic interpretation in terms of permanents or determinants.
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26 1 Second Quantization

The action of the creation operator d̂†n on |n1 . . . nN ⟩ in the position–spin representation,
⟨x1 . . .xN+1|d̂†n|n1 . . . nN ⟩, simply amounts to adding a column with coordinate xN+1

and a row with wavefunction φn in (1.63). For the annihilation operator we have a similar
algebraic interpretation. Taking the inner product with ⟨x1 . . .xN−1| of both sides of (1.57),
we get

⟨x1 . . .xN−1|d̂n|n1 . . . nN ⟩ =
N∑

k=1

(±)N+k δnnk

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φn1
(x1) . . . . . . φn1

(xN−1) φn1
(xN )

...
...

...
...

...

φnk−1
(x1) . . . . . . φnk−1

(xN−1) φnk−1
(xN )

φnk
(x1) . . . . . . φnk

(xN−1) φnk
(xN )

φnk+1
(x1) . . . . . . φnk+1

(xN−1) φnk+1
(xN )

...
...

...
...

...

φnN
(x1) . . . . . . φnN

(xN−1) φnN
(xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
±

.

That is, the action of the d̂n-operator amounts to deleting the last column and, if present,
the row with quantum number n from the permanent/determinant of (1.63), and otherwise
yields zero. Already at this stage the reader can appreciate how powerful it is to work with
the field operators and not to have anything to do with Slater determinants.

Exercise 1.2 Prove the inverse relations (1.60).

Exercise 1.3 Let |n⟩ = |pτ⟩ be a momentum–spin ket so that ⟨x|pτ⟩ = eip·rδστ , see (1.10).
Show that the (anti)commutation relation in (1.54) then reads

[
d̂pτ , d̂

†
p′τ ′

]
∓
= (2π)3δ(p− p′)δττ ′ , (1.64)

and that the expansion (1.60) of the field operators in terms of the d̂-operators is

ψ̂(x) =

∫
dp

(2π)3
eip·rd̂pσ, ψ̂†(x) =

∫
dp

(2π)3
e−ip·rd̂†pσ. (1.65)

1.6 Hamiltonian in Second Quantization

The field operators are useful not only to construct the kets of N identical particles but also
the operators acting on them. Let us consider again two identical particles and the total
potential energy (1.16), with N = 2 and q1 = q2 = q. In first quantization the ket |x1x2⟩
is represented by the (anti)symmetrized product (1.35) of one-particle kets. It is instructive
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1.6 Hamiltonian in Second Quantization 27

to calculate the action of Ĥpot on |x1x2⟩ to later appreciate the advantages of second
quantization. We have

Ĥpot
|x1⟩|x2⟩± |x2⟩|x1⟩√

2

= q
ϕ(r1)|x1⟩|x2⟩ ± ϕ(r2)|x2⟩|x1⟩+ ϕ(r2)|x1⟩|x2⟩ ± ϕ(r1)|x2⟩|x1⟩√

2

= q
[
ϕ(r1) + ϕ(r2)

] |x1⟩|x2⟩ ± |x2⟩|x1⟩√
2

. (1.66)

Throughout this book we use calligraphic letters for operators acting on kets written in first
quantization as opposed to operators (such as the field operators) acting on kets written in
second quantization (e.g., ψ̂†(xN ) . . . ψ̂†(x1)|0⟩). We refer to the former as operators in
first quantization and to the latter as operators in second quantization. We now show that
the very same result (1.66) can be obtained if we write the potential energy operator as

Ĥpot = q

∫
dxϕ(r) n̂(x),

where

n̂(x) = ψ̂†(x)ψ̂(x) (1.67)

is the so-called density operator already introduced in Exercise 1.1. The origin of this
name for the operator n̂(x) stems from the fact that |x1 . . .xN ⟩ is an eigenket of the
density operator whose eigenvalue is exactly the density of N particles in the position–spin
coordinates x1, . . . ,xN . Indeed,

n̂(x) ψ̂†(xN )ψ̂†(xN−1) . . . ψ̂
†(x1)|0⟩︸ ︷︷ ︸

|x1...xN ⟩

=
[
n̂(x), ψ̂†(xN )

]
−
ψ̂†(xN−1) . . . ψ̂

†(x1)|0⟩

+ ψ̂†(xN )
[
n̂(x), ψ̂†(xN−1)

]
−
. . . ψ̂†(x1)|0⟩

...

+ ψ̂†(xN )ψ̂†(xN−1) . . .
[
n̂(x), ψ̂†(x1)

]
−
|0⟩

=

(
N∑

i=1

δ(x− xi)

)

︸ ︷︷ ︸
density of N particles

in x1, . . . ,xN

|x1 . . .xN ⟩, (1.68)

where we repeatedly use (1.49). This result tells us that any ket with N particles is an
eigenket of the operator

N̂ ≡
∫
dx n̂(x)
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with eigenvalue N . For this reason N̂ is called the operator of the total number of particles.
By acting with Ĥpot on |x1x2⟩ = ψ̂†(x2)ψ̂

†(x1)|0⟩ and taking into account (1.68), we
find

Ĥpot|x1x2⟩ = q

∫
dxϕ(r)

2∑

i=1

δ(x− xi)|x1x2⟩ = q
[
ϕ(r1 + ϕ(r2)

]
|x1x2⟩.

Simple and elegant! Both the operator and the ket are easy to manipulate and their ex-
pressions are undoubtedly shorter than the corresponding expressions in first quantization.
A further advantage of second quantization is that the operator Ĥpot keeps the very same
form independently of the number of particles; using (1.68) it is straightforward to verify that

Ĥpot|x1 . . .xN ⟩ = q

(
N∑

i=1

ϕ(ri)

)
|x1 . . .xN ⟩.

To the contrary, Ĥpot in (1.16) acts only on kets belonging to HN . Thus, when working in
Fock space it would be more rigorous to specify on which Hilbert space Ĥpot acts. Denoting
by Ĥpot(N) the operator in (1.16), we can write down the relation between operators in first
and second quantization as

Ĥpot =

∞∑

N=0

Ĥpot(N),

with the extra rule that Ĥpot(N) yields the null ket when acting on a state of HM ̸=N . In
this book, however, we are not so meticulous with the notation. The Hilbert space on which
operators in first quantization act is clear from the context.

The goal of this section is to extend the above example to general operators and in
particular to derive an expression for the many-particle Hamiltonian Ĥ = Ĥ0 + Ĥint.
According to (1.17), the matrix element of the noninteracting Hamiltonian Ĥ0 between a
position–spin ket and a generic ket |Ψ⟩ is

⟨x1 . . .xN |Ĥ0|Ψ⟩ =
N∑

j=1

∑

σ′

hσjσ′(rj ,−i∇j ,S)Ψ(x1, . . . ,xj−1, rjσ
′,xj+1, . . . ,xN ).

(1.69)
It is worth observing that for N = 1 this expression reduces to

⟨x|Ĥ0|Ψ⟩ =
∑

σ′

hσσ′(r,−i∇,S)Ψ(rσ′),

which agrees with (1.13) when |Ψ⟩ = |x′′⟩ since in this case Ψ(rσ′) = ⟨rσ′|r′′σ′′⟩ =
δ(r − r′′)δσ′σ′′ . Similarly, we see from (1.18) that the matrix element of the interaction
Hamiltonian Ĥint between a position–spin ket and a generic ket |Ψ⟩ is

⟨x1 . . .xN |Ĥint|Ψ⟩ =
1

2

N∑

i̸=j

v(xi,xj)Ψ(x1, . . . ,xN ). (1.70)
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In (1.70) we consider the more general case of spin-dependent interactions v(x1,x2), ac-
cording to which the interaction energy between a particle in r1 and a particle in r2 depends
also on the spin orientation σ1 and σ2 of these particles. Now the question is: How do we
express Ĥ0 and Ĥint in terms of field operators?

Noninteracting Hamiltonian We start our discussion with the noninteracting Hamilto-
nian. For pedagogical purposes we derive the operator Ĥ0 in second quantization in two
different ways.

Derivation 1: In first quantization the noninteracting Hamiltonian Ĥ0 of a system of N
particles each described by ĥ is given in (1.17). The first quantization eigenkets of Ĥ0 are
obtained by forming (anti)symmetrized products of one-particle eigenkets of ĥ, and look like

|n1 . . . nN ⟩ =
1√
N !

∑

P

(±)P |nP (1)⟩ . . . |nP (N)⟩, (1.71)

with

ĥ|n⟩ = ϵn|n⟩.

We leave it as an exercise for the reader to show that

Ĥ0|n1 . . . nN ⟩ = (ϵn1
+ . . .+ ϵnN

) |n1 . . . nN ⟩.

The proof of this identity involves the same kind of manipulations used to derive (1.66). To
carry them out is useful to appreciate the simplicity of second quantization. We show below
that in second quantization the noninteracting Hamiltonian Ĥ0 takes the compact form

Ĥ0 =

∫
dxdx′ ψ̂†(x)⟨x|ĥ|x′⟩ψ̂(x′) (1.72)

independently of the number of particles. We prove (1.72) by showing that the second
quantization ket |n1 . . . nN ⟩ is an eigenket of Ĥ0 with eigenvalue ϵn1

+ . . .+ϵnN
. In second

quantization |n1 . . . nN ⟩ = d̂†nN
. . . d̂†n1

|0⟩, with the d̂-operators defined in (1.52) and (1.53). It

is then natural to express Ĥ0 in terms of the d̂-operators. Inserting a completeness relation
between ĥ and |x′⟩, we find

Ĥ0 =
∑

n

∫
dxdx′ ψ̂†(x)⟨x|ĥ|n⟩⟨n|x′⟩ψ̂(x′)

=
∑

n

ϵn

∫
dx ψ̂†(x) ⟨x|n⟩︸ ︷︷ ︸

φn(x)

∫
dx′ ⟨n|x′⟩︸ ︷︷ ︸

φ∗
n(x

′)

ψ̂(x′) =
∑

n

ϵnd̂
†
nd̂n, (1.73)

where we use ĥ|n⟩ = ϵn|n⟩. The d̂-operators bring the Hamiltonian into a diagonal form
– that is, none of the off-diagonal combinations d̂†ndm with m ̸= n appear in Ĥ0. The
occupation operator

n̂n ≡ d̂†nd̂n (1.74)
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30 1 Second Quantization

is the analog of the density operator n̂(x) in the position–spin basis; it counts how many
particles have quantum number n. Using the (anti)commutation relations (1.54) and (1.55), it
is easy to prove that

[
n̂n, d̂

†
m

]
−
= δnmd̂

†
m,

[
n̂n, d̂m

]
−
= −δnmd̂m, (1.75)

which should be compared with the relations (1.48) and (1.49). The action of Ĥ0 on
|n1 . . . nN ⟩ is then

Ĥ0 d̂
†
nN
d̂†nN−1

. . . d̂†n1
|0⟩

︸ ︷︷ ︸
|n1...nN ⟩

=
∑

n

ϵn

([
n̂n, d̂

†
nN

]
−
d̂†nN−1

. . . d̂†n1
|0⟩

+ d̂†nN

[
n̂n, d̂

†
nN−1

]
−
. . . d̂†n1

|0⟩
...

+ d̂†nN
d̂†nN−1

. . .
[
n̂n, d̂

†
n1

]
−
|0⟩
)

= (ϵn1
+ . . .+ ϵnN

) d̂†nN
d̂†nN−1

. . . d̂†n1
|0⟩. (1.76)

This is exactly the result we wanted to prove: The Hamiltonian Ĥ0 is the correct second
quantized form of Ĥ0. We can write Ĥ0 in different ways using the matrix elements (1.13)
of ĥ. For instance,

Ĥ0 =
∑

σσ′

∫
dr ψ̂†(rσ)hσσ′(r,−i∇,S)ψ̂(rσ′), (1.77)

or, equivalently,

Ĥ0 =
∑

σσ′

∫
dr ψ̂†(rσ)hσσ′(r, i

←−
∇,S)ψ̂(rσ′). (1.78)

In these expressions the action of the gradient ∇ on a field operator is a formal expression
which makes sense only when we sandwich Ĥ0 with a bra and a ket. For instance,

⟨χ|ψ̂†(rσ)∇ψ̂(rσ′)|Ψ⟩ ≡ lim
r′→r

∇′⟨χ|ψ̂†(rσ)ψ̂(r′σ′)|Ψ⟩, (1.79)

where ∇′ is the gradient with respect to the primed variable. It is important to observe
that for any arbitrary large but finite system the physical states have no particles at infinity.
Therefore, if |χ⟩ and |Ψ⟩ are physical states, then (1.79) vanishes when |r| → ∞. More gen-
erally, the sandwich of a string of field operators ψ̂†(x1) . . . ψ̂

†(xN )ψ̂(y1) . . . ψ̂(yM ) with
two physical states vanishes when one of the coordinates of the field operators approaches
infinity. The equivalence between (1.77) and (1.78) has to be understood as an equivalence
between the sandwich of the corresponding r.h.s. with physical states. Consider, for example,
ĥ = p̂2/2m. Equating the r.h.s. of (1.77) and (1.78) we get

∑

σ

∫
dr ψ̂†(rσ)

[
−∇

2

2m
ψ̂(rσ)

]
=
∑

σ

∫
dr

[
−∇

2

2m
ψ̂†(rσ)

]
ψ̂(rσ).
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1.6 Hamiltonian in Second Quantization 31

This is an equality only provided that the integration by parts produces a vanishing boundary
term – that is, only provided that for any two physical states |χ⟩ and |Ψ⟩ the quantity in
(1.79) vanishes when |r| → ∞.

Derivation 2: The second derivation consists in showing that the matrix elements of
(1.77) or (1.78) are given by (1.69). Using (1.44), we find

⟨x1 . . .xN |ψ̂†(rσ)hσσ′(r,−i∇,S)ψ̂(rσ′)|Ψ⟩

= lim
r′→r

hσσ′(r′,−i∇′,S)
N∑

j=1

(±)N+jδ(xj − x)⟨x1 . . .xj−1xj+1 . . .xN |ψ̂(x′)|Ψ⟩

= lim
r′→r

hσσ′(r′,−i∇′,S)
N∑

j=1

δ(xj − x)Ψ(x1, . . .xj−1,x
′,xj+1, . . . ,xN ),

where we use that it requires N − j interchanges to put x′ at the position between xj−1
and xj+1. Summing over σ, σ′ and integrating over r we get

⟨x1 . . .xN |Ĥ0|Ψ⟩ =
N∑

j=1

∑

σ′

lim
r′→rj

hσjσ′(r′,−i∇′,S)Ψ(x1, . . . ,xj−1,x
′,xj+1, . . . ,xN ),

(1.80)
which coincides with the matrix element (1.69). Here and in the following we call one-body
operators those operators in second quantization that can be written as a quadratic form
of the field operators. The Hamiltonian Ĥ0 and the potential energy operator Ĥpot are
one-body operators.

Interacting Hamiltonian From (1.76) it is evident that one-body Hamiltonians can only
describe noninteracting systems since the eigenvalues are the sum of one-particle eigen-
values, and the latter do not depend on the position of the other particles. If there
is an interaction v(x1,x2) between one particle in x1 and another particle in x2, the
corresponding interaction energy operator Ĥint cannot be a one-body operator. The en-
ergy to put a particle in a given point depends on where the other particles are located.
Suppose that there is a particle in x1. Then if we want to put a particle in x2 we
must pay an energy v(x1,x2). The addition of another particle in x3 costs an energy
v(x1,x3)+ v(x2,x3). In general, if we have N particles in x1, . . . ,xN the total interaction
energy is

∑
i<j v(xi,xj) =

1
2

∑
i ̸=j v(xi,xj). To derive the form of Ĥint in second quan-

tization we simply notice that the ket |x1 . . .xN ⟩ is an eigenket of Ĥint with eigenvalue
1
2

∑
i ̸=j v(xi,xj):

Ĥint|x1 . . .xN ⟩ =


1

2

∑

i ̸=j
v(xi,xj)


 |x1 . . .xN ⟩. (1.81)

Equivalently, (1.81) follows directly from the matrix element (1.70), which is valid for all |Ψ⟩.
Due to the presence of a double sum in (1.81) the operator Ĥint must be a quartic form in
the field operators. In (1.68) we proved that |x1 . . .xN ⟩ is an eigenket of the density operator
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n̂(x) with eigenvalue
∑
i δ(x− xi). This implies that |x1 . . .xN ⟩ is also an eigenket of the

operator n̂(x)n̂(x′) with eigenvalue
∑
i,j δ(x − xi)δ(x

′ − xj). Thus, taking into account
that the double sum in (1.81) does not contain terms with i = j, the interaction energy
operator is given by

Ĥint =
1

2

∫
dx dx′ v(x,x′)n̂(x)n̂(x′)− 1

2

∫
dx v(x,x)n̂(x)

=
1

2

∫
dx dx′ v(x,x′)

(
ψ̂†(x)ψ̂(x)ψ̂†(x′)ψ̂(x′)− δ(x− x′)ψ̂†(x)ψ̂(x)

)

=
1

2

∫
dx dx′ v(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x). (1.82)

In the last equality we first use the (anti)commutation relation (1.47) to cancel the term
proportional to δ(x − x′), and then (1.40) to exchange the operators ψ̂(x) and ψ̂(x′). It
is easy to verify that the action of Ĥint on |x1 . . .xN ⟩ yields (1.81). Like the one-body
Hamiltonian Ĥ0, the interaction energy operator keeps the very same form independently
of the number of particles. We call two-body operators those operators that can be written
as a quartic form of the field operators and, in general, n-body operators those operators
that contain a string of n field operators ψ̂† followed by a string of n field operators ψ̂.

Total Hamiltonian The total Hamiltonian of a system of interacting identical particles is
the sum of Ĥ0 and Ĥint and reads

Ĥ=

∫
dxdx′ ψ̂†(x)⟨x|ĥ|x′⟩ψ̂(x′) + 1

2

∫
dx dx′v(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x) (1.83)

Equation (1.83) is the main result of this section. To calculate the action of Ĥ on a ket |Ψ⟩
we only need to know the (anti)commutation relations since |Ψ⟩ can always be expanded in
terms of ψ̂†(x1) . . . ψ̂

†(xN )|0⟩. Equivalently, given a convenient one-body basis {|n⟩} we
may work with the d̂-operators. This is done by expressing Ĥ in terms of the d̂-operators,
expanding |Ψ⟩ on the basis d̂†n1

. . . d̂†nN
|0⟩, and then using the (anti)commutation relations

(1.54) and (1.55). To express Ĥ in terms of the d̂-operators, we simply substitute the expansion
(1.60) in (1.83) and find

Ĥ =
∑

ij

hij d̂
†
i d̂j

︸ ︷︷ ︸
Ĥ0

+
1

2

∑

ijmn

vijmnd̂
†
i d̂
†
j d̂md̂n

︸ ︷︷ ︸
Ĥint

, (1.84)

with

hij = ⟨i|ĥ|j⟩ =
∑

σσ′

∫
drφ∗i (rσ)hσσ′(r,−i∇,S)φj(rσ

′) = h∗ji, (1.85)

and the so-called Coulomb integrals6

vijmn =

∫
dx dx′ φ∗i (x)φ

∗
j (x
′)v(x,x′)φm(x′)φn(x). (1.86)

6In fact, the nomenclature Coulomb integral is appropriate only if v is the Coulomb interaction.
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In the new basis the single-particle Hamiltonian in first quantization can be written in the
ket–bra form

ĥ =
∑

ij

hij |i⟩⟨j|, (1.87)

as can easily be checked by taking the matrix element ⟨i|ĥ|j⟩ and comparing with (1.85).
We recall that the quantum numbers of the general basis comprise an orbital and a spin

quantum number. For later purposes it is instructive to highlight the spin structure in (1.84).
We write the quantum numbers i, j,m, n as

i = s1σ1, j = s2σ2, m = s3σ3, n = s4σ4.

Then the one-body part reads

Ĥ0 =
∑

s1s2
σ1σ2

hs1σ1 s2σ2
d̂†s1σ1

d̂s2σ2
.

In the absence of magnetic fields or spin–orbit coupling, h does not depend on S and hence
its matrix elements are diagonal in spin space hij = δσ1σ2hs1s2 . In this case Ĥ0 takes the
simpler form

Ĥ0 =
∑

s1s2

∑

σ

hs1s2 d̂
†
s1σd̂s2σ, (1.88)

where hs1s2 is the spatial integral in (1.85) with the functions φs(r) defined in (1.50). For
interparticle interactions v(x1,x2) = v(r1, r2) which are independent of spin the interac-
tion Hamiltonian can be manipulated in a similar manner. From (1.86) we see that vijmn
vanishes if j and m have different spin projection (σ2 ̸= σ3) or if i and n have different
spin projection (σ1 ̸= σ4):

vijmn = δσ2σ3δσ1σ4vs1s2s3s4 , (1.89)

where vs1s2s3s4 is the spatial integral in (1.86) with the functions φs(r). Inserting this form
of the interaction into Ĥint we find

Ĥint =
1

2

∑

s1s2s3s4
σσ′

vs1s2s3s4 d̂
†
s1σd̂

†
s2σ′ d̂s3σ′ d̂s4σ. (1.90)

We propose below a few simple exercises to practice with operators in second quanti-
zation. In the next chapter we illustrate physically relevant examples and use some of the
identities from the exercises to acquire familiarity with the formalism of second quantization.

Exercise 1.4 Let n̂n ≡ d̂†nd̂n be the occupation operator for particles with quantum number
n, see (1.74). Prove that in the fermionic case

n̂2n = n̂n, (1.91)

and hence that the eigenvalues of n̂n are either 0 or 1 – that is, it is not possible to create
two fermions in the same state |n⟩. This is a direct consequence of the Pauli exclusion
principle.
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Exercise 1.5 Prove that the total number of particle operators N̂ =
∫
dx ψ̂†(x)ψ̂(x) can

also be written as N̂ =
∑
n d̂
†
nd̂n for any orthonormal basis |n⟩. Calculate the action of N̂

on a generic ket |ΨN ⟩ with N particles (|ΨN ⟩ ∈ HN ) and prove that

N̂ |ΨN ⟩ = N |ΨN ⟩.

Exercise 1.6 Prove that N̂ commutes with Ĥ0 and Ĥint – that is,

[N̂ , Ĥ0]− = [N̂ , Ĥint]− = 0. (1.92)

This means that the eigenkets of Ĥ can be chosen as kets with a fixed number of particles.

Exercise 1.7 Let n = sσ and σ =↑, ↓ be the spin projection for fermions of spin 1/2. We
consider the operators

Ŝzs ≡
1

2
(n̂s↑ − n̂s↓), Ŝ+

s ≡ d̂†s↑d̂s↓, Ŝ−s ≡ d̂†s↓d̂s↑ = (Ŝ+
s )
†. (1.93)

Using the anticommutation relations, prove that the action of the above operators on the
kets |sσ⟩ ≡ d̂†sσ|0⟩ is

Ŝzs |s ↑⟩ =
1

2
|s ↑⟩, Ŝ+

s |s ↑⟩ = |∅⟩, Ŝ−s |s ↑⟩ = |s ↓⟩,

and

Ŝzs |s ↓⟩ = −
1

2
|s ↓⟩, Ŝ+

s |s ↓⟩ = |s ↑⟩, Ŝ−s |s ↓⟩ = |∅⟩.

To what operators do Ŝzs , Ŝ
+
s , Ŝ

−
s correspond?

Exercise 1.8 Let us define the spin operators along the x and y directions as

Ŝxs ≡
1

2
(Ŝ+
s + Ŝ−s ), Ŝys ≡

1

2i
(Ŝ+
s − Ŝ−s ),

and the spin operator Ŝzs along the z direction as in (1.93). Prove that these operators can
also be written as

Ŝjs =
1

2

∑

σσ′

d̂†sσσ
j
σσ′ d̂sσ′ , j = x, y, z, (1.94)

with

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

the Pauli matrices. Using the anticommutation relations, verify that

[Ŝis, Ŝ
j
s′ ]− = iδss′

∑

k=x,y,z

εijkŜ
k
s ,

where εijk is the Levi-Civita tensor.7

7The Levi-Civita tensor is zero if at least two indices are equal and otherwise

εP (1)P (2)P (3) = (−)P ,
where P is an arbitrary permutation of the indices 1, 2, 3.
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