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On the formal Peterson subalgebra
and its dual
Rui Xiong, Kirill Zaynullin , and Changlong Zhong
Abstract. In the present notes, we study a generalization of the Peterson subalgebra to an oriented
(generalized) cohomology theory which we call the formal Peterson subalgebra. Observe that by
recent results of Zhong the dual of the formal Peterson algebra provides an algebraic model for the
oriented cohomology of the affine Grassmannian.

Our first result shows that the centre of the formal affine Demazure algebra (FADA) generates
the formal Peterson subalgebra. Our second observation is motivated by the Peterson conjecture. We
show that a certain localization of the formal Peterson subalgebra for the extended Dynkin diagram
of type Â1 provides an algebraic model for “quantum” oriented cohomology of the projective line.
Our last result can be viewed as an extension of the previous results on Hopf algebroids of structure
algebras of moment graphs to the case of affine root systems. We prove that the dual of the formal
Peterson subalgebra (an oriented cohomology of the affine Grassmannian) is the zeroth Hochschild
homology of the FADA.

1 Introduction

Equivariant cohomology of an affine Grassmannian has been a topic of intensive
investigations for decades. For the small torus action, it can be identified with a certain
commutative subalgebra of the associated nil–Hecke algebra of a Kac–Moody root
system called the Peterson subalgebra [16]. One of its remarkable properties says that
after taking localization it becomes isomorphic to the (small) quantum cohomology of
the respective finite part (flag variety) [12, 16]. A parallel isomorphism for the K-theory
was conjectured and discussed in [10, 11] and is known as the Peterson Conjecture.
This conjecture was recently proven by Kato in [7] using a language of semi-infinite
flag varieties.

In the present notes, we study a generalization of the Peterson subalgebra to
an oriented (generalized) cohomology theory h(-), e.g., algebraic cobordism Ω(-)
of Levine–Morel. Such a cohomology theory was first introduced and studied in
[15], and extended to the torus-equivariant setup in [6, 8] for arbitrary smooth
varieties. As for flag varieties associated with root systems, it can be described using
the Kostant–Kumar localization approach (for finite root systems see [3–5], and for
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2 R. Xiong, K. Zaynullin, and C. Zhong

Kac–Moody see [2]). The respective generalization of the nil Hecke algebra is called
the formal affine Demazure algebra (FADA). The generalization of the Peterson
algebra introduced recently in [18] which we call a formal Peterson subalgebra is then
the centralizer of the equivariant coefficient ring in the small torus FADA.

To state our first result, let R = h(pt) denote the coefficient ring of the oriented
theory h(-), let S = hT(pt) denote the respective small torus T equivariant coefficient
ring, let DWa denote the small torus FADA, and let DQ∨ denote the formal Peterson
subalgebra as constructed in [18]. We then obtain the following important property of
the centre of FADA.

Theorem 1.1 (cf. Theorem 4.4) If Q ⊆ R, then the centre Z(DWa) of the small torus
FADA generates the formal Peterson subalgebra DQ∨ as an S-module. Moreover, the
centre Z(DWa) generates DWa as a DW -module, where DW stands for the FADA
associated with the finite part of the Kac–Moody root system.

Our next result can be viewed as an extension of the Peterson conjecture.

Theorem 1.2 (cf. Theorem 5.6) The localization DQ∨,loc of the formal Peterson subal-
gebra DQ∨ with respect to an affine root system of type Â1 has the following presentation:

DQ∨,loc ≃ S[t, t−1][s]/(s2 − x−1st − μt),

where x−1 is a certain characteristic class in h and μ is an element depending on x−1.

For cohomology and K-theory, this presentation gives quantum cohomology and
quantum K-theory of P1 , respectively. Hence, DQ∨,loc can be viewed as the “quantum”
oriented cohomology of the projective line P1.

As for our last result, observe that the S-linear dual D∗Q∨ of the formal Peterson
subalgebra is a natural model for the (small torus) equivariant oriented cohomology of
the affine Grassmannian [18]. We obtain the following “Kac–Moody” analog of results
of [13].

Theorem 1.3 (cf. Theorem 6.2) The S-linear dual D∗Q∨ of the formal Peterson subal-
gebra is isomorphic to the 0-th Hochschild homology of the dual D∗Wa

of the small torus
FADA.

Here, the dual D∗Wa
can be interpreted as a model for the T-equivariant oriented

cohomology of the respective affine flag variety. Therefore, it has two commuting
actions by the equivariant coefficient ring S. Following the ideas of [13] one defines
its zeroth Hochschild homology as the quotient obtained by merging these two
S-module structures. To prove this result, we introduce a special filtration on the dual
D∗Q∨ (to reduce it to finite cases). This approach seems to be new even for cohomology
and K-theory.

The article is organized as follows: Section 2 revisits the definition of the formal
Peterson subalgebra DQ∨ from [18]. In Section 3, we establish some basic properties
of DQ∨ and study the action of DWa on it. In Section 4, we study Borel isomorphisms
involving the FADA and the Peterson subalgebra, and prove our first main result
Theorem 4.4. In Section 5, we focus on the example of type Â1 and prove our second
result, Theorem 5.6. In the last section, we investigate the dual of the formal Peterson
subalgebra, and prove our third main result Theorem 6.2. In the appendix, we prove
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On the formal Peterson subalgebra and its dual 3

several combinatorial properties of the affine Weyl group that are used in the proof of
Theorem 6.2.

2 The formal Peterson subalgebra

In this section, we recall the definition of a small torus FADA and the formal Peterson
algebra following [2, 18].

Given an oriented algebraic cohomology theory h(-), in the sense of Levine–Morel
(see [15]) there is an associated formal group law F over a commutative ring R with
characteristic 0. Here, R = h(pt) is the coefficient ring, and F is defined from the
Quillen formula for the characteristic class of a tensor product of line bundles. For
example, for connective K-theory (see, e.g., [17]) we have Fβ(x , y) = x + y − βx y over
the polynomial ring R = Z[β]. Specializing to β = 1 (resp. β = 0), one obtains the usual
K-theory (resp. cohomology). In these notes, by usual cohomology, we always mean its
algebraic part: the Chow ring (modulo rational equivalence) with rational coefficients.

Given a lattice Λ (free abelian group of finite rank) and a formal group law F,
consider the associated formal group algebra S of [1] that is the quotient of the power
series ring

S = R[[Λ]]F = R[[xλ ∶ λ ∈ Λ]]/JF ,

where JF is the closure of the ideal of relations

(x0 , xλ1+λ2 − F(xλ1 , xλ2)∶ λ1 , λ2 ∈ Λ).

In the case F = Fβ , we set S to be the quotient of the polynomial ring

S ∶= R[xλ ∶ λ ∈ Λ]/⟨x0 , xλ1+λ2 − Fβ(xλ1 , xλ2)⟩.

Let Φ be a finite irreducible root system with a fixed subset I = {α1 , . . . , αn} of
simple roots. Let Q and Q∨ denote the root and the coroot lattice, respectively. Let
W denote the Weyl group, generated by simple reflections sα i , α i ∈ I. Consider an
affine root system corresponding to the extended Dynkin diagram for Φ with the extra
simple root

α0 = −θ + δ ∈ Q ⊕Zδ,

where θ ∈ Φ is the highest root and δ is the so called null root so that sα0 = tθ∨ sθ is
an extra generator of the respective affine Weyl group Wa = Q∨ ⋊W . Recall that the
latter is generated by reflections sα+kδ = t−kα∨ sα , where sα ∈ W is a reflection and tλ ,
λ ∈ Q∨ is a translation. The affine Weyl group Wa acts on the lattice Q via W that is

tλw(μ) = w(μ), μ ∈ Q , w ∈ W , λ ∈ Q∨.

Therefore, it also acts on the formal group algebra S = R[[Q]]F .
Suppose xα is a regular (not a zero-divisor) element in S for each α ∈ Φ. In

particular, this holds if 2 is not a zero-divisor in R (see [4, Lemma 2.2]). Let Q =
S[ 1

xα
∶ α ∈ Φ] be the localization of S at xαs. Consider the twisted group algebra QWa

associated with the affine Weyl group Wa. By definition, it is a free left Q-module
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4 R. Xiong, K. Zaynullin, and C. Zhong

QWa =Q⊗R R[Wa] with basis {ηu}u∈Wa and the product given by

cηu ⋅ c′ηu′ = cu(c′)ηuu′ , c, c′ ∈Q, u, u′ ∈ Wa .

For each α ∈ Φ, define elements

κα = 1
xα
+ 1

x−α
(which is an element of S),

Xα = 1
xα
(1 − ηsα) called the Demazure element,

Yα = κα − Xα called the push-pull element,
Xα0 = 1

x−θ
(1 − ηs0), and

Yα0 = κθ − Xα0 .

All these elements satisfy the quadratic relations (e.g., X2
α = κα Xα) and the twisted

braid relations (see, e.g., [2]). For simplicity of notation, we will omit α or s in the
indices, i.e., we will write x i = xα i , s i = sα i , η i = ηs i , X i = Xα i , and Yi = Yα i .

Similarly, consider the twisted group algebra QQ∨ =Q⊗R R[Q∨]. It is a free
Q-module with basis {ηtλ}λ∈Q∨ . Observe that QQ∨ is commutative since tλ(c) = c,
c ∈Q. Consider two homomorphisms of left Q-modules

pr∶QWa →QQ∨ , cηtλ w ↦ cηtλ , c ∈Q, w ∈ W , and
ı∶QQ∨ →QWa , cηtλ ↦ cηtλ .

By definition, ı is a section of pr, and it is a ring homomorphism. Set ψ = ı ○ pr, so
ψ∣ı(QQ∨)

= id. Define elements

Zα = 1
x−α

(1 − ηtα∨
), α ∈ Φ.

Lemma 2.1 We have ψ(zX i) = 0 for any z ∈QWa , α i ∈ I, and ψ(X0) = Zθ .

Proof For z = cηu , c ∈Q, u ∈ Wa, and α i ∈ I, we have

pr(cηu X i) = pr(cηu
1

xαi
(1 − ηs i ))

= pr( c
u(xαi )

(ηu − ηus i )) = 0.

As for the X0, we obtain

ψ(X0) = ı ○ pr( 1
x−θ
(1 − ηs0))

= 1
x−θ

ı ○ pr((1 − ηtθ∨ sθ ))
= 1

x−θ
(1 − ηtθ∨

) = Zθ ,

and the proof is finished. ∎

Denote Ia = {α0 , . . . , αn}. Following [2] define the small torus FADA DWa to be the
subring of QWa generated by S and the elements X i , α i ∈ Ia. Set DWa/W = pr(DWa) to
be its image in QQ∨ . We called it the relative FADA. Assuming Q ⊂ R and using the
small torus GKM descripition it is proven in [18, Lemma 5.1] that the map ı induces
a map DWa/W → DWa . We then define the formal Peterson subalgebra to be the image
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On the formal Peterson subalgebra and its dual 5

of the relative FADA

DQ∨ ∶= ı(DWa/W).

According to [18, Theorem 5.7] the formal Peterson subalgebra DQ∨ is a Hopf subal-
gebra in QQ∨ . Moreover, DQ∨ coincides with the centralizer CDWa

(S) of the formal
group algebra S in the FADA DWa .

3 Properties of the FADA and the formal Peterson subalgebra

In the present section, we establish several properties of the FADA and the formal
Peterson subalgebra. For the K-theory, some of these properties were proven in
[7] using different arguments. We start with the following version of the projection
formula.

Lemma 3.1 For any z, z′ ∈QWa and ξ ∈QQ∨ we have in QQ∨

(i) pr(ı(ξ)z) = ξpr(z), and
(ii) pr(zσz′) = pr(z)pr(σz′), where σ = ∑w∈W ηw .

Observe that for the K-theory the property (ii) played a key role in [7, Theorem 1.7].

Proof (i) Let ξ = c1ηtλ1
and z = c2ηtλ2 w , where w ∈ W , c i ∈Q, λ i ∈ Q∨. Then, we

obtain

pr(ı(ξ)z) = pr(c1ηtλ1
c2ηtλ2 w) = pr(c1 tλ1(c2)ηtλ1+λ2 w)

= c1 tλ1(c2)ηtλ1+λ2
= c1ηtλ1

c2ηtλ2
= ξpr(z).

(ii) Let z = cηtλ v and z′ = c′ηtλ′ v′ , v , v′ ∈ W . Then, we get

pr(zσz′) = pr(cηtλ v ∑
w∈W

ηw c′ηtλ′ v′)

= pr( ∑
w∈W

ctλvw(c′)ηtλ vw tλ′ v′).

Since tλvwtλ′v′ = tλ(vwtλ′(vw)−1)vwv′ = tλ tvw(λ′)vwv′, reindexing the sum by w′ =
vw we obtain

pr(zσz′) = pr( ∑
w′∈W

ctλw′(c′)ηtλ tw′(λ′)w′v′)

= ∑
w′∈W

ctλw′(c′)ηtλ tw′(λ′)
.

On the other side, pr(z) = cηtλ and

pr(σz′) = pr(∑
w

ηw c′ηtλ′ v′) = pr(∑
w

w(c′)ηw tλ′ v′)

= pr(∑
w

w(c′)ηtw(λ′)wv′) = ∑
w

w(c′)ηtw(λ′)
.

The result then follows. ∎

We now extend the Hecke action on the Peterson algebra for the K-theory intro-
duced in [7, Section 2] to the action on the formal Peterson algebra.
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6 R. Xiong, K. Zaynullin, and C. Zhong

We define an action of QWa on QQ∨ by

z ◇ ξ ∶= pr(zı(ξ)), z ∈QWa , ξ ∈QQ∨ .

More explicitly, we have

cηtλ w ◇ c′ηtλ′
= cw(c′)ηtλ+w(λ′)

, c, c′ ∈Q, w ∈ W .(3.1)

Direct computation shows that Wa is an action.
For w ∈ W , ξ ∈QQ∨ , and α ∈ Φ define

w(ξ) = ηw ◇ ξ, and
Δα(ξ) = Xα ◇ ξ = 1

xα
(ξ − sα(ξ)).

We then have the following.

Lemma 3.2 For any z, z′ ∈QWa and ξ ∈QQ∨ we have
(i) pr(zz′) = z ◇ pr(z′), and, in particular,

pr(X i z) = X i ◇ pr(z) = Δ i(pr(z)), α i ∈ I,

(ii) X0 ◇ ξ = Δ−θ(ξ) + Zθ sθ(ξ).

Proof (i) Let z = cηtλ w and z′ = c′ηtλ′w′ . Then, we obtain

pr(zz′) = pr(cηtλ w c′ηtλ′w′) = pr(ctλw(c′)ηtλ+w(λ′)ww′)
= ctλw(c′)ηtλ+w(λ′)

= cηtλ w ◇ c′ηtλ′
.

(ii) For ξ = cηtλ , we get

X0 ◇ (cηtλ) = c
x−θ

ηtλ −
s0(c)
x−θ

ηtsθ (λ) tθ∨

= c
x−θ

ηtλ −
sθ(c)
x−θ

ηtsθ (λ) tθ∨
− sθ(c)

x−θ
ηtsθ (λ) +

sθ(c)
x−θ

ηtsθ (λ)

= Δ−θ(cηtλ) + Zθ sθ(cηtλ)

and the result follows. ∎

Lemma 3.3 The ◇-action of QWa on QQ∨ induces an action of DWa on DWa/W .

Proof Let z, z′ ∈ DWa , and let ξ = pr(z′). Then, we have

z ◇ ξ = z ◇ pr(z′) = pr(zz′) ∈ pr(DWa) = DWa/W

and the lemma follows. ∎

Identifying the formal Peterson algebra DQ∨ (resp. ı(QQ∨)) with DWa/W (resp.
QQ∨) via the ring homomorphism ı we obtain an action of DWa on DQ∨ and an action
of QWa on ı(QQ∨). From this point on, we write ξ as both an element in DWa/W (resp.
QQ∨) and in DQ∨ = ı(DWa/W) (resp. ı(QQ∨)). If we consider a product ξ1 ξ2 with
ξ i ∈QQ∨ , we may assume it is in QWa . However, for the product zξ with z ∈QWa and
ξ ∈QQ∨ , we view ξ as an element inQWa via the map ı. Following these identifications
we obtain

z ◇ ξ = ψ(zξ), where ξ ∈ DQ∨ ⊂ ı(QQ∨), z ∈ DWa ⊂QWa ,(3.2)
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On the formal Peterson subalgebra and its dual 7

and Lemma 3.1 gives

ψ(ξz) = ξψ(z).(3.3)

Example 3.4 Consider the affine root system of extended Dynkin type Â2. It has
three simple roots α0 , α1 , α2 and the highest root θ = α1 + α2. Denote X i j = X i X j for
simplicity. Direct computations then give:

ψ(X10) = X1 ◇ X0 = 1
x1

Zα1+α2 − 1
x1

Zα2 ,

ψ(X20) = 1
x2

Zα1+α2 − 1
x2

Zα1 ,

ψ(X210) = X2 ◇ ψ(X10).

Finally, we describe the centre of FADA.
Lemma 3.5 (i) For any ξ ∈QQ∨ and α i ∈ I, we have

η i ◇ ξ = ξ ⇐⇒ η i ξ = ξη i .

Moreover, if this condition is satisfied, we have

cη i ◇ (ξξ′) = ξ(cη i ◇ ξ′).

(ii) The centres of QWa and DWa can be described as follows:

Z(QWa) = {ξ ∈QQ∨ ∶ ηw ξ = ξηw ,∀w ∈ W} = (QQ∨)W ,
Z(DWa) = {ξ ∈ DQ∨ ∶ ηw ξ = ξηw ,∀w ∈ W} = (DQ∨)W .

(iii) There are ring homomorphisms

QWa → End(QQ∨)
W (QQ∨), DWa → End(DQ∨)

W (DQ∨), z ↦ z ◇ –.

Proof (i) For a given ξ = ∑λ cληtλ , cλ ∈Q, we get

η i ξ = ∑
λ

s i(cλ)η i ηtλ = ∑
λ

s i(cλ)ηts i (λ)η i

= ∑
λ′

s i(cs i(λ′))ηtλ′
η i , where λ′ = s i(λ).

On the other side, we have

η i ◇ ξ = ψ(η i ξ) = ψ(η i ∑
λ

cληtλ) = ∑
λ

s i(cs i(λ))ηtλ .

Therefore, η i ◇ ξ = ξ if and only if s i(cs i(λ)) = cλ for any λ ∈ Q∨, which is equivalent
to say that η i ξ = ξη i .

Now if this condition is satisfied, then

cη i ◇ (ξξ′) = ψ(cη i ξξ′) = ψ(ξcη i ξ′) (3.3)= ξψ(cη i ξ′) (3.2)= ξ(cη i ◇ ξ′).

(ii) Since QQ∨ = ı(QQ∨) = CQWa
(Q), we have Z(QWa) ⊂QQ∨ , and the first iden-

tity then follows. By part (i), we know that η i ◇ ξ = ξ, ∀α i ∈ I is equivalent to ηw ξ =
ξηw , ∀w ∈ W that is equivalent to zξ = ξz, ∀z ∈QW . Since ξ already commutes with
ηtλ , λ ∈ Q∨, ξ belongs to the centre Z(QWa). Conversely, if ξ ∈ Z(QWa) ∩QQ∨ , then it
is invariant under all η i , α i ∈ I. The description of the centre Z(DWa) follows similarly.

(iii) Follows from parts (i) and (ii). ∎

Downloaded from https://www.cambridge.org/core. 20 Sep 2025 at 15:42:47, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


8 R. Xiong, K. Zaynullin, and C. Zhong

4 Borel isomorphisms

In this section, we study Borel isomorphisms involving the FADA and the formal
Peterson subalgebra. We assume Q ⊂ R throughout this section.

Consider the left S-linear dual D∗W embedded into Q∗W . The latter has a Q-basis
{ fw}w∈W . Following [4, Section 11] there is an (equivariant) characteristic map

c∶ S → D∗W , a ↦ ∑
w∈W

w(a) fw(4.1)

which induces the Borel isomorphism (see [4, Theorem 11.4])

ρ∶ S ⊗SW S → D∗W , a ⊗ b ↦ ac(b) = ∑
w∈W

aw(b) fw .(4.2)

Recall that σ = ∑w∈W ηw ∈ DWa . Denote x = ∏α∈Φ+ x−α and Y = σ 1
x .

By [3, Lemma 10.12] (Y = YΠ) we have Y ∈ DW . We denote by XIu , YIu products
corresponding to a reduced sequence Iu of u ∈ Wa.
Lemma 4.1 We have σDW = YDW = YS.
Proof Observe that Y = 1

∣W ∣σY , so YS ⊂ YDW ⊂ σYDW ⊂ σDW . Conversely,

σDW = YxDW ⊂ YDW .

Note that DW is also a right S module with basis XIv , v ∈ W , and Y XIv = δv ,e Y . So
given XIv b ∈ DW with v ∈ W , b ∈ S, we have

Y XIv b = δv ,e Yb ∈ YS .

So σDW ⊂ YS, and the result follows. ∎
Lemma 4.2 We have SYS = DW . So DW is a cyclic S-S-bimodule.
Proof According to [3, Lemma 10.3] x fe ∈ D∗W . Let ∑i a i ⊗ b i ∈ S ⊗SW S so that
ρ(∑i a i ⊗ b i) = x fe . Then,

∑
i

a iw(b i) =
⎧⎪⎪⎨⎪⎪⎩

x, w = e ,
0, otherwise.

Therefore,

∑
i

a i Yb i = ∑
w∈W

∑
i

a iw(b i)ηw
1
x = 1.

Finally, by Lemma 4.1, for any z ∈ DW , we can write z = ∑i a i Yb i z = ∑i a i Yb′i for
some b′i ∈ S. ∎
Lemma 4.3 We have ψ(σDWa) = Z(DWa).
Proof Let z = cηtλ u , where c ∈Q, u ∈ W . We have

ψ(σz) = ψ( ∑
w∈W

ηw cηtλ u) = ψ( ∑
w∈W

w(c)ηtw(λ)ηwu)

= ∑
w∈W

w(c)ηtw(λ) = ∑
w∈W

ηw ctληw−1 ,

so it obviously belongs to Z(DWa).
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On the formal Peterson subalgebra and its dual 9

As for the opposite inclusion, take z ∈ Z(DWa). Since Z(DWa) ⊂ CDWa
(S) = DQ∨ ,

we get ψ(z) = z. Observe that pr(z′σ) = ∣W ∣pr(z′) for any z′ ∈ DWa . So we obtain

ψ(σz 1
∣W ∣) = ψ(zσ 1

∣W ∣) = ψ(z) = z.

Thus, z ∈ ψ(σDWa), and the proof is finished. ∎

Consider two ring homomorphisms induced by the usual mutiplication:

Θ∶ S ⊗SW Z(DWa) #→ DQ∨ .(4.3)

Ξ∶DW ⊗SW Z(DWa) #→ DWa .(4.4)

Note that in the definition of Θ and Ξ, one can switch the tensor factors. Moreover,
both homomorphisms are left S-linear. The following is our first main result.

Theorem 4.4 Assume Q ⊂ R. The maps Θ and Ξ are ring isomorphisms.

Remark 4.5 The geometric interpretation of this theorem is well-known for equiv-
ariant homology and equivariant K-homology. As explained in [9, 12], we have the
following isomorphisms of algebras

DW ≃ HT
∗ (G/B), DWa ≃ HT

∗ (FlG), DQ∨ ≃ HT
∗ (GrG),

where G/B is the flag variety, FlG is the affine flag variety, and GrG is the affine
Grassmannian. By (ii) of Lemma 3.5, we could identify

Z(DWa) = (DQ∨)W = HT
∗ (GrG)W = HG

∗ (GrG).

As a result, the morphisms Θ and Ξ can be viewed as the isomorphisms of algebras

Θ∶H∗T(pt) ⊗H∗G(pt) HG
∗ (GrG) ≃ HT

∗ (GrG),

Ξ∶HT
∗ (G/B) ⊗H∗G(pt) HG

∗ (GrG) ≃ HT
∗ (FlG).

The isomorphism Ξ can be also rewritten in a more familiar form

HT
∗ (G/B) ⊗H∗T(pt) HT

∗ (GrG) ≃ HT
∗ (FlG),

which is what Corollary 4.8 implies.
For a general equivariant oriented cohomology theory h, it follows from [5] that

D∗W is isomorphic to the equivariant oriented cohomology hT(G/B). However, the
respective results for FlG and GrG are not known since they are not varieties of finite
type. Therefore, our isomorphism in this case serves as the algebraic analogs of the
potentially-correct geometric result. Observe also that in general, the isomorphisms
in Corollary 4.8 are only isomorphisms of modules.

The proof of the theorem will occupy the rest of this section. We start proving the
surjectivity first.

Lemma 4.6 The map Θ∶ S ⊗SW Z(DWa) → DQ∨ given in (4.3) is surjective.
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Proof Consider the following diagram

S ⊗SW σDWa
��

id⊗ψ
��

DWa

ψ
����

S ⊗SW Z(DWa)
Θ �� DQ∨

.

Since ψ is an S-module homomorphism, this diagram commutes.
By Lemma 4.2, we can write 1 = ∑i a i Yb i for some a i , b i ∈ S. For any z ∈ DWa , we

then have z = ∑i a i Yb i z. This shows that elements of YDWa generate DWa as a left
S-module. Similarly to the proof of Lemma 4.1, we obtain that YDWa = σDWa . So the
top horizontal map is surjective, and the result follows. ∎
Lemma 4.7 The map Ξ∶DW ⊗SW Z(DWa) → DWa given in (4.4) is surjective.
Proof Since the elements of DW and of Z(DWa) commute with each others, the
image of Ξ is the subalgebra generated by DW and Z(DWa). It contains S and X i for
α i ∈ I by definition, so it suffices to show that it contains X0 as well. Observe that

X0 = 1
xθ
(1 − ηsθ ηt−θ∨

)
= 1

xθ
(1 − ηsθ ) + ηsθ

1
x−θ
(1 − ηt−θ∨

)
= Xθ + ηsθ

xθ
x−θ

Zθ .

Since Zθ ∈ DQ∨ by [18, Lemma 4.1], we have Xθ ∈ DW and ηsθ ∈ DW . So X0 belongs
to the subalgebra generated by DW and Z(DWa). ∎
Corollary 4.8 The maps DW ⊗S DQ∨ → DWa and DQ∨ ⊗S DW → DWa induced by the
usual multiplication are isomorphisms of left S-modules (In the first map, DW is viewed
as an S-S-bimodule, and in the second map, DW is viewed as a left S-module.)
Proof Since DQ∨ ⊃ Z(DWa), by Lemma 4.7, both maps are surjective. To prove the
injectivity, we change the base to Q-modules by applying the exact functors –⊗S Q
and Q⊗ –. It then suffices to show that the induced maps

DW ⊗S DQ∨ ⊗S Q =QW ⊗Q QQ∨ #→QWa = DWa ⊗S Q

Q⊗S DQ∨ ⊗S DW =QQ∨ ⊗Q QW #→QWa =Q⊗S DWa

are injective. But these are even isomorphisms. So, the conclusion follows. ∎
We now discuss injectivity of the maps in the theorem.
For any parabolic subgroup WP of W , we denote by W P the subset of minimal

length left coset representatives. Consider the Q-linear dual Q∗W P = Hom(W P ,Q)
with a basis { fw}w∈W P . One can also identify it with the invariants (Q∗W)WP by
identifying each fw , w ∈ W P with ∑v∈WP

fwv ∈ (Q∗W)WP (see [3, Section 11] for more
details).
Lemma 4.9 The map ρP ,Q∶ S ⊗SW QWP →Q∗W P defined by

ρP ,Q(c1 ⊗ c2) ∶= ∑
w∈W P

c1w(c2) fw

is an isomorphism.
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Proof Assume first that P = B (the Borel case). Then, the map ρP ,Q is obtained
from the isomorphism ρ by the base change with the functor –⊗S Q. So ρB ,Q is an
isomorphism.

For a general parabolic WP , there is a commutative diagram

S ⊗SW QWP
ρP ,Q ��

��

Q∗W P

��
S ⊗SW Q ∼

ρB ,Q �� Q∗W

.

Both vertical maps identify the top with the WP-invariant subsets of the bottom, so
the top horizontal map is an isomorphism. ∎
Lemma 4.10 The map Θ∶ S ⊗SW Z(DWa) → DQ∨ defined in (4.3) is injective.

Proof Let z = ∑λ∈Q∨ cληtλ ∈ Z(DWa) ⊂ DQ∨ with cλ ∈Q. Since ηuz = zηu for any
u ∈ W , we have

∀u ∈ W , ucλ = cu(λ) .(*)

These properties give us an injective map:

ϕ ∶ Z(DWa) → ⊕
λ∈Q∨≥0

Q
Wλ , ∑

λ∈Q∨
cληtλ &→ (cλ)λ∈Q∨≥0

,

where Q∨≥0 is the set of dominant coroots and Wλ is the stabilizer of λ, which is a
parabolic subgroup of W.

Let W λ denote the set of minimal length representatives of the cosets W/Wλ .
Consider the following diagram

S ⊗SW Z(DWa)
Θ ��

id⊗ϕ
��

DQ∨
� �

��
⊕λ∈Q∨≥0

(S ⊗SW QWλ) Θ′ �� ⊕λ∈Q∨≥0
(⊕w∈W λ Qηtw(λ)) QQ∨ ,

where Θ′ is the direct sum of maps

S ⊗SW Q
Wλ #→ ⊕

w∈W λ

Qηtw(λ) , c1 ⊗ c2 &→ ∑
w∈W λ

c1w(c2)ηtw(λ) ,

for all λ ∈ Q∨≥0. Since by Lemma 4.9, each such component map is injective, so is Θ′.
By direct computations and by the property (*), the diagram is commutative. Since

both maps id⊗ϕ and Θ′ are injective, so is Θ. ∎
Lemma 4.11 The map Ξ∶DW ⊗SW Z(DWa) → DWa defined in (4.4) is injective.

Proof It follows from the combination of previous results:

DW ⊗SW Z(DWa) ≃ DW ⊗S S ⊗SW Z(DWa)
≃ DW ⊗S DQ∨ (Θ is an isomorphism)
≃ DWa (Corollary 4.8). ∎
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5 The Â1-case

In this section, we discuss an example of the formal Peterson subalgebra for the affine
root system of type Â1. We show that it provides a natural model for “quantum”
oriented cohomology of P1.

Recall that a root system of type Â1 has two simple roots, α1 = θ = α and α0 = −α +
δ, and each w ∈ Wa has a unique reduced decomposition. We follow the notation of
[11, Section 4.3] and define for i ≥ 1:

σ0 = e , σ2i =(s1s0)i = t−iα∨ , σ2i+1 = s0σ2i ,
σ−2i =(s0s1)i = t iα∨ , σ−(2i+1) = s1σ−2i .

The set of minimal length coset representatives of Wa/W is then W−
a = {σi ∶ i ≥ 0}.

The root lattice is Q = Zα, and in the formal group algebra S = R[[Q]]F , we have
xn = xnα = n ⋅F xα , where n ⋅F x, n ∈ Z is the n-fold formal sum (inverse) of x.

As for the Demazure elements, we have

X2
j = κα j X j , j = 0, 1, and

κα j = κα = 1
xα
+ 1

x−α
is Wa-invariant.

Set μ = − x−1
x1

. Observe that if F is of the form F(x , y) = x+y−βx y
g(x , y) for some power

series g(x , y), we have x−1 = x1
βx1−1 , hence, μ = 1

1−βx1
. Given a reduced expression w =

s i s j . . ., we will use the notation Yi j ⋅ ⋅ ⋅ for Yw = YIw . Denote Xw = pr(Xw) and Yw =
pr(Yw).
Example 5.1 Direct computations give:

ı(X0) = ı(Xσ1) = X0 + X1 − x−1 X01

ı(X10) = ı(Xσ2) = X10 + μX01

ı(X010) = ı(Xσ3) = X010 + X101 − x−1 X1010

and

Y0 =Yσ1 = 1
x1
+ 1

x−1
ηtα∨

Y10 =Yσ2 = Y1 ◇Y0 = 2
x1 x−1

+ 1
x2
−1

ηtα∨
+ 1

x2
1

ηt−α∨

Y010 =Yσ3 =Y0Y10 = 3
x2

1 x−1
+ 3

x1 x2
−1

ηtα∨
+ 1

x3
1

ηt−α∨
+ 1

x3
−1

ηt2α∨
.

These computations also show that Xσ i , i = 1, 2, 3 satisfy identities similar to those of
[10, Lemma 3].

We now look at various products of elements Yw ∈ DQ∨ .
Lemma 5.2 For each i ≥ 1 and w ∈ W−

a we have Ywσ2i =YwYσ2i .
In particular, Yσ2i =Yi

σ2
=Yi

10 and, therefore, {Yσ2i ∶ i ≥ 1} is a multiplicative set.
Proof Observe that σ2i = s1s0s1 ⋅ ⋅ ⋅ s0, so Yσ2i = Y1Yσ2i−1 = (1 + η1) 1

x−α
Yσ2i−1 . By

Lemma 3.1, we obtain

Ywσ2i = pr(Yw Yσ2i ) = pr(Yw)pr(Yσ2i ) =YwYσ2i

and the result follows. ∎
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Lemma 5.3 For each i ≥ 1 we have Yσ2i ∈ (DQ∨)W , and for j = 0, 1

Yj ◇Yw =
⎧⎪⎪⎨⎪⎪⎩

Ys i w , if s jw > w ,
καYw , if s j < s jw .

In particular, we have

Yσ i ◇Y0 = Yσ i ◇Yσ1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Yσ1 , if i = 0,
καYσ i , if i > 0,
Yσ−i+1 , if i < 0.

(5.1)

Proof Since σ2i = s1σ2i−1, we get Yσ2i = (1 + η1) 1
x−α

Yσ2i−1 , which implies that η1Yσ2i =
Yσ2i . By Lemma 3.1, we then obtain

η1 ◇Yσ2i = η1 ◇ pr(Yσ2i ) = pr(η1Yσ2i ) = pr(Yσ2i ) =Yσ2i ,

therefore, Yσ2i ∈ (DQ∨)W . Similarly, we obtain Yj ◇Yw = pr(YjYw), and the formula
for the action follows. ∎
Corollary 5.4 The set DQ∨ is a cyclic DWa -module, generated by Y0 =Yσ1 .

Moreover, the kernel of the map π∶DWa → DQ∨ defined by z ↦ z ◇Yσ1 is DWa X0.

Proof The first part follows from (5.1). For the second part, we have

X0 ◇Yσ1 = (κα − Y0) ◇Yσ1 = καYσ1 − καYσ1 = 0,

so X0 ∈ ker π.
Conversely, let z = ∑i≥1 a i Yσ i +∑ j≥0 b jYσ− j ∈ ker π. We then obtain

z ◇Yσ1 = (∑
i≥1

a i Yσ i +∑
j≥0

b jYσ− j) ◇Yσ1

= ∑
i≥1

a iκαYσ i +∑
j≥0

b jYσ j+1

= ∑
i≥1

a iκαYσ i +∑
k≥1

bk−1Yσk

= ∑
i≥1
(a iκα + b i−1)Yσ i .

Therefore, if z ◇Yσ1 = 0, then b i−1 = −a iκα for all i ≥ 1, and we obtain

z = ∑
i≥1

a i Yσ i −∑
j≥0

κα a j+1Yσ− j

= ∑
i≥1

a i Yσ1−i Y0 −∑
k≥1

κα ak Yσ1−k

= ∑
i≥1

a i Y1−i(Y0 − κα)

= (∑
i≥1

a i Y1−i)(−X0) ∈ DWa X0 .

∎
Remark 5.5 Observe that the map pr ∶ DWa → DWa/W ≃ DQ∨ has the kernel
DWa X1 = ⊕i<0SXσ i , while the map π has the kernel DWa X0 = ⊕i>0SXσ i .
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14 R. Xiong, K. Zaynullin, and C. Zhong

For a general affine root system (for an extended Dynkin diagram), one can show
that DQ∨ is a cyclic left DWa -module, generated by pr(Y0).

From the identities of Example 5.1 it follows that

Y
2
0 = x−1Y010 + μY10 ,

and we obtain the following presentation of the formal Peterson algebra in terms of
generators and relations:

DQ∨ ≃ S[s, t]/(s2 − x−1st − μt), Y0 ↦ s,Y10 ↦ t.(5.2)

According to Lemma 5.2, we may define the localization

DQ∨,loc = DQ∨[ 1
Y2i

, i ≥ 1].

From (5.2), we then obtain our second main result.

Theorem 5.6 We have the following presentation

DQ∨,loc ≃ S[t, t−1][s]/(s2 − x−1st − μt).

In particular, the action of DWa on DQ∨ extends to an action on the localization
DQ∨,loc by

z ◇ ( ξ
Y2i

) = z ◇ ξ
z ◇Y2i

, i ≥ 1, ξ ∈ DQ∨ .

Observe that it is well-defined since for any i , j ≥ 1, we have

z ◇ (
ξYσ2 j

Yσ2(i+ j)

) =
z ◇ (ξYσ2 j)

z ◇ (Yσ2iYσ2 j)
5.3=

(z ◇ ξ)Yσ2 j

(z ◇Yσ2i )Yσ2 j

= z ◇ ξ
z ◇Yσ2i

= z ◇ ξ
Yσ2i

.

It then follows from Corollary 5.4 that

Corollary 5.7 The localized algebra DQ∨,loc is a cyclic DWa -module generated by Y0.

Remark 5.8 Let F(x , y) = x + y − βx y. Observe that for cohomology (β = 0) and K-
theory (β = 1) the localization DQ∨,loc computes quantum cohomology and quantum
K-theory of P1 , respectively. For instance, for K-theory the presentation (5.2) recovers
that of [10, Equation 17]. Therefore, it makes sense to think of DQ∨,loc as an algebraic
model for “quantum” oriented cohomology of the projective line P1.

Finally, by the result of [18] DQ∨ is a Hopf algebra with coproduct defined by

△(aηtλ) = aηtλ ⊗ ηtλ = ηtλ ⊗ aηtλ .

In our case, we obtain

△(Y0) = 1
x1
(1 − μ) + μ(Y0 ⊗ 1 + 1⊗Y0) + x−1Y0 ⊗Y0 ,

△(Y10) = κ2
α + ( x1

x2
−1
− 1

x1
)(1⊗Y0 +Y0 ⊗ 1) + (1 + x2

1
x2
−1
)Y0 ⊗Y0

+ 1
μ (Y10 ⊗ 1 + 1⊗Y10) − x2

1
x−1
(Y0 ⊗Y10 +Y10 ⊗Y0) + x2

1 Y10 ⊗Y10 .
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Example 5.9 In particular, for the cohomology we get

△(Y0) = 1⊗Y0 +Y0 ⊗ 1 − xαY0 ⊗Y0 ,
△(Y10) = 2Y0 ⊗Y0 + (1⊗Y10 +Y10 ⊗ 1)

+ xα(Y0 ⊗Y10 +Y10 ⊗Y0) + x2
αY10 ⊗Y10 ,

and for the K-theory (identifying xα = 1 − e−α) we get

△(Y0) = −eα + eα(Y0 ⊗ 1 + 1⊗Y0) + (1 − eα)Y0 ⊗Y0 ,
△(Y10) = 1 − (1 + eα)(Y0 ⊗ 1 + 1⊗Y0) + (1 + e−2α)Y0 ⊗Y0

+ e−α(Y10 ⊗ 1 + 1⊗Y10) + (e−α − e−2α)(Y0 ⊗Y10 +Y10 ⊗Y0)
+ (1 − e−α)2

Y10 ⊗Y10 .

6 The dual of the formal Peterson subalgebra

In this section, we study the dual of the formal Peterson subalgebra.
Consider the Q-linear dual of the twisted group algebra Q∗Wa

= HomQ(QWa ,Q).
It is generated by fw , w ∈ Wa. Following [14] there are two actions of QWa on the dual
Q∗Wa

defined as follows:

aηw ● b fv = bvw−1(a) fvw−1 and aηw ⊙ b fv = aw(b) fwv .

Indeed, the ⊙-action comes from left multiplication in QWa , and the ●-action comes
from right multiplication. Observe that these two actions commute, which makesQ∗Wa
into a Q-Q-bimodule. Moreover, (z ● f )(z′) = f (zz′), z, z′ ∈QWa , f ∈Q∗Wa

.
We now define two tensor products.
The first one is the tensor product QWa ⊗QWa of left Q-modules that is

az ⊗ z′ = z ⊗ az′ , a ∈Q, z, z′ ∈QWa .

There is a canonical map Δ∶QWa →QWa ⊗QWa given by aηw ↦ aηw ⊗ ηw . This map
defines a co-commutative coproduct structure on QWa with the co-unit Q→QWa ,
a ↦ aηe .

The second tensor product ⊗̂ was introduced in [13]. Here, we provide a different
but equivalent definition:

QWa ⊗̂QWa ∶=QWa ×QWa/⟨(aηw , bηv) − (aw(b)ηw , ηv)⟩.

Observe that QWa ⊗̂QWa is also a left Q-module.
Similarly, we define:

Q
∗
Wa
⊗̂Q∗Wa

=Q
∗
Wa
×Q

∗
Wa
/⟨(a fw , b fv) − (aw(b) fw , fv)⟩.

By definition, there is an isomorphism of Q-modules:

Q
∗
Wa
⊗̂Q∗Wa

≃ (QWa ⊗̂QWa)∗ , (a fw⊗̂b fv)(cηx ⊗̂dηy) ∶= acw(bd)δw ,x δv , y .

There is a left Q-module homomorphism defined by the product structure of QWa :

m∶QWa ⊗̂QWa #→QWa , z1⊗̂z2 ↦ z1z2 ,
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16 R. Xiong, K. Zaynullin, and C. Zhong

whose dual is given by

m∗∶Q∗Wa
#→ (QWa ⊗̂QWa)∗ ≃Q

∗
Wa
⊗̂Q∗Wa

, m∗(c fw) =∏
u

c fu⊗̂ fu−1w .

Indeed, given any element aηu⊗̂bηv = au(b)ηu⊗̂ηv , we have

m∗(c fw)(aηu⊗̂bηv) = c fw(au(b)ηu ηv) = c fw(au(b)ηuv)
= ηuv ,w cau(b) = (∏

u
c fu⊗̂ fu−1w)(aηu⊗̂bηv).

Recall (see also [18, Section 1.7]) that there is the Borel map defined via the
characteristic map

ρ∶Q⊗QWa Q#→Q
∗
Wa

, a ⊗ b ↦ ac(b) = ∏
w∈Wa

aw(b) fw .

Similar to [13] one obtains the following commutative diagram:

Q⊗QWa Q
a⊗b↦a⊗1⊗̂1⊗b ��

ρ

��

(Q⊗QWa Q)⊗̂(Q⊗QWa Q)

ρ⊗̂ρ
��

Q∗Wa
�� Q∗Wa

⊗̂Q∗Wa

.

Definition 6.1 We define the 0-th Hochschild homology of the bimodule Q∗Wa
to be

the quotient

HH0(Q∗Wa
) ∶=Q

∗
Wa
/⟨a ● f − a ⊙ f ∶ a ∈Q, f ∈QWa⟩.

Consider the dual of the map ı∶QQ∨ →QWa , ηtλ ↦ ηtλ . It gives a surjection

ı∗∶Q∗Wa
↠Q

∗
Q∨ , a ftλ w ↦ aδw ,e ftλ .

We have

ı∗(a ● b ftλ v − a ⊙ b ftλ v) = ı∗(v(a)b ftλ v − ab ftλv ) = (v(a)b − ab)δv ,e ftλ v = 0.

So it induces a surjection

ı∗∶HH0(Q∗Wa
) ↠Q

∗
Q∨ .

On the other hand, ker ı∗ = ∏w≠e ,λ∈Q∨Q ftλ w . Now for any w, let xμ ∈ S so that
w(μ) ≠ μ, then we obtain

ftλ w = 1
xμ−w(xμ)

(xμ ⊙ ftλ w − xμ ● ftλ w) ∈ ker ı∗ .

Therefore, we have proven the following lemma.
Lemma 6.1 There is an isomorphism HH0(Q∗Wa

) ≃Q∗Q∨ which fits into the following
commutative diagram

Q∗Wa
�� ��

ı∗ �� ����
���

���
���

���
� HH0(Q∗Wa

)

≃

��
Q∗Q∨

.
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By definition, we have the commutative diagram of left S-modules:

Q∗Wa

ı∗ �� �� Q∗Q∨
� � pr∗ �� QWa

D∗Wa

ı′∗ �� ����

��

D∗Q∨
��

��

� � pr∗ �� DWa

��

��
.

It is also easy to see that the surjection ı∗∶Q∗Wa
↠Q∗Q∨ induces a surjective map

ı∗′∶HH0(D∗Wa
) ↠ D∗Q∨ .

Our goal is to show that the isomorphism and the diagram of Lemma 6.1 can be
restricted to the formal Peterson subalgebra DQ∨ . Namely, we want to prove the
following.

Theorem 6.2 The map ı∗′ gives an isomorphism of Hopf algebras HH0(D∗Wa
) ≃ D∗Q∨ .

Since the product structure on both the domain and the codomain is induced by
the coproduct structure

QWa #→QWa ⊗QWa , aηw ↦ aηw ⊗ ηw ,

where the codomain is the tensor product of left Q-modules, the map ı∗′ is a ring
homomorphism.

Moreover, since the coproduct structure on both the domain and the codomain
is induced by the product structure in QWa and QQ∨ , the map ı∗′ is a coalgebra
homomorphism. Therefore, it only suffices to prove the injectivity of ı∗′.

To prove the latter, we introduce the following filtration on the dual D∗Wa
of the

FADA.

Definition 6.2 Let wλ be as defined in the appendix. Set Fi = ⋃�(wλ)≥i tλW . For any
f ∈Q∗Wa

= Hom(Wa ,Q) set supp f = {w ∈ Wa∶ f (w) ≠ 0}. Define the i-th stratum of
the filtration to be

Zi ∶= { f ∈ D∗Wa
∶ supp f ⊆ Fi}.

We have Zi = ∏w∈Fi
S ⋅ Y∗Iw

. Each Zi is a S-bimodule, since x ● a fu = u(x)a fu and
x ⊙ a fu = xa fu , x , a ∈ S, u ∈ Wa.

Consider the following two conditions:

f (ηtλ u) ∈ x�α(wλ)
α S for any u ∈ W ,(6.1)

f (ηtλ u − ηtλ sα u) ∈ x�α(wλ)+1
α S for any u ∈ W and root α ∈ Φ.(6.2)

Lemma 6.3 Elements of Zi satisfy the conditions (6.1) and (6.2).

Proof Let f ∈ Zi and �(wλ) = i. Assume ⟨λ, α∨⟩ ≤ 0. For k ∈ [1, �α(wλ)] by Lemma
7.2 of the appendix, we conclude that wλ+kα∨ < wλ and, in particular, �(wλ+kα∨) <
�(wλ). So f (ηλ+kα∨) = 0, and we have for any u ∈ W ,
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(Z�α(wλ)
α ηtλ ⊙ f )(ηu) =

1
x�α(wλ)
−α

f ((1 − ηt∨α )
�α(wλ)ηtλ u)

= 1
x�α(wλ)
−α

f (ηtλ u) ∈ S , and

(Z�α(wλ)
α ηtλ Xα ⊙ f )(ηu) =

1
x�α(wλ)
−α xα

f ((1 − ηt∨α )
�α(wλ)(ηtλ u − ηtλ sα u))

= 1
x�α(wλ)
−α xα

f (ηtλ u − ηtλ sα u) ∈ S .

Note that xα
x−α

is invertible in S, so we can replace xα by x−α whenever needed.
Similarly, if ⟨λ, α∨⟩ < 0, then �(wλ−kδ) < �(wλ) for k ∈ [1, �α(wλ)]. Thus,

(Z�α(wλ)
−α ⊙ f )(ηu) =

1
x�α(wλ)

α
f ((1 − ηt−α∨

)�α(wλ)ηtλ u)

= 1
x�α(wλ)

α
f (ηtλ w) ∈ S , and

(Z�α(wλ)
−α ηtλ Xα ⊙ f )(ηu) =

1
x�α(wλ)+1

α
f ((1 − ηt−α∨

)�α(wλ)(ηtλ w − ηtλ sα u))

= 1
x�α(wλ)+1

α
f (ηtλ u − ηtλ sα u) ∈ S .

The result then follows. ∎

Define

Y(i) = { f ∈ Hom(Fi/Fi+1 , S)∶ f satisfies the conditions (6.1) and (6.2)} .

Here, f (ηv1 − ηv2) ∶= f (v1) − f (v2). Note that Y(i) is a S-bimodule in the usual sense,
that is (a ⊙ f )(v) = a f (v) and (a ● f )(v) = v(a) f (v). By Lemma 6.3, we have a
natural projection Zi → Y(i), which induces an injective S-bimodule map

res∶Zi/Zi+1 #→ Y(i) .

Lemma 6.4 The map res is an isomorphism of S-bimodules. In particular, Zi/Zi+1 is
free of rank ∣Fi/Fi+1∣.

Proof We only need to prove that res is surjective. Let f ∈ Y(i). We pick a minimal
element w ∈ supp( f ). We first show that

f (ηw) ∈ ∏
α∈Φ+

x�α(w)
α S .

As xα ’s are relatively prime, it reduces to show

f (ηw) ∈ x�α(w)
α S(6.3)

for each root α.
Let w = tλu for λ ∈ Q∨, u ∈ W and �α(wλ) = i. By Lemma 7.1 of the appendix,

�α(w) ∈ {�α(wλ), �α(wλ) + 1}.

Downloaded from https://www.cambridge.org/core. 20 Sep 2025 at 15:42:47, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


On the formal Peterson subalgebra and its dual 19

If �α(w) = �α(wλ), then (6.3) follows from (6.1) directly. If �α(w) = �α(wλ) + 1, by
(7.2) and (7.3), we have

�α(tλsαu) = �α(wλ) < �α(w).

It implies tλsαu < w (note that tλsαu and w are always comparable under the Bruhat
order). By (6.2), we have

f (ηtλ u − ηtλ sα u) = f (ηw) ∈ x�α(wλ)+1
α S .

Observe that the images of Y∗Iw
for w ∈ Z i/Z i+1 form a basis ofZi/Zi+1, and we have

Y∗Iw
(ηw) = ∏α>0 x�α(w)

α .
The conclusion then follows after replacing f by f − f (ηw)

∏α∈Φ+ x�α(wλ)
α

Y∗Iw
. ∎

Denote for each λ ∈ Q∨, Δλ = ∏α>0 x�α(wλ)
α ∈ S. It is clear that we have an S-

bimodule isomorphism

Y(i) ≃ ⊕
�(wλ)=i

Δλ ⋅DW .

To finish the proof of Theorem 6.2, we define a filtration on D∗Q∨ by

Xi = { f ∈ D∗Q∨ ∶ supp( f ) ⊂ Fi}.

Then, Y∗Iw
with �(wλ) = i is a S-basis of Xi/Xi+1. So the rank of Xi/Xi+1 is ∣Fi/Fi+1∣.

Moreover, by definition, we know that ı∗′ induces a map on each associated graded
piece:

ı∗′∶Zi/Zi+1 → Xi/Xi+1 .

From Lemma 6.4, the rank of Zi/Zi+1 is ∣Fi/Fi+1∣, therefore, ı∗′ is an isomorphism.

7 Appendix

Here, we prove several combinatorial properties of the affine Weyl group that are used
in the proof of Theorem 6.2.

For w ∈ Wa, denote

�α(w) = ∣{β = ±α + kδ > 0∶w−1(β) < 0}∣.
It is clear that �(w) = ∑α>0 �α(w). Also denote by wλ ∈ W−

a the minimal representa-
tive of tλW . Then, wλ ≤ wμ if and only if there exists w ∈ tλW and y ∈ tμW such that
w ≤ y. Note that w ≤ y implies �α(w) ≤ �α(y) for all α ∈ Φ+, so after fixing α �α(wλ)
becomes minimal for elements w from tλW .

Lemma 7.1 We have the following property:

�α(wλ) =
⎧⎪⎪⎨⎪⎪⎩

−⟨λ, α⟩ , if ⟨λ, α⟩ ≤ 0,
⟨λ, α⟩ − 1, if ⟨λ, α⟩ > 0.

Proof For w = tλu ∈ tλW , β = ±α + kδ > 0 (so k ≥ 0), we have

w−1(β) = w−1(±α + kδ) = ±u−1α + (k ± ⟨λ, α⟩)δ.(7.1)
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If ⟨λ, α⟩ ≤ 0, then w−1(β) < 0 implies β = α + kδ, and moreover, k ∈ [0, �α(w) − 1]
(since �α(w) = ∣Invα(w)∣). So we have

�α(w) = − ⟨λ, α⟩ +
⎧⎪⎪⎨⎪⎪⎩

1, u−1(α) < 0,
0, u−1(α) > 0,

(7.2)

and the minimal value is −⟨λ, α⟩.
If ⟨λ, α⟩ > 0, then w−1(β) < 0 if and only if β = −α + kδ and k ∈ [1, �α(w)], in

which case we have

�α(w) = ⟨λ, α⟩ −
⎧⎪⎪⎨⎪⎪⎩

1, u−1(α) < 0,
0, u−1(α) > 0.

(7.3)

The minimal value is ⟨λ, α⟩ − 1. ∎

Lemma 7.2 Let α ∈ Φ+, λ ∈ Q∨, and k ∈ [0, �α(wλ)].
If ⟨λ, α⟩ ≤ 0, then wλ > wλ+kα∨ . If ⟨λ, α⟩ > 0, then wλ > wλ−kα∨ .

Proof If ⟨λ, α⟩ ≤ 0, consider w ∈ tλW such that w = tλu with u−1(α) < 0. We have

w−1(α) = u−1(α) + ⟨λ, α⟩δ < 0,

so w > sαw. From (7.2), we get �α(w) = �α(wλ) + 1 = − ⟨λ, α⟩ + 1.
Since 1 ≤ k ≤ �α(wλ) = − ⟨λ, α⟩, we get

(sαw)−1(−α + kδ) = u−1α + (k + ⟨λ, α⟩)δ < 0,

which implies

sαw > s−α+kδ sαw = tkα∨w .

Therefore, w > tkα∨w.
Since w ∈ tλW and tkα∨w ∈ tλ+kα∨W , we get wλ > wλ+kα∨ .
If ⟨λ, α⟩ > 0, consider w = tλu with u−1(α) > 0. We have

w−1(−α + δ) = u−1(α) + (1 − ⟨λ, α⟩)δ < 0,

so w > s−α+δw. From (7.3), we have �α(w) = ⟨λ, α⟩ = �α(wλ) + 1.
Since 1 ≤ k ≤ �α(w) − 1 = �α(wλ) = ⟨λ, α⟩ − 1, we get

s−α+δw > sα+(k−1)δ s−α+δ x = t−kα∨w .

So w > t−kα∨w. Since w ∈ tλW and tkα∨w ∈ tλ+kα∨W , we have wλ > wλ+kα∨ . ∎

Lemma 7.3 If ⟨λ, α⟩ = 0, then we have the following sequence:

wλ < wλ+α∨ < wλ−α∨ < wλ+2α∨ < wλ−2α∨ < ⋅ ⋅ ⋅ .

If ⟨λ, α⟩ = 1, then we have the following sequence:

wλ < wλ−α∨ < wλ+α∨ < wλ−2α∨ < wλ+2α∨ < ⋅ ⋅ ⋅ .

The lengths �α are given by (0, 1, 2, 3, 4, . . .).
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Proof We only prove the case when ⟨λ, α⟩ = 0. Consider λ + kα∨ and λ − kα∨ with
k > 0, then ⟨λ − kα∨ , α⟩ = −2k < 0, and 2k = �α(wλ−kα∨), so by Lemma 7.2,

wλ−kα∨ > wλ−kα∨+2kα∨ = wλ+kα∨ .

Finally, consider λ − kα∨ and λ + (k + 1)α∨, k ≥ 0, then ⟨λ + (k + 1)α∨ , α⟩ = 2(k +
1) ≥ 2, and �α(wλ+(k+1)α∨) = 2k + 1, so by Lemma 7.2,

wλ+(k+1)α∨ ≥ wλ+(k+1)α∨−(2k+1)α∨ = wλ−kα∨ . ∎
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