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On the formal Peterson subalgebra
and its dual

Rui Xiong, Kirill Zaynullin®, and Changlong Zhong

Abstract. In the present notes, we study a generalization of the Peterson subalgebra to an oriented
(generalized) cohomology theory which we call the formal Peterson subalgebra. Observe that by
recent results of Zhong the dual of the formal Peterson algebra provides an algebraic model for the
oriented cohomology of the affine Grassmannian.

Our first result shows that the centre of the formal affine Demazure algebra (FADA) generates
the formal Peterson subalgebra. Our second observation is motivated by the Peterson conjecture. We
show that a certain localization of the formal Peterson subalgebra for the extended Dynkin diagram
of type A, provides an algebraic model for “quantum” oriented cohomology of the projective line.
Our last result can be viewed as an extension of the previous results on Hopf algebroids of structure
algebras of moment graphs to the case of affine root systems. We prove that the dual of the formal
Peterson subalgebra (an oriented cohomology of the affine Grassmannian) is the zeroth Hochschild
homology of the FADA.

Introduction

Equivariant cohomology of an affine Grassmannian has been a topic of intensive
investigations for decades. For the small torus action, it can be identified with a certain
commutative subalgebra of the associated nil-Hecke algebra of a Kac-Moody root
system called the Peterson subalgebra [16]. One of its remarkable properties says that
after taking localization it becomes isomorphic to the (small) quantum cohomology of
the respective finite part (flag variety) [12, 16]. A parallel isomorphism for the K-theory
was conjectured and discussed in [10, 11] and is known as the Peterson Conjecture.
This conjecture was recently proven by Kato in [7] using a language of semi-infinite
flag varieties.

In the present notes, we study a generalization of the Peterson subalgebra to
an oriented (generalized) cohomology theory h(-), e.g., algebraic cobordism Q(-)
of Levine-Morel. Such a cohomology theory was first introduced and studied in
[15], and extended to the torus-equivariant setup in [6, 8] for arbitrary smooth
varieties. As for flag varieties associated with root systems, it can be described using
the Kostant-Kumar localization approach (for finite root systems see [3-5], and for
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2 R. Xiong, K. Zaynullin, and C. Zhong

Kac-Moody see [2]). The respective generalization of the nil Hecke algebra is called
the formal affine Demazure algebra (FADA). The generalization of the Peterson
algebra introduced recently in [18] which we call a formal Peterson subalgebra is then
the centralizer of the equivariant coefficient ring in the small torus FADA.

To state our first result, let R = h(pt) denote the coefficient ring of the oriented
theory h(-),let S = hy(pt) denote the respective small torus T equivariant coefficient
ring, let Dy, denote the small torus FADA, and let Dgv denote the formal Peterson
subalgebra as constructed in [18]. We then obtain the following important property of
the centre of FADA.

Theorem 1.1 (cf. Theorem 4.4) If Q C R, then the centre Z(Dy,) of the small torus
FADA generates the formal Peterson subalgebra Dov as an S-module. Moreover, the
centre Z(Dy,) generates Dy, as a Dy-module, where Dy, stands for the FADA
associated with the finite part of the Kac-Moody root system.

Our next result can be viewed as an extension of the Peterson conjecture.

Theorem 1.2 (cf. Theorem 5.6)  The localization D v joc of the formal Peterson subal-
gebra D v with respect to an affine root system of type A, has the following presentation:

Dovioc = S[t ¢ ][s]/(s% - x_1st — pt),
where x_; is a certain characteristic class in h and y is an element depending on x_;.

For cohomology and K-theory, this presentation gives quantum cohomology and
quantum K-theory of P!, respectively. Hence, Dqv,joc can be viewed as the “quantum”
oriented cohomology of the projective line P'.

As for our last result, observe that the S-linear dual Dav of the formal Peterson
subalgebra is a natural model for the (small torus) equivariant oriented cohomology of
the affine Grassmannian [18]. We obtain the following “Kac-Moody” analog of results
of [13].

Theorem 1.3 (cf. Theorem 6.2)  The S-linear dual D¢, of the formal Peterson subal-
gebra is isomorphic to the 0-th Hochschild homology of the dual Dy, of the small torus
FADA.

Here, the dual Dy, can be interpreted as a model for the T-equivariant oriented
cohomology of the respective affine flag variety. Therefore, it has two commuting
actions by the equivariant coefficient ring S. Following the ideas of [13] one defines
its zeroth Hochschild homology as the quotient obtained by merging these two
S-module structures. To prove this result, we introduce a special filtration on the dual
D{,v (to reduce it to finite cases). This approach seems to be new even for cohomology
and K-theory.

The article is organized as follows: Section 2 revisits the definition of the formal
Peterson subalgebra Dgv from [18]. In Section 3, we establish some basic properties
of Dgv and study the action of Dy, on it. In Section 4, we study Borel isomorphisms
involving the FADA and the Peterson subalgebra, and prove our first main result
Theorem 4.4. In Section 5, we focus on the example of type A' and prove our second
result, Theorem 5.6. In the last section, we investigate the dual of the formal Peterson
subalgebra, and prove our third main result Theorem 6.2. In the appendix, we prove
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On the formal Peterson subalgebra and its dual 3

several combinatorial properties of the affine Weyl group that are used in the proof of
Theorem 6.2.

The formal Peterson subalgebra

In this section, we recall the definition of a small torus FADA and the formal Peterson
algebra following [2, 18].

Given an oriented algebraic cohomology theory h(-), in the sense of Levine-Morel
(see [15]) there is an associated formal group law F over a commutative ring R with
characteristic 0. Here, R = h(pt) is the coefficient ring, and F is defined from the
Quillen formula for the characteristic class of a tensor product of line bundles. For
example, for connective K-theory (see, e.g., [17]) we have Fg(x, y) = x + y — fxy over
the polynomial ring R = Z[f]. Specializing to § = 1 (resp. 5 = 0), one obtains the usual
K-theory (resp. cohomology). In these notes, by usual cohomology, we always mean its
algebraic part: the Chow ring (modulo rational equivalence) with rational coefficients.

Given a lattice A (free abelian group of finite rank) and a formal group law F,
consider the associated formal group algebra S of [1] that is the quotient of the power
series ring

$ = R[AJlr = R[[xx:A € AJl/de,
where Jr is the closure of the ideal of relations
(x0>%3,42, — F(x2,5%2,): A1, Az € A).
In the case F = Fg, we set S to be the quotient of the polynomial ring

S:=R[xp:Ae A]/(xo,thr;Lz - Fﬁ(x,h,xlz)).

Let @ be a finite irreducible root system with a fixed subset I = {ay,...,a,} of
simple roots. Let Q and Q" denote the root and the coroot lattice, respectively. Let
W denote the Weyl group, generated by simple reflections s,,, «; € I. Consider an
affine root system corresponding to the extended Dynkin diagram for ® with the extra
simple root

ay=-0+8€QaZf,

where 0 € ® is the highest root and § is the so called null root so that s,, = tgvsg is
an extra generator of the respective affine Weyl group W, = Q" x W. Recall that the
latter is generated by reflections sy ks = f_kqovSa> Where s, € W is a reflection and £,
A € QY is a translation. The affine Weyl group W, acts on the lattice Q via W that is

taw(p)=w(u), peQ, we W, 1eQ".

Therefore, it also acts on the formal group algebra § = R[[Q]]r.

Suppose x, is a regular (not a zero-divisor) element in S for each a € ®. In
particular this holds if 2 is not a zero-divisor in R (see [4, Lemma 2.2]). Let Q =
S[ :a € @] be the localization of S at x,s. Consider the twisted group algebra Qyy,
associated with the affine Weyl group W,. By definition, it is a free left Q-module
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4 R. Xiong, K. Zaynullin, and C. Zhong
Qw, = Q &g R[W,] with basis {#, },ew, and the product given by
Ny N = cu( s ¢, ¢’ €Q, u,u’ € W,.
For each a € @, define elements
Ko = i + i (which is an element of S),
Xq = (1~ 1s,) called the Demazure element,
Yy = ko — X, called the push-pull element,
Xay = 7 (1-15,), and
Yoo = ko — X, -
All these elements satisfy the quadratic relations (e.g., X2 = r4X,) and the twisted
braid relations (see, e.g., [2]). For simplicity of notation, we will omit « or s in the
indices, i.e., we will write x; = Xq,, $; = Sa;» i = s;» Xi = Xq,»and Y = Yy,
Similarly, consider the twisted group algebra Qqv = Q ®g R[QY]. It is a free

9-module with basis {#, }1cqv. Observe that Qqv is commutative since #,(¢) = c,
¢ € Q. Consider two homomorphisms of left Q-modules

pr: Qw, = Qqv, hw = > c€Q,we W, and
2 QQV - Dwa’ Chey = Cly -

By definition, 1 is a section of pr, and it is a ring homomorphism. Set y = 1 o pr, so
¥]i(2qv) = id. Define elements

Zy = xia Q-7 ), .
Lemma 2.1 We have y(zX;) = 0 forany z € Qw,, a; € I, and y(Xo) = Zp.
Proof Forz=c#y,, ceQ,ueW, and «a; € I, we have
pr(cnuX:) = pr(crus-(1-15,))
= pr(y (e = flus,)) = 0.
As for the X, we obtain
W(Xo) = 10 pr(s- (1- 1)
= L ropr((1- i)
= (1= 11,0) = Zo,
and the proof is finished. ]

Denote I, = {ay, ..., &, }. Following [2] define the small torus FADA Dy, to be the
subring of Qy;, generated by S and the elements X;, «; € I,. Set Dy, /y = pr(Dw;,) to
be its image in Qqv. We called it the relative FADA. Assuming Q c R and using the
small torus GKM descripition it is proven in [18, Lemma 5.1] that the map 1 induces
amap Dy, / — Dy,. We then define the formal Peterson subalgebra to be the image
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On the formal Peterson subalgebra and its dual 5
of the relative FADA

DQV = I(DWB/W)

According to [18, Theorem 5.7] the formal Peterson subalgebra D v is a Hopf subal-
gebra in Qqv. Moreover, Dov coincides with the centralizer Cp,, (S) of the formal
group algebra S in the FADA Dy, .

3 Properties of the FADA and the formal Peterson subalgebra

In the present section, we establish several properties of the FADA and the formal
Peterson subalgebra. For the K-theory, some of these properties were proven in
[7] using different arguments. We start with the following version of the projection
formula.

Lemma 3.1 Foranyz, z' € Qw, and & € Qqv we have in Qqv

(i) pr(:(§)z) = &pr(z), and
(i) pr(zoz') = pr(z)pr(oz’), where 0 = 3 cw Huw-

Observe that for the K-theory the property (ii) played a key role in [7, Theorem 1.7].
Proof (i) Let &= M, and z = 21ty w> where w e W, ¢; € Q, A; € QV. Then, we
obtain

pr(1(§)z) = pr(aine, cattey,w) = pricita, (c2) M, 1 w)
= aty, (€)M, = Gl C211y, = Epr(2).
(ii) Let z = cny,y and 2" = ¢'ny,,4r, v, v' € W. Then, we get

pr(zoz") = pr(cheyy Y. Hwc'Neyv)

weW

= pr( Z Ctlvw(cl)r]uthyv’)-

weW
Since yywiyv' = ty (vwiy (vw) ) ywv' = tat,,, (1) vwv', reindexing the sum by w' =

yw we obtain

pr(zoz') =pr( ), ctaw () gty wiv)

weWw

= Z CtAW,(C/)rItAtW,(A,) .
weW

On the other side, pr(z) = ¢y, and
pr(oz') = pr( 3 muc'ne,v) = pr( 2wl tue,v)
w

w

= Pr( Z W(C’)mwu')WV’) = Z w(c')mm,).

w w

The result then follows. ]

We now extend the Hecke action on the Peterson algebra for the K-theory intro-
duced in [7, Section 2] to the action on the formal Peterson algebra.
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6 R. Xiong, K. Zaynullin, and C. Zhong

We define an action of Qy, on Qqv by
zo &:=pr(zi(§)), ze Qw,, £ Qqv.
More explicitly, we have
(3.1 CHiyw © €Ny, = cw(c')m“w(ﬂ,y o e, weWw.

Direct computation shows that W, is an action.
Forwe W, e Qqv, and a € ® define

w(&) =1, ¢ & and
Da(®) = X 0 £ = L(E-5u(E)).
We then have the following.

Lemma 3.2 Foranyz,z' € Qw, and & € Qqv we have
(i) pr(zz’) = z o pr(z’), and, in particular,

pr(Xiz) = X; o pr(z) = Ai(pr(z)), ai €1,
(i) Xoo&=A_g(&)+ Zgse(E).
Proof (i) Let z = c#y,, and 2’ = ¢'fy,,,+. Then, we obtain

pr(zz') = pr(chowc e w) = prictaw(c e, crww')
= ctw(E) ey, = Nw © Mty

(ii) For & = cyy,, we get

Xo © (C’M) = i’m - Sif:)r/tso(k)fsv
_ se(c) se(c) se(c)
- ﬁ”lu - i-e ’7t59<1)iov - i_o ’71?590) + i_a ’7%6()1)
=A_g(cne) + Zose (e, )
and the result follows. [ |

Lemma 3.3 The o-action of Qw, on Qqv induces an action of Dy, on Dy, /.
Proof Letz,z' € Dy, andlet & = pr(z’). Then, we have

20 &= zopr(z) = pr(z2') € pr(D,) = Dy
and the lemma follows. [ ]

Identifying the formal Peterson algebra Dqv (resp. 1(Qqv)) with Dy, (resp.
Qqv) via the ring homomorphism 1 we obtain an action of Dy, on Dgv and an action
of Qw, on 1(Qqv). From this point on, we write £ as both an element in Dy, /v (resp.
Qqv) and in Dov = 1(Dy,;w) (resp. 1(Qqv)). If we consider a product &,§, with
¢ € Qqv, we may assume it is in Qv,. However, for the product z& with z € Qy, and
& € Qqv, weview  as an element in Qy, via the map 1. Following these identifications
we obtain

(3.2) zo E=y(z&), where e Dgv c1(Qqv), ze Dy, c Qw,,
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On the formal Peterson subalgebra and its dual 7

and Lemma 3.1 gives
(33) y(&2) = &y(2).

Example 3.4 Consider the affine root system of extended Dynkin type A,. It has
three simple roots &, a1, &, and the highest root 6 = a; + a,. Denote X;; = X; X for
simplicity. Direct computations then give:

¥(X10) = X1 0 Xo = 3 Zayra = 3 Zars
¥(X20) = 3 Zarrar = 5 Zaws
¥(Xa10) = Xz 0 y(Xa0).
Finally, we describe the centre of FADA.
Lemma 3.5 (i) For any & € Qqv and a; € I, we have
nio&=8§ < ni&=_4n.
Moreover, if this condition is satisfied, we have
cni o (§&') = &cni o ).
(ii) The centres of Qw, and Dy, can be described as follows:
Z(Qw,) = {£€ Qqv: & =&, Yw e W} = (Q0v) ",
Z(Dw,) = {§ € Dqv: 7, &= &, Yw e W} = (Dov) ™.
(iii) There are ring homomorphisms
Qw, - End(q,,)v(Qqv), Dw, = End(p,,)w(Dqv), 2~ z0 -,
Proof (i) Foragiven&=3Y) can,,cy € Q, we get
i€ = ;si(q)mml = ;si(m)msiwm
= ;si(csi(y))qh,m, where )’ = 5;(1).
On the other side, we have

nioE=v(ni&) =v(ni Y aany) = Y silcs,0)) M-
A A

Therefore, #7; ¢ & = £ if and only if 5; (¢, (1)) = ca for any A € Q, which is equivalent
to say that ;& = &n;.
Now if this condition is satisfied, then

e o (&8) = y(eniéd') = y(Eenid) = dyenid) = beni 0 €).

(ii) Since Qqv = 1(Qqv) = Ca,, (Q), we have Z(Qw, ) c Qqv, and the first iden-
tity then follows. By part (i), we know that #; ¢ £ = &, Va; € I is equivalent to #,,& =
&nw, Yw € W that is equivalent to z& = &z, Vz € Q. Since £ already commutes with
Nt,, A € QY, Ebelongs to the centre Z(Qw, ). Conversely, if £ € Z(Qw,) N Qqv, then it
isinvariant under all #;, a; € I. The description of the centre Z(Dyy, ) follows similarly.

(iii) Follows from parts (i) and (ii). [ |
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4 Borel isomorphisms

In this section, we study Borel isomorphisms involving the FADA and the formal
Peterson subalgebra. We assume QQ c R throughout this section.

Consider the left S-linear dual D7, embedded into 97,. The latter has a Q-basis
{fw}wew. Following [4, Section 11] there is an (equivariant) characteristic map

(4.0) eS—>Dj, a~ Y w(a)fw
weW

which induces the Borel isomorphism (see [4, Theorem 11.4])

(4.2) p:S®swS—>Dj, a®brac(b)= > aw(b)f,.

weW

Recall that 0 = Y,,c #w € Dw,. Denote X = [T yeq+ X—q and Y = ai.
By [3, Lemma 10.12] (Y = Yy;) we have Y € Dyy. We denote by X;,, Y;, products
corresponding to a reduced sequence I,, of u € W,.

Lemma 4.1 We have oDy = YDy, = YS.

Proof ObservethatY = ﬁaY, s0 YS c YDy c 6YDy c oDy. Conversely,

O'DW = YXDW c YDW

Note that Dy is also a right S module with basis X; ,ve W, and YX;, =46, .Y. So
given X1 b € Dy withv e W, b € S, we have

YX; b=08,.YbeYS.
So 0Dy c Y, and the result follows. ]
Lemma 4.2 We have SYS = Dy. So Dy is a cyclic S-S-bimodule.

Proof According to [3, Lemma 10.3] xf, € D},. Let >, a, ® b; € S ®gw S so that
p(zl a; ® b,) = Xfe. Then,

Zaiw(bi):{za w=e,

otherwise.

Therefore,
Z (Il,‘Yb,‘ = Z Z a,-w(b,-)qwi =1.
i wew i

Finally, by Lemma 4.1, for any z € Dy, we can write z=Y;a;Yb;z =Y, a;Yb} for
some b’ € S. [

Lemma 4.3 We have y(oDy,) = Z(Dy,).
Proof Letz = cny,y, where ¢ € Q, u € W. We have

¥(02) =y( 2 muennu) = v( 2 w0 )

weW weW

= Z W(C)mwu) = Z Hw CEAT -1,
wew

weWw

so it obviously belongs to Z(Dy, ).
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As for the opposite inclusion, take z € Z(Dy, ). Since Z(Dy, ) c Cp,, (S) = Dqv,
we get y(z) = z. Observe that pr(z'c) = |W/|pr(z') for any z’ € Dy, . So we obtain

w(ozﬁ) = w(zaﬁ) =y(z) =z
Thus, z € y(cDy, ), and the proof is finished. ]
Consider two ring homomorphisms induced by the usual mutiplication:

(4.3) O:S ®gw Z(Dwa) —>DQV.

(4.4) E: Dy ®gw Z(Dwa) —> Dwa.

Note that in the definition of ® and E, one can switch the tensor factors. Moreover,
both homomorphisms are left S-linear. The following is our first main result.

Theorem 4.4 Assume QQ c R. The maps © and E are ring isomorphisms.

Remark 4.5 The geometric interpretation of this theorem is well-known for equiv-
ariant homology and equivariant K-homology. As explained in [9, 12], we have the
following isomorphisms of algebras

Dy ~ H'(G/B), Dy, ~ H' (Flg), Do = HI (Grg),

where G/B is the flag variety, Flg is the affine flag variety, and Grg is the affine
Grassmannian. By (ii) of Lemma 3.5, we could identify

Z(Dw,) = (Dov)" = H{(Grg)" = H{ (Grg).
As a result, the morphisms ® and E can be viewed as the isomorphisms of algebras
®: Hy(pt) @ (pry HY (Grg) ~ HY (Grg),
E:H[(G/B) @z (pr) Hy (Grg) = H{ (Flg).
The isomorphism E can be also rewritten in a more familiar form
H(G/B) ®u:(pr) HI (Gr) ~ HI (Flg),

which is what Corollary 4.8 implies.

For a general equivariant oriented cohomology theory h, it follows from [5] that
D7, is isomorphic to the equivariant oriented cohomology hr(G/B). However, the
respective results for Flg and Grg are not known since they are not varieties of finite
type. Therefore, our isomorphism in this case serves as the algebraic analogs of the
potentially-correct geometric result. Observe also that in general, the isomorphisms
in Corollary 4.8 are only isomorphisms of modules.

The proof of the theorem will occupy the rest of this section. We start proving the
surjectivity first.

Lemma 4.6 The map ©:S ®@gw Z(Dy,) — Dqv given in (4.3) is surjective.
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10 R. Xiong, K. Zaynullin, and C. Zhong

Proof Consider the following diagram

S ®gw UDWa —_— DWal .

aor| iw

S ®sW Z(DWa) $ DQ\/

Since v is an S-module homomorphism, this diagram commutes.

By Lemma 4.2, we can write 1 = }°; a; Yb; for some a;, b; € S. For any z € Dy, we
then have z = }; a;Yb;z. This shows that elements of YDy, generate Dy, as a left
S-module. Similarly to the proof of Lemma 4.1, we obtain that YDy, = 6Dy,. So the
top horizontal map is surjective, and the result follows. ]

Lemma 4.7 The map E:Dyw ®sw Z(Dyw,) — Dy, given in (4.4) is surjective.

Proof Since the elements of Dy and of Z(Dy,) commute with each others, the
image of E is the subalgebra generated by Dy and Z(Dyy, ). It contains S and X; for
a; € I by definition, so it suffices to show that it contains X, as well. Observe that

Xo= 3 (1= N5y Me_g)
= ﬁ(l —1s) + ’759%_9(1 M)
= Xo + 15y 5 Zo-
Since Zg € Dqv by [18, Lemma 4.1], we have Xy € Dy and 75, € Dy. So X, belongs
to the subalgebra generated by Dy and Z(Dy, ). |

Corollary 4.8 The mapsDy ®s Dov — Dy, andDqv ®s Dy — Dy, induced by the
usual multiplication are isomorphisms of left S-modules (In the first map, Dy, is viewed
as an S-S-bimodule, and in the second map, Dy is viewed as a left S-module.)

Proof Since Dgv 2 Z(Dy, ), by Lemma 4.7, both maps are surjective. To prove the
injectivity, we change the base to Q-modules by applying the exact functors - ®¢ £
and Q ® -. It then suffices to show that the induced maps

Dy ®g DQV ®s ) = QW ®n QQV — Dwa = DWa ®s 0
0 ®s Dqov ®s Dy = QQV ®n Qw — Qwa =) ®g Dy,
are injective. But these are even isomorphisms. So, the conclusion follows. [ ]

We now discuss injectivity of the maps in the theorem.

For any parabolic subgroup Wp of W, we denote by W the subset of minimal
length left coset representatives. Consider the Q-linear dual Q},, = Hom(W?", Q)
with a basis {fy },ewr. One can also identify it with the invariants (Qj,)"? by
identifying each f,,, w € WP with ¥,cyy, fuv € (Qj,)"? (see [3, Section 11] for more
details).

Lemma 4.9 The map pp.o:S ®sw Q" — Q3 defined by
pra(a®c):= Z aw(ca) fw

weWP

is an isomorphism.
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Proof Assume first that P = B (the Borel case). Then, the map pp o is obtained
from the isomorphism p by the base change with the functor - ®¢ Q. So pp o is an
isomorphism.

For a general parabolic Wp, there is a commutative diagram

S ®gw QW Fra we -
S@gw ) —— =2 > QF,

Both vertical maps identify the top with the Wp-invariant subsets of the bottom, so
the top horizontal map is an isomorphism. [ ]

Lemma 4.10 'The map ©:S @gw Z(Dyy,) - Dqv defined in (4.3) is injective.

Proof Letz=}).qvcan, € Z(Dy,) c Dov with ¢) € Q. Since 7,z = z1,, for any
u € W, we have

™) YueW, ucy=c,m).
These properties give us an injective map:

¢:Z(Dw,) > @ Q™, Y. any = (c)reqy,»

1eQY, AeQV

where QY is the set of dominant coroots and W) is the stabilizer of A, which is a
parabolic subgroup of W.

Let W denote the set of minimal length representatives of the cosets W/Wj.
Consider the following diagram

S ®gw Z(Dwa) Dqv
ide¢ J
@/
®@reqy, (S ®sw Q™) —— B@icqy, (®yewn Q’?tw)) = Qqv

where ®' is the direct sum of maps

S®gw QM — &P Mt,oyr C1®C2 Z Clw(Cz)’mW

weWA weWA

for all A € QY. Since by Lemma 4.9, each such component map is injective, so is ®'.
By direct computations and by the property (*), the diagram is commutative. Since
both maps id ®¢ and ©’ are injective, so is ©. [ ]

Lemma 4.11 The map E:Dy ®sw Z(Dyw,) — Dy, defined in (4.4) is injective.
Proof It follows from the combination of previous results:

Dy ®gw Z(DW@,) ~*Dy ®s S Qgw Z(DW@,)
~ Dy ®s Dqv (O is an isomorphism)
~ Dy, (Corollary 4.8). =
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5 The A;-case

In this section, we discuss an example of the formal Peterson subalgebra for the affine
root system of type A;. We show that it provides a natural model for “quantum”
oriented cohomology of P'.

Recall that a root system of type A; has two simple roots, a; = 6 = aand &g = —a +
d, and each w € W, has a unique reduced decomposition. We follow the notation of
[11, Section 4.3] and define for i > 1:

_ _ i_ _
0o = 6, 02i = (5150)" = t_iav, 02i+1 = $002i>
_ i_ _
0_2i = (s051)" = tiav, 0_(2i+1) = S10-2i.

The set of minimal length coset representatives of W,/ W is then W, = {0;:i > 0}.
The root lattice is Q = Za, and in the formal group algebra S = R[[Q]]r, we have
Xp = Xpo = N °F Xq, Where n g x, n € Z is the n-fold formal sum (inverse) of x.
As for the Demazure elements, we have
X3 = kg, Xj, j=0,1, and
Ko; = Ka = é + i is W, -invariant.

Set y = —*=1. Observe that if F is of the form F(x, y) = x;(y;ﬁ’;y for some power
1—;13x1 . Given a reduced expression w =
siSj ..., we will use the notation Y;;... for ¥,, = Y;,. Denote X,, = pr(X,,) and 9),, =
pr(Yy).
Example 5.1 Direct computations give:

1(Xo) = 1(Xq,) = Xo + X1 — x21 X1

1(X10) = 1(X4,) = X10 + pXo1

1(Xow) = 1(Xo;) = Xoro + X101 = X-1Xi010

series g(x, y), we have x_; = ﬁ, hence, y =

and

_ 1,1
@0 - @01 T x + xilrltav
_ _ _ 2 1 1
D10 =Yo, = V1Yo = i + 57 M + 57

- _ __3 3 1 1
Yoo = Vo, = Voo = a ot My M 53 M0

These computations also show that X, i = 1,2, 3 satisfy identities similar to those of
[10, Lemma 3].

We now look at various products of elements 9),, € Dqv.

Lemma 5.2 Foreachi>1landw e W, we have Doy, = DwDoy-
In particular, Q) ,,, =Y, = V1, and, therefore, {2 s, i > 1} is a multiplicative set.

Proof Observe that oy; =s15081---50, S0 Y5, = 1Yy, , = (1+ rll)x%YO‘Zi—l‘ By
Lemma 3.1, we obtain

Doy = Pr(YuYo,) = pr(Yy)pr(Ys,,) = DuDoy

and the result follows. ]
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Lemma 5.3 Foreach i >1wehaveQ),, € (Dov)", and for j = 0,1

YjoQ, = Vg lfsjw s
KaDw> ifsj<sjw.
In particular, we have
Do, ifi=0,
(5.1) YU; © o = Ya,- < 2301 = K{x@o,—a lf’ >0,
Vo ifi <0.

Proof Since 6; = 5102i-1, we get Yy, = (1+11)
Ys,,. By Lemma 3.1, we then obtain

Y,

2

ﬁ ._;» which implies that #; Yy, =
Mo Yoy =M <>pr(YUzi) = pr(ﬂlyﬂzi) = pr(def) =Yoo

therefore, 2),,, € (Dqgv)". Similarly, we obtain Y; o 9),, = pr(Y;Y,,), and the formula
for the action follows. [ ]

Corollary 5.4 The set Dv is a cyclic Dy, -module, generated by Lo = .
Moreover, the kernel of the map m: Dy, — Dqv defined by z = z ¢ Q) 4, is Dy, Xo.

Proof The first part follows from (5.1). For the second part, we have
Xo ¢ iDal = (/‘@a - YO) < Q.)al = K«a@al - Hoc@al =0,

so X, € ker 7.
Conversely, let z = 351 @i Yo, + 320 bjYs_; € ker 1. We then obtain

200 = (D aiYe, + Y. b;Ys ;) 0D,

i>1 =0

= Zai/focg.)m + Z bj@lf]url

i>1 j=0

= Zaina@m + Z br1 o,

i>1 k>1

= Z(aim“ + b,‘_l)gjgi.

i>1

Therefore, if z ¢ Q),, = 0, then b;_; = —a;k, for all i > 1, and we obtain

z= Za,-Ygi - Z maajHYa_j

il 720

= Z ai Yal,,- Yo - Z RaQk Yal_k
i>1 k>1

=Y a;iYi-i(Yo - Ka)
i>1

= (D ai%ii)(=Xo) € Dw, Xo.

i1

Remark 5.5 Observe that the map pr:Dy, — Dy, w ~Dqv has the kernel
Dw, Xi = ®i<0SX,,, while the map 7 has the kernel Dy, Xy = ®;505Xo,.
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14 R. Xiong, K. Zaynullin, and C. Zhong

For a general affine root system (for an extended Dynkin diagram), one can show
that Dqv is a cyclic left Dy, -module, generated by pr(Yj).

From the identities of Example 5.1 it follows that

V¢ = %1010 + V10>

and we obtain the following presentation of the formal Peterson algebra in terms of
generators and relations:

(5.2) Dgqv =~ S[s5,t]/(s* — x_15t — put), Vo = 5,YV10 = L.
According to Lemma 5.2, we may define the localization
Dovloc = DQv[ﬁ, i>1].
From (5.2), we then obtain our second main result.
Theorem 5.6  We have the following presentation
Dovioc = S[t, t7][s]/(s* — x_15t — ut).

In particular, the action of Dy, on Dgv extends to an action on the localization

DQ\/)]OC by
§ zo& .
zo = , i>1, EeDgv.

(@21' ) z0 2y <

Observe that it is well-defined since for any i, j > 1, we have
&Dazj z< (fg.jaz,-) 5.3 (Zof)i’nﬂzj zo¢& 4
zo( )= = = =z .
EDUz(iJrj) zo (2]02i230'2j) (Z © 2)02;')2]02,' zo 9:)02;' 2]”2;‘

It then follows from Corollary 5.4 that
Corollary 5.7  The localized algebra Dqv 10 is a cyclic Dy, -module generated by ).

Remark 5.8 LetF(x,y) = x + y — Sxy. Observe that for cohomology (8 = 0) and K-
theory (B = 1) the localization D v joc computes quantum cohomology and quantum
K-theory of P!, respectively. For instance, for K-theory the presentation (5.2) recovers
that of [10, Equation 17]. Therefore, it makes sense to think of Dgv 1, as an algebraic
model for “quantum” oriented cohomology of the projective line P'.

Finally, by the result of [18] Dqv is a Hopf algebra with coproduct defined by

A(“’?n) =afly, ® Ny =Ny @ afy,.

In our case, we obtain
A(Do) = (1= p) + u(Do @ 1+10Yo) +x1Y0 ® Vo,
XZ
A (Do) = K + B -0V +Ye 1)+ (1+F)Vo® Yo

+ i@)10®1+1®@10) - ;*_121@)0®2)10 + D10 © Vo) + V10 ® Vro-
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Example 5.9 In particular, for the cohomology we get
A(0) =18Yo + Vo ®1- %Yo ® Vo,
A(D10) =200 Yo+ (1Yo + V10 ®1)
+ X (Do ® V1o + V1o ® Vo) + x2V10 ® Vo,

and for the K-theory (identifying x, = 1 - e™%) we get

ADo)=—e*+e*(Vo®1+10Yo) + (1-e%)Vo ® V>

ADo) =1-(1+e*)(Do®1+10,) + (1+e %)Y ® Vo
+e V@1 +1®@Yip) + (67 = e7>*) (Vo ® V1o + V1o ® Vo)
+(1-¢7)*D10 ® Vo

6 The dual of the formal Peterson subalgebra

In this section, we study the dual of the formal Peterson subalgebra.
Consider the Q-linear dual of the twisted group algebra Q7, = Homg (Qw,,Q).
It is generated by f,,, w € W,. Following [14] there are two actions of Qy, on the dual
0y, defined as follows:
any e bf, =bvyw™(a)f,,- and an, @ bf, = aw(b) fiy.

Indeed, the ®-action comes from left multiplication in Qyy,, and the e-action comes
from right multiplication. Observe that these two actions commute, which makes Q7
into a Q-Q-bimodule. Moreover, (z e f)(z') = f(22'), 2,2’ € Qw,, f € QJ,..

We now define two tensor products.

The first one is the tensor product Q, ® Q, of left Q-modules that is

az®z =z®az, aeQ, z,z € Qy,.

There is a canonical map A: Qyw, - Qw, ® Qw, given by an,, — an,, @ n,,. This map
defines a co-commutative coproduct structure on Qy, with the co-unit Q - Qy,,
a v at.

The second tensor product ® was introduced in [13]. Here, we provide a different
but equivalent definition:

Qw,®Qw, = Qw, x Qw,/{(anw, bry) = (aw(b) 1w, 1))

Observe that Qw, ®Qy, is also a left Q-module.
Similarly, we define:

Qi 893, = Qyy, x Qi [((afu, bfy) = (aw(b) fu, f))-
By definition, there is an isomorphism of -modules:
04,890, ¥ (Q82w)"s  (afu8bf,)(cn.ddn,) = acw(bd)d, ...,
There is a left 9-module homomorphism defined by the product structure of Qy,:

m: Qw,®Qw, — Qw,, 218z = 2122,

Downloaded from https://www.cambridge.org/core. 20 Sep 2025 at 15:42:47, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core
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whose dual is given by

m*:Qy, — (Quw,8Qw,)" ~ A}y, 6Q,  m*(cfy) = [ cfubfin.

Indeed, given any element an, &by, = au(b)n,®1,, we have

m*(cfuw)(an,&bn,) = cf,(au(b)nuny) = cfu(au(b)nuy)
= Nuv,weau(b) = (H cfu®fu-1w)(an,&by,).

u

Recall (see also [18, Section 1.7]) that there is the Borel map defined via the
characteristic map

pQ®qw Q — Q,, a®bwrac(b)= [] aw(b)fw.

weW,

Similar to [13] one obtains the following commutative diagram:

Q@aqm a®b—a®181Qb (Q ®am Q)S(Q ®qm Q) .
ip -
Qi Qyy, 89y,

Definition 6.1 We define the 0-th Hochschild homology of the bimodule 97, to be
the quotient

HHo(Qyy,) = Qy. /(ae f-a0 fraeQ, f e Qw,).
Consider the dual of the map 1:Qqv = Quw,, ¢, = 14, It gives a surjection
Q% > Qovs afyw = adyefiy-
We have
1"(aebfy,y, —a©bfy,y)=1"(v(a)bfi,, —abfy,) = (v(a)b—ab)d, . fi,» = 0.
So it induces a surjection
" HHo (Qy,) - Qgv-

On the other hand, ker1* =[], ., 1cqv Qft,w- Now for any w, let x,, € S so that
w(u) # u, then we obtain

foow = 7,‘#_;(%) (X4 © fryw — Xy ® fr,w) € kers”.
Therefore, we have proven the following lemma.

Lemma 6.1 There is an isomorphism HHo (3, ) ~ Qv which fits into the following
commutative diagram

W, HH, (Q3,) -

ey

Qe
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By definition, we have the commutative diagram of left S-modules:

* " * pr*
Wa QQ\/ Qwa .

I

D;, Dy Dy,

It is also easy to see that the surjection 1*: Qj, — Q4. induces a surjective map
1":HHo (D7, ) - Dgv.

Our goal is to show that the isomorphism and the diagram of Lemma 6.1 can be
restricted to the formal Peterson subalgebra Dqv. Namely, we want to prove the
following.

Theorem 6.2 The map 1™’ gives an isomorphism of Hopf algebras HHy (D5, ) ~ D

Since the product structure on both the domain and the codomain is induced by
the coproduct structure

Qw, — Qw, ® Qw,, affw = Al @ Hyy,

where the codomain is the tensor product of left Q-modules, the map 1*/ is a ring
homomorphism.

Moreover, since the coproduct structure on both the domain and the codomain
is induced by the product structure in Qyw, and Qqv, the map 1*’ is a coalgebra
homomorphism. Therefore, it only suffices to prove the injectivity of 1*'.

To prove the latter, we introduce the following filtration on the dual Dj, of the
FADA.

Definition 6.2 Let w) be as defined in the appendix. Set F; = Uy(y,)>i t2 W. For any
f €93, = Hom(W,,0Q) set suppf = {w € Wy: f(w) # 0}. Define the i-th stratum of
the filtration to be

Zi:={f € Dy, suppf < Fi}.

We have Z; = [1,,e5, S - Y7, . Each Z; is a S-bimodule, since x e af, = u(x)af, and
xOQafy,=xafy,x,aeS,ueW,.
Consider the following two conditions:

(6.1) F(u) € xS forany u e W,

(6.2) F(Meyu = Neysau) € xﬁ“(w‘)”S for any u € W and root « € @.
Lemma 6.3 Elements of Z; satisfy the conditions (6.1) and (6.2).

Proof Let f€Z;and¢(w,) =i. Assume (A, a") < 0. For k € [1, {,(w;)] by Lemma
7.2 of the appendix, we conclude that w) x,v < w) and, in particular, £(wy 4 gqv) <
£(wy). So f(fa+kav) = 0, and we have forany u € W,
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1
(Zia(WA)ﬂn @f)(”]u) = mf((l — ey )ea(W/\)ﬂtlu)

= = (mf(”fw) €S, and

-

(ZeOV 1, X © £) () = W FA= 1) (g = Meys,n)

= Z (WA) f(’7tw—’1tls,,u)e$_

Note that *= is invertible in S, so we can replace Xq by x_, whenever needed.
Slmllarly, if (A, a¥) <0, then £(wy_xs) < €(wy) for k € [1,£,(wy)]. Thus,

La(w 1
(Z (w2) @f)(ﬂu) = Wf((l_ e )EK(WA)ﬂtW)
o
1
:Wf(mw)es, and
o

[ w, 1 Ca (W)
(25" AXa@f)('?u):Wf((l—ﬂt,av)[( Y (Myw = Mtysen)

1
= oy Ut = s) €S-
'th

The result then follows. u
Define
Yy = {f e Hom(F;\Fi1,S): f satisfies the conditions (6.1) and (6.2)} .

Here, f(#,, = #1,) := f(v1) = f(v2). Note that Y ;) is a S-bimodule in the usual sense,
that is (a ® f)(v) =af(v) and (ae f)(v) =v(a)f(v). By Lemma 6.3, we have a
natural projection Z; — Y(;, which induces an injective S-bimodule map

reS:Zi/Zm - 13(1')-

Lemma 6.4 'The map res is an isomorphism of S-bimodules. In particular, ;241 is
free of rank |F;\F1].

Proof We only need to prove that res is surjective. Let f € Y;). We pick a minimal
element w € supp(f). We first show that

f(’/lw) € H xia(W)S'

aed+

As x,’s are relatively prime, it reduces to show

(6.3) F(n) € xte®g

for each root «.
Let w=tyu for A€ QY, ue W and £,(w,) = i. By Lemma 7.1 of the appendix,

Lo(w) € {ly(wy), Lo(wy) +1}.
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If £y (w) = £(w) ), then (6.3) follows from (6.1) directly. If £, (w) = £, (wy) +1, by
(7.2) and (7.3), we have
Ca(tasat) = La(wr) < Lu(w).

It implies f)s,u < w (note that ) s,u and w are always comparable under the Bruhat
order). By (6.2), we have

F(Myu = Neysen) = f(w) € xﬁa(m)ﬂ&

Observe that the images of Y, forw € Z:\Z;1 formabasis of Z;/Z;,1, and we have

* é“
YIW(ﬂW) = [Tas0 Xa (W)'
The conclusion then follows after replacing f by f — % Yy, ]

acd

Denote for each A € QY, A) =[Igs0 xt() ¢ S It is clear that we have an S-
bimodule isomorphism

H(i)ﬁ @ A -Dy.
K(W,\):i

To finish the proof of Theorem 6.2, we define a filtration on D¢, by

Xi = {f e Dgvisupp(f) c Fi}.

Then, Y/ with £(wy) =i is a S-basis of X;/X;41. So the rank of X;/X;,1 is |Fi\Fii1|-
Moreover, by definition, we know that :*’ induces a map on each associated graded
piece:

" Zi/z'i+1 - DCi/f)(:i+1~

From Lemma 6.4, the rank of Z;/Z;.1 is |F;\Fi1|, therefore, 1*’ is an isomorphism.

7 Appendix

Here, we prove several combinatorial properties of the affine Weyl group that are used
in the proof of Theorem 6.2.
For w € W,, denote

Lu(w) = |{B = xa + k&> 0:w™'(B) < 0}].

It is clear that £(w) = ¥ 40 Lo (w). Also denote by w, € W, the minimal representa-
tive of £y W. Then, w) < w,, if and only if there exists w € £, W and y € t, W such that
w < y. Note that w < y implies £ (w) < £,(y) for all a € @, so after fixing a £, (w))
becomes minimal for elements w from ¢, W.

Lemma 71 We have the following property:

—(La), if (La)<o,

balwa) = {(A,cx) “1L if (La)>o.

Proof Forw=tyuetyW, =xa+kd >0 (sok >0), wehave

(7.1) w(B) =w (2o + k&) = xu""a + (k + (A, ).
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If (A, a) <0, then w™'(B) < 0 implies B = & + k&, and moreover, k € [0, £, (w) —1]
(since £, (w) = |[Inv,(w)]). So we have

1, ul(a)<O,

@2 falw) == (L) + {0, ul(a) >0,

and the minimal value is —(A, a).
If (A, a) >0, then w™(B) <0 if and only if f=—a + k8 and k € [1,4,(w)], in
which case we have

L, ul(a)<0,
0, u'(a)>0.

(7.3) la(w) = (A, @) —{

The minimal value is (A, &) — L ]

Lemma 72 Letac®, 1eQY,andke[0,L,(wy)].
If (A, &) <0, then wy > Waypav. If (A, &) > 0, then wy > wy_gqv.

Proof If (A, &) <0, consider w € t, W such that w = £, u with u™'(a) < 0. We have
w i (a) =u(a) + (A, a)d <0,

SO W > suw. From (72), we get £ (w) = £y(wy) +1=— (A, a) + L
Since1< k < ly(wy) = — (A, a), we get

(saw) N (~a+ k&) =ua+ (k+{Aa))d <0,
which implies
SaW > S_gq1k§SaW = kv W.

Therefore, w > tyqvw.
Since w € fH W and tyovw € thykqv W, We get wy > Wiikav.
If (A, a) > 0, consider w = tju with u™!(a) > 0. We have

wl(—a+08) =u(a)+(1- (L a))d<0,

SO W > s_q4sw. From (7.3), we have £, (w) = (A, a) = £,(wy) + 1.
Since 1< k <l (w) —1=Ly(wy) = (A, &) — 1, we get

S—q+dW > Sqi(k-1)85-a+8X = L_kavW.
Sow > t_pevw. Since w € £y W and trqvw € thikev W, we have wy > Wy kqv. [
Lemma 7.3 If (A, a) = 0, then we have the following sequence:
Wi < Wisav < Wi_gv < Wirsoaav < Wy_gqv < =--.
If (A, &) =1, then we have the following sequence:
Wi < Wi—gv < Wiasav < Wir_aev < Wiipoev < =--.

The lengths £, are given by (0,1,2,3,4,...).
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Proof We only prove the case when (A, a) = 0. Consider A + ka¥ and A — ka" with
k>0, then (A - ka",a) = -2k < 0, and 2k = £, (W)_gqv ), so by Lemma 7.2,

Wir—kav > Wi—kavV+2ka¥ = WitkaV-

Finally, consider A — ka¥ and A + (k + 1)a¥, k > 0,then (A + (k +1)a", a) = 2(k +
1) > 2, and Lo (Wit (k+1)av) = 2k +1, 50 by Lemma 7.2,

Wit (k+l)av 2 Was(k+1)av—(2k+1)av = Wi—kaV - u
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