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Quantum field theory 

Most of the work in this book will be strictly perturbative. However it is 
important not to consider perturbation theory as the be-ali and end-all of 
field theory. Rather, it must be looked on only as a systematic method of 
approximating a complete quantum field theory, with the errors under 
control. So in this chapter we will review the foundations of quantum field 
theory starting from the functional integral. 

The purpose of this review is partly to set out the results on which the rest 
of the book is based. It will also introduce our notation. We will also list a 
number of standard field theories which will be used throughout the book. 
Some examples are physical theories of the real world; others are simpler 
theories whose only purpose will be to illustrate methods in the absence of 
complications. 

The use of functional integration is not absolutely essential. Its use is to 
provide a systematic basis for the rest of our work: the functional integral 
gives an explicit solution of any given field theory. Our task will be to 
investigate a certain class of properties of the solution. 

For more details the reader should consult a standard textbook on field 
theory. Of these, probably the most complete and up-to-date is by ltzykson & 

Zuber ( 1980); this includes a treatment of the functional integral method. 
Other useful references include: Bjorken & Drell (1966), Bogoliubov & 
Shirkov (1980), Lurie (1968), and Ramond (1981). 

2.1 Scalar field theory 

The simplest quantuP1 field theory is that of a single real scalar field cf>(x 11). 

The theory is defined by canonically quantizing a classical field theory. This 
classical theory is specified by a Lagrangian density: 

!£' = ( 0 cf> )2 I 2 - P( cf> ), (2.1.1) 

from which follows the equation of motion 

Oc/>+P'(c/>)=0. (2.1.2) 

4 
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2.1 Scalar field theory 5 

Here P(c/J) is a function of c/J(x), which we generally take to be a polynomial 
like P(c/J) = m2 c/J 2/2 +gc/J4 /4!, and P'(c/J) =dP/dc/J. (Note that we use units 
with h = c = 1.) 

In the Hamiltonian formulation ofthe same theory, we define a canonical 
momentum field: 

n(x) =oft' ;a~=~= ocjJjot, (2.1.3) 

and the Hamiltonian 

(2.1.4) 

Physically, we require that a theory have a lowest energy state. If it does not 
then all states are unstable against decay into a lower energy state plus a 
collection of particles. If the function P(c/J) has no minimum, then the 
formula (2.1.4) implies that just such a catastrophic situation exists (Baym 
(1960)). Thus we require the function P(c/J) to be bounded below. 

Quantization proceeds in the Heisenberg picture by reinterpreting c/J(x) 
as a hermitian operator on a Hilbert space satisfying the canonical equal­
time commutation relations, i.e., 

[n(x), c/J(y)] = - i<5( 31(i- ji), } .f o o 
1 X =y 

[c/J(x),c/J(y)] = [n(x),n(y)] =0 · 
(2.1.5) 

The Hamiltonian is still given by (2.1.4) so the equation of motion (2.1.2) 
follows from the Heisenberg equation of motion 

ioc/Jfot = [ c/J, HJ. (2.1.6) 

A solution to the theory is specified by stating what the space of states is 
and by giving the manner in which cjJ acts on the states. We will construct a 
solution by use of the functional integral. It should be noted that c/J(x) is in 
general not a well-behaved operator, but rather it is an operator-valued 
distribution. Physically that means that one cannot measure c/J(x) at a single 
point, but only averages of c/J(x) over a space-time region. That is, 

(2.1.7) 

for any complex-valued function f(x), is an operator. Now, products of 
distributions do not always make sense (e.g., <5(x)2 ). In particular, the 
Hamiltonian H involves products of fields at the same point. Some care is 
needed to define these products properly; this is, in fact, the subject of 
renormalization, to be treated shortly. 

The following properties of the theory are standard: 
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6 Quantum field theory 

(1) The theory has a Poincare-invariant ground state IO), called the 
vacuum. 

(2) The states and the action of 4> on them can be reconstructed from the 
time-ordered Green's functions 

(2.1.8) 

The T-ordering symbol means that the fields are written in order of 
increasing time from right to left. 

(3) The Green's functions have appropriate causality properties, etc., so 
that they are the Green's functions of a physically sensible theory. 
Mathematically, these properties are summarized by the Wightman 
axioms (Streater & Wightman (1978)). 

Bose symmetry of the ¢-field means that the Green's functions are 
symmetric under interchange of any of the x's. From the equations of 
motion of 4> and from the commutation relations can be derived equations 
of motion for the Green's functions. The simplest example is 

D,G2(y,x) + (OI TP'(¢(y))¢(x)IO> = - ic5(4>(x- y). (2.1.9) 

For a general (N +I)-point Green's function, we haveN c5-functions on the 
right: 

OyGN+ 1 (y, Xp .•. , xN) + (OI T P'(¢(y))¢(x 1) ••• ¢(xN)IO> 
N 

=-ii c5(4>(y- xi)GN_ 1(x 1 , ••• ,xi_ 1 ,xi+ 1>· . • ,xN). 
j=l 

(2.1.10) 

This equation summarizes both the equations of motion and the com­
mutation relations. Solving the theory for the Green's functions means in 
essence solving this set of coupled equations. It is in fact the Green's 
functions that are the easiest objects to compute. All other properties of the 
theory can be calculated once the Green's functions are known. 

2.2 Functional-integral solution 

The solution of a quantum field theory is a non-trivial problem in 
consistency. Only two cases are elementary: free field theory (P = m2¢ 2/2), 
and the case of one space-time dimension, d = 1. The case d = 1 is a rather 
trivial field theory, for it is just the quantum mechanics of a particle with 
Heisenberg position operator ¢(t) in a potential P(¢). (In Section 2.1, we 
explained the cased = 4. It is easy to go back and change the formulae to be 
valid for a general value of d.) 

https://doi.org/10.1017/9781009401807.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401807.002


2.2 Functional-integral solution 7 

For the case of ¢ 4 theory, with 

P(¢) = m2¢ 2 /2 + g¢4 /4 !, (2.2.1) 

solutions are rigorously known to exist if d = 2 or 3 (Glimm & Jaffe (1981)). 
If d > 4 then no non-trivial solution exists(Aizenman (1981)). The cased= 4 
is difficult; the difficulty is to perform renormalization of the ultra-violet 
divergences beyond perturbation theory. As we will see the theory at d = 4 
is 'exactly renormalizable' in perturbation theory; this is the most 
interesting case. For the most part we will ignore the difficulties in going 
beyond perturbation theory. We will return to this problem in Section 7.10 
when we discuss the application of the renormalization group outside of 
perturbation theory. 

If we ignore, temporarily, the renormalization problem, then a solution 
for the theory can be found in terms of a functional integral. The formula for 
the Green's functions is written as 

GN(x1, ... ,xN) =% J[dA]eiS!AIA(x1) .. . A(xN). (2.2.2) 

(See Chapter9 ofltzykson &Zuber (1980), or see Glimm & Jaffe (1981).) On 
the right-hand side of this equation A (x) represents a classical field, and the 
integration is over the value of A(x) at every space-time point. The result of 
the integral in (2.2.2) is theN-point Green's function for the corresponding 
quantum field, ¢. In the integrand appears the classical action, which is 

S[A] = Jd4x2. (2.2.3) 

The normalization factor% is to give (OIO> = 1, so that 

% = { f ( dA JeiS[AJ}- 1 (2.2.4) 

Equivalent to (2.2.2) is the integral for the generating functional of 
Green's functions: 

Z[J] =% f [ dAJ exp {is[ A] + f d 4xJ(x)A(x) }· (2.2.5) 

where J(x) is an arbitrary function. Functionally differentiating with respect 
to J(x) gives the Green's functions, e.g., 

1 ()2 I 
(OI T¢(x)¢(y)IO> = Z[OJ bJ(x)bJ(y)Z[J] <J=O>· (2.2.6) 

It is somewhat delicate to make precise the definition of the integration 
over A. The principal steps are: 
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8 Quantum .field theory 

(1) 'Wick-rotate' time to imaginary values: l = - ir, so that space-time is 
Euclidean. The exponent in the integral is then: 

- SEucl[AJ =- Jdrd 3x[- oA 2 /2 + P(A)]. (2.2.7) 

With our metric, we have oA 2 = - (oAjor) 2 - VA 2 • We may subtract 
out from !f? the minimum value of P(A); this subtraction gives an 
overall factor in the functional integral, and it cancels between the 
int~gral and the normalization factor (2.2.4). Therefore the Euclidean 
action SEuci is positive definite. The factor exp ( - SEuci) gives much 
better convergence for large A and for rapidly varying A than does 
exp (iS) in Minkowski space. 

(2) Replace space-time by a finite lattice. We may choose a cubic lattice 
with spacing a. Its points are then 

x~'=n"a. 

where the n~''s are integers. They are bounded to keep x inside a spatial 
box of volume V and to keep r within a range - T j2 to + T /2. The 
integral 

J[dA]A(x1) •.. A(xN)exp(- SEuci[A]) (2.2.8) 

is now an absolutely convergent ordinary integral over a finite number 
of variables. The action SEuci is given its obvious discrete 
approximation. 

(3) Take the continuum limit a--> 0, and the limits of infinite volume V and 
infinite time T. 

(4) Analytically continue back to Minkowski space-time. 

The difficulties occur at step 3. Taking the limits of infinite T and V gives 
divergences of exactly the sort associated with taking the thermodynamic 
limit of a partition function- see below. Further divergences occur when 
the continuum limit a--> 0 is taken. In addition, the canonical derivation of 
(2.2.2) gives an overall normalization factor which goes to infinity as a--> 0 
or as the number of space-time points goes to infinity; this factor is 
absorbed by the normalization%. 

The limits of infinite volume and time are under good control. They are 
literally thermodynamic limits of a classical statistical mechanical system in 
four spatial dimensions. Recall, for example, that in ¢ 4 theory one can 
write 

(2.2.9) 
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2.3 Renormalization 9 

where A = g 112 A. Thus the integral J[ dA] exp ( - S[ A J) is proportional to 

J[dA]exp{ -(1/g)S[A --+A,g-->1]}. (2.2.10) 

This is the partition function of a classical system at temperature 1/g, when 
the phase space is spanned by the field A, and when the energy of a given 
configuration is 

SEuci[A]= Jd 4 x(-oA 2/2+m2A2/2+A 4 /4!). 

The identity between Euclidean field theory and certain classical statistical 
mechanics systems has been fruitful both in working out the rigorous 
mathematical treatment of quantum field theory (Glimm & Jaffe (1981)) 
and in finding new ways to treat thermodynamic problems (Wilson & 
Kogut (1974)). As is particularly emphasized in Wilson's work, there is a lot 
of cross-fertilization between field theory and the theory of phase tran­
sitions. The methods of the renormalization group are common to both 
fields, and the continuum limit in field theory can be usefully regarded as a 
particular type of second-order phase transition. 

The thermodynamic limit gives a factor exp(- pTV), where p is the 
ground state energy-density. This factor is clearly cancelled by JV. All the 
remaining divergences are associated with the continuum limit a--+ 0. These 
are the divergences that form the subject of renormalization. They are 
called the ultra-violet (UV) divergences. 

One notational change needs to be made now. In more complicated 
theories, there will be several fields, and the functional-integral solution of 
such a theory involves an integral over the values of a classical field for each 
quantum field. It is convenient to have a symbol for each classical field that 
is clearly related to the corresponding quantum field. The standard 
notation is to use the same symbol. Thus we change the integration variable 
in (2.2.2) from A(x) to ¢(x), with the result that 

<OI TcjJ(xJ .. . ¢(xN)iO) = JV J[d¢]eiS!<I>l¢(x1) ... ¢(xN). (2.2.11) 

This is somewhat of an abuse of notation. However, it is usually obvious 
whether one is using¢ to mean the quantum field, as on the left-hand side, 
or to mean the corresponding classical field, as on the right-hand side. 

2.3 Renormalization 

The difficult limit is the continuum limit a--+ 0. There are divergences in this 
limit; this has been known from the earliest days of quantum elec-
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10 Quantum field theory 

trodynamics (e.g., Oppenheimer (1930)). It is possible to say that the UV 
divergences mean that the theory makes no physical sense, and that the 
subject of interacting quantum field theories is full of nonsense (Dirac 
(1981)). Luckily we can do better, for our ultimate aim need not be to 
construct a field theory literally satisfying (2.1.2)-(2.1.5). Rather, our aim is 
to construct a relativistic quantum theory with a local field as its basic 
observable. These requirements are satisfied if we construct a collection of 
Green's functions satisfying sensible physical properties (for example, as 
formulated in the Osterwalder-Schrader axioms- see Glimm & Jaffe 
(1981)). We may further ask that we find a theory that is close in some sense 
to satisfying the defining equations (2.1.2)-(2.1.5). Combining the func­
tional integral with suitable renormalizations of the parameters of the 
theory satisfies these requirements. 

The basic idea of renormalization comes from the observation that in 
one-loop graphs the divergences amount to shifts in the parameters of the 
action. For example, they change the mass of the particles described by </J(x) 
from the value m to some other effective value, which is infinite if m is finite. 
Renormalization is then the procedure of cancelling the divergences by 
adjusting the parameters in the action. To be precise, let us consider the ¢ 4 

theory with 

(2.3.1) 

The subscript zero is here used to indicate so-called bare quantities, i.e., 
those that appear in the Lagrangian when the (oA 0 ) 2 /2 term has unit 
coefficient. (We also introduce a constant term. It will be used to cancel a 
UV divergence in the energy density of the vacuum.) Then we rescale the 
field by writing 

A0 = Z 1i 2 A, (2.3.2) 

so that, in terms of the 'renormalized field' A, the Lagrangian is 

2' = ZoA 2 /2- m~ZA 2/2- g0 Z 2 A4 /4! 

= ZoA 2/2- m~A 2/2- g8 A4 /4!. (2.3.3) 

We have dropped A 0 from!£ since it has no effect on the Green's functions. 
The Green's functions of the quantum field <jJ are now obtained by using 

(2.3.3) as the Lagrangian in the functional integral (2.2.2). We let Z, m0 , and 
g0 be functions of the lattice spacing a, and we choose these functions (if 
possible) so that the Green's functions of <jJ are finite as a--+ 0. If this can be 
done, then we have succeeded in constructing a continuum field theory, and 
it is termed 'renormalizable'. The theory may be considered close to solving 
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2.3 Renormalization 11 

(2.1.2)-(2.1.5). This is because the theory is obtained by taking a discrete 
(i.e., lattice) version of the equations and then taking a somewhat odd 
continuum limit. 

We will call m0 the bare mass, and g0 the bare coupling, and we will call Z 
the wave-function, or field-strength, renormalization. It is also common to 
call m8 and g8 the bare mass and coupling; but for the sake of consistency 
we will not do this in this book. 

Another way of viewing the renormalization is to write (2.3.3) as 

!£ = oA 2/2- m2 A 2/2- gA 4 /4! 

+ bZoA 2 /2- bm2 A 2 /2- bgA 4 /4!. (2.3.4) 

We will call the first three terms the basic Lagrangian and the last three the 
counterterm Lagrangian. The renormalized mass m and the renormalized 
coupling g are finite quantities held fixed as a-+ 0. The counterterms 
[JZ = Z -1, bm2 = m~- m2 , and Jg = g8 - g are adjusted to cancel the 
divergences as a-+ 0. This form of the Lagrangian is useful in doing 
perturbation theory; we treat oA 2/2- m2 A 2/2 as the free Lagrangian and 
the remainder as interaction. The expansion is in powers of the re­
normalized coupling g. The counterterms are expanded in infinite series, 
each term cancelling the divergences of one specific graph. 

The form (2.3.4) for !£ also exhibits the fact that the theory has two 
independent parameters, m and g. The counterterms are functions of m, g, 
and of a. 

We will discuss these issues in much greater depth in the succeeding 
chapters. For the moment it is important to grasp the basic ideas: 

(1) The self-interactions of the field create, among other things, dynamical 
contributions to the mass of the particle, to the potential between 
particles, and to the coupling ofthe field to the single particle state. Thus 
the measured values of these parameters are renormalized relative to 
the values appearing in the Lagrangian. 

(2) These contributions, or renormalizations, are infinite, in many cases. 
The most important theorem of renormalization theory is that they are 
the only infinities, in the class of theories called 'renormalizable'. 

(3) The infinities are cancelled by wave-function, mass, and coupling 
counterterms, so that the net effect of the interactions is finite. 

(4) To make quantitative the sizes of the infinities, the theory is constructed 
as the continuum limit of a lattice theory. The infinities appear as 
divergences when the lattice spacing goes to zero. 
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12 Quantum .field theory 

2.4 Ultra-violet regulators 

In the last sections we showed how to construct field theories by defining 
the functional integral as the continuum limit of a lattice theory. Ultra­
violet divergences appear as divergences when the lattice spacing, a, goes to 
zero, and are removed by renormalization counterterms. The lattice 
therefore is a regulator, or cut-off, for the UV divergences. 

To be able to discuss the divergences quantitively and to construct a 
theory involving infinite renormalizations, it is necessary to use some kind 
of UV cut-off. Then the theory is obtained as an appropriate limit when the 
cut-off is removed. There are many possible ways of introducing a cut-off, of 
which going to a lattice is only one example. The lattice appears to be very 
natural when working with the functional integral. But it is cumbersome to 
use within perturbation theory, especially because of the loss of Poincare 
in variance. There are two other very standard methods of making an ultra­
violet cut-off: the Pauli-Villars method, and dimensional regularization. 

The Pauli-Villars (1949) method is very traditional. In its simplest 
version it consists of replacing the free propagator ij(p 2 - m2) in a scalar 
field theory by 

I 
SF(p,m;M)= 2 2 

P -m p2 -M2 

(m2- M2) 
-:---:.----= (p2 _ m2) (p2 _ M2) · (2.4.1) 

As M-> oo, this approaches the original propagator. The behavior for large 
p has clearly been improved. Thus the degree of divergence of the Feynman 
graphs in the theory has been reduced. All graphs in the ¢ 4 theory, except 
for the one-loop self-energy are in fact made finite. In the ¢ 4 theory it is 
necessary to use a more general form in order to make all graphs finite: 

S ( m. M M ) - i i (mz - M~) 
F p, ' I' 2 - (p2- m2)- (p2- Mi) (Mi- MD 

(m2- Mi) 
---;;------,~ 

(p2 - M~) (M~- Mi) 

(Mi- m2) (M~- m2 ) 
--;;------;;-
(p2 _ m2) (p2 _ Mi} (p2 _ M~) · (2.4.2) 

It is usually convenient to set M 1 = M 2 • 

Now the regulated propagator has extra poles at p2 = M 2 , or at p2 = Mf 
and p2 = M~. Since one of the extra poles has a residue ofthe opposite sign 
to the pole at p2 = m2 , the regulated theory cannot be completely physical. 
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2.5 Equations of motion for Green's functions 13 

It is normally true that a theory with an ultra-violet cut-off has some 
unphysical features. 

Perhaps the most convenient regulator for practical calculations is 
dimensional regularization. There it is observed that the UV divergences 
are removed by going to a low enough space-time dimension d, so d is 
treated as a continuous variable. In perturbation theory this can be done 
consistently (Wilson (1973)), as we will see when we give a full treatment of 
dimensional regularization in Chapter 4. However it has not been possible 
to make it work non-perturbatively, so it cannot at present be regarded as a 
fundamental method. 

Since it is only the renormalized theory with no cut-off that is of true 
interest, the precise method of cut-off is irrelevant. In fact, all methods of 
ultra-violet cut-off are equivalent, at least in perturbation theory. The 
differences are mainly a matter of practical convenience (or of personal 
taste). Thus dimensional regularization is very useful for perturbation 
theory. But the lattice method is maybe most powerful when working 
beyond perturbation theory; it is possible, for example, to compute the 
function.al integral numerically by Monte-Carlo methods (Creutz (1980, 
1983), and Creutz & Moriarty (1982)). 

Within perturbation theory one need not even use a cut-off. 
Zimmermann (1970, 1973a) has shown how to apply the renormalization 
procedure to the integrands rather than to the integrals for Feynman 
graphs. The lack of fundamental dependence on the procedure of cut-off is 
thereby made manifest. The application of this procedure to gauge theories, 
especially, is regarded by most people as cumbersome. 

2.5 Equations of motion for Green's functions 

We have defined a collection of Green's functions by the functional integral 
(2.2.2). (Implicit in the definition are a certain number of limiting 
procedures, as listed below (2.2.6).) This definition we will take as the basis 
for the rest of our work. First we must check that it in fact gives a solution of 
the theory. This means, in particular, that we are to derive the equations of 
motion (2.1.10) for the Green's functions, thus ensuring that both the 
operator equation of motion (2.1.2) and the commutation relations (2.1.5) 
hold. (For the remainder of this chapter we will not specify the details of 
how renormalization affects these results.) 

It is convenient to work with the generating functional (2.2.5). We make 

the change of variable A(x)--+ A(x) + ef(x), where e is a small number, and 
f(x) is an arbitrary function of x". Since the integration measure is invariant 
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under this shift, the value of the integral is unchanged: 

J[dA]exp{is[A+af]+ f(A+af)J}= J[dA]exp{is[A]+ JAJ}. 

(2.5.1) 

Picking out the terms of order a gives 

Jd 4 yf(y) J[dA]exp{is[A]+ JAJ}[ic5~~y) +J(y)]=o, (2.5.2) 

where, as usual, we define the functional derivative 

c5S dP 
c5A(y) = - 0 A - dA . (2.5.3) 

Since f(y) is arbitrary, we get 

J[dA]exp{is[A]+ JAJ}[ic5~~y)+J(y)J=o. (2.5.4) 

Functionally differentiating N times with respect to J, followed by setting 
J = 0, gives the equation of motion (2.1.10). For example, 

0 = %-c5-[left-hand side of (2.5.4)]1 _ 0 c5J(x) -

= ,/vJ[dA]eiS[AJ[A(x)i~ + c)<4 l(x- y)J 
c5A(y) 

= ./VJ[ dA]eiS[AJ{ iA(x)[- OA(y)- P'(A(y)) J + c)< 4 l(x- y)} 

=- %i0y f[dA]eiS[AlA(x)A(y) 

- iX J[dA]eiS[AJA(x)P'(A(y)) + c)< 4 l(x- y) 

=- iOY<OI Tcf>(x)cf>(y)IO>- i(Oi Tcf>(x)P'(cf>(y))IO> + c5( 4 l(x- y) 

= i(Oi Tcf>(x)~IO> + c5<4 l(x- y) (2.5.5) 
bcf>(y) ' 

which is equivalent to (2.1.9). Note that in the fourth line we have exchanged 
the order of integration and of differentiation for the 0 Y term. We have also 
used the normalization condition (2.2.4). It is important that the derivative 
of the quantum field (next-to-last line) is outside the time ordering, and 
c5Sjc5cf>(y) in the last line is defined to be a shorthand for the combination of 
operators in the previous line. 
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This is somewhat paradoxical since we have the operator equation of 
motion: 

JS 
0 = J¢ = - 0¢- P'(cp), 

from which it is tempting to deduce that the Green's function 
(OI T cp(x)t5Sjt5cp(y)IO> should be zero. However, in view of the work above 
it is convenient to define this Green's function by the functional-integral 
formula 

I _!!__I - f iS[ A) __!!____ (0 Tcp t5cp(y) 0)- .AI [dA]e A(x) c5A(y)" 

Then, as we have seen, the 0 Y is implicitly outside the time-ordering. 
Bringing it inside the time-ordering gives a commutator, so that we get the 
c5-function term in (2.1.9) or (2.5.5). 

The momentum-space version of the equation of motion (2.1.1 0) is often 
useful. We define the momentum-space Green's functions 

GN(P1 , ... , PN) = f d 4x 1 ... d 4 xNexp {i(p 1 • x 1 + · · · + pN· xN) }GN(x1 , ... , xN) 

= GN(Pp ... ,pN)(2n)4 £5<4 >(p 1 + · · · + PN). (2.5.6) 

The momenta pi are to be regarded as flowing out of the Green's functions. 
Translation invariance of the theory implies the c5-function for momentum 
conservation that is explicitly factored out in the last line of (2.5.6). A 
convenient notation (which we will use often) is to write 

(2.5.7) 

Implicit in this formula is the definition that the integrals over x defining the 
momentum-space field (i)(p) are all taken outside the time-ordering, as 
stated in (2.5.6). We will use a tilde over the symbol for any function to 
indicate the Fourier-transformed function. 

Fourier transformation of the equation of motion (2.1.10) gives 

- q2 (0I T{iJ(q){iJ(p 1 ) ••• {iJ(pN)IO) 

+ (OJ T P'({iJ)(q){iJ(p) .. . {iJ(pN)JO) 
N 

. " I - - - - I 4 (4) = - l L., ( 0 T c/J(p 1) .. . cp(pi_ 1)c/J(pi+ 1) ... c/J(pN) 0) (2n) c5 (q + p). (2.5.8) 
j= I 

2.6 Symmetries 

We now turn to the consequences of symmetries. As we will see, there are 
many interesting problems in renormalization theory that stem from the 
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following question: If a classical field theory has certain symmetries, does 
the symmetry survive after quantization? Generally, it is the need for 
renormalization of the theory that makes this a non-trivial question. 

The symmetry properties are expressed in terms of Green's functions by 
the Ward identities. (Historically the earliest example was found by Ward 
(1950) in QED.) If the symmetry is not preserved by quantization there are 
extra terms called anomalies. In many cases there are no anomalies, so we 
will derive the Ward identities in this section ignoring the subtleties that in 
some cases lead to anomalies. Discussion of anomalous cases is given in 
Chapter 13. 

Consider a theory of N fields which we collectively denote by a vector 
t/1 = (c/J1, ... , c/JN). Our discussion is general enough to include the case of 
fields with spin. We consider a symmetry group of the action S[t/1]. This is a 
group of transformations on the classical fields 

t/1-> F[tfl;w] = t/1', (2.6.1) 

which leaves the action invariant: 

S[ t/1'] = S[ t/1]. (2.6.2) 

Here w = (wa) is a set of parameters of the group, which we assume here to 
be a Lie group, i.e., thew's take on a continuous set of values. We let w = 0 
be the identity: F[t/1;0] = t/J. It is easiest to work with infinitesimal 
transformations: 

(2.6.3) 

(A summation convention on ex is understood.) 
In the quantum theory the symmetry is implemented as a unitary 

representation U(w) of the group on the Hilbert space· of states such that 

U(w)t/JU(w)- 1 = F[tfl;w]. (2.6.4) 

Since the representation is unitary, we may parametrize the group so that 

(2.6.5) 

where the generators Q .. are hermitian operators which represent the Lie 
algebra of the group: 

(2.6.6) 

The normalizations are such that the structure constants capy are totally 
antisymmetric. The infinitesimal transformations are then given by: 

(2.6.7) 
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There are a number of special cases, each with its own special features: 

(1) Global internal symmetry: A finite-dimensional Lie group acts on the 
fields at each point of space-time, with the same transformation at each 
point. Thus 

(2.6.8) 

where the t~ form a hermitian matrix representation of the Lie algebra: 

[t~, tp] = ic~p/y· (2.6.9) 

Single-particle states carrying this representation are annihilated by cjJ i· 
The Lagrangian is invariant. 

(2) Global space-time symmetry: The group effectively is a transformation 
on space-time; the Poincare group and its extensions are the usual 
cases. For a Poincare transformation x~'---+ A ex• +a~', we have the 
corresponding transformation of the fields: 

(2.6.10) 

Here R is a finite-dimensional matrix representation of the Lorentz 
group (never unitary if non-trivial), acting on the spin indices of q,. The 
Lagrangian is not invariant. It transforms as 

2'[,P,x]---+ 2'[cjJ,Ax +a], 

so that the actionS= J d 4 x2' is invariant. Infinitesimal transformations 
of cjJ involve the derivative of cjJ. 

(3) Global chiral symmetry: This looks like a global internal symmetry but 
acts differently on the left- and right-handed parts of Dirac fields (which 
we have yet to discuss). Anomalies are often present- see Chapter 13. 

(4) Supersymmetry: This is a generalized type of symmetry where Bose and 
Fermi fields are related (Fayet & Ferrara (1977)). The only case that we 
will discuss is the BRS-invariance (Becchi, Rouet & Stora (1975)) of a 
gauge theory. 

(5) Gauge, or local, symmetry: Any of the above symmetries may be 
extended to a symmetry whose parameters depend on x:w = ro(x). In 
quantum theories, these are not really implemented by unitary 
transformations. Their treatment is rather special. The elementary 
examples are general coordinate invariance in General Relativity, and 
gauge invariance in electromagnetism. 

The basic tool for discussing symmetries is Noether's theorem, which 
relates them to conservation laws. This theorem in its most straightforward 
form applies only to symmetries of the first three types. 
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For a global symmetry, Noether's theorem asserts that a conserved 
currentj~ exists for each generator of a symmetry. Let the Lagrangian have 
the infinitesimal transformation 

!E--> !E + waba!E = !E + waa~' Y~, 
so that the action is invariant. Define 

a!E 
j~ = ~bac/>i a(all¢;)- Y~. 

Then the equations of motion imply conservation of j~, i.e., 

aj~jax~'=O. 

The generators of the symmetry group are 

Qa = fd 3 xj~. 
The canonical commutation relations imply that 

[j~(x), cf>i(y)] = - ibacf>i(x)b< 3>(x- y), (if x 0 = y0 ), 

[Qa, c/>i(y)] = - ibac/>i(y), 

as required by (2.6. 7). 

(2.6.11) 

(2.6.12) 

(2.6.13) 

(2.6.14) 

(2.6.15) 

We need to consider not only transformations that are symmetries ofthe 
quantum theory, but also 'broken symmetries'. There are several cases (not 
mutually exclusive). Let us define them, since there is a certain amount of 
confusion in the literature about the terminology: 

(1) Explicit breaking: The classical action has a non-invariant term. If 
ba!E=allY~+~a then the Noether currents are not conserved: 
a~'j~ =~a· An important case is where this term is small, so that it can be 
treated as a perturbation. 

(2) Anomalous breaking: Even though the classical action is invariant, the 
quantum theory is not, and there is no conserved current. The classical 
action is important for the quantum theory, since it appears in the 
functional integral defining the theory. The cause of anomalous 
breaking is generally an ultra-violet problem: a ~'j~ =I= 0 in the UV cut-off 
theory, and the non-conservation does not disappear when the cut-off is 
removed. (Cases are conformal transformations and some chiral 
theories.) 

(3) Spontaneous breaking: The action is invariant and the currents are 
conserved (in the quantum theory), but the vacuum is not invariant 
under the transformations. 

Whether or not a symmetry is broken either spontaneously or anom­
alously is a dynamical question. That is, one must solve the theory, at least 
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2.7 Ward identities 19 

partially, to find the answer. Frequently, perturbation theory is adequate to 
do this and lowest order or next-to-lowest order calculations suffice. 
Renormalization is an integral part of treating anomalous breaking (see 
Chapter 13), while renormalization-group methods are sometimes neces­
sary in treating spontaneously broken symmetry (Coleman & Weinberg 
(1973)). 

The case of spontaneous symmetry breaking that is not visible in 
perturbation theory is often termed dynamical (Jackiw & Johnson (1973), 
Cornwall & Norton (1973), and Gross (1976)). Anomalous breaking is 
sometimes called spontaneous, but this is a bad terminology, because it 
gives two very different phenomena the same name. 

2. 7 Ward identities 

Ward identities express in terms of Green's functions the consequences of a 
symmetry (whether or not it is broken). One derivation applies the equation 
of motion (2.1.1 0) to the divergence of a Green's function of the current j~. 
There are two terms: one in which the current is differentiated, and one in 
which the 8-functions defining the time-ordered product are differentiated. 
Thus a Ward identity expresses not only conservation of its current but also 
the commutation relation (2.6.15), which is equivalent to the transfor­
mation law. The Ward identities are central to a discussion of the 
renormalization of a theory with symmetries, expecially if spontaneously 
broken. 

Our derivation of Ward identities begins by making the following change 
of variable: 

(2. 7.1) 

in the functional integral for the generating functional Z[ J]. Here baA; is, as 
before, the variation of the field A; under a symmetry transformation, and 
r(x) is a set of arbitrary complex-valued functions that vanish rapidly as 
x -+ oo . We get 

Z[J] = J[dAJ exp {iS[ A+ rbaAJ + Ji(A; + rbaA;)}. (2. 7.2) 

(Here we assumed that the measure is invariant under the change of 
variables (2.7.1).) The terms in (2.7.2) that are linear in r give 

0= J[dA]exp(is+ JJ·A){ -bS[A+rbaAJ/br(y)+iJibaA;(Y)} 

= J[dA]exp(iS+ JJ·A ){oiJj~1.a(y)+iJibaA;(y)}. (2.7.3) 

Here j~t.a is the Noether current in the classical theory. 
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20 Quantum .field theory 

The Ward identities follow by functionally differentiating with respect to 
the sources J(x). Thus one differentiation gives 

a~l' (OI Tj~(y)¢;(x)IO> =- ib(4 )(x- y)(Oib,¢;(Y)IO>. 

while a double differentiation gives 

a . 
- (OI TJ~(y)¢;(w)¢ix)IO> 
ay~' 

= - ib<4 l(w- y)(OI n,¢;(Y)¢ix)IO> 

- ib< 4 l(x- y)(OI T¢;(w)b,¢iY)!O). 

(2. 7.4) 

(2.7.5) 

Note that, just as in our derivation of the equation of motion for Green's 
functions in Section 2.5, the derivative a;ay~' is outside the time-ordering. 
The general case is: 

a N 

ayl' <OI Tj~(y) lJ ¢n; lxJIO> 

N 

=- i L b<4 l(y- x)(OI Tb,¢n/Y) fl ¢,JxJIO). (2.7.6) 
j= 1 i'f j 

Important consequences of these Ward identities are obtained by 
integrating over all y (with y0 fixed). The spatial derivatives give a surface 
term, which vanishes, so that we have, for example, 

Id 3 y a~o (OI Tj~(y)¢;(x)IO> =- ib(x0 - y 0 )(0ib,¢;(x)IO>. 

The spatial integral of/ is just the charge Q0 . The time derivative acts either 
on the charge or on the b-functions defining the time-ordering; so we find 
that 

( Ol TdQ,/dt¢;(x)!O) + ( 01 [Q,, ¢;(x)] 10 )b(x0 - y 0 ) 

=- ib(x0 - y0)(0ib,¢;(Y)IO>. (2.7.7) 

In this equation and its generalizations from (2.7.6), we may choose the 
times of the fields ¢;(x;) not to coincide with y0 . Therefore an arbitrary 
Green's function of dQ,/dt is zero, so that the operator dQ,/dt is zero. The 
remaining part of (2. 7. 7) therefore gives: 

(2.7.8) 

From (2. 7.8) and its generalizations with more fields, we find that the Q;s 
have the correct commutation relations with the elementary fields ¢;to be 
the generators of the symmetry group. 

Finally, another specialization of (2. 7.6) is to integrate it over ally~' and to 
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drop the resulting surface term. The result is that 
N 

0 = L <OI T{>~l/Jnixj) n l/Jn,(x;)IO> 
j=l iti 

N 

=o~<OITO l/Jn,(x;)IO>. 
i= 1 

21 

(2.7.9) 

All the above equations are true for the case of a completely unbroken 
symmetry. The derivation breaks down at the first step if we have 
anomalous breaking. (In Chapter 13 we will discuss the anomaly terms that 
must then be inserted in the Ward identities to make them correct.) For an 
explicitly broken symmetry, where 8·j = L\ =I= 0, we must add a term 

N 

<OI TL\~(y) n l/Jn,(x;)IO> (2.7.10) 
i= 1 

to the right-hand side of (2.7.6). 
In the case of a spontaneously broken theory the basic Ward identities 

(2.7.4)-(2.7.6) remain true- we still have an exact symmetry. But the 
integrated Ward identities (2.7.7) and (2.7.9) are no longer true. Equation 
(2.7.9) must be false if the vacuum is not invariant, and the derivation fails 
because the surface term is not zero. This is caused by the existence of zero­
mass particles. These Nambu-Goldstone bosons (Goldstone, Salam & 
Weinberg (1962)) are characteristic of theories with a spontaneously 
broken symmetry. 

2.8 Perturbation theory 

As an example, consider again f/J 4 theory, with classical Lagrangian 

.!l' = Z(8A)2/2- miA 2/2- 9sA4 /4!. (2.8.1) 

We will expand the Green's functions in powers of the renormalized 
coupling g, for small g. To expand the functional-integral formula (2.2.2) in 
powers of g, we write 

.!l' = .!l' 0 +If 1• 

where .!1'0 is the free Lagrangian: 

.!l' 0 = (8A)2 /2-m2 A 2 /2, 

and ~ is the interaction Lagrangian: 

(2.8.2) 

(2.8.3) 

.!1'1 =- gA 4 /4! + (Z -1)(8A)2/2- (mi- m2 )A 2/2- (gs- g)A 4 /4!. 
(2.8.4) 

We will expand the renormalization counterterms, Z -1, mi- m2, and 
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g8 - g,in powers of g,so that all of the terms in 2'1 have at least one power of 
g. The series expansion of the Green's functions is then obtained from (2.2.2) 
as: 

GN(xl' Xz, ... ' xN) 

.~o (i"/n!) I[dA]A(xd···A(xN{Id 4 yY1(y)J exp(iS0 [A]) 

.~o (i"/n!) I[dA][Id 4 yY1(y) J exp(iS0 [A]) 

Here 

S0 [A]= Id 4yY0 = Id 4 y(8A 2/2-m2 A2j2) 

is the free action. 

(2.8.5) 

Each ofthe terms in the series is a Green's function in the free-field theory 
(aside from a common normalization), so (2.8.5) is equivalent to the Gell­
Mann-Low (1951) formula: 

GN(xl' ... 'xN) 

_ Jo (i"/n !)(1)
1 
Id 4 yi )<OJ T¢F(x 1) ••• ¢F(xN) }J

1 
!fi(yJJO). 

- Jo (i"jn !)(}J
1 
I d 4 yi )<OJ Til)t !fi(y)JO) 

(2.8.6) 

Here ¢F is a free quantum field of mass m. It is the field generated from the 
free Lagrangian Y0 = (8¢F)2/2- m2¢~j2. Then 2-; is the quantum in­
teraction Lagrangian, Y - Y0 , which is a function of the free field ¢F· 

To compute the integrals in (2.8.5) it suffices to compute the generating 
functional of free-field Green's functions: 

(2.8.7) 

This is done by completing the square, i.e., by making the following change 
of variable: 

A(x)---> A(x) +I d4yGF(x- y)J(y). 

Here, GF(x) is the Feynman propagator satisfying 

( D + m2)GF(x) = - iJ(4 l(x), 

(2.8.8) 

(2.8.9) 
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2.8 Perturbation theory 23 

and a boundary condition that, after rotating to Euclidean space by 
x 0 = - ir, GF(x)-+ 0 as x-+ oo. Thus 

( d4 k -ik-x i 
GF(x) = J (2n)4 e k2 - m2 + ie. (2.8.10) 

The result is that 

Z0 [J] = exp { i I d4 xd 4yJ(x)GF(x- y)J(y) }­ (2.8.11) 

Green's functions of free fields are obtained by differentiating with respect 
to J; for example 

(JZZ I 
(OjTcf>(x)cf>(y)jO) = Jl(x)Jl(y) J=o 

= GF(x- y). (2.8.12) 

We can now derive the well-known Feynman rules for the interacting 
theory from (2.8.6). These can be given either in momentum or coordinate 
space. In either case the Green's function GN is written as a sum over all 
possible topologically distinct Feynman graphs. Each graph r consists of a 
number of vertices joined by lines. It has N 'external vertices', one for each 
cf>(x;), with one line attached, and some number, n, of interaction vertices. 
The interaction vertices are of several types, corresponding to the terms in 
the interaction Lagrangian (2.8.4 ). The vertex for the A 4 interaction has four 
lines attached and the vertices for the oA 2 and A 2 interactions have two 
lines attached. The value of the graph, denoted /(r), is the integral over the 
position yi of the n interaction vertices. The integrand is a product of 
factors: 

(1) GF(w- z) for each line, where wand z are the positions of the vertices at 
its end. 

(2) A combinatorial factor 1/S(r). 
(3) - igB for each A4 interaction. 
(4) - i(mi- m2) for each A 2 interaction. 
(5) - i(Z -1)o2jow~'ow~' for each (oA) 2 interaction: the derivatives with 

respect to w act on one of the propagators attached to the vertex. 

For each Feynman graph a number of equal contributions arise in 
expanding (2.8.5). If r has no symmetries and if it has no counterterm 
vertices, then this number is n !(4 W so that the explicit n! in (2.8.5) and the 4! 
in each interaction are cancelled. Graphs with symmetries have a number of 
contributions smaller by a factor of the symmetry number S(r). (For 
example, the self-energy graph Fig. 2.8.1 has S = 6.) The combinatorial 
factor is then the inverse of S(r). 
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0 
Fig. 2.8.1. A graph with symmetry fac­

torS= 6. 
Fig. 2.8.2. A graph with a vacuum 

bubble. 

The denominator of (2.8.5) is the sum of all graphs with no external lines. 
The result is to cancel all graphs in the numerator that have disconnected 
vacuum bubbles (like Fig. 2.8.2.). 

In momentum space each line is assigned a (directed) momentum k. The 
Feynman rules are: 

(1) A factor i/[(21t)4 (k2 - m2 + ie)] for a line with momentum k. 
(2) A factor (21t)4 times a momentum conservation 15-function for each 

vertex (external or interaction). 
(3) An integral over the momentum of every line. 
(4) A combinatorial factor 1/S(r). 
(5) - igs for each A4 interaction. 
(6) - i(mi- m2) for each A 2 interaction. 
(7) i(Z- 1)p2 for each (aA)2 interaction, where pis the momentum flowing 

on one of the propagators attached to the vertex. 

The perturbation series in (2.8.5) need not be convergent, but only 
asymptotic. Let GN,n be the sum up to order gn of the perturbation series for 
the Green's function GN. Then it is asymptotic to GN if for any n the error 
satisfies 

(2.8.13) 

as g-+ 0. In general, perturbation theory is asymptotic but not convergent. 
This is rigorously known (Glimm & Jaffe (1981)) for the 4J4 theory in the 
cases that the space-time dimension is d = 0, 1, 2, 3. (d = 0 is the case of the 
ordinary integral 

Jdxexp(- m2x 2 j2- gx4 /4!), 

while d = 1 is the quantum mechanics of the anharmonic oscillator.) 
Physically, the reason for non-convergence is that when g < 0 the energy is 
unbounded below and so the vacuum-state continued from g > 0 is 
unstable. (Dyson (1952) first observed this phenomenon in quantum 
electrodynamics.) 
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In later chapters we will assume (2.8.13). When we compute large­
momentum behavior, it will be important to understand the maximum 
possible validity and accuracy of the calculations if the perturbation theory 
is asymptotic but not convergent. 

2.9 Spontaneously broken symmetry 

Consider the ¢ 4 interaction. If m2 is positive and g is small, we have a theory 
of particles of mass m slightly perturbed by the interaction. This interaction 
is basically a repulsive 15-function potential, as can be seen by examining the 
Hamiltonian in the non-relativistic approximation. There is a symmetry 
¢-->- ¢. 

But if m2 is negative this interpretation is incorrect. The true situation can 
be discovered by noticing that the functional integral (in Euclidean space) is 
dominated by classical fields with the lowest Euclidean action, which is 

SEuc1[A] = Jd 4x[ -(aA) 2 /2+m 2 A 2 /2+gA 4 /4!]. (2.9.1) 

(Remember that (aA) 2 = - (aA;a-r) 2 - VA 2 is negative.) If m2 > 0, then 
the minimum action field is A = 0. But, if m2 < 0, then there are two minima; 

these are constant fields with P'(A) = 0, i.e., A =A+ = j(- 6m 2 /g) and 

A=A_ = -j(-6m2 /g). 
We choose to impose the boundary condition A(x)--> A+ as x--> oo in the 

functional integral. (The condition A--> A_ gives equivalent physics, 
because of the A --> - A symmetry of the action.) Then field configurations 
with A close to A+ will dominate. We may understand this by observing 
that field configurations with large regions where A is not close to A+ or A_ 
will give small contributions to the Euclidean functional integral (2.2.8) 
because their action SEuci is so big. Indeed, a constant field with A not equal 
to A+ or A_ has infinitely more action than one with A = A+ or A_, and its 
contribution to the integral is zero. One's first inclination then is that the 
only configurations that contribute have A--> A+ or A--> A_ as x--> oo. 
However, other configurations contribute, because there are many of 
them - one has to integrate over all possible fluctuations. However, one can 
argue- even rigorously (Glimm & Jaffe (1981)- that in general A will be 
close to A+ or to A_. A typical configuration of the classical field A(x) will 
be close to one of these values over almost all of space-time. 

Given our choice of boundary condition A -->A+, even more is true: a 
typical configuration is close to A = A+ almost everywhere, rather than to 
either A_ or A+. The reason is that if it had a large region with A(x) close to 
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+ + + + 

d>l d=l 

Fig. 2.9.1. Illustrating transitions between regions with fields close to different 
minima of the potential 

A_ (Fig. 2.9.1), then there would be a contribution to the action pro­
portional to the size of the boundary between the regions of positive A(x) 

and of negative A(x). Only if the space-time dimension is d = 1 will we have 
a finite contribution from the boundary. This special case is quantum 
mechanics of a particle in a potential with two wells. The particle can tunnel 
between the two wells. 

In the case we have discussed, of a discrete rather than of a continuous 
symmetry, the argument that A is close to A+ almost everywhere for the 
important configurations is correct in all space-time dimensions greater 
than one. The quantum field therefore has a vacuum expectation value close 

to A+: 

<Oj¢(x)j0) = JV f[dA]A(x)e-S[AJ ~A+. 

In the case of a continuous symmetry, there is a continuous series of 
minima of the potential. A field configuration can interpolate between 
different minima without going over a big hump in the potential. The only 
penalty comes from the gradient terms in the action. This suppresses 
configurations that do not stay close to one minimum, but only in more 
than two space-time dimensions. In one space-time dimension there is no 
spontaneous breaking of a continuous symmetry (Mermin & Wagner 
(1966), Hohenberg (1967), and Coleman (1973)). 

Perturbation theory can be considered as a saddle point expansion about 
the minimum of the action. We write A(x) = A'(x) + v where v =A+. Now 
we treat A'(x) as the independent variable. We have 

If= (oA')2 /2-M2 A'2 /2- gvA' 3 /3!- gA'4 j4! +C. (2.9.2) 

Here C =- m2 v2 j2- gv4 j4 !, and M 2 = gv 2/2 + m2 = -2m2 > 0. We now 
have a theory of particles of mass M with both an A' 3 and an A'4 

interaction. The symmetry is hidden; its only obvious manifestation is in 
the relation between the A' 3 coupling and the mass and A' 4 terms: 

gv = M(3g) 112 • (2.9.3) 
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We will show later that renormalization counterterms are correctly given 
by continuing in m2 from positive m2 . The vacuum expectation value of¢ 
has corrections which can be computed in perturbation theory 

<OI¢IO> = v + <OI¢'IO> 
(2.9.4) 

Exactly similar methods can be applied ifthere is a continuous symmetry. 
Then the Goldstone theorem tells us that there will be a massless scalar 
particle for each broken generator. 

2.10 Fermions 

The field theories obtained by functional integration as in Section 2.2 
are all theories of bosons. This follows from the symmetry of the Green's 
functions under exchange of fields (e.g., < 0 I T ¢(x)¢(y) I 0) = 
<OIT¢(y)¢(x)IO)). In turn, this symmetry property follows from the 
functional-integral formula (2.2.2) because the integration variables (the 
values of the classical field A(x)) commute with each other. 

To get a theory with quantized fields, it is necessary to define something 
like an integral over anticommuting variables. A rather small number of 
properties of integration are needed to derive the equations of motion for 
Green's functions. Requiring these properties determines the integration 
operation uniquely (ltzykson & Zuber (1980)). 

As an example, consider the following Lagrangian for a free Dirac field: 

ft' = lji(i~ - M)ljl. (2.10.1) 

Here ljJ is a four-dimensional column vector and lji a row vector, while 
~ = y~'o~'. The generating functional of Green's functions is written as: 

Z[rpl] = JV I[ dljldlji] exp (i I ft' +I P/1/1 +I Iii'!} (2.10.2) 

The fields and the sources 'l(x) and P/(x) take their values in the fermionic 
sector of a Grassmann algebra. In the lattice approximation the definition 
of the integration in (2.10.2) is really algebraic (Itzykson & Zuber (1980)). 
Green's functions are defined by differentiating with respect to the sources. 

One important difference between ordinary integration and Grassmann 
integration will be important in treating gauge theories. The simplest case 
of this difference is in the integral over two variables x and x of exp (ixax), 
where a is a real number. For ordinary real variables the integral is 

Idxdxeixax = 2n Idxb(xa) = 2nja. (2.10.3) 
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For Grassmann variables we get 

Jdxdxei.iax = ia. (2.10.4) 

The overall normalization is irrelevant for our applications, for it is always 
cancelled by the overall normalization factor in the functional integral. 
What matters is that the a-dependence of (2.10.4) is inverse to that in 
(2.10.3). 

2.11 Gauge theories 

A gauge symmetry is an invariance under a group G where the group 
transformation is different at each space-time point. The earliest examples 
were General Relativity (where G is GL(4), the group of linear transfor­
mations of the coordinate system), and electrodynamics (where G is the 
group of phase rotations). Yang & Mills (1954) and Shaw (1955) generalized 
the idea to a general group. Beg & Sirlin (1982) and Buras (1981) explain 
some of the uses of gauge theories as theories of physics. 

Let G be a simple group and let a matter field 1/J transform as 

1/J(x) -exp (- igro 11(x)t,.)I/J(x) = U(w(x))- 11/J(x). (2.11.1) 

The field 1/J is a column vector of components, and the hermitian matrices t,. 
form a representation of the group, with structure constants c,.py defined by 

(2.11.2) 

The matrices U(w) form a representation of the group. 
In order that the action be gauge invariant, we need a .covariant 

derivative: 

(2.11.3) 

Here we have introduced the gauge potential A~<. It is a vector under 
Lorentz transformation. As far as its gauge symmetry properties are 
concerned, it can be written as a matrix AI' or in terms of components A:: 

It transforms under the gauge group as: 

A~<(x)...,... U(w(x)- 1 [A~<(x)- ig- 1oJU(w(x)). 

To build an action, we need the field-strength tensor 

F~<• = o~<A•- o,A~< + ig[A~<,AJ, 
F:, = o~<A~- o,A:- gc,.pyA!A~, 

which transforms as F...,... u- 1FU. 

(2.11.4) 

(2.11.5) 

(2.11.6) 
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2.12 Quantizing gauge theories 

A gauge-invariant Lagrangian with spin i matter fields is 

!finv = - (F:Y /4 + lji(il/)- M)t/J 

= - tr F ~'_F~t• /2 + lji(il/) - M)t/1, 

29 

(2.11.7) 

where we assumed the conventional normalization of the ta's, viz., 
tr tip= (Jap/2. In an exactly similar way, an action can be set up using scalar 
fields. If there are matter fields in several irreducible representations a term 
for each is needed in !f. The transformation (2.11.5) ensures that the 
coupling g is the same for all matter fields if the group is non-abelian. 

The form of the infinitesimal transformations is needed: 

CJ.,t/1 = - igof·tat/J, 

CJ.,Iji = igwaljita, 

(J.,A: = o~'wa + gcafJywfl A~, 

(J.,F:. = gcafJywfl F~.. (2.11.8) 

If the group is not simple, then it is the product of several simple groups, 
e.g., SU(2)®SU(2). For each there is a gauge field and an independent 
coupling. 

2.12 Quantizing gauge theories 

A gauge theory such as the one defined by the Lagrangian (2.11.7) can be 

solved by the functional integral. Thus, as an example, we can write for the 
fermion propagator. 

(OI Tt/J(x)lji(y)IO) =A' GI I[ dA] [ dtjJdlji]tjJ(x)lji(y)exp (i I !finv) · 

(2.12.1) 

In fact, a lattice approximation to the functional integral forms the basis of 
Monte-Carlo calculations (Creutz (1983) and Creutz & Moriarty (1982)). 
The only trouble with (2.12.1) is that it is exactly zero. To see this we observe 
that, given any field configuration, we can make a gauge transformation on 
it, as in (2.11.1) and (2.11.5). The new field configuration has the same action 
as the old field. Thus the only dependence on the gauge transformation is in 
the explicit t/J(x)lji(y). Now the gauge transformation is independent at each 
space-time point. So (2.12.1) contains a factor 

(JJ.. IdU(z) )u- 1(x) ®U(y) 

= (number)(IdU(x)U(x)- 1 )(IdU(y)U(y)). (2.12.2) 
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which is zero. (Note that the propagator is a matrix in the representation 
space of the gauge group.) 

The vanishing of (2.12.1) is not a fundamental problem, for we may 
choose only to work with Green's functions of gauge-invariant operators 
(e.g., ifit/1, F:.F«1lV, the Wilson loop (Wilson (1974) and Kogut (1983))). But 
the vanishing is a disaster for formulating perturbation theory; for among 
the basic objects needed to write the Feynman rules are the propagators for 
the elementary fields. An elegant solution to this problem was given by 
Faddeev & Popov (1967). The integral over all gauge fields is written as the 
product of the integral over fields satisfying some given gauge condition 
(such as o· A«= 0) and of the integral over all gauge transformations. Any 
field configuration can be obtained by gauge transforming some con­
figuration that satisfies the gauge condition. For a gauge-invariant Green's 
function, the integral over gauge transformations amounts to an overall 
factor which cancels an inverse factor in the normalization. So the integral 
over gauge transformations can be consistently omitted. 

The new integral over fields with the gauge-fixing condition imposed also 
provides a solution to the theory. But the gauge-variant Green's functions 
like (2.12.1) no longer vanish. It is necessary, moreover, to find the correct 
measure for the integral; this was the key point of the work of Faddeev and 
Popov. 

These authors also constructed a slightly different formulation; it is this 
formulation that is most often used, and that we will review now. A detailed 
treatment and further references are to be found in ltzykson & Zuber (1980). 
Here we will merely summarize the argument and derive the Ward 
identities in the form that we will use them. 

We will consider gauge conditions of the form F~[ A, x] = f«(x). There is 
one condition <~;t each point of space-time and for each generator of the 
group. The functional F« might be o· A«, for example. The functionsf«(x) are 
any real valued functions of x. 

Faddeev and Popov write an arbitrary Green's function as 

(OI T XIO) =.AI GI J[ dA] [ dt/J] [difj]X exp (iSin.)L\[ A] fl ~(F«- f«). 
x.~ (2.12.3) 

Here Sinv is the gauge invariant action, and X is any product of fields. The 
factor L\[ A] is a Jacobian that arises in transforming variables to the set of 
fields that satisfy the gauge condition plus the set of gauge transformations. 
The key result is that L\[A] is a determinant, so that it can be written as 

L\ = J[dc~J[dc«Jexp(i2'gc). (2.12.4) 
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Here ca and ca are anticommuting scalar fields, called the Faddeev-Popov 
ghosts. The so-called gauge-compensating Lagrangian is 

(2.12.5) 

where bcFa is the infinitesimal transformation of Fa with w replaced by c. 
For the case Fa= o·Aa 

(2.12.6) 

We treat c and cas independent fields. They are not genuine physical fields, 
as they do not obey the usual spin-statistics theorem. 

A convenient form of solution to the theory is obtained by averaging over 
all fa's, with weight exp (- C 1 JJ;/2). This leaves gauge-invariant Green's 
functions unaltered, and gives the following formula: 

<Oi TXjO) = JV f[d fields]Xeis (2.12.7) 

with a different normalization. The integral is over all fields (A, 1/J, ifi, c, c). 
The action S contains three terms: 

(2.12.8) 

We have already defined the gauge-invariant Lagrangian by (2.11.7) and 
!l'8c by (2.12.5). The gauge-fixing term is 

!l' 8r = -iF; /(2~), (2.12.9) 

where ~ is an arbitrarily chosen parameter. (If desired, it may be absorbed 
into a redefinition of Fa.) 

The advantage of the form (2.12.8) is that Green's functions of the 
elementary fields are defined as in a simple non-gauge theory. For a gauge­
invariant observable X the equations (2.12.3) and (2.12.7) define the same 
objects as 

(2.12.10) 

If X is gauge variant, then all the definitions give different results, and 
(2.12. 7) depends on~- Quantities that depend on the choice of a gauge fixing 
are called gauge dependent, of course. We see that gauge in variance of the 
operators in a Green's function implies gauge independence. 

It is important to distinguish the concepts of gauge in variance and gauge 
independence. Gauge in variance is a property of a classical quantity and is 
in variance under gauge transformations. Gauge independence is a property 
of a quantum quantity when quantization is done by fixing the gauge. It is 
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independence of the method of gauge fixing. Gauge invariance implies 
gauge independence, but only if the gauge fixing is done properly. 

Gauge theories such as (2.11.7) have a dimensionless coupling if space­
time is four dimensional. General results, which we will treat in later 
chapters, imply that the theories need renormalization. However these 
same results imply that many more counterterms may be needed than are 
available by renormalizing (2.11.7). In Chapter 12 we will prove that the 
extra couplings are absent. The tools needed are the Ward identities for the 
gauge symmetry. These we will prove in the next section. It is also necessary 
to prove that the unphysical degrees of freedom represented, for example, 
by the ghost fields ca. and ca. do not enter unitarity relations. This proof also 
needs the gauge properties exhibited in the Ward identities (see Itzykson & 
Zuber (1980)). 

2.13 BRS invariance and Slavnov-Taylor identities 

After gauge fixing, the gauge invariance of a gauge theory is no longer 
manifest in the functional-integral solution. Slavnov (1972) and Taylor 
(1971) were the first to derive the generalized Ward identities that carry the 
consequences of gauge invariance. Their derivation was very much 
simplified by Becchi, Rouet & Stora (1975) through the discovery of what is 
now called the BRS symmetry of the action (2.12.8). 

BRS symmetry is in fact a supersymmetry, that is, its transformations 
involve parameters that take their values in a Grassmann algebra. Let <5.1c be 
a fermionic Grassmann variable. Then the BRS transformation of a matter 
or a gauge field is defined to be a gauge transformation with wa. = ca.b.lc. Thus 

b8 Rsi/J = - ig(ca.b.lc}ta.l/1 = igta.ca.ljJJ.Ic, 

bBits.jJ = igljJta.ca.bA, 

bsRsA: = (ollca. + gca.pycP A~)bA. (2.13.1) 

Observe that <5.1c is fermionic, so it anticommutes with fermion fields (c, c, 1/J, 
ljJ). The ghost fields transform as 

bBRS~ = -igca.pycPcY bA, 

<5BRSCa. = Fa.bA/~. (2.13.2) 

(Note that ca. and ca. are not related by hermitian conjugation, contrary to 
appearances.) Since 2;nv is invariant under gauge transformations, it is 
BRS invariant. Hence 

bBRS 5£ = bBRS( !.f gf + !.f gc) 

= - (1/~)Fa.Jcb.<Fa_( A; x) - (1g)Fa.<5.1c<5,Fa.- ca.bBRs(b,Fa.) 

= 0. (2.13.3) 
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In the second line we used 2'gc = - c,/JcF,, while to prove the last line zero 
we anticommuted /JA. and c in the first two terms of the second line. In 
addition we used the nil potence of the BRS transformation: 

( /j;;s Y (if; or I[J or A: or c,) = 0, 

(2.13.4) 

which follows from anticommutativity of the c's. 
By applying the Noether theorem we find a conserved current: 

j~RS = gi{J}'~ t,!J;c'- p~v D,.c>- (1 /()?·A, D~c" 

-ig( C~Ca)cfi Cy Cafly' (2.13.5) 

Although the BRS transformations involve Grassmann-valued para­
meters, the derivation of Ward identities given in Section 2.7 goes through 
unchanged. For our purposes, we only need the integrated Ward identity 
(2.7.9). A case of (2.7.9) applied to BRS invariance is called a Slavnov­
Taylor identity. A simple example is 

0 = b8 Rs<Oj T A~(x)cp(y)jO)jc5). 

=- <OI T(o~c, + gc,6,cb AY)cp(Y)iO> 

+ (1/()(0j T A:(x)o·AP(y)jO). (2.13.6) 

We have defined the notation /J8 Rs (quantity)/ /JA. to mean that the /JA. in the 
BRS variation is commuted or anticommuted to the right and then deleted. 

The most used cases of the Slavnov-Taylor identities are: 

0= b8 Rs<OjTXc,(x)jO)//J/. 

=- <Oi T(c58 RsX//JA.)c,jO) + (1/()<0i T X c·A"jO). (2.13.7) 

Here X is a product of fields with total ghost number zero. 
We will also need equations of motion. Let: 

82' 82' 
2'-=-- -c --- =(iJl>-MltJ; 

ojJ (N ~aa~tJ; ' 
2'o)l = I{J(- if!>- M), 

2' . = - D .F"~v- g.T.,.~t ·'· + (1/;:)a~a- A'+ gc (c~cP)c A,.. \: 'f' I ;x_lp S a./))' - )', 

2'- =-a D~c" 
COl 1J. ' 

2' <" = - 0 Ca- gc,py(o~cp)AY~. (2.13.8) 

Then each of these is zero. Furthermore, for ¢ equal to any field in the 
theory we have: 

<Oi T 2'q,(x)XjO> = i<Oi T/JX//J¢(x)j0), (2.13.9) 
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where time derivatives in !l'q, are taken outside the time-ordering (as usual -
see Section 2.5). 

2.14 Feynman rules for gauge theories 

Feynman rules are given in Fig. 2.14.1 for the Lagrangian of (2.11.7), with 
the gauge-fixing term F« = iJ· A«. Note that these agree with the figures but 
not the equations of Marciano & Pagels (1978). They are the rules for 
quantum chromodynamics (QCD), the theory of strong interactions, if the 
gauge group is SU(3). The fermions are the quarks and consist of several 
triplets of SU(3), each with its own mass term. (In the conventional 
terminology, the gauge field is called the gluon field and the gauge 
symmetry is called the color symmetry of strong interactions. Each 
irreducible representation in the quark field is called a flavor, and has a 
label: u, d, s, c, b, etc.) 

The same Lagrangian also describes quantum electrodynamics (QED) if 
we change the gauge group to U(1). In that case there is but one gauge field 
(the photon) and, since the group is abelian, the three- and four-point self-

Vi p 1/J p-M+ie 

p i~ 

A: '\./'VVV'"v Ae = -·--­
p2 +ie 

p c i~.-c ---)--- c =--
p2 +ie 

( p,.p. ) 
-g +--(!-~) 

· •• p2 + ie 

=- ig 2 [c.p,c,6,(g."g,.-g •• g,) 

+ c.,,c-6,(9.;.9••- g •• g,.) 

+ c.6,c-1.(g.;.g •• - g •• g .. )] 

c. -r-s-~-- c' = - gc.-,p·• 
p ? p' 

A~ 

Fig. 2.14.1. Feynman rules for the gauge theory defined by the Lagrangian (2.11. 7). 
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interactions of the gauge field vanish. Moreover, with the gauge fixing term 
F[ A] = o· A there is no coupling to the ghost fields, so we may drop them 
from consideration. The transformations on the matter fields are simple 
phase rotations: 1/J-+ e- iqrol/l where q is the charge of the field (negative for 

the electron field). The transformation of the gauge field is All-+ All+ ollw. 

2.15 Other symmetries of (2.11.7) 

The Lagrangian (2.11. 7) is gauge invariant. After gauge fixing we get 
(2.12.8), which is not gauge invariant, but which has BRS symmetry. The 
action (2.12.8) also is invariant under global gauge transformations -those 
with constant w- because we chose the gauge fixing not to break this 
symmetry. 

There are also what in strong interactions are called flavor symmetries. 
These are transformations that act identically on every member of an 
irreducible representation of the gauge group. In this case they give 
conservation of the number of each of the different flavors of quark. Other 
flavor symmetries include the discrete symmetries of parity and time­
reversal in variance. 

Charge-conjugation is also an in variance of(2.12.8), and its action on the 
ghost fields is rather interesting. Let us define e,. by the parity of the 
representation matrices under transposition: 

t,. = e,.tJ(~) (2.15.1) 

In this and the following equations, the symbol (~) means that the 
summation convention on repeated indices is suspended. The fermion and 
gauge fields transform as usual: 

A~-+ - A~e,.(!), 
1/1-+ Yfc(iy0 l)(!ij)T, (2.15.2) 

where Yfc is a real matrix such that 

(2.15.3) 

The ghosts transform as: 

(2.15.4) 

Consider the c"' - cfl - A~ and the A~ - A! - A~ Green's functions. They 
are invariant under global gauge transformations so only two couplings of 
the gauge indices are possible: c,.py which is antisymmetric, and a symmetric 
coupling which we can call d,.py· Charge-conjugation invariance prohibits 
the symmetric coupling. 
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2.16 Model field theories 

Although the concepts of quantum field theory are very general, we have 
reviewed them by examining mainly two specific models. The first was the 
theory of a real scalar field (2.1.1 ), mostly with the ¢ 4 interaction (2.2.1 ). The 
second was a gauge theory (2.11.7) with matter described by some Dirac 
fields. It should be clear that the general principles apply to any Lagrangian 
!£'. A field theory is specified by listing its elementary fields and giving a 
formula for !£. It is solved by a functional-integral representation of its 
Green's functions. 

The aim of physics is to describe the real world. To the extent that a field­
theoretic description is the correct one, the fundamental problem in physics 
is to find the correct field theory. In fact the Lagrangian (2.11. 7) appears to 
do this for strong and electromagnetic interactions if the gauge group and 
matter fields are correctly chosen. Weak interactions can be included by the 
Weinberg-Salam theory, and many speculations have been made about 
extensions (see the proceedings of most recent conferences on high-energy 
physics). 

Our aim in this book would be badly served by only treating real 
theories. One reason is that we wish to develop techniques and concepts 
applicable to any field theory, for example not only to the many Grand 
Unified Theories currently under discussion (see Langacker (1981) and 
Ross (1981) for reviews), but also to the theories to be invented in the future. 
As is usual in the subject, we will make use of field theories that are more 
properly called models. The ¢ 4 theory is an obvious case. Another 
important reason for using models is to be able to discuss particular aspects 
of the methods without having other complications to clutter up the 
presentation. 

Particular models will be introduced as needed. Some will recur often, 
such as the ¢ 4 theory and the simple gauge theory (2.11.7). 

Another frequently used model is the ¢ 3 interaction of a real scalar field: 

!f'=(c¢)2 /2-m 2 ¢ 2!2-g¢ 3/3!. (2.16.1) 

This is much more •mphysical than the other models. It is not even 
completely consistent. Because of the ¢ 3 interaction, the energy is not 
bounded below. This is manifest in the classical theory and true in the 
quantum theory (Baym (1960)). Hence any state must catastrophically 
decay. But the perturbation theory is well-defined, and somewhat simpler 
than for the ¢ 4 theory. So it proves very convenient to use the ¢ 3 model in 
treating the elements of the theory of renormalization within perturbation 
theory. 
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Another way of constructing models is to change the dimension, d, of 
space-time from its physical value 4. One motivation for this is that the 
renormalization problem becomes easier as d is reduced; the degree of 
divergence of a Feynman graph decreases. As we will see in Chapter 4, it is 
both useful and possible to treat d as a continuous variable, for the purpose 
of computing the values of terms in the perturbation expansion. 
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