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1. Introduction
Let R be a ring and / an infinite set. We denote by M(R) the ring of row

finite matrices over / with entries in R. The set / will be omitted from the
notation, as the same index set will be used throughout the paper. For con-
venience it will be assumed that the set of natural numbers is a subset of /.

Formally M(R) is the set of mappings m from IxItoR with the restriction
that, for each i,

Km,i) = {jel\m(i,j)* 0}
is a finite subset of /; addition is defined in M(R) pointwise by

and multiplication is defined in M(R) by the usual matrix formula

{mn)(i, j) = £ m(i, k)n(k, j),
k

where the summation is taken over the finite set I{m, i), empty summations
being interpreted as zero. Then, as is well-known, M(R) forms a ring with
respect to these operations.

If A is an ideal of R and c is an infinite cardinal then M(A, c) denotes the
set of matrices m e M(R) such that

(i) m(i, j) e A for all i, j e I,

(ii) J{m) = {j e /1 m(i, j) # 0, for some i, depending on j} has cardinality
less than c.

It is easily verified that M(A, c) is an ideal of M(R). If c exceeds the
cardinality of / then M(A, c) = M(A). If c = Ko, the least infinite cardinal,
then M(A, Ko) consists of matrices, each with only a finite number of non-zero
columns, called by Patterson (4) the ring of row-bounded matrices over A.

In (4, 5) Patterson has considered the Jacobson radical of M(R, c). He
has shown that if J is the Jacobson radical of R then the Jacobson radical
of M(R, No) is M(J, Ko); but that, for c>X0, the Jacobson radical of M(R, c)
is M(J, c) if and only if J is right vanishing. In this paper corresponding
questions are considered for various other radicals of a ring. These are the
/^-radical (lower Baer radical), Levitzki radical and nil radical (upper Baer
radical). For their definitions and fundamental properties we refer the reader
to Divinsky (2). We shall show that for each of these radicals, if A denotes
the appropriate radical of R, then for c>X0 the corresponding radical of
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M(R, c) is M(A, c) if and only if A is nilpotent. For the first two radicals it
is shown that the radical of M(R, Ko) is always M(A, Xo). But for the nil
radical this problem remains unsolved.

In the last section of the paper the Jacobson radical of M(R), where R is
expressed as a direct sum of rings Rk, is calculated in terms of the Jacobson
radicals of M(Rk). The result is then used to give a negative answer to a
question raised by Patterson (5).

2. Ideals of M(R)
Let X be an ideal of M(R). For each pair /, j e I let X{i,j) denote the set

of elements m(i, j), where me X. Then it is easily verified that X(i, j) is an
ideal of R and that

RX(i,j)<zX(u,j), X(i,j)RcX(i,v), RX(i,j)RczX(u,v)

for all i, j , u,ve I.
For ae R we denote by aE(i, j) the matrix such that aE{i, j) (i, j) = a and

aE(i,j) («, v) = 0 for (i,j) # (M, V). If a e RaR for each ae R, then it may be
shown in the usual way (see, for example, Jacobson (3, p. 40)), that if a e X(i,j)
then aE(u, v)e X and hence that X(i, j) = X(u, v) for all i, j , u, v e I. Then it
follows that if atJ is a finite set of elements of R, where (/, j) belongs to a finite
subset T of Ix I, and if atJ e X{i, j), then the matrix m = £ a^Eii, j) belongs

T

to X. In particular these results hold in a ring R with identity element.
Any ring R may be embedded as an ideal in a ring S with identity. In any

such embedding if P is a semi-prime ideal of R then P is an ideal of S (see
Sands (6)).

If X is an ideal of M(R) then X is defined to be the set of matrices m e M(R)
such that m(i, j) e X(i, j) for all /, j e I. It is clear that X is an ideal of M(R) and
that XcX. It is not true, in general, that X = X. For example, it is easily
seen that M(A, Xo) = M(A).

ifP is a prime ideal of R then it may be shown, as in Sands (6), that M(P, c)
is a prime ideal of M(R, c). I fP is an ideal of R such that M(P, c) is a prime
ideal of M{R, c) it may be shown that P is a prime ideal of R. But, unlike
the case of finite matrices considered in (6), this does not determine all the
prime ideals of M(R, c). An example of a primitive ideal, and so a prime ideal,
not of this type is given in Sands (7). More directly we show that if P is a prime
ideal of R then M(R, b)+M(P, c) is a prime ideal of M(R, c), where b is any
infinite cardinal less than c.

Let a, b $ M(R, b)+M(P, c). Then there exist b different columns of a
each containing an entry not in P. Several of these entries may belong to a
given row, but since a is row-finite the number of different rows involved
must be b. Thus choosing one such entry from each row involved there exists
a set K of cardinality b such that a(ik, jk) $ P for k e K, where k^ # k2 implies
4, # z'fc2 and j k l # jk2. Similarly there is a set M of cardinality b such that
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b(im, jm) f P for m e M, where m1 # m2 implies im, # /m2 and ymi / j n i . Let
a be a bijection from K to M. Since P is a prime ideal of R for each A: e T̂
there exists rkeR such that a(ik, jk)rkb(iaW, jaW)$P. Let r be the matrix
such that r(jk, ia(k)) = rt, for each k e K, r{i,j) = 0 otherwise. Then a routine
calculation in matrix multiplication shows that

<"•*('*. ;«(*)) = «('*. Jk)rkb(iaW, ja(k)) £ P-

Thus arfc contains Z> different columns, each containing an entry not in P.
Therefore aM(R, c)b<£M(R, b) + M(P, c). Hence M(R, b)+M(P, c) is a prime
ideal of M(R, c).

Theorem 1. If X is a prime ideal of M(R, c) then either X = M(P, c), where
P is a prime ideal of R, or X contains M(R, Ko).

Proof. If R is embedded as an ideal in an over-ring S with identity then
M(R, c) is an ideal of M(S, c) and so X is an ideal of M(S, c). If follows that
^•(i, j) = X(u, v) for all /, j , u, v in /. Let X(i, j) = P. Then P is an ideal of
R. Let aRb e P. Then every element of a£(l, 1)M(R, c)bE(l, 1) has the form
arbE{\, 1) and so is contained in X. Thus aE{\, \)M(R, c)bE{\, 1 ) ^ ^ and
A' is a prime ideal of M(R, c). Therefore aE(l, l ) e l o r bE{\, 1) e X. Thus
a e X(l, 1) = P or b e X(l, 1) = P. It follows that P is a prime ideal of R
and that XcM(P,c).

Let m be a matrix of M(R, Ko). Let J = J(m) be the finite subset of /,
indexing the non-zero columns of m. Let n be a matrix of M(P, c). Let B J

be the matrix such that
n\i,j) = n(i,j), for ieJ, nJ(i,j) = 0, otherwise.

Clearly mn = mnJ. But nJ e M(P, c) and has only a finite number of non-zero
rows and so only a finite number of non-zero entries. Therefore nJ e X. It
follows that mn e X and so that M(R, K0)M(P, c)(=X. Since X is a prime
ideal either M(P, c)<=X or M(i?, X 0 ) c X But I c M ( ? , c). Therefore either
M(P, c) = X or Af(i«, Ko)<=^-

Corollary 1. X is a prime ideal of M(R, Ko) if and only if X = AfCP, Ko).
M'/ie/'e P is a prime ideal of R.

Corollary 2. X is a primitive ideal of M(R, Ko) if and only if X = M{P, Ko),
where P is a primitive ideal of R.

This follows from Corollary 1 and from Theorem 3 of Sands (7).

Theorem 2. 7 / c>K 0 the following conditions are equivalent:

(i) A is a nilpotent ideal of R,

(ii) M{A, c) is a nilpotent ideal of M(R, c),

(iii) M{A, c) is a nil ideal of M(R, c).

Proof. Ak = 0 if and only if M(A, c)k = 0. Therefore conditions (i) and
(ii) are equivalent for all infinite cardinals c. Clearly (ii) implies (iii) for all
infinite cardinals c.
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Now, let c > Xo, and let A be an ideal of R, such that A is not nilpotent.
Then for each positive integer k there exist elements akl, ak2, ..., akk of A such
that aklak2...akk it 0. Let m be the matrix such that m(i, i+l) = akr,
where / is a positive integer and k, r are given by i = l + 2 + ... + (k—l)+r,
0<r ^ k, and m(u, v) = 0 otherwise. Since c>K0 the matrix m belongs to
M(A, c). Then a routine calculation in matrix multiplication shows that, for
each positive integer k, mk(i, i+k) = aklak2...akk # 0, where

Therefore mk # 0. Since this is true for each positive integer k the matrix m
is not nilpotent. Thus M(A, c) is not a nil ideal. It follows that (iii) implies (i).

This completes the proof.

3. Radicals of M(R)

Theorem 3. The p-radical of M(R, Ko) is M(A, Ko), where A is the p-radical
ofR.

Proof. The /^-radical of a ring is the intersection of all prime ideals of the
ring. By Corollary 1 to Theorem 1 if Pa is the family of all prime ideals of R
then, M(Pa, Ko) is the family of all prime ideals of M(R, Xo). Hence the p-
radical of M(R, Ko) is obtained as

nM(Px, Ko) = M(nPx, Ko) = M(A, Ko).

In a similar way Corollary 2 to Theorem 1 shows that the Jacobson radical
of M(R, Ko) is M(J, Xo) where / is the Jacobson radical of R. This result was
obtained by Patterson (4) using quasi-regularity of elements.

Theorem 4. 7/"c>X0 then the p-radical of M(R, c) is M(A, c), where A is
the p-radical of R, if and only if A is nilpotent.

Proof. Let Pa be the family of prime ideals of R. Then M(Pa, c) are prime
ideals in M(R, c). Therefore the /^-radical of M(R, c) is contained in

nM(Pa, c) = M(A, c).

If A is nilpotent then M(A, c) is nilpotent and so is contained in the p-
radical of M(R, c). Thus, if A is nilpotent, the /^-radical of M(R, c) is M(A, c).

If A is not nilpotent then, by Theorem 2, M(A, c) is not a nil ideal. But the
/^-radical of a ring is a nil ideal. Therefore M(A, c) cannot be the /^-radical
of M{R,c).

Theorem 5. The Levitzki radical ofM(R, c) is zero if and only if the Levitzki
radical of R is zero.

Proof. Suppose the Levitzki radical of R is zero. Then if Y is any non-
zero ideal of R, Y contains a finitely generated subring which is not nilpotent.
Let X be the Levitzki radical of M{R, c). Then X is a. semi-prime ideal of
M(R, c) and so is an ideal of M{S, c). Since S has an identity, X(i,j) = X(u, v)
for all i,j, u,vel. Let X(i,j) = W. Then Wis an ideal of R. Let ru r2, ...,rn
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be any finite set of elements of W. Then r^EiX, 1), ..., r ^ G , 1) belong to X
and so generate a nilpotent subring of M(R, c). It follows easily that ru ..., rn

general a nilpotent subring of R. Therefore W is a locally nilpotent ideal of
R. Hence W = 0. But XcM(W, c). Therefore X = 0.

Conversely let M(R, c) have zero Levitzki radical. Let L be the Levitzki
radical of R. Let mk, keK, be a finite set of matrices of M(L, Xo). Let/ = u/(mfc)
Then J is a finite subset of /. Then the subring of R generated by the finite
set of elements of L, mk(i, j), where keK, i, j e J, is nilpotent, say of index t.
Consider the product of t+1 matrices mko, mkl, ..., mkt, where k-t e K. Let mJ

k

be defined by m{{i, j) = mk(i, j), if i e J, mJ
k{i,j) = 0, otherwise. Then it is easily

seen that

mka
mkl-

mkt = mko
mkr • mk,-

But the product of t elements of the form mk(i, j), i e J, is zero. Therefore
mi,... m{t = 0. Thus mkomkl... mkt = 0. It follows that the finite set of matrices
mk generate a nilpotent subring of index at most t+l. Therefore M(L, Ko)
is a locally nilpotent ideal of M(R, c). But M(R, c) has zero Levitzki radical.
Therefore M(L, Ko) = 0 and so L = 0.

Corollary. If P is an ideal of R then R/P has zero Levitzki radical if and
only if M(R, c)/M(P, c) has zero Levitzki radical.

This follows since M(R, c)/M(P, c) is isomorphic to M(R/P, c).

Theorem 6. The Levitzki radical of M(R, Ko) is M(L, Ko), where L is the
Levitzki radical of R.

Proof. By a result of Babic (1) the Levitzki radical of a ring R is the inter-
section of all prime ideals Px of R such that R/Pa has zero Levitzki radical.
It follows from Corollary 1 to Theorem 1 and the Corollary to Theorem 5
that M(Pa, Ko) is then the family of all prime ideals of M(R, Ko) such that
M(R, K0)/M(Pa, Ko) has zero Levitzki radical. Therefore the Levitzki radical
of M(R, Ko) is obtained as

nM(Pa, Ko) = M(nPx, No) = M{L, No).

Theorem 7. Ifc>H0 then the Levitzki radical of M(R, c) is M[L, c), where
L is the Levitzki radical of R, if and only if L is nilpotent.

Proof. Let L = nPa, where Pa is the family of all prime ideals of R such
that R/Pa has zero Levitzki radical. Then, by the Corollary to Theorem 5,
M(R, c)/M(Pa, c) has zero Levitzki radical and M(Pa, c) is a prime ideal of
M(R, c). Therefore the Levitzki radical of M(R, c) is contained in

nM(Pa, c) = M(L, c).

Let L be nilpotent. Then M(L, c) is nilpotent and so M(L, c) is contained
in the Levitzki radical of M(R, c). Therefore M(L, c) is the Levitzki radical
of M(R,c).

Suppose that L is not nilpotent. Then, by Theorem 2, M(L, c) is not a
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nil ideal. But the Levitzki radical of a ring is a nil ideal. Therefore M(L, c)
cannot be the Levitzki radical of M(R, c).

Theorem 8. If the nil radical of R is zero then the nil radical of M(R, c)
is zero.

Proof. Let X be a nil ideal of M(R, c). Let x e X(i,j), where me X and
m(i, j) = x. Then xE(l, i)mxE{j, 1) = x3E(\, 1) e X. Therefore x3E(l, 1)
is nilpotent and so x3, and hence x, is nilpotent. Therefore X(i, j) is a nil
ideal of R. But R has zero nil radical. Therefore X{i, j) — 0 for all /, j e /.
Hence J c l = 0. It follows that M(R, c) has zero nil radical.

We are unable to prove the converse of Theorem 8 and so we do not obtain
a precise result for the nil radical of M(R, Ko).

Theorem 9. If N is the nil radical of R then the nil radical of M(R, c) is
contained in M{N, c).

Proof. The nil radical of R is the intersection of all prime ideals Px such
that R/Pa has zero nil radical (see Divinsky (2, pp. 146-147)). It follows that
M(R, c)/M(Pa, c) has zero nil radical. Therefore the nil radical of M(R, c)
is contained in nM(Pa, c) = M(N, c).

Theorem 10. 7/"c>X0 then the nil radical of M(R, c) is M{N, c), where N
is the nil radical of R, if and only if N is nilpotent.

Proof. If N is nilpotent then M(N, c) is nilpotent and so is contained in the
nil radical of M{R, c). It follows from Theorem 9 that M(N, c) is the nil
radical of M(R, c).

If N is not nilpotent then, by Theorem 2, M(N, c) is not a nil ideal. But the
nil radical of a ring is a nil ideal. Hence M(N, c) cannot be the nil radical
of M(R, c).

The failure to obtain a precise result for the nil radical of M(R, Ko) is
not due to any weakness in the techniques for handling infinite matrices but
reflects the lack of knowledge about the nil radical of finite matrix rings. Let
M(R, n) denote the ring of n x n matrices with entries in R, where n is a positive
integer. If for each n the nil radical of M{R, n) is M(N, n), where N is the nil
radical of R, then the nil radical of M(R, Ko) is M(N, Xo). For if m is a matrix
of M(N, Ko) and mJ(m} is defined as before then mJ(m) is essentially an n x n
matrix, bordered with zeros, where n is the cardinality of the finite set J(m).
The nxn matrix belongs to M(N, n), which we have assumed to be a nil ideal.
Therefore there exists an integer k such that (m1(m)f = 0. Then

mk+1 = m(m7(m))* = 0.

Hence M(N, Ko) is a nil ideal. It follows from Theorem 9 that M(N, Ko)
is the nil radical of M(R, Xo), as required. Conversely if M(N, Ko) is the nil
radical of M(R, Ko) then any matrix of M(N, n) may be bordered with zeros
and regarded as a matrix of M(1V, Ko). Therefore it is nilpotent and so M(N, n)
is a nil ideal. By the analogue of Theorem 9 for finite matrices, M{N, n) is

https://doi.org/10.1017/S0013091500012694 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500012694


ON RADICALS OF INFINITE MATRIX RINGS 201

the nil radical of M{R, n). Thus the problem of whether the nil radical of
M{R, Ko) is M(N, Ko) is equivalent to the same problem for all the finite
matrix rings M(R, n).

4. The Jacobson radical of a matrix ring over a direct sum of rings
Let K be an infinite set, such that with each k e K there is associated a

ring Rk. Let R = @Rk be the (restricted) direct sum of the rings Rk, i.e. if
6 e R and 6(k) e Rk is the kth component of 6, then

is a finite subset of K. For each ke K, we denote the canonical injection
from Rk to R by rjk, i.e. for x e Rk, t]k(x) is defined by r\k{x){k) = x, r]k(x)(m) = 0,
m =£ k. The canonical projection from R to Rk is denoted by nk, i.e. for
6 e R, nk(6) = 0(/c).

If M{R, c) and M(Rk, c) are matrix rings over R and Rk then r\k and 7ifc
induce homomorphisms from M(Rk, c) to M(R, c) and from M(!?, c) to
M(Rk, c). We shall denote these homomorphisms by r\k and 7tt, though strictly
speaking they should involve M and c. Thus »jt from M(Rk, c) to M(.R, c) is
defined by (r\k{m)){i, j) = t]k(m(i, j)), for each m e M(Rk, c), and 7tt from
M(i?, c) to M(Rk, c) is defined by (nk(6))(i,j) = nk(0(i,j)) for each Be M(R, c).
It should be noted that the processes of forming infinite matrix rings and
infinite direct sums do not commute. £ r]kM{Rk, c) is an ideal of M(R, c).

k

But it is a proper ideal, since if 9 e £ r\kM{Rk, c) then there is a finite subset
k

Ko of .K such that nk0{i, j) = 0fork$K0 and all i, j e /. Whereas for a general
0 in M(2?, c) there is, for each i,j, a finite subset K(0(i,j)) such that nk6(i,j) = 0
for k $ K(0(i,j)), but the union of these finite subsets K(O(i,j)), taken over all
(/,/) e Ixl, need not be finite.

Theorem 11. If R = ©Rk and Jk is the Jacobson radical of M(Rk, c), then
the Jacobson radical of M(R, c) is the set A of matrices 9 e M(R, c) such that
nk{9) e Jk, for all k e K.

Proof. Let 9 belong to the Jacobson radical of M(R, c). Then nk{&)
belongs to the Jacobson radical of nk(M(R, c)) = M(Rk, c) for all k e K. There-
fore A contains the Jacobson radical of M(R, c).

Let 9 e A. Let nk{9) = 0k. Then 9k e Jk, which is a quasi-regular ideal of
M(Rk, c). Therefore there exists <l>keJk such that 0*+$*—0*$* = 0. It
follows from this relation that if row / of 9k is zero then row i of <j>k is zero.
Since 9 is row-finite, for each i e / there is only a finite number of indices
je I such that 0(i, j) ^ 0. Corresponding to each such 0(i, j) there is only
a finite number of indices k e K such that 9(i,j)(k) ^ 0. Hence if we write

Kt = [k e K | row i of 9k is non-zero}

it is clear that Kt is a finite subset of K. For each j e I we define 4>(U j) by
*(*,/)(*) = 4>k{h j) for all Jfc eK. Then #(<£(*, j)) = {keK\ <f>(i, j)(k) * 0} is

E.M.S.—N
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contained in Kh which is finite. Therefore <f>(i, j) e R. Since <j>k is row-finite
for all k and row i of ij>k is zero for k $ Kt, where Kt is finite, it follows that the
matrix <j> is row-finite. Hence 0 e M(R, d), for some infinite cardinal d. Then

= ek{i,j)+<f>k{ij)-{0k4>k){i,j) = (0k+4>k-OM(iJ) = o.

Since this is true for all k e Kit follows that (0+<j>- 9</>)(i, j) = 0 for all i,jel.
Hence 9+(j>-0^> = 0. Then # = 0<f>-Oe M(R, c), since 0 6 M(R, c). There-
fore 0 is quasi-regular. It follows that A is a quasi-regular ideal of M(R, c)
and so A is contained in the Jacobson radical of M(R, c).

Therefore the Jacobson radical of M(R, c) is A.
One object of proving this theorem is to answer in the negative a question

of Patterson (5). It is known that, if J is the Jacobson radical of a ring R and
Sa is the family of all right vanishing ideals of R, then M(J, K0)+EM(5a, c)
is contained in the Jacobson radical of M{R, c). Patterson (5) asks whether or
not this ideal is always equal to the Jacobson radical of M(R, c). We shall
now use Theorem 11 to show that equality need not hold.

Let K be the set of natural numbers. For each k e K let the ring Rk be
equal to the ring P of />-adic integers. It is known that the Jacobson radical
of P is pP. If R = ©Rk, then R contains no non-zero right vanishing ideal.
Let c>K0. Then we need only show that the Jacobson radical of M(R, c)
is not contained in M(J, Ko), where / , the Jacobson radical of R, is the direct
sum of the Jacobson radicals of Rk. Let Jk be the Jacobson radical of M(Rk, c);
then Jk contains M(pP, Ko).

Let the matrix 0 be defined by B(i,j) = 0, i ^ j , 9{i,j) = 0, i$K,

nm0(k, k) = 0, k, m e K, k ¥= m, nk0{k, k) = p,

for each k e K. Then nk{0) = pE(k, k)eM(pP, K0)c7fc, for each k e K.
Further 9eM(R, c), since c>K0. Therefore, by Theorem 11, 0 belongs to
the Jacobson radical of M(R, c). But 9 does not belong to M(R, Xo) and so
0 does not belong to M(J, Ko). Thus the Jacobson radical of M(R, c) is not
equal to M(J, X0)+EM(5a, c).

It should be noted that the analogue of Theorem 11 does not hold for any
of the three radicals discussed in Section 3. Let K be the set of natural numbers.
Let Rk be a nilpotent ring with index of nilpotency k, say the ring of even
integers modulo 2*. Let R be the direct sum of the rings Rk. Then R is a
direct sum of nilpotent rings and so is its own radical for each of the three
types of radical under discussion. Clearly R is not a nilpotent ring. Hence
by Theorems 4, 7 and 10, M(R, c) is not the appropriate radical of M(R, c),
for c>X0. But nk(M(R, c)) = M(Rk, c) and is a nilpotent ring. So by these
theorems M(Rk, c) is its own radical of the appropriate type. Hence the ideal
A as defined in Theorem 11, in this case, is equal to M(R, c). But we have seen
that this is not the radical of M(R, c), where c>X0, in any of these three cases.
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Thus we have justified the claim that the analogue of Theorem 11 does not
hold.
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