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Other renormalization schemes

In previous chapters, we have concentrated our discussions on the modified minimal sub-
traction M S scheme, which is the most convenient one for QCD. However, it is known
that there is a freedom for choosing a renormalization scheme. Among different existing
off-shell renormalization schemes discussed in the literature, we choose to discuss the fol-
lowing schemes which have been widely used in the 1980s. We shall also discuss their
connections by comparing the renormalized QCD coupling in these different schemes.

12.1 The M S scheme

The M S scheme is the original minimal subtraction scheme proposed for dimensional renor-
malization. We have already discussed the difference between the M S and M S schemes,
which one can illustrate by the comparison of the renormalized coupling in the two schemes:

ν−εαB
s = αR

s

{
1 +

(αs

π

) (
β1

ε
+ δ

)
+ O

(αs

π

)2
}

, (12.1)

where δ is an arbitrary constant characteristic of the scheme used. In the M S scheme:

δM S = β1

2
[ln 4π − γ ] , (12.2)

and the running couplings in the two schemes are related as:

ᾱM S
s = ᾱM S

s

[
1 +

(
ᾱs

π

)
δ + O(

α2
s

)]
. (12.3)

This leading order relation can be translated by the relation between the scale � in the
two schemes:

�M S � �M S exp(δ/β1) , (12.4)

i.e., one obtains to this order:

�M S � 2.66 �M S . (12.5)
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124 III M S scheme for QCD and QED

Table 12.1. Value of δ(αG, n f ) in the MS and MOM schemes

Scheme δ(αG, n f )

M S 0

M S δM S ≡ (β1/2)[ ln 4π − γ ]

MOM Three-gluon δM S − 11
2 − 23

48 J − αG
9
16 (1 − J ) + α2

G
8 (3 − J ) − α3

G
16 + n f

3

(
1 + 2

3 J
)

Quark-gluon δM S − 1
16

(
89 − 85

9 J
) − αG

25
24

(
1 − 2

3 J
) + α2

G
16 (3 − J ) + 5n f

18

Ghost-gluon δM S − 5
48

(
41 + 3

2 J
) − αG

8 (9 − 2J ) − α2
G

16

(
3 − J

2

) + 5n f

18

12.2 The momentum subtraction scheme

In the momentum subtraction scheme (MOM scheme), the renormalized two-point (or in
general Green’s) function is defined as [168–170]:

	5(q2)R = 	5(q2) − 	5(q2 = −µ2, m2) , (12.6)

where µ is the subtraction point in the Euclidean region. The choice of µ is arbitrary. It is
often chosen at the symmetric point of the three-gluon vertex with which one defines the
renormalized QCD coupling. However, the choice of the vertex is also arbitrary, as one can
choose the quark-gluon-quark or ghost-gluon-ghost vertex for defining the renormalized
coupling. In this scheme, the renormalization constants and universal parameters are mass-
dependent, which is not convenient when one works with massive particles. However, due
to the Appelquist–Carazzone decoupling theorem, one may ignore the effect of the heavy
quarks having a mass larger than the momentum scale of the analysis. If one expresses the
renormalized QCD coupling αs in terms of the bare coupling αB

s in 4 − ε dimensions, one
has:

ν−εαB
s = αs

[
1 +

(
δ(αG, n f ) + β1

ε

)
αs + O(

α2
s

)]
, (12.7)

where δ(αG, n f ) is a finite term which depends on how αs is renormalized, and are given
in Table 12.1, where αG is the gauge parameter; β1 = −(1/2)(11 − 2n f /3) for SU (3)c ×
SU (n) f , and:

J ≡ −2
∫ 1

0
dx

ln x

x2 − x + 1
= 2.3439072. . . . . (12.8)

Therefore, one can derive the lowest order relation between the MOM and M S schemes
in the case of massless quarks [170]:

�mom = �MS exp

{
δ(αG, n f )

β1

}
. (12.9)

https://doi.org/10.1017/9781009290296.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.019


12 Other renormalization schemes 125

In the usual case of three-gluon vertex, and for some particular values of the gauge
parameter, one has:

δ(0, 3) = −8.46 , δ(1, 3) = −7.68 , (12.10)

which leads to the numerically lowest order relation:

�mom � �MS

(
6.55 for αG = 0 : Landau gauge
5.51 for αG = 1 : Feynman gauge

)
(12.11)

12.3 The Weinberg renormalization scheme

The Weinberg scheme [171] is variant of the MOM scheme. In this scheme the renormalized
two-point function reads:

	5(q2, m2)R = 	5(q2, m2) − 	5(q2 = −µ2, m2 = 0) , (12.12)

and is renormalized at an off-shell space-like point q2 = −µ2 and putting the particle masses
to be zero. It coincides with the MOM scheme, in the case of massless theories. One can
see that, in this scheme, the renormalization constants are also quark-mass dependent. It
has been shown by [172] that the Weinberg scheme violates the Slavnov–Taylor identities
due to the arbitrariness of the subtraction point at a specific vertex, the gauge dependence
of the coupling and to the definition of the tensorial structure of the vertex at the subtraction
point.

12.4 The BLM scheme

The BLM (Brodsky–Lepage–Mackenzie) scheme has been introduced in [173] and has
been based on the analogy with QED where only the light fermion vacuum polarizations
(VP) contribute to the renormalization of the strong coupling constant. In QED, the running
effective charge can be defined as (see the next chapter on QED):

α(Q) = α

1 + e2
em(Q)
, (12.13)

where to lowest order in α, and using an on-shell renormalization:


em(Q) = − 1

4π2

(
2

3
ln

Q

me
− 5

3

)
. (12.14)

The scheme states that an observable O which has the perturbative expansion:

O = C0α(Q)

[
1 + C1

α(Q)

π
+ · · ·

]
(12.15)

can be replaced by:

O = C0α(Q∗
0)

[
1 + C∗

1
α(Q∗

1)

π
+ · · ·

]
(12.16)
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126 III M S scheme for QCD and QED

where all VP corrections are absorbed into the effective coupling by an appropriate and
unique choice of scales Q∗

0, Q∗
1, . . . . Since the number n f of light flavour dependences

usually enters the VP to this order, then, both Q∗
i and C∗

i are independent of n f , while,
in general, the scales Q∗

i can depend on the ratio of invariants. Taking the example of the
anomalous magnetic moment of the leptons, which can be expressed as (see QED section):

ae = α

2π

[
1 − 0.657

α

2π

]
, (12.17)

and the VP contribution to the muon anomaly gives:

AV P
α

π
a0

µ =
[

2

3
ln

mµ

me
− 25

18

]
α

π
a0

µ . (12.18)

For the muon, one can expect that, at a scale Q∗ ∼ mµ, the exact result can be expressed
as:

aµ = α(Q∗)

2π
, (12.19)

where the running coupling is defined in Eq. (12.13), such that Eq. (12.18) and Eq. (12.19)
must be equal. In this way, one obtains:

Q∗ = mµe5/12 . (12.20)

In this procedure, the electron and the muon anomaly have the same expression to this
order, as we replace:

aµ = α

2π

[
1 + α

π
(AV P + C1) + · · ·

]
, (12.21)

by:

aµ = α(Q∗)

2π

[
1 + α(Q∗)

π
C1 + · · ·

]
, (12.22)

where:

α(Q∗) � α

1 − (α/π )AV P
, (12.23)

and:

C1 = −0.657 . (12.24)

In the case of QCD, a similar approach can be made. The observable can be written as:

M = C0αM S(Q)[1 + (αM S(Q)/π ) (n f AV P + B)] . (12.25)

One can change the coupling by:

αM S(Q∗) = αM S(Q)

[
1 − β1(αM S(Q)/π ) ln

Q∗

Q
+ · · ·

]−1

. (12.26)
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12 Other renormalization schemes 127

and express the observable as:

M = C0αM S(Q∗)[1 + (αM S(Q∗)/π )C∗
1 + · · ·] . (12.27)

Then, one can deduce:

Q∗ = Q exp(3AV P ) ,

C∗
1 = 33

2
AV P + B , (12.28)

where the term 33
2 AV P in C∗

1 serves to remove the part of B which renormalizes the leading-
order coupling.

The ratio of these gluonic corrections to the light quark ones is fixed by the β function. In
some of the examples given by BLM, the value of Q∗ appears to be lower than the original
scale of the process, which might be inconvenient for the convergence of the QCD series.
Moreover, the scheme dependence of the result in Eq. (12.28) has been pointed out in [174],
while an extension of the BLM result beyond NLO shows an ambiguity in the prescription
[175]. Recent interest in the resummation of perturbative QCD series using large value of
β in the naı̈ve Abelization of QCD (see Renormalons section) has revived the use of the
BLM scheme despite these previous drawbacks of the procedure.

12.5 The PMS optimization scheme

The principle of minimal sensitivity (PMS) scheme has been introduced by Stevenson
[176] in QCD. It consists on the fact that physical quantities should be insensitive to a
small variation of unphysical parameters, and is based on variational approach. It is more
instructive to illustrate the method by the classical example of the e+e− → hadrons total
cross-section, which is known to high-accuracy in perturbative QCD. To order α2

s , the
corresponding Adler D-function reads:

D(q2) ≡ −q2
∫ ∞

0

dt

(t − q2)2
R(t) �

∑
i

Q2
i {1 + [D2 ≡ as (1 + as F3)] + · · ·} , (12.29)

where:

R ≡ σ (e+e− → hadrons)

σ (e+e− → µ+µ−)
. (12.30)

Qi is the quark charge in units of e; F3 is renormalization scheme dependent; as ≡ ᾱs/π

is the QCD running coupling. The ν (subtraction scale) dependence of the dimensional
renormalization scheme can be introduced via:

τ ≡ −β1 ln(ν/�) . (12.31)

Using the differential equation obeyed by the running coupling:

−β1
∂as

∂τ
= asβ(as) = β1a2

s

(
1 + β2

β1
as

)
, (12.32)
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128 III M S scheme for QCD and QED

one obtains:

∂ D2

∂τ
= −a2

s

(
1 + β2

β1
as

)
(1 + 2F3as) + a2

s

∂ F3

∂τ
. (12.33)

Using the fact that D2 is independent of τ , the a2
s term in Eq. (12.33) must vanish, which

leads to:

F3(τ ) = τ − τ0 + F3(τ0) . (12.34)

The optimization criterion imposes that the remainder term of ∂ D2/∂τ also vanishes at
a critical value τ ≡ τc. The optimal value of F3 corresponds to:

β2

β1
+ 2Fopt

3

(
1 + β2

β1
as(τc)

)
= 0 , (12.35)

where the rôle of asβ2 can be increased by computing the next order terms. From this result,
one can deduce the optimal value of D2:

Dopt
2 = as(τc)

[
1 − (β2/β1)as(τc)

2[1 + (β2/β1)as(τc)]

]
. (12.36)

The last step of the analysis is to find as(τc). This can be done by integrating Eq. (12.32).
One obtains to two loops:

K̂ 2(as) ≡ τ =
∫ ∞

as

dx

x2[1 + (β2/β1)as(x)]
= 1

as
+ β2

β1
ln

(
(β2/β1)as

1 + (β2/β1)as

)
, (12.37)

where the upper limit of integration is equivalent to the choice of � in τ = −β1 ln(ν/�).
Using Eq. (11.53) by including next leading corrections, one can derive the relation:

�opt = �M S

(
−2

β2

β1

)β2/β1
2

. (12.38)

Rewriting Eq. (12.34) as:

F3 = K̂ 2(as) − ρ1(Q) , (12.39)

where:

ρ1(Q) ≡ τ0 − F3(τ0) , (12.40)

is a constant term independent of the unphysical variable τ at fixed Q, where at Q2 ≡
−q2 = ν2, it reads:

ρ1(Q2 = ν2) = −β1 ln(Q/�) − F3 . (12.41)

It is also a renormalization scheme invariant quantity, as the scheme dependence of �

cancels the one of F3. Substituting the value of F3 from Eq. (12.39) into Eq. (12.35), one
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12 Other renormalization schemes 129

gets the following transcendental equation for as(τc):

K̂ 2(as(τc)) + 1

2

β2

β1

(
1 + β2

β1
(as(τc)

)−1

= ρ1(Q) , (12.42)

where the solution as(τc) is the one to be used in Dopt
2 . As ρ1 behaves like 1/as , it needs to

be large for a good description of the process. The PMS scheme has been quite popular in
the period of 1980–1990.

At present, the interest in the method has decreased. This is probably related to the fact
that it does not yet incorporate the power corrections which plays a non-negligible rôle
in the extraction of the QCD coupling from different processes. However, an extension of
the method including these non-perturbative corrections, although small, should be more
attractive.

12.6 The effective charge scheme

Like the PMS, this scheme is also conceptually based on the construction of scheme-
invariant quantities from combinations of scheme-dependent coefficients [177]. In order to
illustrate the discussion, let’s start from the D function defined in Eq. (12.29), which we
rewrite as:1

Dn �
∑

i

Q2
i

{
1 + asd0

(
1 +

n−1∑
i=1

di a
i
s

)
+ · · ·

}
, (12.43)

where all higher order corrections and scheme dependence of the process are absorbed into
the definition of the coupling constant. The ECH approach imposes the condition that all
coefficients di = 0 for all i ≥ 2. Writing the β function as:

β(αs) = −β1as

(
1 +

n−1∑
i=1

ci a
i
s

)
, (12.44)

and:

DECH
n = Dn(as) + δDECH

n , (12.45)

these conditions imply for the remaining corrections to the physical quantities [178]:

δDECH
2 = d0d1(c1 + d2)

δDECH
3 = d0d1

(
c2 − 1

2
c1d1 − 2d2

1 + 3d2 + d2

)
. (12.46)

These conditions are realized provided that the expansion of the β function in terms of
as makes sense, which translates into the renormalization scheme-independent constraint:

c1as ≡ β2

β1
as < 1 , (12.47)

1 We neglect in this discussion the small contribution due to the light by the light-scattering diagram (see next chapter).
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130 III M S scheme for QCD and QED

which for four flavours corresponds to Q > 1.62λ. However, it is interesting to see the
modification of this constraint when non-perturbative terms are included in the QCD series.
In [178], relations between the corrections to Dn in the PMS and ECH scheme have been
also derived with the result:

δDPMS
2 = δDECH

2 + d0c2
1

4
δDPMS

3 = δDECH
3 , (12.48)

as well as an extension of the analysis to n = 4.
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