
RESEARCH ARTICLE

Discretization-independent surrogate modeling of physical
fields around variable geometries using coordinate-based
networks

James Duvall and Karthik Duraisamy

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
Corresponding author: James Duvall; Email: jamesduv@umich.edu

Received: 28 June 2023; Revised: 18 April 2024; Accepted: 17 May 2024

Keywords: aerodynamics; hypernetworks; neural networks; surrogate model

Abstract

Numerical solutions of partial differential equations require expensive simulations, limiting their application in design
optimization, model-based control, and large-scale inverse problems. Surrogate modeling techniques aim to decrease
computational expense while retaining dominant solution features and characteristics. Existing frameworks based on
convolutional neural networks and snapshot-matrix decomposition often rely on lossy pixelization anddata-preprocessing,
limiting their effectiveness in realistic engineering scenarios. Recently, coordinate-based multilayer perceptron networks
have been found to be effective at representing 3D objects and scenes by regressing volumetric implicit fields. These
concepts are leveraged and adapted in the context of physical-field surrogate modeling. Two methods toward general-
ization are proposed and compared: design-variable multilayer perceptron (DV-MLP) and design-variable hypernetworks
(DVH). Each method utilizes a main network which consumes pointwise spatial information to provide a continuous
representation of the solution field, allowing discretization independence and a decoupling of solution and model size.
DV-MLP achieves generalization through the use of a design-variable embedding vector, while DVH conditions the main
network weights on the design variables using a hypernetwork. The methods are applied to predict steady-state solutions
around complex, parametrically defined geometries on non-parametrically-defined meshes, with model predictions
obtained in less than a second. The incorporation of random Fourier features greatly enhanced prediction and general-
ization accuracy for both approaches. DVH models have more trainable weights than a similar DV-MLP model, but an
efficient batch-by-case training method allows DVH to be trained in a similar amount of time as DV-MLP. A vehicle
aerodynamics test problem is chosen to assess themethod’s feasibility. Bothmethods exhibit promising potential as viable
options for surrogate modeling, being able to process snapshots of data that correspond to different mesh topologies.

Impact statement

Many existing machine learning techniques for surrogate modeling of spatial fields are unable to handle variable
mesh topologies and associated unstructured meshes. Further, many techniques also process entire solution
snapshots as inputs and outputs, presenting scaling difficulties when applied to very large engineering simulation
datasets. The deep learning methods presented in this work allow for fast surrogate models of the solution fields
to be constructed via training on heterogeneous data snapshots that may involve variable geometries and mesh
topologies. The solution is constructed as a continuous field. Demonstrations are shown on a vehicle aero-
dynamics application, and the performance is enhanced by leveraging different approaches for training and the
use of random Fourier features.

©TheAuthor(s), 2025. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

Data-Centric Engineering (2025), 6: e5
doi:10.1017/dce.2024.21

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://orcid.org/0000-0001-6398-8819
https://orcid.org/0000-0002-3519-8147
mailto:jamesduv@umich.edu
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/dce.2024.21
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/dce.2024.21&domain=pdf
https://doi.org/10.1017/dce.2024.21

1. Introduction

High-fidelity numerical simulations are ubiquitous in engineering design and analysis but are often
prohibitively expensive in design applications. Data-driven and machine-learning surrogate-modeling
techniques offer an interesting alternative, particularly in situations where model accuracy may be
acceptably traded for computational savings. However, many existing methods face limitations when
confronted with unstructured and varying mesh topologies across the parameter or design-variable space.
This confines such methods to problems that can be defined with a shared discretization or requires
additional lossy interpolation to map solutions onto consistent meshes. These limitations pose a signifi-
cant challenge for problems involving multiscale phenomena, commonly found in fluid and structural
mechanics, where solutions frequently contain regions with large gradients and tightly clustered mesh
cells. Additionally, the domains may contain intricate and varying geometric features among solution
instances. In such scenarios, interpolating the solutions to a common and often Cartesian mesh results in
unacceptable loss of critical information and fidelity.

Many advances in machine learning have been driven by methods which approximate mappings
involving high-dimensional spaces, with the cardinality of input or output spaces �O 102�105

� �
(Krizhevsky et al., 2012; Lecun et al., 1998; Ronneberger et al., 2015; Vincent et al., 2008). This includes
matrix-decomposition-based methods (Kutz et al., 2016; Willcox and Peraire, 2002) and deep-learning
autoencoder techniques (Bhatnagar et al., 2019; Thuerey et al., 2020; Xu and Duraisamy, 2020) used in
scientific applications. Computational limitations arise when applied to scientific or engineering simu-
lations of scale, where the mesh-cell cardinalityN may be in the tens-of-millions or even billions in super-
computing settings (Arroyo et al., 2021), with the total degrees-of-freedom for a solution state an even-
larger multiple of N. This requires mapping between high-dimensional snapshots in autoencoder-style
models, and decomposing even larger snapshot matrices for projection-based ROMs, dynamic mode
decomposition, or related Koopman methods (Schmid, 2022).

A recent line of research instead approximates infinite-dimensional (continuous) functions by map-
ping between lower-dimensional spaces using simple coordinate-based fully connected multi-layer
perceptron (MLP) neural networks. That is, instead of mapping between snapshots over the full domain
of the problem, for example, with a nonautoassociative autoencoder convolutional neural network (CNN)
(Bhatnagar et al., 2019), a mapping is regressed between inputs and outputs at each individual point in
space. The resulting key distinction is that coordinate inputs x are taken pointwise, for example, as a single
physical-coordinate tuple x,y,zð Þ, instead of entire-solution snapshots. A driving application is object and
scene representation for rendering in computer graphics by which objects are represented by continuous
implicit fields such as the signed-distance function (SDF) zero-level set (Davies et al., 2020; Park et al.,
2019), SDF decision boundary (Mescheder et al., 2019), or as a density/differential-opacity along a light
ray (Mildenhall et al., 2021).1 This concept is known by several names, including coordinate-based
networks, neural fields, neural implicits, and implicit neural representations (Xie et al., 2022), the latter of
which provides a framework which encompasses and generalizes the methods, extending them to other
problem scenarios including recovery of typical supervised learning problems. Using a continuous
representation is key to attaining discretization independence when applied to scientific simulation data.
Every point in each mesh may be included separately, eliminating the need for lossy interpolation of
solution data onto a common Cartesian mesh.

In this work, coordinate-basedMLPs are applied to the prediction of partial differential equation (PDE)
solutions with variable geometry. The predictivemodels must be able to concurrently handle unstructured
data and variation in physical design and operating conditions, as described by design-variable vector μ, to
be useful in design optimization or other engineering tasks. The physical coordinate inputs are augmented
to include an evaluation of the SDF to provide global information about the domain at each point; this may
be viewed as a form of concatenation-based local conditioning as the SDF is a function of space over the
relevant domains. In addition to the SDF, the network predictions are globally conditioned upon the

1 See Equation 3 for SDF definition.

e5-2 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

design variables μ. Several different techniques for conditioning neural network predictions are used in
the literature (Dumoulin et al., 2018; Park et al., 2019; Perez et al., 2018; Xie et al., 2022) with
concatenation-based conditioning and the use of hypernetworks (Ha et al., 2016) explored here. The
method which utilizes concatenation-based conditioning is termed design-variable multilayer perceptron
(DV-MLP), while design-variable hypernetworks (DVH) of course utilize a hypernetwork structure.Most
conditioning schemes involve learning an additional embedding to condition the networks upon, whereas
here, the design variables and SDF are used instead; both of which are known once a design is selected,
simplifying the overall scheme.

The outline of the article is as follows: Background information relating to existing discretization-
dependent methods along with approaches for generalization and conditioning of predictions are given in
the remainder of the introduction, Sections 1.1–1.3. The proposed methods are treated in greater detail in
Section2.Numerical experiments for 2Dvehicle aerodynamicswith complex, realistic automotive shapes are
given in Sections 3 and 4. Section 3 provides a baseline result for single and multiple vehicle speeds, and
Section 4 explores the effects of using randomFourier features, where accuracy and generalization properties
are improved. Conclusions follow in Section 5, with additional information given in the Appendix.

1.1. Discretization-dependent methods

As a classical dimensionality-reduction technique, proper orthogonal decomposition (POD) has been used to
construct surrogate and reduced-ordermodels (Benner et al., 2015; Dolci andArina, 2016; Salmoiraghi et al.,
2018; Willcox and Peraire, 2002). Despite many attractive properties, conventional POD implementations
process discretized data and require the use of a fixed topologymesh across all parameter regimes, fixing the
number of degrees-of-freedom. This is restrictive in many engineering problems in which various solution
features (e.g., relativemotion of bodies, crack propagation, etc.)may emerge in different regions of parameter
space. Further, data may be available frommultiple sources with varying discretization andmesh topologies.
Other snapshot-based methods inherit these disadvantages, including autoencoders and their variants.

CNNs have been used to construct surrogate models for both steady-state (Bhatnagar et al., 2019; Guo
et al., 2016; Ronneberger et al., 2015; Tangsali et al., 2021; Thuerey et al., 2020) and time-varying
parametric problems (Hasegawa et al., 2020; Xu and Duraisamy, 2020) by including an additional time-
advance model such as a long short-term memory (LSTM) or temporal-convolutional network. However,
CNNs place even greater restrictions on the discretization than POD-based methods, requiring inputs and
outputs to be defined on regular Cartesian grids of consistent dimension for all parameter regimes.
Overcoming this restriction requires interpolation from the computational mesh to a Cartesian grid overlain
on the problem domain, equivalent to pixelization. The interpolation results in a number of undesirable
effects, including a reduced-fidelity representation of the domain geometry, and a loss of information in
regions of tightly clustered mesh points, such as within boundary layers, shocks, and wakes. CNN-based
models may then be conceptualized as image-to-image mappings, where researchers Guo et al. (2016) note
improved results when using a signed-distance field as the network input in contrast to a binarized
representation, inspiring its use as an additional input feature in this work for coordinate-based networks.

Another more problematic but surprisingly overlooked issue is that the memory requirements for 3D
convolutions, commonly implemented on a single GPU, are not affordable for typical resolutions in
realistic engineering problems. When taking mini-batch training into consideration, even storing the
output of one single hidden layer (a 5-dimensional tensor), requires memory typically on the order of
O 10ð Þ�O 102

� �
GB for a 3D Cartesian field with 40 million cells. As a result, most reported works using

3D CNNs for engineering problems are limited to below 5-6 million degrees of freedom (Mohan et al.,
2019; Santos et al., 2020) and often still require lossy interpolation (Gao et al., 2022).

1.2. Hypernetworks and methods for conditioning neural networks

Hypernetworks constitute a metamodeling approach where one neural network is used to generate the
weights of another main network (Ha et al., 2016) and are part of a broader class of proposed techniques

Data-Centric Engineering e5-3

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

where network weights are conditioned on model inputs or features (Bertinetto et al., 2016; Jaderberg
et al., 2015; Jia et al., 2016). Hypernetworks were originally applied to convolutional and recurrent neural
networks for image- and natural-language-processing tasks, with the goal of reducing the number of
trainable parameters while maintaining or improving model accuracy. The use cases for hypernetworks
have largely been the domain of computer science but lately have been applied to scientific machine
learning in some instances. Pan et al., 2023 leveraged a hypernetwork structure known as neural implicit
flow (NIF) to learn latent representations from turbulence on arbitrary meshes in a scheme similar to DVH
used here. HyperPINNs apply hypernetworks to physics-informed neural networks (PINNs) (Raissi et al.,
2019) for parametric PDE solutions of 1D-viscous Burgers and the Lorenz system, with improved
accuracy seen over baseline PINN models despite a smaller main network (de Avila Belbute-Peres
et al., 2021).

Other methods of conditioning include the use of feed-forward encoders, auto-decoders (Park et al.,
2019), concatenation-based conditioning, and feature-wise transformations (Dumoulin et al., 2018; Perez
et al., 2018). Hypernetworks are the most general conditioning method, as all the other methods may be
derived from a hypernetwork, which outputs only a portion of the network weights (Xie et al., 2022).
Further, the conditioning may be global or local. Global conditioning uses a single embedding for an
entire instance, whereas local conditioning uses an embedding which is itself a function of space over the
domain of interest. In this work, a combination of the two is used, where the inclusion of the SDF
coordinate may be viewed as local conditioning, while the use of design variables μ is a form of global
conditioning.

1.3. Other discretization-independent methods

In addition to neural fields, some graph neural networks (GNNs), point-cloud networks, and operator
regression methods also allow for discretization independence. GNNs have been developed to generalize
convolutional-like models to problems defined on non-Euclidean domains, or with non-regular Cartesian
structure. GNNs may be classified as either spectral (Bruna et al., 2014; Defferrard et al., 2016; Henaff
et al., 2015; Kipf andWelling, 2017) or spatial (Duvenaud et al., 2015) approaches, although the twomay
be generalized by the message-passing graph neural network (MPGNN) (Gilmer et al., 2017). Spectral
GNNs require a consistent discretization among all instances similar to POD, while MPGNNs allow the
meshes to vary. MPGNNs have been used for body-force predictions of aerodynamic flows (Ogoke et al.,
2021). Additionally, MPGNNs are used as a sub-component for certain learning and prediction schemes,
with a focus on PDEs in either a mesh-based (Pfaff et al., 2020; Xu et al., 2021) or mesh-free scenario
(Sanchez-Gonzalez et al., 2020) in addition to some neural operatormethods discussed later. Additionally,
Geodesic CNNs can handle varying mesh topologies and have been used for aerodynamics and
optimization (Baque et al., 2018), along with heat transfer through porous media (Mallya et al., 2023).

Point cloud neural networks are useful in situations in which the data is available in the form of
unstructured point clouds, such as the raw output of a LIDAR unit or other three-dimensional sensor. As
such they are often seen in the context of autonomous vehicles or robotic vision. PointNet (Qi, Su, et al.,
2017) and PointNet++ (Qi, Yi, et al., 2017) are architectures designed for point clouds and are used for
scene recognition, classification, and segmentation tasks. PointNet++ has been adapted in the context of
predicting viscous, incompressible flows over 2D shapes lying on unstructured meshes (Kashefi et al.,
2021).

Another class of relevant techniques capable of handling unstructured data includes operator-
regression methods, such as those based on DeepONet (Cai et al., 2021; Lu et al., 2021; Wang et al.,
2021), Neural Operator (Kovachki et al., 2023; Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, et al.,
2020; Li, Kovachki, Azizzadenesheli, Liu, Stuart, et al., 2020), and GMLS Nets (Trask et al., 2019).
DeepONet’s structure may be viewed as a partial hypernetwork for just the output layer and is thus similar
to what is pursued here with DVHs, with another major difference corresponding to hypernetwork
(branch network) inputs. The DeepONet branch network takes as input a sampling of input functions
across the domain, and in fact DeepONet is conceived in 1D with reference to an operator representation

e5-4 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

theorem, which further assumes the sensors have consistent sampling locations which span the domain.
Unstructured meshes with varying topology among instances generally do not have a shared set of points
to place sensors among all instances, complicating the use of DeepONet in the present scenario.

2. Methods

Engineering models are typically expressed as systems of PDEs describing the design under consider-
ation, with the highest-fidelity versions termed the full-order model (FOM). Quantities of interest (QoIs)
relevant to assessing the design are extracted from numerically generated FOMsolutions. In the context of
design, the FOMmay be parameterized by vector μ∈ℝnμ so that important and defining design elements
may be varied and the QoI response measured. Often, these variations include the shape or geometry of
some problem element, and these geometric design variables may be collected and represented as
μgeo ∈ℝnμgeo. These parameters are often used with and defined in the context of a separate parametric
geometry model, relating the design variables to the fine details of the physical design. In this work, the
design variables μ are used in place of a learned representation in order to condition predicted PDE
solutions q x;μð Þ∈ℝnq . Two methods of global conditioning are used, including concatenation-based
conditioning and the use of dense hypernetworks. Additionally, the signed-distance function f sdf x;Ωð Þ or
minimum distance function ϕ x;Ωð Þ are used as inputs to the main network as an implicit representation of
the domain geometry, along with the spatial coordinates x∈ℝnx . This may be viewed as a form of local
concatenation-based conditioning.

Consider FOMs for steady-state, parametric PDEs, written generally as

R x,q xð Þ,…;μð Þ¼ 0, x∈Ω μgeo
� �

, (2.1)

with boundary conditions prescribed as

B x,q xð Þ,…;μð Þ¼ 0, x∈∂Ω μgeo
� �

, (2.2)

where q is the solution state,Ω=∂Ω⊂ℝnx are the problem domain/boundary which are implicit functions
ofμgeo, x∈Ω are the spatial coordinates,R is the PDEoperator, andB is the boundary-condition operator.
The geometric design variables μgeo are included as part of μ, which may also contain PDE coefficients or
numerical values of boundary or operating conditions. In this context, the elements of μ apply to the entire
physical domain over which the FOM is solved, in contrast to problem scenarios involving spatially
distributed parameters, such as a thermal conductivity or another physical property.

2.1. Shape and scene representation via coordinate-based neural networks

Given a set of points representing a surface S¼ ∂V of an object V ∈ℝm inm-dimensional physical space,
the signed-distance function may be defined as

f sdf x;Sð Þ≜
ϕ x,Sð Þ x∉V

0 x∈S

�ϕ x,Sð Þ x∈V

,

8><
>: (2.3)

where

ϕ x,Sð Þ≜ inf
y∈S

d x,yð Þ (2.4)

is a minimum-distance function (MDF), and d �, �ð Þ is the Euclidean-distance function. Stated simply, the
SDF is theminimum distance between the field point x and the surfaceS in consideration. It takes positive
values for points outside the object (x∉V), negative values for points inside (x∈V), and is identically
zero on the surface.

Data-Centric Engineering e5-5

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

Coordinate-based MLPs have been used to represent 3D objects for rendering tasks. The object’s
surface is implicitly represented within a volumetric field; including as the zero-level-set of a directly
regressed signed-distance field (Davies et al., 2020; Park et al., 2019) or decision boundary (interior/
exterior) (Chen and Zhang, 2019; Mescheder et al., 2019), or as an emitted radiance and density/
differential-opacity field (Mildenhall et al., 2021). Many of these methods include loss terms describing
a rendering process, such that the entire image generation process contributes to the loss during training.
This concept may be generalized by implicit neural representations, introduced along with sin-activation
SIREN networks in by Sitzmann, Martel, et al. (2020), from which defining Equations (2.5) and (2.6) are
taken. In this setting, a function of interestΦwith input coordinates x, writtenΦ : x!Φ xð Þ, is defined by
a set of constraints C,

Cm x,a xð Þ,Φ,∇xΦ,∇2
xΦ,…

� �¼ 0,x∈Ωm, m¼ 1,…,M (2.5)

which optionally depend on the function valuesΦ, function gradients∇xΦ, and additional quantities a xð Þ
which are needed to compute the constraints. When a neural network N with parameters θ is used to
approximate Φ, then this is referred to as an implicit neural representation. To train the neural-network
approximation, a loss function with M terms is defined by penalizing deviation from the constraints,

L θð Þ¼
Z
Ω

XM
m¼1

1Ωm xð Þ∥Cm θ,x,a xð Þ,…ð Þ∥ dx, (2.6)

where the indicator function 1Ωm activates over valid locations within the domain Ωm. A key distinction
between this and other methods is that coordinate inputs x are taken pointwise, for example as a single
physical-coordinate-tuple x,y,zð Þ, instead of as entire-solution snapshots. Surprisingly, many problems
may be cast in this form, including as-discussed surface representation and variations on classic deep-
learning problems, such as classifyingMNIST hand-written digits. The approaches proposed in this work
may be viewed through this lens where the only constraint is that the predictions match the data,
recovering basic supervised regression. However, this does not directly align with the main thrust of
implicit neural representations, where an implicit function is regressed and additional constraints are
imposed.

Apopular approach to generalization across instances involves autodecoders such as DeepSDF, which
uses a form of concatenation-based conditioning, where concurrently learned embedding-vector zj is
concatenated with spatial coordinates x as network input (Park et al., 2019). This is a powerful concept, as
it allows for a single network to predict the SDF formany shapes, but it may come at the expense of blurred
fine-object details (Davies et al., 2020), along with the need to solve an optimization problem for zj in
order tomake predictions for an unseen case. An alternative to embedding vector concatenation is weight-
encoding (Davies et al., 2020), where a neural network is overfit to each shape separately without an
embedding vector. In this scenario, the weights themselves are viewed as the embedding. To make
predictions for a rendering, the weights for the shape under consideration are loaded and used. This
method may provide greater accuracy but has the additional complications of training a separate network
for each object and for loading and unloading weights. Additionally, this does not allow one to make
predictions for objects outside of the training set. This leads naturally to the concept of applying
hypernetworks to the coordinate-based MLPs as an alternative to training networks separately, an idea
explored briefly by Sitzmann, Chan, et al. (2020).

2.2. Problem setup

Denote the solution snapshot for a single instance j of the FOM as

Dj ≜ qijxif gnji¼1,μj
� �

, (2.7)

where the solution output-input pairs are defined at nj spatial (mesh) locations. Considering a dataset

D≜ D1,D2,…,DnDf g (2.8)

e5-6 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

containing nD snapshots, a distinctive feature of this approach is that each snapshot may correspond to a
solution domainwith different spatial extent and discretization, with varying number and location ofmesh
points. Models are sought which can approximate the solution snapshots stored in D, without interpol-
ation of ground-truth data or prediction. In otherwords, given the generative factors or design variables for
a problem μ∈M⊂ℝnμ , predict the system state q at any location x∈Ω μð Þ. Denote the input space as
x∈X ⊂ℝnx , and the output space as q∈Q⊂ℝnq .

The desired model should generalize across solution instances, and thus approximate the mapping
f :M ×X !Q, without direct knowledge of the system state. Note that this is in contrast to initial-value
problems, where the initial state to be integrated forward in time is necessary. The problems considered
may contain complex and variable geometry, the input space is augmented to include an additional
minimum-distance function coordinate, defined as

x0 ≜ xT , ϕ x;μð Þ� 	T
: (2.9)

In the scenarios considered, all mesh-distances are positive, so the use of MDF and SDF is equivalent.
This defines an augmented input space, X 0 ⊂ℝnx + 1, where x0 ∈X 0, and in turn, the desired mapping is

f :M ×X 0 !Q: (2.10)

The model approximation is then written as f x0;μð Þ≈ q̂ x0;μð Þ or just q̂ in compact notation. Each
design variable μ defines a spatial solution field over a domain, thus it is natural to condition the models
upon the design variables.

2.3. Method 1: design-variable MLP (DV-MLP)

DV-MLP uses concatenation-based conditioning to account for different solution instances, where the
augmented coordinates x0 are concatenated with the design variables μ. This is a from of global
conditioning as the same μ is used for all spatial locations for a given solution field. The main network
(denoted as Nm with weights θm) and resulting prediction are written as

q̂ x0,μð Þ¼Nm x0,μ;θmð Þ: (2.11)

Simple fully connected layers are used, where the hidden state of each layer has the same dimension or
number of nodes, and no skip or recurrent connections are used. See Figure 1a for a schematic.

2.4. Method 2: design-variable hypernetworks (DVH)

DVHgenerates the weights and biases of themain network θm using a dense hypernetwork which takes as
input the design variables μ. Davies et al. (2020) noted an autodecoder trained to represent many shapes
had marginally worse performance representing the fine-grain details of the objects as compared to over-
fitting a network on each case separately. In an effort to avoid this loss in fine-grain detail and to avoid
training a separate model for each case, a hypernetwork is used to generate main network weights θm for
each solution instance. The hypernetwork is written as

Figure 1. Network schematics for (a): DV-MLP and (b) DVH.

Data-Centric Engineering e5-7

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

θm μð Þ¼Nh μ;θhð Þ, (2.12)

and the main-network prediction written as

q̂ x0;θm μð Þð Þ¼Nm x0;θm μð Þð Þ, (2.13)

where θh and θm are the weights and biases of the hypernetwork and main network. In the following
experiments, simple MLPs are used for both the main network and hypernetwork. All of the weights and
biases contained in θm are generated at once as one large vector which is sliced and reshaped as required.
The training loss depends on the main-network predictions, but only the hypernetwork weights θh are
adjusted during training; the loss gradients are back-propagated through the hypernetwork. See Figure 1b
for a schematic. The use of a hypernetwork in this way is a form of global conditioning upon the design
variables μ.

2.4.1. Network-size scaling considerations
Dense hypernetworks have an important scaling consideration relating the number of trainable hypernet-
work parameters in θh to the size of the main network θm. Consider a main network with Lm hidden layers
each with a hidden dimensionH, and an analogous hypernetwork with hidden dimensionH except for the
final hidden layer which has dimension HL. Since all of the main network weights are generated at once,
the output layer of the hypernetwork has roughlyHL times as many weights as the main network. That is,

dim θhð Þ∝ dim θmð ÞHL ∝ LmH
2HL, (2.14)

showing that the total number of hypernetwork weights is linear in main-network depth Lm, quadratic in
main-network hidden dimensionH, and linear in hypernet-final-hidden dimensionHL. This is intuitive
given the use of dense layers throughout, but Equation 2.14 is developed in more detail in Appendix
Section A.1. Once a main network architecture is chosen with Lm and H selected, then HL is the
remaining term to be selectedwhich drives the number of weights, which of coursemust bemanaged for
the given training hardware and problem at hand, suggesting selectingHL <H. This leads to an encoder-
like interpretation for the hypernetwork, where the final hidden state is an HL-dimensional embedding
for a linear neural-network generator; the hypernetwork output layer. The interpretation exists regard-
less, even if HL ≥H, but the bottleneck structure brings it out and is reminiscent of autoencoder-style
models.

The scaling relationship of Equation 2.14 also highlights a difference between this and many other
hypernetworkmodels. Frequently, the goal is to reduce the number of trainable parameters in a givenmain
networkwhile retaining predictive accuracy,while here, the differences in accuracy and generalization are
studied between vector-embedded and weight-embedded coordinate-based networks. In the following
experiments, HL is chosen to be simply HL ¼H¼ 50, across main and hypernetworks, meaning that the
size of the DVH model is roughly 50 times larger than the DV-MLP model, as seen in Section A.2 of the
Appendix. This is taken into account by comparing the time and resources needed to train each type of
model while also assessing predictive accuracy. Further, the training methods which follow in Sec-
tion 2.4.2 are found to have a large impact on the required training time. Differing hypernetwork
architectures which reduce the number of trainable parameters are possible but are outside the scope of
this paper.

2.4.2. Training considerations
Equation 2.14 implies that the computational complexity of training DVH models may follow a similar
scaling relative to training DV-MLP models. This is investigated by considering two approaches for
training DVH models, with differences relating to details of model evaluation. Consider a minibatch j
consisting of N spatial locations drawn from each ofM solution instances. Represent the minibatch as a
tuple of tensors, Mj,Xj,Qj

� �
, where tensorMj holds hypernetwork inputs,Xj holds main network inputs,

e5-8 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

andQj holds the target solution variables. The tensor shapes vary between the following methods, which
are described below and represented in Figure 2.

• Method 1: Fully-Mixed Batches Minibatches are created, which consist of points from different
cases, with both the hypernetwork and main network forward-propagated for each data point,
meaning hypernetwork input vector μ is tiled across the mesh. In this scenario, all tensors have
two axes, dim Mj

� �¼ M ×Nð Þ× nμ, dim Xð Þ¼ M ×Nð Þ× nx0 , and dim Qð Þ¼ M ×Nð Þ× nq as shown
in Figure 2a. Let CM /CH be the cost for each the main and hypernetwork, then forward propagating
the minibatch is proportional to

CFM ∝ M ×Nð ÞCH + M ×Nð ÞCM (2.15)

The data are fully mixed by shuffling over all locations and solution instances used in building the
minibatch. The batch size then corresponds to the number of spatial locations where predictions are
sought.

• Method 2: Batch-by-Case This method takes advantage of the fact that design variables μ apply to
an entire solution instance and that the hypernetwork is a neural-network generator. A single forward
pass of the hypernetwork is combined with multiple forward passes of the main network for a given
number of spatial locations, all coming from the same solution instance, defined by μ. In this
scenario, the design-variable tensor has two axes, dim Mj

� �¼M × nμ, while the other tensors have
three; dim Xð Þ¼M ×N × nx0 and dim Qð Þ¼M ×N × nq, as represented in 2b. The complexity of
forward-propagating the minibatch scales as

CBC ∝M × CH + M ×Nð ÞCM : (2.16)

The batch size is then the number of cases per mini-batch, where the same number of spatial
locations N are evaluated for each case in each minibatch.

Comparing first terms between Equations 2.15 and 2.16 shows the batch-by-case first-term complexity
is reduced by a factor of N × CH due to the many fewer expensive hypernetwork calls. The actual
computational complexity will be measured through profiling in later sections.

3. Numerical experiments I: vehicle aerodynamics

External vehicle aerodynamics are considered, with parametric vehicle shapes lying on unstructured,
nonparametric meshes. The incompressible RANS equations were solved using Star CCM+ with the k-ε
turbulence model. The dataset—generated by General Motors, Inc.—consists of 2D slices along
the vehicle centerline for 124 unique vehicle shapes at speeds of 90 and 130 kilometers-per-hour

Figure 2. Illustrating the difference between (a) fully-mixed batches and (b) batch-by-case training
minibatches by considering the shape and dimension of the training arrays for a single batch j. Colors

correspond to data from a given case.

Data-Centric Engineering e5-9

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

(kph). The incompressible RANS equations are shown and discussed in greater detail in Appendix
Section A.5, including a discussion of nondimensional flow variables. The simulations utilize unstruc-
tured polyhedral meshes of varying size, with an example mesh shown in Figure 5a. Each vehicle shape is
parameterized by 8 geometric parameters as summarized in Table 1, with all 124 shapes overlain on one
set of axes in Figure 5b. The vehicle designs were selected using Latin hypercube sampling, and random
subsets of the dataset are chosen for training and validation.

The drag coefficient is an important quantity commonly used in assessing aerodynamic designs and is
given by

CD ¼ FD
1
2ρ∞u

2
∞A

, (3.1)

where FD is the drag force, consisting of pressure-force and skin-friction components, subscript ∞
corresponds to freestream conditions, and A is the frontal area. Only three of the design variables, the
windshield angle, vehicle length, and floor-to-roof height, are significantly correlated with CD, as shown
in Figure 3. The Pearson correlation coefficient for each is given on the plots, with a p-value p< 0:05 as the
criteria for determining significance. The floor-to-roof height shows the strongest correlation, with taller
vehicles having greater drag.

The flow field structure for all vehicles and both speeds is typical for a time-averaged vehicle wake.
Dominant features include a region of high pressure in front of the vehicle as the flow stagnates upon the
grille, a low pressure region on and above the vehicles roof, and a large separated wake behind the vehicle
as the pressure recovers to free-stream values, with a decaying free-shear layer emanating from the
vehicle’s rear-upper surface. The pressure forces on the vehicle contribute strongly to the drag, and thus,
examining the minimum and maximum pressures in the field gives insight to the variation in the dataset.
Scatter plots of themin/max dimensional and nondimensional static pressure are shown in Figure 4.When

Table 1. Description of entries in geometric design-variable-vector μgeo for the 2D vehicle
aerodynamics dataset

Design variable Units Range Design variable Units Range

Backlight angle Degrees 25,57½ � Windshield Angle Degrees 57,63½ �
Face lip angle Degrees 0,5½ � Hood Front Angle Degrees 10,20½ �
Angle of approach Degrees 15,25½ � Angle of Departure Degrees 15,25½ �
Vehicle length mm 3800,4900½ � Floor to Roof Height mm 1448,1788½ �

Figure 3. The drag coefficient versus significantly correlated design variables of windshield angle,
vehicle length, and floor-to-roof height. The Pearson correlation coefficient is reported in each subplot.

e5-10 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

dimensional static pressure is considered, the two left-most plots, the data are grouped by vehicle speed.
However, when nondimensional pressure is used, as with the two right-most plots, the distributions
collapse and one trend is observed for both vehicle speeds.

The computational fluid dynamics (CFD) meshes vary in size and topology, with the number of cells
ranging from 108,748 to 115,751. In all sections, a spatial batch size of 54,000 points is used, resulting in
twominibatches per case for a total of 108,000 mesh points used for each case. Mesh points are randomly
dropped from each solution as required to make the minibatches, corresponding to 0.7%–6.7% of the
points being left out for each training case. Reported training-error metrics include all mesh points, even if
they were dropped from the training set, with further discussion of this in Section 3.2. The effect of
varying spatial batch sizes is discussed in the Appendix, Section A.6.

The spatial input quantities are

x0 ¼ x,y,ϕ x,yð Þ½ �T ∈ℝ3, (3.2)

and the predicted state is

q¼ p x,yð Þ,u x,yð Þ,v x,yð Þ½ �T ∈ℝ3: (3.3)

The design-variable vectors differ slightly depending on the number of speeds considered and are
given as

Figure 4. The drag coefficient versus max/min dimensional static pressure, andmax/min nondimensional
static pressure.

Figure 5. Pertaining the training dataset, (a) an example unstructured CFD mesh and (b) a composite
image of all 124 vehicle shapes overlain on the same axes

Data-Centric Engineering e5-11

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

μ¼
μgeo ∈ℝ8 nspeeds ¼ 1,

Re ,μTgeo
h iT

∈ℝ9 nspeeds > 1:

8<
: (3.4)

All spatial and predicted state quantities in x0 and q are nondimensionalized according to Section A.5
of theAppendix. Nondimensional quantities and dimensional analysis arewidely used in fluidmechanics,
leading to satisfying similarity solutions and increased interpretability. Following nondimensionalization,
all input and output vectors are min–max normalized component-wise using training-set stats before use
with the neural networks. Details on this normalization and other implementation details related to
training and initialization are given in Appendix Section A.3. All reported errors are in the fully-
dimensional units of the state, with the exception of training curves which correspond to fully-normalized
quantities; see Section A.4 of the Appendix for error-metric definitions. Without normalization, the loss
and loss-gradients may be biased toward the state quantities with the largest unit-scale. Normalization
eases this problem and ensures that smaller output quantities are not ignored during training.

3.1. Model architecture and training options

In this section, 5-hidden-layer networks are used for both main and hypernetworks, each with a hidden
dimension of 50 for all layers. Model architecture summaries are given in Appendix Section A.2, with the
number of trainable weights for Section 3 given in Table 2. As noted in Section 2.4.1, the DVHmodel has
roughly HL ¼ 50 times as many trainable weights as the corresponding DV-MLP model, and the compu-
tational consequences of this are explored and quantified here through profiling. Three model-method
combinations are considered and include DV-MLP with its sole fully-mixed training mode, DVH method
1 (M1) fully mixed batches, and DVH method 2 (M2) batch-by-case. See Section 2.4.2 for greater detail.
The average step time, average compute time, and maximum memory usage during training among the
models and methods are reported in Table 3, where the spatial batch size is 54,000 points for DV-MLP and

Table 2. Number of trainable parameters for DV-MLP and DVH models for all baseline results of
Section 3, where H¼HL ¼ 50, Lm ¼LH ¼ 5

Trainable weights

Method Single speed Multiple speeds

DV-MLP 10,953 11,003
DVH 548,853 548,903

Table 3. Comparing training profiles among the models and training methods

Type Training method Precision Δt step [ms] Δt compute [ms] Max. Mem. [GB]

DV-MLP – float64 18.1 (0.2) 17.2 1.20
DV-MLP – float32 3.7 (0.1) 2.9 0.62
*DV-MLP – mixed 3.6 (0.5) 1.9 0.54
DVH M1 Fully-mixed float64 490.0 (1.6) 488.9 9.70
DVH M1 Fullymixed float32 55.6 (0.2) 54.4 4.85
DVH M1 Fully mixed mixed 40.5 (0.8) 37.5 2.66
DVH M2 Batch-by-case float64 20.1 (0.4) 18.7 0.72
*DVH M2 Batch-by-case float32 4.4 (0.1) 3.3 0.36
*DVH M2 Batch-by-case mixed 4.3 (0.4) 2.3 0.28

e5-12 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

DVH M1 and a corresponding case batch size of 1 for DVH M2. All profiled results were obtained using
tensorboard callbacks. Three different levels of precision are compared for each method, including
double precision (float64), single precision (float32), and mixed precision (combination of float32 and
float16). The reported values are averaged over the first 100minibatches for 100 epochs of training, and the
Δt step standard deviation is given in parentheses.

There are several important takeaways from these profiled results. First, the precision has a large
impact on the step-times and memory requirements, which decrease massively between float64 and
float32 in all instances. Subsequent smaller improvements are seen moving between float32 and mixed
precision. Next, M2 batch-by-case training decreases the step time and memory requirements by roughly
an order of magnitude as compared to M1 fully mixed for a given precision. Further, the DVH M2 step
times are comparable to the DV-MLP step times and consume less memory despite the much greater
parameter count. Two average times are given,Δt step, which includes all operations in a single optimizer
update, and Δt compute, which includes only GPU operations per update. Rows marked with an asterisk
(*) in Table 3 may benefit from improvements in the data pipeline, as the overhead associated with those
operations becomes appreciable as the Δt step times decrease.

When comparing the accuracy of the resulting fully trainedmodels, it was found that using single precision
generally improved the mean-relative-L2 error (MRL2E) by roughly 1–8 percentage points as compared to
mixed precision. The use of double precision negligibly improved the predictive performance beyond that
seen with single precision, and in some cases, single precision performed best overall. Thus, given the greatly
improved step times from double to single precision, and the smaller improvements afforded by using mixed
precision, all models in later sections are trained using single precision unless otherwise stated.

A piecewise learning-rate schedule was used for all experiments, consisting of periods of constant and
exponentially decaying learning rates. This was devised to combat large variation around training-loss
plateaus seen in some instances and stabilize DVHM1 training dynamics which showed large training-loss
fluctuations. Additionally, several influential, state-of-the-art works inmachine learning have used a similar
scheme whereby the learning rate is manually decreased by a factor of 10 when plateaus in the training loss
are observed, a process repeated up to three times (He et al., 2016; Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014). This aided model convergence, and it is now commonplace to start training with a large
initial learning ratewhich is decreased during a subsequent annealing period. The large initial learning rate is
thought to aid generalization (Y. Li et al., 2019),while it has been shown that the learning rate is proportional
to the variance of training-loss fluctuations around a local minima (Murata et al., 1996), providing a greater
rationale for an annealing period. To define the learning rate at optimizer-step i, written as α ið Þ, denote the
number of optimizer steps with constant learning rate as sc, the decay rate r, and decay steps as sd, then

α ið Þ ¼ α0 if i < sc
α0 × r i�scð Þ=sd if i ≥ sc

(3.5)

defines the learning rate schedule. The interpretation is that the learning rate will decrease by a factor of r
every sd steps when the exponential term is active. To convert between optimizer steps and dataset
iterations or epochs, use

s¼ nepochs × nupdates per epoch:

It is commonplace to use train-validation-test splits when training and evaluating neural networks. The
training set is used to perform optimizer updates, and the validation set is used to assess generalization
and/or over-fitting during training, while the test set is completely unobserved until after training is
complete. In this work, due to a limited number of available solutions, only training and validation groups
are used, without cross-validation or hyperparameter tuning.

3.2. Single vehicle speed

Training information is given in Table 4 where st is the total number of training steps, and the values
shown in parentheses are the corresponding number of epochs. Note that DVH M1 uses α0 ¼ 5× 10�5

Data-Centric Engineering e5-13

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

instead of α0 ¼ 1× 10�3 as reported in the table due to large instabilities which frequently resulted in
training-loss divergence with higher learning rates.

DV-MLP and DVH models are trained using Adam optimizer (Kingma and Ba, 2014) with default
options and single precision. In the case of DVH, both training methods described in Section 2.4.2 were
employed, where DVH M1/M2 correspond to methods 1 and 2, respectively. Table 5 presents error
metrics, revealing that DVH M2 performs best across the board, with both DVH methods having very
similar and lesser errors as compared to DV-MLP. DVH M2 slightly outperforms DVH M1 while
requiring significantly less training time, approximately 4.4 ms per optimizer step versus 40.5 ms, as
shown in Table 3.

Each model’s ability to infill or predict a training-group case at truncated spatial locations may be
evaluated since training cases had points randomly dropped out or truncated during minibatch construc-
tion. Error metrics were calculated separately for the truncated and retained locations, with the case-wise
mean-absolute error (MAE) for truncated locations plotted against that for retained locations in Figure 6
for DV-MLP and DVHM2. The dashed line is the identity line y xð Þ¼ x, meaning points which lie above
the dashed line correspond to truncated-point errors which are larger than those for the retained points, and
the opposite for points below the line. The points are generally located near the line, some above and some
below, indicating that the performance is very similar between the retained and truncated groups. This is
quantified in Table 6 where the mean error metrics for retained and truncated points are given separately,
while the training errors reported in Table 5 include all points for the instance. This shows that the error
metrics are nearly identical between the two groups for all models, demonstrating that the models are
effective in this in-filling scenario.

Pressure-field predictions near a validation-group vehicle are shown in Figure 7 for DV-MLP and
DVH M2, with predictions for all field variables over the full domain shown in the Appendix,

Table 4. Dataset and training options, where st is the total number of optimizer steps, and values in
parentheses are dataset iterations or epochs

Dataset options Learning rate schedule

vehicle speed 90 kph α0 1 × 10�3

training cases 99 r 0.1
validation cases 25 st 1,386,000 (7000)
spatial batch size 54,000 sc 198,000 (1000)
case batch size 1 sd 594,000 (3000)

Table 5. Summary of training and validation error metrics at a vehicle speed of 90 kph

q̂i Network type RMSE (train/val) MRL2E (train/val)

DV-MLP 11.5/12.6 4.75%/5.12%
p [Pa] DVH M1 8.7/11.5 3.60%/4.61%

DVH M2 8.1/9.9 3.34%/3.99%
DV-MLP 0.66/0.74 2.85%/3.18%

u [m/s] DVH M1 0.59/0.68 2.56%/2.92%
DVH M2 0.56/0.60 2.41%/2.59%
DV-MLP 0.41/0.49 9.94%/11.9%

v [m/s] DVH M1 0.34/0.47 8.28%/11.3%
DVH M2 0.27/0.38 6.72%/9.22%

e5-14 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

Section A.7. The error contour colorbars are limited to ± 4×RMSE centered on the average case error in
order to see more fine-grain detail. Infrequent, comparably large errors obscure these details in many
instances by skewing the colorbar, and points where the error is outside of this band are left white. The
pressure field predictions match the ground truth well, with the main features captured including the
high-pressure in front, the low-pressure due to flow acceleration on the roof, and the slowly recovering
pressure in the wake seen in the full-domain plots. Some distortion of the contour lines is present in the
predictions. The largest errors are seen near the vehicle surface, near the ground in front, and at locations
along the free-shear layer and in the wake. The accuracy in predicted pressure drag coefficients are
reported in Section 4.2.

3.3. Multiple speeds and generalization: low-data regime

The goal in situations such as surrogate-based design optimization is to obtain an accurate and general-
izable surrogate using the least amount of training data and resources. The effect of the training dataset
size on the generalization and convergence properties is explored by varying the number of available
training cases. Two vehicle speeds of 90 and 130 kph are used, giving a total of 248 available solution
instances. DV-MLP and DVH are compared while the number of training cases is varied from 5 to
199 instances, corresponding to training fractions ranging from 0.02 to 0.8. Training method 2 batch-by-
case is used to train DVH models given that similar or better accuracy may be obtained as compared to
fully-mixed training in a fraction of the time, as demonstrated for a single vehicle speed in Section 3.2. The
dataset and training options are given in Table 7. The number of epochs remains fixed, resulting in varying

Figure 6.Mean absolute errorover points truncated from training cases versus those retained and used in
training for DV-MLP and DVH M2 predictions for each field variable.

Table 6. Comparing training-case error metrics between points that are retained and actually used in
training versus those which are truncated

q̂i Network type RMSE (Retained/truncated) MRL2E (Retained/truncated)

DV-MLP 11.5/11.3 4.75%/4.66%
p [Pa] DVH M1 8.7/8.5 3.60%/3.49%

DVH M2 8.1/8.0 3.34%/3.27%
DV-MLP 0.66/0.66 2.85%/2.86%

u [m/s] DVH M1 0.59/0.60 2.55%/2.58%
DVH M2 0.56/0.56 2.41%/2.42%
DV-MLP 0.41/0.40 9.94%/9.88%

v [m/s] DVH M1 0.34/0.34 8.27%/8.20%
DVH M2 0.27/0.28 6.72%/6.76%

Data-Centric Engineering e5-15

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

learning rate schedule entries as the number of training cases is adjusted. Given a training fraction f train, the
number of training cases is chosen to be ceil f trainncasesð Þ, then the number of steps is given as

s¼ nepochs × ceil f trainncasesð Þ× nbatches per case: (3.6)

The number of epochs are given in Table 7 in parentheses and nbatchesper case ¼ 2.

Figure 7.Validation-group instance (a) ground-truth pressure field, (b) DV-MLP prediction, (c) DV-MLP
error, (d) DVH prediction, and (e) DV-MLP error. Error colorbars are limited to ± 4×RMSE centered on

the average error for the instance.

Table 7. Dataset and training options, where st is the total number of optimizer steps, and values in
parentheses are dataset-iterations or epochs

Dataset options Learning rate schedule

Vehicle speeds 90, 130 kph α0 1 × 10�3

Spatial Batch size 54,000 r 0.1
Cases total 248 st Equation 22 (3000)
Case batch size 1 sc Equation 22 (1000)
– – sd Equation 22 (1000)

e5-16 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

In the low-data regime, it is evident that neither model demonstrates strong generalization capabilities,
leading to a substantial disparity between training and validation losses. The effect ismore pronounced for
DV-MLP, as illustrated by the training curves in Figure 8. In the figure, the solid lines represent the
training loss, the dashed lines the validation loss, and darker lines correspond to a greater number of
training cases. It is worth noting that the training loss reaching a plateau at a higher valuewith less data can
be attributed, in part, to the fact that the number of epochs remains consistent rather than the number of
optimizer updates. This should be kept in mind while interpreting the results.

During training the best weights based on the validation loss are saved along with the final weights.
Figure 9a shows the MRL2E versus the number of training cases using the final weights for each flow
quantity. In the very low-data regime, a large gap between training and validation losses is seen for both
models, with DV-MLP exhibiting poorer performance. As the number of cases is increased, this gap is
closedmore quickly for DVH thanDV-MLP.When 199 cases are used, themodels perform similarly, with
a slight advantage observed for DVH. Similar plots are generated using the validation best weights, as
shown in Figure 9b. In this scenario, there is a smaller gap between the training and validation losses for
each model. However, a persistent gap between DVH and DV-MLP remains across all training fractions
considered, most notable for the y-velocity v.

Dimensional error metrics computed using the validation-best weights with 199 training instances,
corresponding to the rightmost point in Figure 9b, are reported for both DV-MLP and DVH in Table 8.
This shows that DVH performs best across the board, as expected. The RMSEs with two vehicle speeds
are larger than those reported for a single speed in Table 5, and this is due in part to the 130 kph solutions
having higher pressures and velocities than at 90 kph. To dig into this, the nondimensional and
dimensional error metrics are broken out by vehicle speed instead of the training group for DVH in
Table 9. This reveals that the nondimensional errors compare similarly for each vehicle speed but with
130 kph errors being slightly larger. The dimensional pressure errors for 90 kph lie between the training
and validation errors for DVH M2 at a single speed, while the velocity component errors are slightly
larger.

DVH pressure field predictions for a single vehicle shape at both 90 and 130 kph are shown in
Figure 10, where the 90 kph case is from the training set while the 130 kph case is from the validation set.
Good agreement between ground truth and prediction is seen at both speeds. Additional plots for
velocities u and v are shown in the Appendix Section A.7.2 with similar good agreement.

Figure 8. Training (solid) and validation (dashed) losses during training as the amount of training data is
varied from 5 to 199 cases, where darker lines correspond to more data, for (a) DV-MLP and (b) DVH.
The curves have been smoothed using a moving average with a window length of 3 epochs for DV-MLP

and 5 epochs for DVH.

Data-Centric Engineering e5-17

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

Figure 9.Comparing trends in predictive error using mean-relative-L2-error (MRL2E), with (a) the final
weights, and (b) the best weights per validation loss seen during training. The y-axis is not multiplied by

100%; therefore, 10�1 corresponds to 10% mean error in the state variable.

Table 8. Summary of training and validation error metrics for vehicle speeds of 90 and 130 kph with a
training fraction of 0.80

q̂i Network type RMSE (train/val) MRL2E (train/val)

p [Pa] DV-MLP 16.4/18.3 4.37%/4.69%
DVH M2 12.9/14.8 3.43%/3.72%

u [m/s] DV-MLP 0.78/0.83 2.75%/2.87%
DVH M2 0.61/0.65 2.14%/2.23%

v [m/s] DV-MLP 0.59/0.63 11.7%/12.2%
DVH M2 0.46/0.49 9.06%/9.40%

e5-18 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

4. Numerical Experiments II: effect of random fourier features

Spectral bias is a noted difficulty in training neural networks, where low-frequency signal content is
learned more quickly and readily than high-frequency content. Consequently, the networks exhibit a bias
toward low-frequency signal content (Rahaman et al., 2019). This issue may be addressed though the use

Table 9. Comparing DVH nondimensional and dimensional error metrics computed for each vehicle
speed separately with a training fraction of 0.80

RMSE MRL2E

q̂i Error type 90 kph 130 kph 90 kph 130 kph

p [�]/[Pa] Nondimensional 2:14 �10�2 2:30 �10�2 3.37% 3.61%
Dimensional 8.2 18.4 3.37% 3.61%

u [�]/[m/s] Nondimensional 1:99 �10�2 2:02 �10�2 2.15% 2.18%
Dimensional 0.50 0.73 2.15% 2.18%

v [�]/[m/s] Nondimensional 1:48 �10�2 1:54 �10�2 9.04% 9.22%
Dimensional 0.37 0.56 9.04% 9.22%

Figure 10.Pressure field ground truth, DVHprediction, and errors at 90 and 130 kph for the same vehicle
shape.

Data-Centric Engineering e5-19

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

of random Fourier features (Tancik et al., 2020) or positional encoding techniques (Mildenhall et al.,
2021). With these methods, the input coordinates are processed by sinusoidal terms of varying frequency
before being fed into the MLP. Given network inputs x, a Fourier-feature mapping is written as

γ xð Þ¼ a1cos 2πbT1x
� �

,a1 sin 2πbT1x
� �

,…,am cos 2πbTmx
� �

,am sin 2πbTmx
� �� 	T

, (4.1)

where coefficients ai, frequency-vectors bi, and their numberm are parameters of themapping. It has been
shown that the simple strategy of setting ai ¼ 1 and drawing each bi randomly from a sampling
distribution is an effective strategy in practice, with the width σ of the sampling distribution having
much greater importance than the distribution shape (Tancik et al., 2020). This width has a major impact
on the convergence and generalization properties of the network, with underfitting observed for σ “too
small” and overfitting observed for σ “too large.” Positional-encoding strategies are generally a special
case of Fourier features (Rahimi and Recht, 2007) where the frequencies are specified as a geometric
progression and applied along each input dimension xi separately (Mildenhall et al., 2021; Vaswani et al.,
2017). This may be written as

γ xið Þ¼ cos 20πxi
� �

, sin 20πxi
� �

,…, cos 2m�1πxi
� �

, sin 2m�1πxi
� �� 	

, (4.2)

wheremmay be set independently along each input axis. Another similar alternative includes the specific
weight-initialization of sin-activated SIREN networks (Sitzmann, Martel, et al., 2020). A downside to
random Fourier features is that the width σ and the number of featuresmmust generally be found by trial
and error or hyperparameter tuning. In all experiments, a zero-mean truncated isotropic Gaussian
sampling distribution is used, bi �N 0,σIð Þ, with σ¼ 3 for all results here. Samples greater than 2σ
from the mean are discarded. The number of features is selected to be m¼ 256, the same number of
features chosen in Tancik et al., 2020, despite the smaller hidden dimension of H¼ 50 used in
experiments here.

4.1. Model architectures and training options

The options and architectures of Section 3.1 are used again here but with the insertion of a random Fourier
feature layer after the input layer of the main network. Note that the Fourier layer does not contain any
trainable parameters; the sampled bi are fixed. Applying this to DVH is straightforward, and the same set
of random Fourier features are used for all main networks. However, Fourier features are not used in the
hypernetwork. For DV-MLP, Fourier features are applied only to spatial inputs x0. The resulting output
γ x0ð Þ is then concatenated with μ and passed into the MLP. Naively feeding all inputs through the Fourier
features resulted in poorly performing models, see Section A.8 of the Appendix.

Insertion of a random Fourier layer withm¼ 256 results in models withmore weights as compared to a
model without a random Fourier layer. This is because dim γ x0ð Þð Þ¼ 2m≫ dim x0ð Þ, leading tomanymore
parameters in the first layer of theMLP.Models are profiled with the addition of the Fourier-feature layer,
as shown in Table 10, with the number of trainable parameters given in Table 11 as compared against
Table 2. Double precision is not considered here due to the much greater training time. Additionally only
DVH training method 2 batch-by-case is considered due to the lessened training time and resources.

Table 10. Profiling DV-MLP and DVH models, which use random Fourier features, with single and
mixed precision

Type Precision Δt step [ms] Δt compute [ms] Max. Mem. [GB]

DV-MLP FF Single 5.0 (0.1) 4.2 0.85
DV-MLP FF Mixed 4.1 (0.2) 2.7 0.71
DVH M2 FF Single 5.4 (0.1) 4.5 0.55
DVH M2 FF Mixed 5.1 (0.5) 3.1 0.41

e5-20 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

4.2. Single vehicle speed

DV-MLP and DVH using random Fourier features are first trained on a single vehicle speed using the
same dataset and training options as given in Table 4. Error metrics are reported in Table 12, with the
corresponding percentage improvement in RMSE compared to the models without Fourier features
indicated in parentheses. With the use of Fourier features, DVH and DV-MLP exhibit similar perform-
ance, and DV-MLP is now best for several entries. For DV-MLP, this is a rather large improvement as the
errors are roughly halved for a 35% increase in training step time (from 3.7 ms to 5.0 ms) when using
single precision. DVH shows large but less significant improvements, with the training step time
increased by 23% (from 4.4 to 5.4 ms) when using single precision.

The pointwise absolute error probability distributions with and without Fourier features are visualized
using kernel density estimates, computed using the FFTKDE function of the python library KDEpy
(Odland, 2018) using the Silverman method for kernel bandwidth selection. Other implementations were
found to be very slow by comparison due to the large number of points:�11.1 million training and�2.8
million validation mesh points per vehicle speed. These are shown in Figure 11(a–c) for DV-MLP and
Figure 11(d–f) for DVH. In all instances, the absolute error distributions are narrowedwhen using Fourier
features, meaning smaller errors are more prevalent.

The MRL2E in computing the pressure drag coefficient is shown in Table 13 for both the Fourier
models of this section and the non-Fourier models of Section 3.2. DVHM2 FF shows the smallest overall
percent error over both the training and validation groups. In general, the Fourier models perform better
than the non-Fourier models, with the lone exception of the DVH M2 training group errors.

4.3. Multiple speeds and generalization: low-data regime

The impact of Fourier features on generalization in the low-data regime with multiple vehicle speeds is
studied here in an analogous fashion to Section 3.3. Dataset and training options of Table 7 apply.
Figure 12a shows the training and validation MRL2E for each output quantity as the number of training
instances is varied. As before, in the very-low data regime, there is a large gap between training and

Table 11. Number of trainable parameters for DV-MLP and DVH models for all Fourier-feature
results of Section 4, where H¼HL ¼ 50, Lm ¼LH ¼ 5

Trainable Weights

Method Single speed Multiple speeds

DV-MLP 36,403 36,453
DVH 1,846,803 1,846,853

Table 12. Summary of training and validation error metrics at a vehicle speed of 90 kph for models
using a Fourier-feature layer

RMSE MRL2E

q̂i Network type Train Val Train Val

p [Pa] DV-MLP FF 5.55 (51.7%) 7.37 (41.3%) 2.31% 2.96%
DVH M2 FF 4.53 (44.1%) 7.26 (26.6%) 1.88% 2.89%

u [m/s] DV-MLP FF 0.243 (63.3%) 0.30 (59.5%) 1.05% 1.29%
DVH M2 FF 0.236 (57.8%) 0.32 (47.3%) 1.02% 1.37%

v [m/s] DV-MLP FF 0.20 (49.6%) 0.27 (44.6%) 5.04% 6.58%
DVH M2 FF 0.22 (21.1%) 0.31 (19.5%) 5.32% 7.40%

Data-Centric Engineering e5-21

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

validation losses, withDV-MLP showing a greater disparity. However, as the number of training instances
is increased to around 40 the difference between DV-MLP and DVH is greatly reduced, and thereafter,
their performance is very similar to one another. Figure 12b shows the corresponding plots using the best
weights per validation loss. Without Fourier features there was a persistent gap between DVH and
DV-MLP, but when Fourier features are used this gap is more or less eliminated.

Dimensional error metrics computed using the validation-best weights with 199 training instances,
corresponding to the rightmost point in Figure 12b, are reported for both DV-MLP and DVH in Table 14.
The percentage improvement in RMSE as compared to a model without Fourier features is given in

Figure 11.DV-MLP (a–c) andDVH (d–f) single speed, pointwise absolute error probability distributions
with and without random Fourier features, computed using Gaussian kernel density estimates using

KDEpy python library .

Table 13. MRL2E (equivalent to mean-absolute-percent error) in predicting the pressure drag
coefficient over the training and validation groups for non-Fourier and Fourier-based models for a

single vehicle speed of 90 kph

Network type Train Val

DV-MLP 2.66% 2.45%
DVH M1 2.28% 2.72%
DVH M2 1.26% 2.39%
DV-MLP FF 1.43% 1.50%
DVH M2 FF 0.67% 1.30%

e5-22 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

Figure 12. Comparing trends in predictive error using mean-relative-L2-error (a), with (b) the final
weights, and (c) the best weights per validation loss seen during training. The y-axis is not multiplied by

100%, therefore 10�1 corresponds to 10% mean error in the state variable.

Table 14. Summary of training and validation error metrics for vehicle speeds of 90 and 130 kph with
a training fraction of 0.80, including the use of Fourier features. The percentage improvement when

using Fourier features is given in parentheses

RMSE MRL2E

q̂i Network type Train Val Train Val

p [Pa] DV-MLP FF 8.4 (48.7%) 10.2 (44.5%) 2.26% 2.63%
DVH M2 FF 7.6 (40.9%) 9.7 (34.4%) 2.05% 2.48%

u [m/s] DV-MLP FF 0.29 (63.2%) 0.33 (59.7%) 1.01% 1.14%
DVH M2 FF 0.28 (53.4%) 0.34 (47.3%) 0.99% 1.17%

v [m/s] DV-MLP FF 0.29 (51.2%) 0.31 (49.9%) 5.70% 6.13%
DVH M2 FF 0.32 (30.7%) 0.36 (26.5%) 6.28% 6.95%

Data-Centric Engineering e5-23

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

parentheses. As with a single vehicle speed, substantial improvements are seen for both DV-MLP and
DVH, with the effect larger for DV-MLP. Similarly to the single-speed scenario, DV-MLP now performs
best for several entries as well.

DVH predictions and errors of the x-velocity field at both speeds are shown in Figure 13, where neither
speed is included in the training dataset. The predicted fields match the ground truth well and capture the
dominant flow features including the small recirculating regions in front of the vehicle, acceleration and
flow turning over the roof, and a decaying free-shear layer in thewake. Similar plots for the pressure and y-
velocity predictions are given in the Appendix, Section A.9.

For further comparison, vertical line probes are placed near the vehicle,with one in front, one through the
vehicle’s highest point, and two in the wake. The probe in front of the vehicle is offset by 1m, while those in
the wake are offset by 1 and 3 m. The ground truth and DVH predictions with and without Fourier features
are interpolated from mesh points to the line probe locations using the griddata function from the
scipy.interpolate library, with the results shown in Figure 14. Generally, the line probe predictions
match the ground truth well, though some oscillation is present in the predictions. This is most prevalent for
the pressure probes in the vehicle wake, though the effect is more pronounced due to the x-axis limits.

Pointwise absolute error probability distributions for DV-MLP and DVH using Fourier features are
visualized in Figure 15 using kernel density estimates, again computed using the FFTKDE function of the

Figure 13. x-velocity ground truth, DVH prediction, and errors at 90 and 130 kph for the same vehicle
shape, where neither instance was included in the training set.

e5-24 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

python library KDEpy (Odland, 2018) using the Silverman method for kernel bandwidth selection. The
distribution shapes compare similarly for both network types, showing a peak and gradual trailing off as
the errors increase.

TheMRL2E in predicting the pressure drag coefficient using the Fourier models of this section and the
non-Fourier models of Section 3.3 are shown in Table 15. In general, the Fourier models slightly
outperform the non-Fourier models, with the lone exception being the validation set using DVH without
Fourier features.

5. Summary and conclusions

The past few years have witnessed significant activity in the use of neural networks to develop
surrogate representations of physical fields (e.g. Bhatnagar et al., 2019; Guo et al., 2016; Xu and

Figure 14. Line probes comparing baseline and Fourier feature DVH predictions for a validation-group
case at 90 kph.

Data-Centric Engineering e5-25

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

Duraisamy, 2020) on a given discretized mesh. The present work seeks the development of surrogate
models on unseenmeshes, mesh topologies, and geometries as a continuous field, allowing learning and
prediction on meshes with arbitrary discretization and topology. This is achieved through the use of
coordinate-based neural networks, which map between low-dimensional spaces, inspired by a line of
research involving scene and object representation for rendering tasks. Two methods of global
conditioning were compared, namely concatenation-based conditioning as in DV-MLP, and condition-
ing the network weights through a hypernetwork as with DVH. Input features include spatially varying
quantities, collected in x0, and non-spatially-varying design variables, collected in μ. The spatial
coordinates x are paired with a MDF evaluation ϕ x;μð Þ to implicitly encode the geometry, acting as
a form of local conditioning.

The utilization of batch-by-case training for DVHmodels significantly reduced the computational
cost associated with training. This approach led to a substantial decrease in step times and memory
consumption, approximately by an order of magnitude, compared to fully-mixed training when
considering a backend precision policy. This training method enabled DVHmodels with significantly
more parameters to be trained in a comparable amount of time as DV-MLP models. The effectiveness
of DVH and DV-MLP was evaluated in the context of a challenging vehicle aerodynamics problem,
utilizing realistic vehicle shapes with solutions lying on unstructured meshes of variable topology.
Baseline results indicated that DVH consistently outperformed DV-MLP by a few percentage
points, while also demonstrating superior convergence and generalization properties in the low data
regime.

By incorporating a random Fourier features layer to process the spatially varying inputs x0, the RMSEs
were significantly reduced by approximately 40–60% with greater improvements seen for DV-MLP as

Figure 15. Comparing DV-MLP and DVH pointwise absolute error probability distributions using
random Fourier features, computed using Gaussian kernel density estimates.

Table 15. MRL2E (equivalent to mean-absolute-percent error) in predicting the
pressure drag coefficient over the training and validation groups for non-Fourier

and Fourier-based models for multiple vehicle speeds of 90 and 130 kph

Network type Train Val

DV-MLP 2.65% 3.30%
DVH 1.20% 1.54%
DV-MLP FF 1.90% 2.29%
DVH FF 1.05% 1.58%

e5-26 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

compared to DVH. In this scenario, DV-MLP results were improved so substantially that the performance
gap between DVH and DV-MLP was essentially closed, including the convergence and generalization
properties in the low-data regime. Both DVH and DV-MLP exhibited strong generalization capabilities
when multiple vehicle speeds were considered, with minimal disparities between training and validation
errors. The pressure field errors were near 2%, x-velocity errors around 1%, and y-velocity errors around
6–7%. The pressure drag coefficients were also very well predicted, with the best models have an error of
1–2%. The main features of the flow fields were well-captured, with the largest errors often clustering in
regions close to the vehicle, in the fine details of the grill, and along the free-shear layer of the wake. Line
probes showed some oscillation in the network predictions compared to the ground truth, consistent with
discrepancies seen in the contour levels. Several researchers have noted the effectiveness of positional
encoding techniques in a variety of problem scenarios (Mildenhall et al., 2021; Vaswani et al., 2017;
Zhong et al., 2019). The success of the techniques may be explained using Neural Tangent Kernel theory
(Jacot et al., 2018), where the use of random Fourier features results in a stationary, shift-invariant kernel
with a tunable bandwidth controlled by sampled frequency vectors bi (Tancik et al., 2020). However, this
result is in the context of dense, nearly uniform sampling of input coordinates without an additional
signed-distance input, and further study is warranted in the current scenario with unstructured, non-
uniform meshes.

The results suggest that both methods can be accurate and effective alternatives to CNNs for surrogate
modeling of PDE solution fields over complex geometries and arbitrary mesh topologies. It is again
emphasized that CNNs typically require a fixed grid topology and have a large memory footprint for 3D
problems since the entire grid is an input. In contrast, coordinate-based networks take pointwise
information and design variables as inputs, allowing model size and memory requirements to be
decoupled from the solution field degrees-of-freedom.

Acknowledgements. Special thanks to Dr. Shaowu Pan of Rensselaer Polytechnic Institute who helped guide the early stages of
this research and contributed to important discussion relating to memory requirements for CNNs.

Data availability statement. Code for model implementations may be found at https://github.com/jamesduv/DISMv2. The
vehicle aerodynamics dataset is proprietary to General Motors and cannot be made public.

Author contribution. J.D.: Conceptualization, data curation, formal analysis, investigation, methodology, software, validation,
visualization, writing—original draft. K.D.: Conceptualization, funding acquisition, methodology, project administration,
resources, supervision, writing—review & editing.

Funding statement. This work is funded by General Motors, Inc. under a contract titled “Deep Learning and Reduced Order
Modeling for Automotive Aerodynamics,” and by Advanced Research Projects Agency-Energy (ARPA-E) DIFFERENTIATE
programunder the project “Multi-source Learning-acceleratedDesign ofHigh-efficiencyMulti-stageCompressor,” in collaboration
with Raytheon Technologies Research Center (RTRC). Computing resources were provided in part by the NSF via grant 1531752
MRI: Acquisition of Conflux, A Novel Platform for Data-Driven Computational Physics.

Competing interest. The authors declare none.

References
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G, Davis A, Dean J, Devin M, Ghemawat S,

Goodfellow I,HarpA, IrvingG, IsardM, JiaY, Jozefowicz R,Kaiser L,KudlurM,…ZhengX. (2015) TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems [Software available from tensorflow.org]. https://www.tensorflow.org/

Arroyo CP, Dombard J, Duchaine F, Gicquel L, Martin B, Odier N and Staffelbach G (2021) Towards the large-eddy
simulation of a full engine: Integration of a 360Azimuthal degrees fan, compressor and combustion chamber. part i:Methodology
and initialisation. Journal of the Global Power and Propulsion Society (May), 1–16. https://doi.org/10.33737/jgpps/133115

Baque P, Remelli E, Fleuret F and Fua P (2018) Geodesic convolutional shape optimization. International Conference on
Machine Learning, 80, 472–481.

Benner P Gugercin S and Willcox K (2015) A survey of projection-based model reduction methods for parametric dynamical
systems. SIAM Review 57(4), 483–531. https://doi.org/10.1137/130932715

Bertinetto L,Henriques JF,Valmadre J, Torr P and Vedaldi A (2016) Learning feed-forward one-shot learners. In Proceedings
of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates,
pp. 523–531.

Data-Centric Engineering e5-27

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://github.com/jamesduv/DISMv2
https://www.tensorflow.org
https://www.tensorflow.org/
https://doi.org/10.33737/jgpps/133115
https://doi.org/10.1137/130932715
https://doi.org/10.1017/dce.2024.21

Bhatnagar S, Afshar Y, Pan S, Duraisamy K and Kaushik S (2019) Prediction of aerodynamic flow fields using convolutional
neural networks. Computational Mechanics 64(2), 525–545. https://doi.org/10.1007/s00466-019-01740-0

Bruna J, Zaremba W, Szlam A and LeCun Y (2014) Spectral networks and locally connected networks on graphs. https://doi.
org/10.48550/arXiv.1312.6203

Cai S,Wang Z, Lu L, Zaki TA and Karniadakis GE (2021) Deepm&mnet: Inferring the electroconvection multiphysics fields
based on operator approximation by neural networks. Journal of Computational Physics 436, 110296. https://doi.org/10.1016/j.
jcp.2021.110296

Chen Z and Zhang H (2019) Learning implicit fields for generative shape modeling. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). Long Beach, CA: CVF, pp. 5939–5948.

Davies T, Nowrouzezahrai D and Jacobson A (2020) On the effectiveness of weight-encoded neural implicit 3D shapes. arXiv
preprint arXiv:2009.09808. https://doi.org/10.48550/arXiv.2009.09808

de Avila Belbute-Peres F, Chen Y-f and Sha F (2021) Hyperpinn: Learning parameterized differential equations with physics-
informed hypernetworks. The Symbiosis of Deep Learning and Differential Equations, 690.

Defferrard M, Bresson X and Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral
filtering. InProceedings of the 30th International Conference onNeural Information Processing Systems. RedHook,NY:Curran
Associates, pp. 3844–3852.

Dolci V and Arina R (2016) Proper orthogonal decomposition as surrogate model for aerodynamic optimization. International
Journal of Aerospace Engineering 2016. https://doi.org/10.1155/2016/8092824

Dumoulin V, Perez E, Schucher N, Strub F,Vries H d,Courville A. and Bengio Y (2018) Feature-wise transformations.Distill.
https://distill.pub/2018/feature-wise-transformations. https://doi.org/10.23915/distill.00011

Duvenaud DK,Maclaurin D, Iparraguirre J, Bombarell R,Hirzel T, Aspuru-Guzik A and Adams RP (2015) Convolutional
networks on graphs for learning molecular fingerprints. In Proceedings of the 28th International Conference on Neural
Information Processing Systems—Volume 2. Cambridge, MA: MIT Press, pp. 2224–2232.

Gao F,Zhang Z, Jia C,ZhuY,ZhouC andWang J (2022) Simulation and prediction of threedimensional rotating flows based on
convolutional neural networks. Physics of Fluids 34(9), 095116. https://doi.org/10.1063/5.0113030

Gilmer J, Schoenholz SS, Riley PF, Vinyals O and Dahl GE (2017) Neural message passing for quantum chemistry. In
Proceedings of the 34th International Conference on Machine Learning—Volume 70. Sydney, NSW: JMLR, pp. 1263–1272.

Glorot X and Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In Y. W. Teh and M.
Titterington (Eds.), Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(pp. 249–256). PMLR. https://proceedings.mlr.press/v9/glorot10a.html

Guo X, Li W, and Iorio F (2016) Convolutional neural networks for steady flow approximation. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 481–490. https://doi.
org/10.1145/2939672.2939738

Ha D, Dai A and Le QV (2016) Hypernetworks. arXiv preprint arXiv:1609.09106. https://doi.org/10.48550/arXiv.1609.09106
HasegawaK, Fukami K,Murata Tand Fukagata K (2020) Machine-learning-based reduced-order modeling for unsteady flows

around bluff bodies of various shapes. Theoretical and Computational Fluid Dynamics 34, 367–383.
He K, Zhang X, Ren S and Sun J (2016) Deep residual learning for image recognition. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) pp. 770–778. https://doi.org/10.1109/CVPR.2016.90
Henaff M, Bruna J and LeCun Y (2015) Deep convolutional networks on graph-structured data. https://doi.org/10.48550/

arXiv.1506.05163
Jacot A,Gabriel F andHongler C (2018) Neural tangent Kernel: Convergence and Generalization in Neural Networks, pp. 8580–

8589. https://proceedings.neurips.cc/paper/8076-neural-tangen-kernel-convergence-and-generalization-in-neural-networks.pdf
JaderbergM, SimonyanK,ZissermanA andKavukcuoglu K (2015) Spatial transformer networks. Advances in Neural Information

Processing Systems 28. https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
Jia X, De Brabandere B, Tuytelaars T and Gool LV (2016) Dynamic filter networks. In D. Lee, M. Sugiyama, U. Luxburg, I.

Guyon and R. Garnett (eds.), Advances in Neural Information Processing Systems. Curran Associates, Inc. https://proceedings.
neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf

Kashefi A,Rempe D andGuibas LJ (2021) A point-cloud deep learning framework for prediction of fluid flow fields on irregular
geometries. Physics of Fluids, 33(2).https://doi.org/10.1063/5.0033376

Kingma DP and Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. https://doi.
org/10.48550/arXiv.1412.6980

Kipf TN and Welling M (2017) Semi-Supervised Classification with Graph Convolutional Networks. https://doi.org/10.48550/
arXiv.1609.02907

Kovachki NB, Li Z, Liu B, Azizzadenesheli K, Bhattacharya K, Stuart AM and Anandkumar A (2023) Neural operator:
Learning maps between function spaces with applications to PDES. Journal of Machine Learning Research 24(89), 1–97. http://
jmlr.org/papers/v24/21-1524.html

Krizhevsky A, Sutskever I and Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Advances in
Neural Information Processing Systems 25. https://proceedings.neurips.cc/paper_files/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

e5-28 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.48550/arXiv.1312.6203
https://doi.org/10.48550/arXiv.1312.6203
https://doi.org/10.1016/j.jcp.2021.110296
https://doi.org/10.1016/j.jcp.2021.110296
https://arxiv.org/abs/2009.09808
https://doi.org/10.48550/arXiv.2009.09808
https://doi.org/10.1155/2016/8092824
https://distill.pub/2018/feature-wise-transformations
https://doi.org/10.23915/distill.00011
https://doi.org/10.1063/5.0113030
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1145/2939672.2939738
https://arxiv.org/abs/1609.09106
https://doi.org/10.48550/arXiv.1609.09106
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1506.05163
https://doi.org/10.48550/arXiv.1506.05163
https://proceedings.neurips.cc/paper/8076-neural-tangen-kernel-convergence-and-generalization-in-neural-networks.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf
https://doi.org/10.1063/5.0033376
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1609.02907
http://jmlr.org/papers/v24/21-1524.html
http://jmlr.org/papers/v24/21-1524.html
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1017/dce.2024.21

Kutz JN, Brunton SL, Brunton BWand Proctor JL (2016) Dynamic Mode Decomposition: Data-Driven Modeling of Complex
Systems. SIAM.

Lecun Y, Bottou L,Bengio Yand Haffner P (1998) Gradient-based learning applied to document recognition. Proceedings of the
IEEE 86(11), 2278–2324. https://doi.org/10.1109/5.726791

Li Y, Wei C and Ma T (2019) Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training neural
Networks. https://proceedings.neurips.cc/paper/2019/file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf

Li ZKovachki N,Azizzadenesheli K,Liu B,Bhattacharya K, Stuart A and Anandkumar A (2020) Fourier neural operator for
parametric partial differential equations. arXiv preprint arXiv:2010.08895. https://doi.org/10.48550/arXiv.2010.08895

Li Z, Kovachki N, Azizzadenesheli K, Liu B, Stuart A, Bhattacharya K and Anandkumar A (2020) Multipole graph neural
operator for parametric partial differential equations. In Proceedings of the 34th International Conference on Neural Information
Processing Systems. Red Hook, NY: Curran Associates.

Lu L, Jin P, Pang G, Zhang Z and Karniadakis GE (2021) Learning nonlinear operators via deep-onet based on the universal
approximation theorem of operators. Nature Machine Intelligence 3(3), 218–229. https://doi.org/10.1038/s42256-021-00302-5

Mallya N, Baqué P, Yvernay P, Pozzetti A, Fua P and Haussener S (2023) Geodesic convolutional neural network character-
ization of macro-porous latent thermal energy storage. ASME Journal of Heat and Mass Transfer 145(5), 052902. https://doi.
org/10.1115/1.4056663

Mescheder L, Oechsle M, Niemeyer M, Nowozin S and Geiger A (2019) Occupancy networks: Learning 3D reconstruction in
function space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470.
https://openaccess.thecvf.com/content_CVPR_2019/papers/Mescheder_Occupancy_Networks_Learning_3D_Reconstruction_
in_Function_Space_CVPR_2019_paper.pdf

Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R and Ng R (2021) Nerf: Representing scenes as neural
radiance fields for view synthesis. Communications of the ACM 65(1), 99–106. https://doi.org/10.1145/3503250

MohanA,Daniel D,ChertkovMandLivescu D (2019) Compressed convolutional lstm: An efficient deep learning framework to
model high fidelity 3D turbulence. arXiv preprint arXiv:1903.00033. https://api.semanticscholar.org/CorpusID:119353217

Murata N,Müller K-R,Ziehe A and Amari S-i (1996) Adaptive on-line learning in changing environments. Mozer M, Jordan M
and Petsche T. (eds.), Advances in Neural Information Processing Systems, 9. https://proceedings.neurips.cc/paper_files/paper/
1996/file/0e095e054ee94774d6a496099eb1cf6a-Paper.pdf

Odland T (2018) Tommyod/kdepy: Kernel density estimation in python (Version v0.9.10). Zenodo. https://doi.org/10.5281/
zenodo.2392268

Ogoke F,Meidani K,Hashemi A and Farimani AB (2021) Graph convolutional networks applied to unstructured flow field data.
Machine Learning: Science and Technology 2(4), 045020. https://doi.org/10.1088/2632-2153/ac1fc9

Pan S, Brunton SL and Kutz JN (2023) Neural implicit flow: A mesh-agnostic dimensionality reduction paradigm of spatio-
temporal data. Journal of Machine Learning Research 24(41), 1–60. http://jmlr.org/papers/v24/22-0365.html

Park JJ, Florence P, Straub J,Newcombe R andLovegrove S (2019) Deepsdf: learning continuous signed distance functions for
shape representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 165–174. https://doi.org/10.1109/CVPR.2019.00025

Perez E, Strub F, de Vries H, Dumoulin V and Courville A (2018) Film: visual reasoning with a general conditioning layer. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial
Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. New Orleans, LA:
AAAI Press, p. 483.

Pfaff T, Fortunato M, Sanchez-Gonzalez A and Battaglia P W (2020) Learning mesh-based simulation with graph networks.
arXiv preprint arXiv:2010.03409. https://doi.org/10.48550/arXiv.2010.03409

Qi CR, Su H, Mo K and Guibas LJ (2017) Pointnet: Deep learning on point sets for 3D classification and segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, pp. 652–660.

Qi CR,Yi L, SuH and Guibas LJ (2017) Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances
in Neural Information Processing Systems 30. https://proceedings.neurips.cc/paper_files/paper/2017/file/
d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf

Rahaman N, Baratin A, Arpit D, Draxler F, Lin M, Hamprecht F, Bengio Y and Courville A (2019) On the spectral bias of
neural networks. International Conference on Machine Learning 5301–5310. http://proceedings.mlr.press/v97/rahaman19a/
rahaman19a.pdf

Rahimi A andRecht B (2007)RandomFeatures for Large-Scale Kernel Machines. Platt J, Koller D, Singer YandRoweis S (Eds.).
20. https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf

Raissi M, Perdikaris P and Karniadakis GE (2019) Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378,
686–707. https://doi.org/10.1016/j.jcp.2018.10.045

Ronneberger O, Fischer P and Brox T (2015) u-net: Convolutional networks for biomedical image segmentation. In Medical
Image Computing and Computer-Assisted Intervention–MICCAI2015, pp. 234–241. https://doi.org/10.1007/978-3-319-24574-
4_28

Data-Centric Engineering e5-29

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1109/5.726791
https://proceedings.neurips.cc/paper/2019/file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf
https://arxiv.org/abs/2010.08895
https://doi.org/10.48550/arXiv.2010.08895
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1115/1.4056663
https://doi.org/10.1115/1.4056663
https://openaccess.thecvf.com/content_CVPR_2019/papers/Mescheder_Occupancy_Networks_Learning_3D_Reconstruction_in_Function_Space_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Mescheder_Occupancy_Networks_Learning_3D_Reconstruction_in_Function_Space_CVPR_2019_paper.pdf
https://doi.org/10.1145/3503250
https://arxiv.org/abs/1903.00033
https://api.semanticscholar.org/CorpusID:119353217
https://proceedings.neurips.cc/paper_files/paper/1996/file/0e095e054ee94774d6a496099eb1cf6a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/0e095e054ee94774d6a496099eb1cf6a-Paper.pdf
https://doi.org/10.5281/zenodo.2392268
https://doi.org/10.5281/zenodo.2392268
https://doi.org/10.1088/2632-2153/ac1fc9
http://jmlr.org/papers/v24/22-0365.html
https://doi.org/10.1109/CVPR.2019.00025
https://arxiv.org/abs/2010.03409
https://doi.org/10.48550/arXiv.2010.03409
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
http://proceedings.mlr.press/v97/rahaman19a/rahaman19a.pdf
http://proceedings.mlr.press/v97/rahaman19a/rahaman19a.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1017/dce.2024.21

Salmoiraghi F, Scardigli A, Telib H and Rozza G (2018) Free-form deformation, mesh morphing and reduced-order methods:
Enablers for efficient aerodynamic shape optimisation. International Journal of Computational Fluid Dynamics 32(4–5),
233–247. https://doi.org/10.1080/10618562.2018.1514115

Sanchez-Gonzalez A,Godwin J,Pfaff T,YingR,Leskovec J, andBattaglia P (2020) Learning to simulate complex physics with
graph networks. In Proceedings of the 37th International Conference onMachine Learning, pp. 8459–8468. https://proceedings.
mlr.press/v119/sanchez-gonzalez20a.html

Santos JE, Xu D, Jo H, Landry CJ, Prodanovic M and Pyrcz MJ (2020) Poreflow-net: A 3d convolutional neural network to
predict fluid flow through porous media. Advances in Water Resources 138, 103539. https://doi.org/10.1016/j.advwa-
tres.2020.103539

Schmid PJ (2022) Dynamic mode decomposition and its variants. Annual Review of Fluid Mechanics 54, 225–254. https://doi.
org/10.1146/annurev-fluid-030121-015835

Simonyan K and Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:
1409.1556. https://doi.org/10.48550/arXiv.1409.1556

Sitzmann V, Chan E, Tucker R, Snavely N and Wetzstein G (2020) Metasdf: Meta-learning signed distance functions. In
Larochelle H, Ranzato M, Hadsell R, Balcan M and Lin H (eds.), Advances in Neural Information Processing Systems. Curran
Associates, Inc, pp. 10136–10147. https://proceedings.neurips.cc/paper_files/paper/2020/file/
731c83db8d2ff01bdc000083fd3c3740-Paper.pdf

Sitzmann V, Martel J, Bergman A, Lindell D and Wetzstein G (2020) Implicit neural representations with periodic activation
functions. Advances in Neural Information Processing Systems 33, 7462–7473. https://proceedings.neurips.cc/paper_files/
paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf

TancikM, Srinivasan P,Mildenhall B,Fridovich-Keil S,RaghavanN,Singhal U,Ramamoorthi R,Barron J andNgR (2020)
Fourier features let networks learn high frequency functions in low dimensional domains. In Proceedings of the 34th
International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates, p. 632.

Tangsali K, Krishnamurthy VR and Hasnain Z (2021) Generalizability of convolutional encoder-decoder networks for
aerodynamic flow-field prediction across geometric and physical-fluidic variations. Journal of Mechanical Design 143(5).
https://doi.org/10.1115/1.4048221

Thuerey N,Weißenow K, Prantl L and Hu X (2020) Deep learning methods for reynolds-averaged navier–stokes simulations of
airfoil flows. AIAA Journal 58(1), 25–36. https://doi.org/10.2514/1.J058291

Trask N, Patel RG, Gross BJ and Atzberger PJ (2019) Gmls-nets: A framework for learning from unstructured data. arXiv
preprint arXiv:1909.05371. https://doi.org/10.48550/arXiv.1909.05371

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł and Polosukhin I (2017) Attention is all you
need. In Guyon I, Luxburg U, Bengio S, Wallach H, Fergus R, Vishwanathan S and Garnett R (eds.), Advances in Neural
Information Processing Systems. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Vincent P, Larochelle H, Bengio Y and Manzagol P-A (2008) Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th International Conference on Machine Learning. pp. 1096–1103.

Wang S,WangH and Perdikaris P (2021) Learning the solution operator of parametric partial differential equations with physics-
informed deeponets. Science Advances 7(40), eabi8605. https://doi.org/10.1126/sciadv.abi8605

Willcox K and Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA Journal 40(11),
2323–2330. https://doi.org/10.2514/2.1570

XieY,TakikawaT, Saito S,LitanyO,YanS,KhanN,Tombari F,Tompkin J, sitzmannVand Sridhar S (2022) Neural fields in
visual computing and beyond. Computer Graphics Forum 41(2), 641–676. https://doi.org/10.1111/cgf.14505

Xu J and Duraisamy K (2020) Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal
dynamics. Computer Methods in Applied Mechanics and Engineering 372, 113379. https://doi.org/10.1016/j.cma.2020.113379

Xu J, Pradhan A and Duraisamy K (2021) Conditionally parameterized, discretization-aware neural networks for mesh-based
modeling of physical systems. Advances in Neural Information Processing Systems 34, 1634–1645. https://openreview.net/
forum?id=0yMGEUQKd2D

ZhongED,Bepler T,Davis JH andBerger B (2019) Reconstructing continuous distributions of 3d protein structure from cryo-em
images. In International Conference on Learning Representations. https://api.semanticscholar.org/CorpusID:204806091

Appendix

A.1. Network scaling: further details
Considering a main network with Lm hidden layers, each with hidden dimension H, the total number of weights in the main
network is

dim θmð Þ¼ Hnx0 +Hð Þ+ Lm�1ð Þ H2 +H
� �

+ nqH + nq
� �

, (A.1)

e5-30 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1080/10618562.2018.1514115
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://doi.org/10.1016/j.advwatres.2020.103539
https://doi.org/10.1016/j.advwatres.2020.103539
https://doi.org/10.1146/annurev-fluid-030121-015835
https://doi.org/10.1146/annurev-fluid-030121-015835
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://proceedings.neurips.cc/paper_files/paper/2020/file/731c83db8d2ff01bdc000083fd3c3740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/731c83db8d2ff01bdc000083fd3c3740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://doi.org/10.1115/1.4048221
https://doi.org/10.2514/1.J058291
https://arxiv.org/abs/1909.05371
https://doi.org/10.48550/arXiv.1909.05371
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.2514/2.1570
https://doi.org/10.1111/cgf.14505
https://doi.org/10.1016/j.cma.2020.113379
https://openreview.net/forum?id=0yMGEUQKd2D
https://openreview.net/forum?id=0yMGEUQKd2D
https://api.semanticscholar.org/CorpusID:204806091
https://doi.org/10.1017/dce.2024.21

where the first term corresponds to the first hidden layer, the second term to all remaining hidden layers, and the final term the output
layer. With low-dimensional input and output spaces, typically nx0 ,nμ,nq < <H, thus quadratic H2 terms dominate, leading to
simplifying approximations

dim θmð Þ≈ Lm�1ð ÞH2 +O Hð Þ≈LmH2 +O Hð Þ: (A.2)

Next consider a hypernetwork with Lh hidden layers, where the first Lh�1 layers also have a hidden dimension ofH, while the
final hidden layer has dimension HL . The total number of weights in the hypernetwork is

dim θhð Þ¼ Hnμ +H
� �

+ Lh�2ð Þ H2 +H
� �

+ HLH +HLð Þ+ dim θmð ÞHL + dim θmð Þð Þ, (A.3)

where the terms are again in forward-propagation order. Retaining quadratic terms leads to the approximation

dim θhð Þ≈ Lh�2ð ÞH2 +HLH + dim θmð Þ HL + 1ð Þ +O Hð Þ: (A.4)

The third term in this expression typically dominates, corresponding to the hypernetwork output layer, revealing the important
scaling consideration: a dense hypernetwork model will have roughly HL times as many trainable weights as a similar DV-MLP
model. Writing this proportionality, and substituting Equation A.2 gives the final result:

dim θhð Þ∝ dim θmð ÞHL ∝ LmH2HL, (A.5)

corresponding to Equation 2.14 of the main text.

A.2. Model architecture summaries

A summary of the model architectures used is given in Table 16, with details on model inputs and outputs summarized in
Table 17

In Section 3, the architectures are exactly as described in Table 16. When random Fourier features are applied in Section 4, the
only difference is that spatial inputs x0 are fed through a random Fourier layer before entering the main network. The number of
weights in each scenario are given in the respective sections.

A.3. Neural network implementation details

Model implementation and training.All models are implemented via Python 3.X classes using Tensorflow v2.X (Abadi et al.,
2015) and are trained using Nvidia RTX A6000 48 GPUs. The DV-MLP implenentation uses off-the-shelf Tensorflow-Keras
sequential models, constructed using the Keras functional API. DVH models subclass Tensorflow-Keras Models (tf.keras.
Model), overwriting the call method as required, depending on the batching method used. The DVH implementation uses a
Tensorflow-Keras sequential model for the hypernetwork, required during class instantiation. Tensorflow-Keras models are useful
as they provide high-level abstraction and contain easy-to-use functions for common tasks, such as training models and saving/
loading network weights. All model weights are initialized using the Glorot-uniform weight-initialization scheme (Glorot and
Bengio, 2010) and trained using calls to tf.keras.Model.fit() or custom training loops. Adam optimizer with default

Table 16. Details on the structure of the networks used in the numerical experiments

Main/spatial network Hypernetwork

Method # Hidden Layers # Nodes/layer #Hidden Layers # Nodes/layer

DV-MLP 5 50 - -
DVH 5 50 5 50

Table 17. Summary of the network inputs and outputs for all sections

Main network Hypernetwork

Method Inputs Outputs Inputs Outputs

DV-MLP x0,μ q̂ - -
DVH x0 q̂ μ θm

Data-Centric Engineering e5-31

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

settings is used for all numerical experiments. Mixed or single precision is used in training all models, and model checkpoints are
used to save the model weights corresponding to the best training and validation losses obtained as training progresses. A simple
mean-squared-error (MSE) loss function is used, written for a single minibatch as

L θð Þ¼ 1
N tot

Xnc
i¼1

Xni
m¼1

∥q̂ xim,μ
i;θ

� ��q xim,μ
j

� �
∥22, (A.6)

where N tot is the total number of mesh points in the minibatch.

N tot ¼
Xnc
i¼1

ni: (A.7)

Normalization. All inputs and outputs are min-max normalized using the statistics of the training group, on a signal-by-signal
basis, so that they lie approximately in the range 0,1½ �. Some members of the validation group may be slightly above or below this
range if they are smaller than the smallest element of the training set or larger than the largest element of the training set. Vectors
x=μ=q are normalized component-wise. The formula for computing the normalization is

rj ¼ rj � min rð Þ
max rð Þ� min rð Þ , (A.8)

where r is an element of x, q, or μ from either the training or validation group. Vector r is the collection of all instances of r from the
training dataset, rj is dimensional, and rj is the normalized quantity. The predictions are fully dimensionalized for computing errors
and plotting by rearranging Equation A.8 for rj . If a nondimensional input or output is used, the nondimensionalization must must
also be undone to achieve a fully dimensional result.

A.4. Error metrics

The error metrics of root-mean-squared error (RMSE) and mean-absolute error (MAE) are computed by averaging across
all nj mesh points in each case, and then averaging across all nc cases. The RMSE for the kth component of the state is then
defined as

RMSEk ≜
1
nc

Xnc
j¼1

ffi
1
nj

Xnj
m¼1

q̂k xjm,μj ;θ
� ��qk xjm,μj

� �� �2
vuut : (A.9)

The mean-absolute error (MAE) is computed analogously as

MAEk ≜
1
nc

Xnc
j¼1

1
nj

Xnj
m¼1

∣q̂k xjm,μ
j ;θ

� ��qk xjm,μ
j

� �
∣: (A.10)

Both RMSE and MAE have units consistent with the predicted quantities, making them more intuitive than MSE alone. They
provide similar measures, though the RMSE penalizes larger errors more than the MAE.

The mean-relative-L2-error (MRL2E) is also reported. To ease notation, gather all predictions for case j in matrix Q̂
j
∈ℝnj × nq ,

and all ground-truth in matrixQj ∈ℝnj × nq . Then, Q̂
j
: ,k½ � is the full snapshot for the kth component of the predicted state, for the jth

case. Then, the MRL2E for the kth state component may be expressed as

MRL2Ek ≜
1
nc

Xnc
j¼1

∥Q̂
j
: ,k½ ��Qj : ,k½ �∥2
∥Qj : ,k½ �∥2

× 100%ð Þ: (A.11)

The final multiplication by 100% is placed in parentheses as this operation is not always performed. The distinction ismade clear
in context by reporting the value with or without the percentage symbol.

A.5. RANS equations

The Reynolds Averaged Navier Stokes (RANS) equations are derived by ensemble averaging the Navier Stokes equations and
substituting the Reynolds-decomposed state variables. This decomposition separates the state variables into mean (ensemble
averaged) and fluctuating components q¼ q+ q0, where q is a generic state variable, q is the mean, and q0 is the fluctuating
component. In the incompressible limit, the steady RANS equations may be written as

∇ �u¼ 0 (A.12)

ρuj
∂ui
∂xj

¼ ∂

∂xi
μ

∂ui
∂xj

+
∂uj
∂xi

�
�pδij�ρu0iu0j

� �
, (A.13)

e5-32 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

where velocity vector u¼ u+ v+wk̂. Nondimensional flow quantities and inputs are used, denoted by a tilde ~�. The Reynolds
number Re is an important nondimensional similarity parameter describing the relative importance of inertial and viscous forces in a
flow, and since it has no dimensional counterpart the tilde is omitted.

Re ¼ ρ∣u∣L
μ

¼ ∣u∣L
ν

(A.14)

Free-stream flow conditions are used to define the Reynolds number, using the vehicle length Lv as the length scale. The

freestream dynamic pressure is written as q∞ ¼ 1
2ρ u∞j j2, then the nondimensional form of other relevant quantities are given as

~x¼ x
Lv

;~y¼ y
Lv

;~ϕ¼ ϕ
Lv

(A.15)

~p¼ p�p∞
q∞

(A.16)

~ui ¼ ui
∣u∞∣

: (A.17)

The nondimensional pressure of Equation A.16 is equivalent to the pressure coefficient cp, and for incompressible flows the
expression is further simplified by using the gauge pressure; taking p∞ ¼ 0. This is allowed because only derivatives of pressure
enter into the incompressible momentum equation, Equation A.13. If a compressible flow were considered this equivalency would
not hold, as pressure enters directly into the compressible energy equation.

A.6. Effect of spatial batch size

A spatial batch size of 54,000 points is used for all results presented in the main text, but this is a relatively large batch size
compared to many other existing works. Here, the effect of varying the spatial batch size on non-Fourier DVH and DV-MLPmodel
predictive performance and training time is quantified, with spatial batch sizes ranging from 512 to 108,000 points. Using a smaller
spatial batch size results in a larger number of optimizer updates per epoch, and inwhat follows the number of epochs is scaled so that
the number of optimizer updates is approximately equal to that used when the spatial batch size is 54,000. In fact, the number of
required epochs is rounded up to ensure at least the same number of optimizer updates is performed when smaller batch sizes are
considered. Additionally, both vehicle speeds are considered, the same piecewise learning rate schedule is used, and single-precision
training is employed using the same model architectures as the main text.

Figure 16 shows the variation in training RMSE for each flow-quantity as the spatial batch size is varied. This figure shows that
generally larger errors are seen using smaller spatial batch sizes for both DVH and DV-MLP, where the second-to-rightmost points
correspond to the results in the main text. This point represents the best predictive performance for DVH, while DV-MLP shows the
best results using a larger spatial batch size of 108,000 points. However, the trends in the plot are noisy as only a single replicant at
each condition was trained. It is observed the DVH outperforms DV-MLP at every spatial batch size considered.

The models were also profiled using Tensorboard callbacks in an analogous fashion to Sections 3.1 and 4.1 of the main text.
The optimizer step time versus spatial batch size is shown below in Figure 17. DVH has larger optimizer step times for all spatial
batch sizes considered, but the variation is not as large as may be anticipated given the greater relative expense of evaluating the
hypernetwork as the spatial batch size is decreased.

Figure 16. The variation in training RMSE for each component of the predicted flow-field as the spatial
batch size is varied. Non-Fourier DV-MLP and DVH models are considered.

Data-Centric Engineering e5-33

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

A.7. Baseline results: additional figures

A.7.1. Single vehicle speed
Full domain predictions for an unseen vehicle shape corresponding to Figure 7 are shown below.

Figure 17. The variation in optimizer step times as the spatial batch size is varied for non-Fourier DVH
and DV-MLP models trained using single precision. The errors bars denote the standard deviation of the

profiled step time.

Figure 18. Validation group pressure field predictions and errors.

e5-34 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

Figure 19. Validation group x-velocity predictions and errors.

Figure 20. Validation group y-velocity predictions and errors.

Data-Centric Engineering e5-35

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

A.7.2. Multiple vehicle speeds
Additional plots of ground truth and predicted x-velocity and y-velocity fields for a single vehicle shape at both speeds of 90 and
130 kph, corresponding to the same vehicle shape as Figure 10. As with the pressure field, the velocity component predictions
closely match the ground truth at both speeds, with the largest errors seen near the vehicle surface and in the free-shear layer of the
wake.

Figure 21. x-velocity field ground truth, DVH prediction, and errors at 90 and 130 kph for the same
vehicle shape.

e5-36 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

A.8. Fourier features for DV-MLP

Naively applying Fourier features to all DV-MLP inputs x0 and μ results in poor convergence and generalization, as shown in
Figure 23a. When applied to only the spatial inputs x0, the models converge readily as shown in 23b. The network architecture and
dataset are identical between the two models other than the difference in which inputs are processed by Fourier features.

A.9. Fourier features: Additional figures

Additional figures showing DVH pressure field and y-velocity field predictions at speeds of 90 and 130 kph, where neither
instance was included in the training set. These correspond to the same case as shown in Figure 13.

Figure 22. y-velocity field ground truth, DVH prediction, and errors at 90 and 130 kph for the same
vehicle shape.

Data-Centric Engineering e5-37

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

Figure 24.Pressure field ground truth, DVHprediction, and errors at 90 and 130 kph for the same vehicle
shape, where neither instance was included in the training set.

Figure 23. Training curves for DV-MLPmodels, where the Fourier features are (a) applied to all inputs x0

and μ and (b) applied to only spatial inputs x0.

e5-38 James Duvall and Karthik Duraisamy

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21

Cite this article: Duvall J and Duraisamy K (2025). Discretization-independent surrogate modeling of physical fields around
variable geometries using coordinate-based networks. Data-Centric Engineering, 6, e5. doi:10.1017/dce.2024.21

Figure 25. y-velocity field ground truth, DVH prediction, and errors at 90 and 130 kph for the same
vehicle shape, where neither instance was included in the training set.

Data-Centric Engineering e5-39

https://doi.org/10.1017/dce.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.21
https://doi.org/10.1017/dce.2024.21

	Discretization-independent surrogate modeling of physical fields around variable geometries using coordinate-based networks
	Impact statement
	Introduction
	Discretization-dependent methods
	Hypernetworks and methods for conditioning neural networks
	Other discretization-independent methods

	Methods
	Shape and scene representation via coordinate-based neural networks
	Problem setup
	Method 1: design-variable MLP (DV-MLP)
	Method 2: design-variable hypernetworks (DVH)
	Network-size scaling considerations
	Training considerations

	Numerical experiments I: vehicle aerodynamics
	Model architecture and training options
	Single vehicle speed
	Multiple speeds and generalization: low-data regime

	Numerical Experiments II: effect of random fourier features
	Model architectures and training options
	Single vehicle speed
	Multiple speeds and generalization: low-data regime

	Summary and conclusions
	Acknowledgements
	Data availability statement
	Author contribution
	Funding statement
	Competing interest
	References
	Appendix
	Network scaling: further details
	Model architecture summaries
	Neural network implementation details
	Error metrics
	RANS equations
	Effect of spatial batch size
	Baseline results: additional figures
	Single vehicle speed
	Multiple vehicle speeds

	Fourier features for DV-MLP
	Fourier features: Additional figures

