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Asymmetries and anisotropies are widespread in biological systems, including in the
structure and dynamics of cilia and eukaryotic flagella. These microscopic, hair-like
appendages exhibit asymmetric beating patterns that break time-reversal symmetry needed
to facilitate fluid transport at the cellular level. The intrinsic anisotropies in ciliary structure
can promote preferential beating directions, further influencing their dynamics. In this
study, we employ numerical simulation and bifurcation analysis of a mathematical model
of a filament driven by a follower force at its tip to explore how intrinsic curvature
and direction-dependent bending stiffnesses impact filament dynamics. Our results show
that while intrinsic curvature is indeed able to induce asymmetric beating patterns
when filament motion is restricted to a plane, this beating is unstable to out-of-plane
perturbations. Furthermore, we find that a three-dimensional whirling state seen for
isotropic filament dynamics can be suppressed when sufficient asymmetry or anisotropy
are introduced. Finally, for bending stiffness ratios as low as 2, we demonstrate that
combining structural anisotropy with intrinsic curvature can stabilise asymmetric beating
patterns, highlighting the crucial role of anisotropy in ciliary dynamics.

Key words: micro-organism dynamics, nonlinear instability, slender-body theory

1. Introduction

Asymmetry is ubiquitous in nature across multiple scales, from the chirality of molecules
(Garbacz 2024) to the left-right asymmetry in the placement of internal organs in the
human body (Hirokawa, Tanaka & Okada 2009). Many animals utilise asymmetry for
mating or survival, such as flatfish like flounders and halibut, which have both eyes on
one side of the head to allow them to lie flat against the ocean floor and avoid predators
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(Palmer 2009). Anisotropy, here referring to the direction dependence of mechanical
response of a material, is also common in nature, a simple example being the human hand,
which is easier to bend in one direction than in any other direction. Fibrous materials such
as wood are anisotropic due to the natural grain formed by fibre alignment, meaning the
strength and flexibility of these materials are direction-dependent (Kretschmann 2010).

Cilia and eukaryotic flagella are hair-like appendages which exhibit both asymmetric
and anisotropic properties. These filaments are responsible for driving fluid flow at
the microscale (Gibbons 1981). They can be found on the surfaces of swimming cells
and microorganisms such as Volvox (Pedley, Brumley & Goldstein 2016), collectively
beating to allow the algae to navigate through flows (Suarez & Pacey 2006; Bennett &
Golestanian 2015), or lining epithelial cells in our own bodies to facilitate fluid transport,
such as mucus in the airways (Smith et al. 2008b) or cerebrospinal fluid in the brain
(Worthington & Cathcart 1966; Guldbrandsen et al. 2014; Zhang et al. 2015). Symmetry
breaking is essential for fluid transport at this scale (Purcell 1977). Accordingly, cilia often
undergo asymmetric beating oscillations, to ensure net fluid motion and cellular transport.
Respiratory cilia for example, beat with distinct fast, low-curvature effective strokes,
and high-curvature, slower, recovery strokes (Chilvers & O’Callaghan 2000; Jorissen &
Jaspers 2023). Nodal cilia in the embryo, on the other hand, undergo tilted whirling
motions (Nonaka er al. 1998; Smith et al. 2008a, 2011) that direct fluid flow to the left
and hence breaking left-right symmetry in the embryo.

Such asymmetries in ciliary dynamics are thought to be the result of the internal
structure of cilia known as the axoneme. While the configuration of the axoneme can vary
(Chaaban & Brouhard 2017), motile cilia most commonly have a 9 4 2 axonemal structure
(Gibbons 1981; Marshall & Nonaka 2006; Gilpin, Bull & Prakash 2020), consisting of a
central pair of microtubules, surrounded by nine pairs of microtubules, called microtubule
doublets. The microtubule doublets are held relative to each other by structural proteins
called nexin. The bridge between one pair of doublets is known to be much stiffer than the
others (Afzelius 1959; Gibbons 1981), indicating that this pair has limited motion relative
to each other. The orientation of the central pair and the stiffer bridge suggest a plane
in which it is easier for the axoneme to bend. It has been observed that the beat plane
for cilia aligns with this plane (Gibbons 1981), suggesting that the direction of the cilium
beat could be a result of anisotropy in axonemal structure. In previous numerical studies
modelling cilia, this has been included explicitly by considering a stiffer bridge between
this pair of doublets (Han & Peskin 2018), or implicitly by increasing the perpendicular
bending stiffness (Rallabandi, Wang & Potomkin 2022). It has also often been used as
motivation for restricting dynamics to be entirely planar (Bayly & Dutcher 2016).

While these modelling choices can reproduce planar beating, the resulting dynamics is
often symmetric and does not reproduce differences in the effective and recovery strokes
observed experimentally. Additional asymmetry must be considered to generate more
accurate simulations which match experiments. Some works achieve this by incorporating
constraints on material properties of the filament, such as curvature-dependent bending
stiffness (Han & Peskin 2018) in which the bending stiffness can take different values
depending on the local curvature of the filament’s centreline, or through biased kinetics
of dynein motors (Chakrabarti & Saintillan 2019b,a; Chakrabarti, Fiirthauer & Shelley
2022). A widely accepted approach, however, includes introducing an intrinsic curvature
to the filament (Chakrabarti & Saintillan 20195b,a; Sartori et al. 2016; Cass & Bloomfield-
Gadélha 2023; Wang et al. 2023), in which it is assumed that the rest state of the cilium
has finite curvature. These numerical studies are successful in demonstrating realistic cilia
beats, with a close resemblance to the beats observed in nature, but are often restricted
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to two-dimensional dynamics. Further studies are necessary to determine whether this
dynamics persists when the filament is free to deform in any direction.

In this paper we explore the effect of asymmetries and anisotropies in a three-
dimensional (3-D) active filament model. To drive filament oscillations, we utilise the
widely studied follower force model (Bayly & Dutcher 2016; De Canio et al. 2017; Ling,
Guo & Kanso 2018; Fily et al. 2020; Fatehiboroujeni et al. 2018, 2021; Clarke, Hwang
& Keaveny 2024; Schnitzer 2025), whereby a single compressive force is applied to
the tip of the filament, against the tangent. While the follower force model does not
represent the sliding mechanism known to generate ciliary beating, this model has been
shown to exhibit beating and whirling dynamics for sufficiently high forcing values,
which are reminiscent of cilia beating patterns observed in nature. As such, the follower
force model has been used to explore instabilities underpinning cilia dynamics (Bayly
& Dutcher 2016; Woodhams, Shen & Bayly 2022), understand the influence of fluid
rheology on the fluid-pumping ability of cilia (Wang et al. 2023; Link et al. 2024), study
filament beat coordination and collective dynamics (Westwood & Keaveny 2021) and
model biofilaments in cytoplasmic streaming in Drosophila oocytes (Stein et al. 2021)
and actin—myosin dynamics (Sekimoto et al. 1995). In the next section, we describe the
active filament model we utilise to generate simulations, and the computational tools
we employ to find steady and periodic states, and to analyse their stability. Next, we
include asymmetry through a non-trivial intrinsic curvature to an otherwise-isotropic
filament, and establish the dynamics in both two dimensions, matching that observed in the
literature, and three dimensions. We find that the asymmetric planar beating found in two
dimensions is inherently unstable in the full 3-D model, and that the whirling solution
can be eliminated entirely if the imposed asymmetry is large enough. Following this,
we discuss the effect of direction-dependent bending stiffness in the absence of intrinsic
curvature, showing how whirling can again be eradicated if the anisotropy in the bending
stiffnesses is sufficiently large. Finally, we investigate how this anisotropy can be exploited
on filaments with intrinsic curvature to recover and stabilise asymmetric beating dynamics
in three dimensions. In particular, we show that bending stiffness ratios as low as 2 are
sufficient to stabilise asymmetric beating, a value agreeing with structural anisotropies
that have been suggested for cilia (Ishijima & Hiramoto 1994; Lindemann & Lesich 2016;
Rallabandi et al. 2022).

2. Numerical methods

The methods employed here largely follow those described in Schéller et al. (2021) and
Clarke et al. (2024), and we provide a brief description below for completeness.

2.1. Filament model

The filament has length L and cross-sectional radius a, and is clamped at its base to
a no-slip planar surface. The filament is forced at its free end by a follower force, a
compressive tangential force, as shown in figure 1(a). The filament centreline, Y (s, 1),
is parameterised by arc-length s € [0, L] and evolves over time ¢ € [0, oo). Filament
deformation is described by the orthonormal local basis {f(s, ), iL(s, t), v(s, t)}. For
the filament dynamics, we use the framework outlined in Scholler et al. (2021). Due to
the small length scales and velocity scales associated with ciliary motion, the Reynolds
number is small and so we neglect the inertia of the fluid and the filament. Consequently,
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Figure 1. Schematics of the model. (@) We consider a filament of length L and radius a, clamped at its base
(s =0) to an infinite no-slip planar wall, and driven by a follower force imposed at the free end (s = L). (b)
The bending stiffness anisotropy and intrinsic curvature are defined through the bending moment, which acts
on the filament cross-section. It is expressed in terms of the filament’s material frame, (f , iL, v). We emphasise
that the filament cross-section is circular. (¢) The intrinsic curvature kg = L« is defined to be the rest curvature
of the filament under zero forcing.

force and moment balances along the filament length yield

o4 +fH = @2.1)

oM .
a—s+txA+rH=0, (22)

where f H (s, 1) and TH (s, 1) are the forces and torques per unit length, respectively,
exerted by the surrounding fluid and A(s,r) and M(s, t) are the internal force and
moment, respectively, acting on the filament cross-section (see figure 1b). The internal
forces act as Lagrange multipliers enforcing the kinematic constraint:

Y _; (2.3)
as '
and the internal moments are given by the constitutive relation (Scholler ef al. 2021):

~

ot \ . ~ OfL\ A
v+Kr (v t, 2.4)
as as

where kg = ko/L defines the intrinsic curvature, such that the rest configuration of the
filament is a planar arc with constant curvature xg, as sketched in figure 1(c). Therefore,
larger values of ko correspond to higher-curvature rest configurations for the filament.
Also defined in (2.4) are K g, the filament bending stiffness in the direction of intrinsic
curvature, 8K p, the bending stiffness in the perpendicular plane, and K7, the twisting
stiffness. Choosing 8 > 1 leads to preferred bending about the fi-axis and 8 < 1 leads to
preferred bending about the v-axis. Correspondingly, setting 8 — oo should restrict the
filament dynamics to the (¥, £) plane entirely. Choosing B = 1, ko = 0 corresponds to the
isotropic, symmetric case considered in Clarke et al. (2024).

The base of the filament (s =0) is clamped to a no-slip planar surface, fixing the
position and local orientation of the base to be ¥ (0, r) = 0 and (0, 1), (0,1), v(0,1) =
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(Z,y,x). The distal end (s = L) is moment-free, M(L,t) =0, and is driven by the
follower force:

fKp

AL, D =="5"1(L, 1), (2.5)

where f is the non-dimensional follower force strength. Through this non-
dimensionalisation, the length is incorporated in the non-dimensional parameter, f. The
impact of filament aspect ratio, L/a, in the symmetric and isotropic case (ko =0 and
B =1) was investigated in Clarke er al. (2024). We note that an alternative definition of
the non-dimensional follower force can be reached by balancing with the elastic force in
the ¥ direction. This would lead to a rescaled non-dimensional follower force, f = Bf.
We discretise the filament into N segments of length AL, such that segment i has

centre Y; and an orientation defined by the local frame, {f,-, i, v;}fori=1,..., N.
We discretise (2.1), (2.2) and (2.3), using central differencing and rearrange to obtain
C H
F; +F; =0, (2.6)
E c H
Ti+Ti+Ti :0, (27)
for segmenti =1, ..., N, and
AL . .
Yig—Yi— - (ti +tiy1) =0, (2.8)

fori=1,..., N —1.Here TLE =M, 12— M;_,, is the elastic torque, Fl.C =Ajy12—
Ai—1pp and T€ = (AL/2)t; x (Aj41/2 + Ai_1)2) are the constraint forces and torques,
respectively, and F ZH =ALf ZH and T lH = ALtiH are the hydrodynamic force and torque,
respectively. The internal forces, A;y1,2, act as Lagrange multipliers enforcing the
constraint (2.8). The internal moments, M; 12, are defined by a discretised version of
the constitutive law given in (2.4).

As we neglect fluid inertia due to the low Reynolds number, the fluid velocity is
governed by the Stokes equations. Therefore, the translational and rotational velocities of
the segments are linearly related to the hydrodynamic forces and torques on the segments
through the mobility matrix, M. Explicitly, this can be expressed via the mobility relation:

_pH
(5)-w(5)

where M is the 6N x 6N mobility matrix, V and £ are 6/N x 1 vectors containing
the translational and angular velocities of all segments, respectively, and F¥ and T
are 6N x 1 vectors containing the hydrodynamic forces and torques of all segments,
respectively, which are defined through the force and moment balances (2.6) and (2.7).
In this work, we use the Rotne—Prager—Yamakawa (RPY) tensor (Wajnryb et al. 2013),
adapted to include the no-slip condition at z=0 (Swan & Brady 2007), to define the
mobility matrix, M. Here, each segment is modelled as a particle with hydrodynamic
radius equal to the cross-sectional radius of the filament, a. Various hydrodynamic models
have been used in this context. The follower force model appears to give rise to the same
dynamics in the forcing ranges we consider, regardless of the details of the hydrodynamic
model (Ling et al. 2018). For a comparison between RPY and non-local slender body
theory, we direct the reader to Maxian, Mogilner & Donev (2021).

After solving for the translational and rotational velocities of each segment, we integrate
the system forwards in time. To describe the evolution of segment orientations, we utilise

1023 A24-5


https://doi.org/10.1017/jfm.2025.10787

https://doi.org/10.1017/jfm.2025.10787 Published online by Cambridge University Press

B.J. Clarke, Y. Hwvang and E.E. Keaveny

unit quaternions, ¢ = (qo, 41, g2, g3) With ||q|| =1 (Schéller et al. 2021; Hanson 2006).
Segment i is defined to have a corresponding unit quaternion, ¢;, which maps the
standard basis, (X, ¥, ), to the segment’s local basis at time 7, (£ (1) fL; (H)v;(t)), through
a rotation matrix, R(q) (see Scholler e al. (2021) for further details). The evolution of
each quaternion is described by

dg;
dr

where e is the quaternion product, defined for two quaternions p = (pg, p) and ¢ = (qo, q)
as peq=(pogo—P+q, pod +qop + P X q).
Pairing (2.10) with an equation describing the evolution of segment positions, namely

dY,'
— =V, 2.11
dr : .11

we can discretise our system temporally using a second-order, geometric backward
differential formula scheme, as described in Scholler et al. (2021). These discretised
equations, as well as the constraint given by (2.8), define a nonlinear system which we
can solve iteratively using Broyden’s method (Broyden 1965).

In this work, the filament is discretised into N =20 segments of length AL =2.2q,
such that the filament has length L = NAL =44a. This separation has been chosen
to avoid overlap between neighbouring segments when the filament bends. The twist
stiffness is taken to be equal to the bending stiffness in the ft direction, Kp = K7. In the
isotropic case, where 8 = 1 and x¢ = 0, the magnitude of the twist has little effect on the
dynamics (Clarke et al. 2024). We investigate the effect of varying three non-dimensional
parameters: the intrinsic curvature, kg, as in (2.4); the bending anisotropy, quantified by
B, as in (2.4); and the non-dimensional follower force, f, as defined in (2.5). We focus
on ranges of kg and § that follow values explored in other studies (Rallabandi et al. 2022;
Chakrabarti & Saintillan 2019b,a; Sartori et al. 2016; Chakrabarti et al. 2022; Cass &
Bloomfield-Gadélha 2023; Lindemann & Lesich 2016; Wang et al. 2023), and a range of
f which allows us to access and explore the whirling and beating states. All initial-value
problems (IVPs) use the initial condition of a vertically upright filament, with random
perturbations to the force on each segment. All time scales are non-dimensionalised by the
filament’s relaxation time, 7, the characteristic time scale associated with a bent filament
returning to its undeformed configuration, which we obtain numerically as described in
Clarke et al. (2024).

1
=3 0, 2)egq;, (2.10)

2.2. Bifurcation and stability analyses

The filament model offers a method to generate numerical solutions given an initial
configuration. In order to understand the bifurcations between different states that arise
from the model, we need to first obtain these states and then assess their stability. We use
a Jacobian-free Newton—Kyrlov subspace method (JFNK) to find the stable or unstable
steady-state and time-periodic solutions, as described in Viswanath (2007), Willis (2019)
and Clarke et al. (2024). The JFNK seeks solutions which minimise the error between the
initial state and the state after being advanced for a period of time. Therefore, we can only
use this to identify steady and time-periodic solutions — not, for instance, quasiperiodic
or chaotic dynamics. The system is solved using Newton’s method, where the generalised
minimal residual (GMRES) method is employed in each Newton iteration to solve for
the update. Once we have a solution for a single set of parameters, we can then use
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continuation to track the solution branch for different values of f, xg or 8, including values
of these parameters for which the solution may be unstable.

After finding the steady-state or time-periodic base state, we can analyse its stability
numerically. This is achieved by using the Arnoldi method to establish the eigenvalues of
the system’s Jacobian, for steady-state solutions, or the Floquet matrix exponent, if the
state is time-periodic. Further details of this method can be found in Clarke er al. (2024).

It may be that two solutions are stable for the same values of parameters. If this is the
case, we expect for there to be an unstable state which lies on the boundary of the two stable
solutions in the state space. We can identify the unstable solution by using the bisection
algorithm outlined in Skufca, Yorke & Eckhardt (2006), which iteratively bisects between
initial conditions leading to either stable state. While this method allows us to identify
an unstable solution lying on the boundary surface (separatrix) between the stable states
in the state space, we only observe this transiently, before the filament converges to one
of the stable states. Furthermore, if we expect multiple unstable solutions to exist for a
set of parameters, bisection can only compute a solution stable (or attractive) along the
directions tangential to the boundary surface between the two stable states.

3. Intrinsic curvature in isotropic filaments
3.1. Planar dynamics

We begin by considering an isotropic filament with finite intrinsic curvature, i.e. 8 =1,
and ko # 0, with its motion restricted to the plane in which it is deformed by its intrinsic
curvature. The corresponding phase diagram of the planar filament states in xg— f space,
where the plane is aligned with the filament’s intrinsic curvature, is obtained by running
one IVP for each set of parameters. Each IVP has an initial condition of a vertically upright
filament with random, small perturbations to the forcing on a subset of the segments.
We summarise the results in figure 2(a). For this study we consider «g € [0, 377 /4]. This
range of values is appropriate as it includes values used in the literature in numerical
studies (Wang et al. 2023), in particular to recover dynamics similar to those observed
experimentally (Chakrabarti & Saintillan 2019a; Sartori et al. 2016). These IVPs reveal
that we observe two types of behaviour: steady states below a critical value of the forcing,
or self-sustained beating oscillations when this critical value is exceeded, matching
observations in Wang et al. (2023).

For ko =0, the steady state is a vertically upright filament. However, with increasing
ko # 0, the steady state becomes non-trivial. For f =0, it is given by the prescribed
intrinsic curvature, such that

t(s) = (sin(kps/L), 0, cos(kps /L)), se<l0, L], 3.1)

as shown in figure 2(b). When f > 0, this steady state changes; the tip of the filament is
pushed by the follower force, until a new steady state is reached in which the elastic forces
balance the follower force. This gives a non-trivial steady state, as shown for ko =37 /4 in
figure 2(c).

When the force exceeds a critical value, the filament buckles and we observe planar
oscillations. To find this critical value for each kg, we track the steady state using the JENK
and use stability analysis. For kg =0, this reveals that the buckling occurs at f = f*~
35.3, through a Hopf bifurcation. For «g > 0, the bifurcation occurs through the same
mechanism, but we observe a small increase in the critical forcing of approximately 0.5 %
from ko =0 to k9 = 37 /4. For ko =0, numerical simulations after the bifurcation show
that the planar beating oscillations are symmetric. However, this symmetry is broken by
intrinsic curvature; for k¢ > 0, simulations reveal asymmetric beating patterns as shown in
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Figure 2. (a) Results from 2-D numerical simulations of a filament with intrinsic curvature (kg >0, 8 =1).
The black line is drawn to indicate the approximate boundaries of the solution regions. For f < f*=
35.3, filaments remain in their steady non-trivial state which varies with (b) xo (shown for f =0, kg €
{0, w/4, /2, w/4}) and (¢) f (shown for ko =3m/4, f €({0,5,10,20}). For f > f* filaments undergo
asymmetric oscillations for kg > 0, as shown for (d) ko =37 /4.
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figure 2(d), and observed in Wang et al. (2023). We plot the frequencies of these solutions
for various ko in Appendix C. Close to the bifurcation this asymmetry is strongest, but
further away from the bifurcation, where the follower force is strong, the effect of intrinsic
curvature is less pronounced and the beating becomes more symmetric.

3.2. Non-planar dynamics: initial-value problems

When the filament is free to deform in any direction, we observe dramatic changes in
filament dynamics as we vary g and f. We summarise the filament states in figure 3(a).
For the smallest values of the forcing, we observe the same steady states as in the planar
case. However, we now find that the filament exhibits fully 3-D dynamics after buckling
and the critical value of the forcing has a dependence on «y.

For ko =0 (Ling et al. 2018; Clarke et al. 2024), we observe the symmetric whirling
state immediately after the buckling; a rigid-body rotation of the centreline, with the
filament tip tracing a circle over one period. Increasing the forcing further, whirling is
replaced by a quasiperiodic solution which we term QP1 — an elliptical whirling which
rotates unidirectionally. Solution QP1 only exists for a small region of f, before being
replaced with planar beating. Planar beating is also observed in the two-dimensional (2-D)
simulations, but is now symmetric (as ko =0) and can occur in any plane (due to the
rotational symmetry of the problem).
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Figure 3. (a) Results of numerical simulations of a filament with intrinsic curvature in three dimensions
(ko =0, B =1). The black lines are drawn to indicate the approximate boundaries of the solution regions. (b)
Snapshots of filaments over one period undergoing whirling dynamics for three values of intrinsic curvature
close to (f =40) and further from (f = 100) the bifurcation. We see that asymmetries in whirling for ko > 0
are more pronounced close to the bifurcation, and for higher ¢. (¢) Snapshots of filaments over one period for
f =200, increasing ko from O to 37 /4. The dynamics changes from planar beating for ko = 0 (left) to P1 for
ko > 0 (right).

Increasing «p > 0, the initial buckling occurs at smaller values of the forcing. The
whirling behaviour still exists but is no longer symmetric, as shown in figure 3(b)
and supplementary movie 1 available at [https://doi.org/10.1017/jfm.2025.10787]. The
frequencies of the whirling solutions are plotted in Appendix C. In fact, the asymmetry
is strongest as we increase the intrinsic curvature, and choose forcing values closer to the
initial bifurcation. Increasing the forcing has the effect of smoothing out the asymmetry,
as the follower force dominates over the torques maintaining the intrinsic curvature.

Increasing f further, we observe that whirling gives way to a new periodic solution for
ko > 0, which we call P1. This consists of a bent-over beating, where the filament bends
in the plane in which it would deform in the absence of the follower force, and beats in
the plane perpendicular to it, as shown in figure 3(a) inset and supplementary movie 2.
The intrinsic curvature breaks left-right symmetry, in such a way that the filament beats
in the left half of the plane. In figure 3(c), we fix f = 200 and increase ko from O to 37 /4
to show how P1 continues from the planar beating solution. We see that increasing
increases the maximum perpendicular distance of the tip from the beat plane. We plot the
frequencies of P1 for various f and ko in Appendix C. Varying ko > 0, planar beating is
no longer visible with IVPs alone — it appears that the 2-D asymmetric beating patterns
observed in the planar case are unstable in the 3-D model.

For larger values of kg, we note that the whirling state is also no longer visible using
IVPs, regardless of the initial filament configuration. Furthermore, for large x¢ and f, we
see a new periodic mode appearing, which we call P2. Mode P2 beats similarly to P1, but
traces a distinct shape of 8 with its tip over one period (see figure 3a, inset).
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Figure 4. Bifurcation diagrams showing the different solutions as we vary f, and the corresponding mean
bending energy of these solutions, Ej, for an isotropic filament (8 = 1) with intrinsic curvature for (a) ko =0,
(b) kg =1/4, (c) ko =7 /2 and (d) k9 = 37 /4. Dashed (solid) lines refer to unstable (stable) solutions. Square
markers are used to indicate the location of bifurcations as we vary f. Inset, left, shows the bifurcation diagram
near the initial buckling event and inset, right, shows the bifurcation diagram around the bistable regions, if
these are present. As k increases we see the emergence of the P1 solution branch (b—d), from which whirling
bifurcates (b,c, left inset). We observe bistability between P1 and whirling (b,c, right inset) and, for the largest
values of k¢, whirling vanishes completely (d).

3.3. Bifurcation and stability analyses

To explore in more detail how filament dynamics changes with «g, we track the steady and
time-periodic states with JFNK and perform a stability analysis to establish bifurcations
within the system. An overview of the resulting bifurcation diagrams for f € [0, 200] is
shown in figure 4, where we plot the non-dimensionalised mean bending energy, given by
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for each solution branch for various values of xp. Here «(s) is the local curvature of
the filament. While the bending energy is usually defined with respect to the intrinsic
curvature, we instead use the standard bending energy described above for ease of
comparison as we vary kg. We now discuss the key changes in the bifurcation diagrams as
we increase xg. We provide a more detailed version of this discussion in Appendix B.1.

3.3.1. Isotropic case

We begin by recapping the isotropic case, where kg = 0, shown in figure 4(a). Focusing
first on the initial buckling event, in Clarke er al. (2024) and Schnitzer (2025) it was
shown that two complex conjugate pairs of eigenmodes become unstable at f = f* (see
figure Sa). We hence identify this bifurcation as a double Hopf bifurcation.

To understand the buckling bifurcation further, we visualise the eigenvectors. Defining
each eigenvalue—eigenvector pair as (4;, x;), we note that the x; are complex for i =
1, ..., 4. Therefore, to interpret their physical meaning, we take linear combinations of the
eigenvectors vy = a(x| + x2), v2 =a(x| — x») and similar for v3 and v4 using x3 and x4,
where a is an arbitrary constant chosen to emphasise the structure of the eigenmode. As the
magnitude of the state variable relates to angles of rotation of the local basis, taking larger
values of a results in more exaggerated filament deformation. We show these eigenvectors
in figure 5 for a = 5. We observe that the first complex conjugate pair is associated with
beating in the (x, z) plane, and the second is associated with beating in the perpendicular
plane, as shown by the eigenvectors in figure 5(a) (right). It is these modes that combine
to give rise to the stable whirling solution observed after the bifurcation, as well as the
unstable planar beating branch. For larger f, whirling becomes unstable and gives rise to
QP1. The QP1 branch exists for a small region of f, and vanishes when planar beating
stabilises for larger f (see figure 4a, inset). Further discussion on the bifurcation diagram
in the isotropic case, including exploration of higher forcing values, can be found in Clarke
et al. (2024).

3.3.2. Initial buckling event

As we increase kg, we see a change in the initial buckling event; as shown in figure 4(a—d),
left inset, the initial buckling happens at smaller values of f as we increase xg. We also
now observe two solution branches bifurcating from the steady state at different values
of the forcing, and note that whirling no longer bifurcates from the steady state for xg >
0. Instead, we find the P1 branch bifurcates from the steady state initially at a critical
forcing f < f*, followed by the unstable planar beating branch at f =~ f*. To explore
these changes in the bifurcation diagrams, we analyse the eigenmodes associated with the
steady state.

We plot the real parts of the four dominant eigenmodes of the steady state for xg =
37 /4 in figure 5(b), including visualisations of the eigenvectors obtained as discussed
previously. We see that the two modes corresponding to buckling in either plane separate;
the mode corresponding to in-plane, asymmetric beating still becomes unstable at f ~ f*,
whereas the second mode, corresponding to off-plane beating, becomes unstable earlier.
We note that the off-plane eigenmodes do not both lie in the (y, z) plane. This is because
the intrinsic curvature breaks the symmetry about the (y, z) plane, and so we expect one
of these eigenmodes to reflect this broken symmetry. This can be seen in the off-plane
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Figure 5. The real part of the four largest eigenvalues, A; fori =1, ..., 4, associated with the steady state for

B =1:(a) ko =0 and (b) k9 =37 /4. Analysing the corresponding eigenvectors at each bifurcation, obtained
as described in the main text and displayed on the right, allows us to identify the branches corresponding to
off-plane and in-plane beating. (c) The real part of the largest eigenvalue associated with the steady state for
various values of ko. We see that the eigenvalue becomes unstable for smaller f as we increase k. (d) The real
part of the largest eigenvalue associated with the P1 state for various values of «¢. For ko > «j, we see that the
eigenvalue remains stable.

eigenvectors (see figure 5b, top right). Hence for ko > 0, at the initial bifurcation, it is
only the off-plane modes that are becoming unstable which lead to P1 through a Hopf
bifurcation. In figure 5(c), we plot the real part of the dominant eigenmode for various
values of kg. We see that the off-plane modes become unstable earlier as we increase
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the intrinsic curvature, meaning the steady state buckles at smaller forcing values, as we
observed earlier by solving IVPs.

The off-plane eigenmodes destabilising for lower f as we increase kg is a result of
the intrinsic curvature being defined in the filament’s local frame. Consequently, 3-D
perturbations to the filament, which lead to perturbations in the filament frame, result
in 3-D perturbations to the intrinsic curvature. The off-plane components of the intrinsic
curvature perturbations result in off-plane internal moments, leading to the initial buckling
occurring at smaller f. Further investigation and discussion of the dependence of initial
buckling on the intrinsic curvature can be found in Appendix A.

Immediately following the initial buckling bifurcation for «g >0, we see from
figure 4(b—d) that the P1 solution is stable. For moderate «g, the P1 solution becomes
unstable for larger f, giving way to the stable whirling solution (see figure 4b,c, left inset).
This can again be linked to the initial buckling event. As the whirling solution is known to
arise from a combination of both the in-plane and off-plane buckling eigenmodes (Clarke
et al. 2024), it follows that the whirling solution is always born after the second buckling
mode becomes unstable, branching from the P1 solution branch.

3.3.3. Bistability

Recall that for kg =0, we observe a stable branch (QP1) connecting the whirling and
beating solutions. As we increase ko, we see that the stable branch connecting P1
and whirling exists for smaller ranges of f, until it is no longer stable. In this case,
i.e. for moderate ky, we observe bistability between the P1 and whirling solutions
(see figure 4b,c). As such, we use bisection to unearth the unstable solution branches
which exist in the region. We find multiple distinct solutions, including the same QP1
solution from the isotropic case, shown in figure 4(b,c), right inset. The sharp turns in
the bifurcation diagrams indicate there could be further bifurcations occurring in this
region; however, we are unable to identify these using the JFNK or bisection alone. We
discuss these unstable solution branches further, including plots of their dynamics, in
Appendix B.1.

3.3.4. Loss of whirling solution

In the previous sections we identify three key bifurcations: P1 becoming unstable, P1
subsequently restabilising and whirling becoming unstable. As we increase kg, these three
bifurcations occur within a smaller range of f, until the intrinsic curvature reaches a
critical value, and the bifurcations coalesce. For larger «¢, for instance ko = 37 /4 as shown
in figure 4(d), the whirling solution vanishes completely, and we only observe the stable
P1 solution branch.

We can explore the disappearance of the whirling solution by performing Floquet
analysis on the P1 solution for various values of xg. The real part of the dominant
eigenvalue for each kg is shown in figure 5(d). We see that the two bifurcations,
corresponding to P1 becoming unstable and then restabilising, get closer together as we
increase kg, until they merge at a critical value, kg = Kg. At this value, the whirling solution
collapses onto the P1 branch, also terminating QP1 and QP1x in the process. Beyond this
ko, only P1 is stable in this region of f. We can identify the loss of the whirling solution
by again revisiting the initial buckling event. For k¢ > «, it appears that the growth rate
associated with the off-plane modes is so large compared with the growth rate of the in-
plane modes that the whirling solution never exists. Instead, we only observe P1, matching
observations from IVPs.
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Figure 6. (a) Results of numerical simulations of an anisotropic filament with no intrinsic curvature (ko =
0, B > 1). The black lines are drawn to indicate the approximate boundaries of the solution regions. (b)
Snapshots of filaments over one period undergoing whirling dynamics in the isotropic case, close to the
bifurcation (8 =1, f = 36), an anisotropic case near the bifurcation (8 = 1.2, f =46) and an anisotropic case
further from the bifurcation (8 = 1.2, f = 100). The three dynamics are indicated on the phase diagram in (a)
using numbered circles.

4. Anisotropic filaments with no intrinsic curvature
4.1. Initial-value problems

In the previous section we investigated the effect of intrinsic curvature defined in the plane
defined by » and £. Now, we set ko = 0 and focus on the effect of introducing anisotropy
through the bending stiffness by introducing the parameter §, which describes the ratio
of the bending stiffnesses about the v and ji axes. Throughout this paper we focus on
B > 1, but the 8 < 1 case follows immediately by considering a rotation of the axes, and
redefining the non-dimensional follower force as f = Bf (cf. (2.5)). In figure 6(a), we
show the results of IVPs for g €[1, 1.5] and f € [0, 300]. Regardless of § and f, the
steady state is the vertically upright filament. For 8 = 1, this buckles into whirling, while
for B > 1 the steady state buckles into planar beating in the (x, z) plane. For moderate
values of 3, beating becomes unstable as we increase the forcing, with whirling appearing
in its place. The frequency of these whirling solutions for different 8 and f values can be
found in Appendix C. Close to the bifurcation in which planar beating appears to become
unstable, whirling is very similar to in-plane beating, with a small off-plane component.
This causes the tip to trace an ellipse with a major axis that aligns with the X axis, as shown
in figure 6(b), middle, and supplementary movie 3. The large amplitude in the X direction
close to the bifurcation suggests that we can expect the whirling solution to branch from
the planar beating solution branch, instead of the steady state. Further from the bifurcation,
however, the off-plane component grows and whirling resembles the isotropic case more
closely (see figure 6b, right). For larger forcing values, whirling becomes unstable and
planar beating in the (x, z) plane reappears. As we increase S, the region in which whirling

1023 A24-14


https://doi.org/10.1017/jfm.2025.10787
https://doi.org/10.1017/jfm.2025.10787

https://doi.org/10.1017/jfm.2025.10787 Published online by Cambridge University Press

Journal of Fluid Mechanics

== Steady state === In-plane beating
(a) === Off-plane beating Whirling === P4 (b) 0
0.15F 5 _ _ - — Rel e(dy
p= 12,520 =5 —En—] g
= 20 =15
0.10 , = Ko=0
E “, S -0
b / >
0.05 L - - o2 —20
~40

0 80
[~ 353 fr=s30\,
" vy Vs 4

In-plane eigenvectors Off-plane eigenvectors
20 K():O B=1.1 (d) 6/60:0 V%
=11
‘ p=12 3 =
0
-3
B
-6
—B=12 —p-14
—B=13 —B=15N\
-10 : —
120 140 160 180 60 80 100 120
/ !

Figure 7. (a) Bifurcation diagrams showing the different solutions as we vary f, and the corresponding mean
bending energy of these solutions, Ej, for an anisotropic filament with no intrinsic curvature (ko =0) for
B=1.2, 1.3 and 1.4 (top to bottom). Dashed (solid) lines refer to unstable (stable) solutions. Square markers
are used to indicate the location of bifurcations as we vary f. We see the separation of the in-plane and
off-plane solution branches as § increases, and observe bistability between in-plane beating and whirling
(inset). For larger values of g, the whirling solution branch vanishes completely (bottom). (b) The real part
of the four largest eigenvalues associated with the steady state for § = 1.5. As described in the main text,
we visualise the eigenvectors, x; for i =1, ..., 4, by taking linear combinations of the complex conjugate
pairs, for example v; = a(x| + x2), where a is a constant. We plot the eigenvectors for a =5 to identify the
branches corresponding to in-plane beating (bottom left) and off-plane beating (bottom right). (¢) The real
part of the second largest eigenvalue associated with off-plane beating for various values of B. We associate
this eigenvalue becoming stable with P4 collapsing onto the off-plane beating branch. (d) The real part of the
largest eigenvalue associated with the in-plane beating state for various values of 8. For 8 > 8*, we see that
the eigenvalue remains stable.

is stable appears to decrease, until 8 = 1.35, where we no longer observe whirling through
IVPs. For these 8 values, we only observe planar beating in the (x, z) plane after buckling.

4.2. Bifurcation and stability analyses

Using JENK to track the steady and periodic solutions and then performing a stability
analysis on the subsequent branches allows us to generate the bifurcation diagrams shown
in figure 7(a). We outline the key features of the bifurcation diagrams below, and provide
further details in Appendix B.2.

Focusing first on the initial bifurcation, we see that the critical forcing value at which the
steady state buckles remains at f = f* regardless of 8. At this point, the planar beating
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branch in the (x, z) plane, which we will henceforth call ‘in-plane’ beating (as opposed to
‘off-plane’ beating, in the (y, z) plane), is born through a Hopf bifurcation. We can also
identify the unstable off-plane beating branch for each 8, which also appears to connect to
the trivial steady state, bifurcating at f = 8f™*. These solutions are present regardless of 3,
as shown in figure 7(a). These branches are linked to the initial buckling event; introducing
B # 1 has the effect of separating the critical values at which the beating in either plane
becomes unstable, similar to the effect of having xy # 0. This is a consequence of the
non-dimensionalisation of the follower force, as given in (2.5). Accordingly, we expect
eigenmodes to become unstable at f = f* (corresponding to buckling in the (x, z) plane)
and f = Bf™ (corresponding to buckling in the (y, z) plane). Thus, the magnitude of g
dictates which plane we initially buckle into, and furthermore when successive buckling
modes become activated. To verify the effect of 8 on the initial buckling bifurcation, we
plot the dominant eigenvalues for § = 1.5 in figure 7(b). As expected, we find that the first
bifurcation occurs at f = f*, with corresponding planar eigenmodes lying in the (x, z)
plane. Therefore, the filament is expected to undergo planar deformations in this plane, as
is confirmed by the numerical simulations. The second mode, corresponding to buckling
in the perpendicular plane, is found to occur at f = 8f* ~ 53.0.

For moderate B (see figure 7a, top, middle) we find that, for a larger value of the
forcing, in-plane beating becomes unstable and the whirling solution is born. Between
the bifurcations in which in-plane beating becomes stable again and whirling becomes
unstable, there is a region of bistability. Bisection in this region yields a single solution
branch, which we call P4. As P4 is periodic, we can track the behaviour using JFNK.
In doing so, we find that P4 connects to the off-plane beating branch, rather than the
whirling branch, as shown in figure 7(a) (top, inset). Floquet analysis of the off-plane
beating branch confirms this, showing that the second largest eigenvalue, Ay, becomes
stable when P4 collapses onto the branch. By performing a Floquet analysis on the off-
plane beating branch for various values of 8, as shown in figure 7(c), we see that A
becomes stable at higher f as we increase $, indicating that P4 joins the off-plane beating
branch at higher values of f as we increase 8. This trend continues until a critical value
of B, beyond which P4 now connects to the whirling branch, after which both branches
terminate. Consequently, for these values of 8, the whirling branch only exists when it is
stable (see figure 7a, middle).

The three bifurcation points corresponding to in-plane beating becoming unstable,
becoming stable again and the whirling branch disappearing all occur within smaller
ranges of f as we increase S, until the three bifurcations collide and we see only one stable
branch — in-plane beating, as shown in figure 7(a) (bottom) for 8 = 1.4. Indeed, a stability
analysis of the in-plane beating solution, shown in figure 7(d), confirms that the range of f
for which beating is unstable decreases with increasing 8, up to a critical value of 8 = g*
where the two pitchfork bifurcations collide, which likely also coalesces with the P4—
whirling bifurcation. Beyond this, beating is stable for all values of f in our tested range
and, as in the intrinsic curvature case, whirling ceases to exist entirely. Both the Floquet
analysis and IVPs suggest that the whirling branch collapses onto the beating branch at
B = B*, resulting in the loss of P4 and whirling as distinct solutions. The disappearance
of whirling can again be explained through the large separation in critical force values
between in-plane and off-plane beating solutions bifurcating from the trivial state.

5. Using bending stiffness anisotropy to stabilise asymmetric beating

Following the previous section, we see that increasing 8 > 1 has the effect of stabilising
planar solutions. Thus we now combine the effects of kg # 0 and 8 # 1, with the goal
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Figure 8. (a) Results of numerical simulations of an anisotropic filament with intrinsic curvature (ko=
3w /4, B > 1). The black lines are drawn to indicate the approximate boundaries of the solution regions. (b)
The eigenvalue associated with off-plane beating for several values of 8. For 8 < 1.4, this eigenmode becomes
unstable before the in-plane eigenmode (i.e. before f = f*). For 8 > 1.4, the in-plane eigenmode becomes
unstable first. (¢) The bifurcation diagram showing the different solutions as we vary f, and the corresponding
mean bending energy of these solutions, Ej, for kg = 37 /4, 8 = 2. We see that only asymmetric planar beating
(bottom) is stable.

of recovering the planar asymmetric beating observed in 2-D simulations of filaments
with intrinsic curvature, which were found to be unstable to 3-D perturbations in § 3
for 8 = 1. Both the P1 and whirling states must be eradicated for a collapse onto planar
dynamics. Following the results of the previous sections, we anticipate that the stability
of the P1 branch and existence of whirling solution are related to the eigenmodes of the
initial buckling event. As increasing x( appears to cause an earlier buckling of the off-
plane eigenmodes, while increasing § delays the onset of this instability, we expect that
increasing the intrinsic curvature will require a larger amount of anisotropy to stabilise the
planar modes. As such, we focus on ko = 37 /4, anticipating this to provide an upper bound
for the value of 8 which causes a collapse to 2-D dynamics, and increase § from g =1 to
B = 1.5. The results from IVPs over this parameter range are shown in figure 8(a).

As discussed in previous sections, ko and 8 have opposite effects on the initial buckling
modes; increasing the intrinsic curvature (i.e. increasing xg) causes the off-plane modes
to buckle earlier, whereas increasing the anisotropy through the bending stiffness ratio
(i.e. increasing ) causes later buckling of these modes. In both cases, in-plane buckling
happens at the same critical forcing, regardless of kg or B. Therefore, fixing «p and
increasing B shifts the off-plane beating modes to buckle at higher values of the forcing.
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This is shown in figure 8(b), which displays the eigenvalues corresponding to off-plane
buckling for various values of 8. As we can see, at § ~ 1.4 the off-plane buckling occurs
at f = f*, the critical forcing at which in-plane buckling occurs. Beyond this 3, the off-
plane buckling occurs for f > f*, indicating that the initial buckling of the filament will
be to in-plane beating, and will occur at f =~ f*. Accordingly, as we increase 8 from 1,
the IVPs in figure 8(a) show that the initial buckling into P1 happens at a critical value of
the forcing which increases with § until it reaches f ~ f* at 8 =~ 1.4, beyond which the
filament buckles into in-plane asymmetric beating at f &~ f*.

Furthermore, as increasing B increases the critical forcing value at which off-plane
beating bifurcates from the steady state, increasing the bending stiffness anisotropy
results in the birth of whirling again (as illustrated by the IVPs in figure 8a). For these
intermediate values of B, Floquet analysis indicates bistability between P1, whirling
and in-plane beating at several points, likely linked to the existence of distinct unstable
quasiperiodic and periodic solutions joining the three branches. However, as § is increased
further, and the off-plane buckling modes become unstable for larger f, we reach a
scenario where the whirling branch dies again above a critical value of 8. This occurs
through the same mechanism as the ko =0 and 8 =1 cases.

As expected, increasing the bending stiffness anisotropy further leads to a complete
collapse onto planar dynamics. While IVPs from the upright state indicate that this
collapse has occurred for 8 = 1.5 (see figure 8a), Floquet analysis shows that there are
still regions where P1 is stable for this choice of parameters, alongside in-plane beating.
By B =2, however, only in-plane beating is stable, showcasing the same asymmetric
beating dynamics as the planar case for kg = 37 /4, with particular asymmetry close to the
bifurcation. We show the bifurcation diagram for 8 = 2, and the planar beating dynamics,
in figure 8(c) and in supplementary movie 4.

6. Summary and discussion

In this paper, we investigated the effects of asymmetry and structural anisotropy in a
follower-force-driven filament, through the introduction of both intrinsic curvature and
bending stiffness anisotropy. In both cases, we observed that the initial buckling changed
from a double Hopf bifurcation, which is observed in the symmetric case (Clarke et al.
2024; Schnitzer 2025), to a single Hopf, suggesting that the double Hopf is a special case
of these systems and is related to symmetry. When varying only the intrinsic curvature, in
2-D simulations we obtain the same asymmetric beating reported in the literature (Wang
et al. 2023). However, in three dimensions, we see that this beating is unstable, with the
filament instead buckling into a fully 3-D beating occurring primarily perpendicular to
the plane in which the filament would deform in the absence of the follower force (P1).
Increasing the forcing, we observe a tilted whirling and discuss how this changes with
both f and «o. For moderate curvatures, we observe that P1 and whirling become bistable,
making the stable QP1 branch connecting whirling to beating in the zero-curvature
case now unstable, and introducing further unstable solutions which we identify through
bisection. Similar results hold when varying the bending stiffness anisotropy, replacing
P1 with planar beating in the plane of preferential bending. In both cases, we observe
that as we increase the amount of asymmetry, whirling not only becomes unstable, but
rather vanishes completely as a solution. Instead, we observe only P1 for the intrinsic
curvature case, or in-plane beating for the anisotropic bending stiffness case. Finally, we
show how introducing anisotropy through the bending stiffness on a filament with intrinsic
curvature can reintroduce whirling as a solution for moderate 8 values, and ultimately
stabilise the planar asymmetric beating observed in two dimensions for isotropic filaments

1023 A24-18


https://doi.org/10.1017/jfm.2025.10787
https://doi.org/10.1017/jfm.2025.10787

https://doi.org/10.1017/jfm.2025.10787 Published online by Cambridge University Press

Journal of Fluid Mechanics

with intrinsic curvature for larger 8 values. We find that a difference by a factor of 2 in the
bending stiffnesses is sufficient for this collapse into planar beating for the highest value
of kg tested for the follower force model; a remarkably reasonable ratio.

Changing the intrinsic curvature has the effect of adding asymmetry into the beating
pattern, motivating its inclusion in recent numerical studies (Chakrabarti & Saintillan
2019b,a; Sartori et al. 2016; Chakrabarti et al. 2022; Cass & Bloomfield-Gadélha 2023;
Wang et al. 2023). These 2-D works use values kg € [2, 2.71] to match the beating pattern
to experiments, in particular to wild Chlamydomonas flagella (Chakrabarti & Saintillan
2019b; Sartori et al. 2016). However, this is not the only potential cause of asymmetry in
ciliary beating; some works suggest that the bending stiffness in each plane may not be
constant, instead utilising a curvature-dependent bending stiffness (Han & Peskin 2018;
Moreau et al. 2024). In such a model, the in-plane bending stiffness can take one of
two values depending on the sign of the local curvature. Other works suggest that the
asymmetry is a result of bias in the rates at which the dynein attach and detach from the
microtubules, depending on their placement in the axoneme (Chakrabarti & Saintillan
2019b,a; Chakrabarti et al. 2022). In each of these models, numerical studies result
in asymmetric dynamics exhibiting distinct recovery and effective strokes. Our results
indicate that these asymmetric beating solutions could be unstable in three dimensions,
but that they could be stabilised by incorporating anisotropy to the model, for instance
structural anisotropy through the bending stiffness.

Incorporating anisotropy through the bending stiffness in either direction is motivated
by the internal structure of the cilium. Cilia have a preferential bending direction due to
both the orientation of the central pair of microtubules (Gibbons 1981; Marshall & Nonaka
2006; Gilpin ez al. 2020) and the stiffness of the 5—6 bridge (Afzelius 1959; Gibbons 1981)
which limits sliding between microtubule doublets 5 and 6 in the axoneme. The effect of
the bridge is captured in our work by allowing the perpendicular stiffness to differ from
the in-plane stiffness, where ‘in-plane’ is aligned with the preferential beating plane of
the cilium. Structural anisotropy was utilised in Rallabandi et al. (2022), where it was
shown that the transition from planar to whirling dynamics is delayed as we increase the
anisotropy. Based on our results, we suspect that increasing the anisotropy further in this
study would eradicate the 3-D whirling dynamics completely, and only planar solutions
would remain. It is expected that larger values of 8 may be required for different forcing
mechanisms. For example, in Rallabandi et al. (2022), values up to 8 = 10 were considered
and 3-D dynamics was still observed, while we found values as small as § =2 were
sufficient to suppress 3-D dynamics entirely for the follower force model. In Ishijima &
Hiramoto (1994), experimental evidence on sand dollar sperm flagella reports a value of
B =13.8. This is much higher than the threshold for entirely planar dynamics that we
find, and so could explain the planar beating observed by these cells (Ishijima & Hiramoto
1994). In Lindemann & Lesich (2016), a wooden axonemal model supplemented with a
stronger 5—6 bridge (by using a silicon adhesive between doublets 5 and 6) and a central
pair was used to generate an estimate of 8 = 2.6 for the axoneme.

Although the follower force model differs from the internal shear-driven sliding
mechanism which generates ciliary beating, the dynamics observed in this paper is
reminiscent of that observed biologically. For instance nodal cilia found in the embryo
are known to whirl with a tilt to the left, generating fluid flows which break the left-right
symmetry in the embryo (Nonaka et al. 1998; Smith et al. 2008a, 2011), similar to the
asymmetric whirling observed for moderate xy and 8. Motile cilia on the other hand, such
as respiratory cilia, undergo asymmetric near-planar beating with low-curvature power
strokes, followed by distinct high-curvature recovery strokes (Chilvers & O’Callaghan
2000). While we do not observe these two components of the beat with this simple
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model, for large enough B and moderate ky, we do observe asymmetric planar beating.
Structurally, these cilia are different; nodal cilia lack the central pair of microtubules in the
axoneme, which respiratory cilia do have. The existence of a central pair would increase
the structural anisotropy, and hence increase 8. This is consistent with our findings that
filaments with lower B values can access tilted whirling as a state, whereas higher-8
filaments can only achieve planar beating.

The follower force model is a simple, commonly used model that yields cilia-like
dynamics through instabilities and provides an environment to explore the effect of
anisotropies on these states. Some other forcing mechanisms more accurately describe
the shear-driven activation of cilia, instead considering the forcing with a multi-level
approach; considering how microscale attachment and detachment of dynein motors in the
axoneme can lead to large-scale ciliary beating. In such models, anisotropy can be included
through the bending stiffness (Rallabandi ef al. 2022), or by including stiff springs to
represent the 5-6 bridge in the axoneme (Han & Peskin 2018). Then asymmetric beating
can be achieved through the intrinsic curvature (Sartori et al. 2016; Cass & Bloomfield-
Gadélha 2023), or through biased feedback mechanisms which control the forcing output
of the motors (Chakrabarti & Saintillan 2019b,a; Chakrabarti et al. 2022). Exploring how
anisotropies through the curvature and stiffness affect dynamics in models with more
accurate forcing mechanisms would give more accurate estimates for the o and 8 values
necessary to recover beats closer to those observed in the literature, and also perhaps give
more knowledge of the core ingredients needed to obtain such beats.

While our discussion for studying non-reciprocal motion in active filaments has focused
thus far on biological contexts, a second application comes from biomimetic devices based
on synthetic, filament-like colloidal structures that can be actuated by magnetic fields
(Elgeti, Winkler & Gompper 2015) or diffusiophoresis (Michelin 2023). The follower force
model is a simple forcing mechanism that can be used to provide insights into recovering
self-sustained buckling dynamics. Based on values in the literature for phoretic particles
(Nishiguchi et al. 2018), we can extract the particle radius and velocity to be a = 3.17 pm
and V =10 ums~!, respectively. Using the viscosity of water, = 1 cP, we can estimate
the corresponding follower force by calculating the magnitude of the force required to keep
a self-propelled colloid fixed, F = 67naV 2 5.98 x 10~!3 N. Using the bending stiffness
reported for an artificial microswimmer in Dreyfus et al. (2005), Kp ~ 3.3 x 1072 m~1,
we can extract the corresponding non-dimensional follower force for a chain of length L =
50a, i.e. a chain constructed of 25 particles, to be f = 45.5. This value is above the critical
threshold, and so it is plausible that time-dependent dynamics can be induced in colloidal
chains using available mechanisms. Furthermore, in the case where all the particles in
the chain are active, the more relevant model would be a distribution of follower forces
along the filament length which, following the same non-dimensionalisation as above,
has a critical buckling value of f ~4 (Ozdemir et al. 2025; Clarke 2025). In this case,
we anticipate the chain would be able to access different states associated with higher
forcing values. Thus, we suspect that introducing asymmetries and anisotropies in the
ways outlined in the paper would result in similar dynamics reported in this work.

The anisotropies studied in this work are assumed to be constant along the filament
length, but in reality this may not be the case. Towards the bottom of each cilium,
connecting the axoneme to the basal body, is a region called the transition zone, in which
several structural changes from the ‘9 4+ 2’ axoneme can be found (Mercey et al. 2024).
Incorporating the structural properties of this region is of interest, as defective proteins
in the transition zone are known to cause a range of human diseases, called ciliopathies
(Gongalves & Pelletier 2017). Investigating the role of this coupling at the base, either
through different boundary conditions at the wall or through spatially varying anisotropies,
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will provide an insight to the impact of these localised anisotropies on ciliary dynamics.
Another future avenue of interest is considering the collective motion of asymmetrically
beating filaments, stiffness such as in ctenophores, which use plates of synchronously
beating cilia for locomotion (Tamm 2014). The plates of cilia coordinate such that a
constant phase difference is observed between neighbouring plates, causing a metachronal
wave along the ctenophore length. Each cilium has a ‘9 4+ 3’ axoneme (Afzelius 1961),
suggesting anisotropy at the individual level is important to ctenophore motility. However
it is not immediately clear how the structure of these comb plates, in particular how
each cilium is bound to the plate, will affect both the individual and collective dynamics.
The study of collective dynamics, in particular investigating if hydrodynamic interactions
between cilia can lead to synchronisation and perhaps even metachronal waves as observed
experimentally, will be the subject of our future research.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jtm.2025.10787.
Funding. B.J.C. gratefully acknowledges funding from an EPSRC scholarship (grant no. EP/W523872/1).

Declaration of interests. The authors report no conflict of interest.

Appendix A. Initial buckling for «¢ # 0

Recall that introducing asymmetry into the filament motion through intrinsic curvature
separates the branches for the in-plane and off-plane buckling modes. Off-plane buckling
occurs earlier for filaments with higher intrinsic curvature, while in-plane buckling occurs
at the same forcing regardless of the curvature. It appears that this is associated with choice
of frame in which the curvature is defined to act.

We can choose the direction in which the curvature exists, i.e. in the material frame, so
that the moment is given by

at\ . L OR\ A
v+ Kr|lv.— )¢, (AD)
as as

or in the laboratory frame, so that the moment is defined by

A

~ OV
M(s,t)=Kp (t-
as
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A

R AN . ot
M(s,t)=Kp |- i+ BKp |-
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) v+ Kr (f: . 8”“) { —KpLkoy. (A2)
s as

We show the stability analysis for both cases for ko = 3w /4 in figure 9(a). Here, we see
that in both cases, the in-plane buckling occurs at f =~ 35.5. When the intrinsic curvature is
incorporated in the material frame, the off-plane buckling occurs much earlier at f ~ 17.8,
contrasting with f ~36.7 for the laboratory-frame case. This suggests that the earlier off-
plane buckling arises due to the way in which the intrinsic curvature is tied to the filament
frame; small perturbations to the filament generate changes to the filament’s local frame,
and thus to the direction of intrinsic curvature through fi. When the intrinsic curvature is
defined in the material frame, a small off-plane change in ft leads to off-plane torque:

t1 =—Kprol|(I — y)iLl]. (A3)

In essence, the filament now has a non-planar intrinsic curvature, causing off-plane torques
which yield an earlier buckling. The effect of these torques is amplified as we increase «y,
explaining why the filament buckles earlier as we increase the intrinsic curvature.

In figure 9(b), we consider these off-plane effects by calculating the in-plane
contributions of jt, and hence of the intrinsic curvature. These data are taken from IVPs
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Figure 9. (a) The real part of the dominant four eigenvalues from a linear stability analysis of the steady state
for kg =37 /4, B =1 associated with the off-plane buckling (blue dashed/yellow dotted) or in-plane buckling
(red) when the curvature is introduced in either frame. (b) The off-plane component of the direction of the
intrinsic curvature for various values of the forcing. These are obtained from IVPs, as described in the text. We
note that if the curvature is fixed in the laboratory frame, this would be zero for all time.

in the case where the intrinsic curvature is defined in the material frame, i.e. using (A1l).
The initial filament configuration is given by the steady state, as found by JFNK, with
an additional small perturbation of ~ O (1073). We let this simulation run until periodic
oscillations are achieved. As predicted by the stability analysis, the perturbations grow
faster as f increases, leading to quicker saturation into the periodic beating we call P1.
We can contrast this with the laboratory-frame intrinsic curvature, where the internal
moment is defined by (A2), in which the off-plane contribution of the torque is always

T =—Kpwol|[(I =y )yl =0.

Appendix B. Bifurcation analysis

In the following, we further discuss the bifurcation diagrams shown in the main text
pertaining to isotropic filaments with intrinsic curvature, and anisotropic filaments with
no intrinsic curvature, namely figures 4 and 7(a).

B.1. Isotropic filaments with intrinsic curvature

The bifurcation diagram for kg =0, i.e. the symmetric case, is shown in figure 4(a). As
discussed in Clarke er al. (2024), we see that the filament buckles at f = f*, matching the
planar case. At this point, both planar beating and whirling branches are born through a
double Hopf bifurcation. Planar beating is initially unstable, and whirling initially stable.
At f =~ 137.3, whirling becomes unstable through a supercritical Hopf bifurcation in which
QP1 is born. At f & 140.0, a pitchfork bifurcation occurs, in which the QP1 branch
terminates and planar beating becomes stable.

The bifurcation diagram for kg = /4 is shown in figure 4(b). We see that the steady
state becomes unstable earlier through a Hopf bifurcation at f ~ 33.9 < f*, leading to a
short region of f in which only P1 is stable. We can also track the asymmetric planar
beating branch found in the 2-D case, which appears to be born at f &~ f* and remains
unstable for all values of the forcing — agreeing with the IVPs. At f ~ 36.3, soon after
the planar beating branch is born, the whirling solution branches from P1, exchanging
stability through a pitchfork bifurcation (see figure 4b, left inset). The whirling solution
remains stable until f & 126.4. The P1 solution, however, becomes stable again at f ~
122.7, leading to a region of bistability between the two. We perform bisection in this
region, which unveils two distinct solutions (see figure 4b, right inset): QP1, as in the
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Figure 10. Plots of filament dynamics for solutions from two views. Darker lines correspond to moving
forwards in time. Plots for (@) QP1, (ko, B8, f) = (0, 1, 138), (b) QP1*, (xo, B, f) = (7 /4, 1, 123), (¢) P3,
(ko, B, ) =(7/2, 1, 80), (d) P3*, (x0, B, ) = (;/2, 1, 90) and (e) P4, (ko, B, f) = (0, 1.2, 120).

isotropic case, and a new solution, which we call QP1x. We show these in figure 10(ab).
In this new solution, the filament has an almost elliptical beat like QP1, although now the
overall beat rotates from side-to-side, rather than unidirectionally like QP1. It is unclear
whether there are bifurcations occurring between the unstable solutions in this region as
bisection only allows us to compute the solution on the boundary between P1 and whirling.

For ko = m /2, the bifurcation diagram is shown in figure 4(c). The steady states becomes
unstable earlier at f & 28.1, giving rise to P1, and whirling branches off P1 later than the
ko= /4 case, at f ~ 37.5. Once more, we can find that the asymmetric planar beating
branch exists, and is unstable for all f in this range. As in the previous case, we see
a region of bistability between whirling and P1, but now for a larger range of f (for
73.3 < £ <100.3). We again use bisection in this region, which reveals three solution
branches (see figure 4c, right inset). The first branch is a periodic solution close to the P1
bifurcation which we call P3; here the tip traces a tear-drop shape in the (x, y) plane, as
shown in figure 10(c). For larger f, bisection instead reveals the second branch, separated
by the black line in figure 4(c), inset, a solution which we call P3x. Here, the filament
beats like P3, but now the tear-drop shape traced by the filament tip moves with time.
The beat repeatedly changes direction, each time beginning to align the major axis of
the shape traced by the filament tip with the X axis before changing direction again, as
illustrated in figure 10(d). The final branch, close to the whirling bifurcation, is QP1 as in
the isotropic case. We note that the bifurcations corresponding to the loss and subsequent
gain of stability of P1 are closer than the ko =0 and ko = 7 /4 cases.

By ko =37 /4, these two pitchfork bifurcations have coalesced and vanished, as can be
seen by the bifurcation diagram in figure 4(d). Here, the steady state becomes unstable
at f =~ 17.8. Solution P1 then remains stable beyond f =300, and the planar beating
branch is again unstable for all f in this range. Notably, the whirling solution not only
is unreachable through IVPs for kg = 37 /4, but appears to have vanished completely. A
discussion on how and why this disappearance occurs can be found in the main text.

B.2. Anisotropic filaments with zero-curvature rest state

The bifurcation diagram for 8 = 1.2 is shown in figure 7(a) (top). We find that the steady
state becomes unstable at f = f*, analogous to the 8 =1 case. At this point, the in-
plane beating branch (corresponding to beating in the (x, z) plane) is born through a
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Figure 11. (a) The frequencies w = 1/T, where T is the solution period obtained via JENK, of three solution
branches for f €[50, 300]. We show asymmetric beating for (kg, 8) = (37/4, 1), P1 for (xo, B) = (37 /4, 1)
and whirling for (ko, 8) = (r/4, 1). The frequencies for various xo and S values for (b) whirling, (c)
asymmetric beating and (d) P1 solutions are also shown for f €[200, 210], to show the small variations in
frequency as these parameters change.

Hopf bifurcation. The off-plane beating branch (corresponding to beating in the (y, z)
plane) bifurcates from the trivial steady state at f ~ 8f™* =153.0, and is unstable for all
values of f. In-plane beating becomes unstable at f ~46.0, and the whirling branch
is born. The whirling branch is then stable until f ~ 138.4, where it becomes unstable
through a subcritical Hopf bifurcation. At f ~ 106.2 the in-plane beating branch becomes
stable, leading to a region of bistability between whirling and in-plane beating. Bisection
in this region yields a single periodic solution branch: P4, in which the filament undergoes
elliptical whirling oscillations, where the major axis of the ellipse has components in both
the x¥ and y planes. We plot P4 over one period in figure 10(e). Tracking P4 with JFENK
shows that P4 connects to the off-plane beating branch at f &~ 178. It is likely that other
unstable solutions are present in this region of bistability, in particular connecting from
the bifurcation in which whirling becomes unstable, which we are unable to obtain with
bisection alone.

The bifurcation diagram for § = 1.3 is shown in figure 7(a) (middle). There are many
qualitative similarities to the previous bifurcation diagram: in-plane beating and off-plane
beating both bifurcate from the trivial state at f = f* and f = 8f™, respectively, off-plane
beating is always unstable and in-plane beating becomes unstable as whirling becomes
stable at f ~ 54.0. We again observe a region of bistability between whirling and in-plane
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beating, now for 93.9 < f < 110.8, in which we see the same unstable periodic solution,
P4. However, a key difference is observed; P4 now connects to the whirling branch, after
which both branches terminate.

The bifurcation diagram for 8 = 1.4 is shown in figure 7(a) (bottom). By this value of
B, the bifurcations corresponding to in-plane beating becoming unstable, restabilising and
the whirling branch have collided, and we see only one stable branch — in-plane beating.
This bifurcates from the steady state at f = f™*. The off-plane beating bifurcates from the
steady state at f = Bf*, and is unstable for all values of the forcing.

Appendix C. Solution frequencies

In figure 11(a), we plot the frequencies, w =1/T, of some of the key dynamics observed
in the main text; asymmetric beating, P1 and whirling. These are each plotted for a
single choice of kg and B for f €[50, 300]. While the frequencies of the solutions vary
considerably with the follower force, as shown in figure 11(a), the change with the other
parameters is much smaller, as shown in figure 11(b—d). The frequency of the whirling
solutions increases with ko and decreases with 8 (figure 115) while the frequencies of
the asymmetric beating and P1 solutions both decrease with «p (figures 11c and 11d,
respectively).
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