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Abstract

The existence, uniqueness and regularity of solutions are proved for the obsta-
cle problem with semilinear elliptic partial differential equations of second order.
Computationally effective algorithms are provided and application made to steady
state problem for the logistic population model with diffusion and an obstacle to
growth.

1. Introduction

We consider the obstacle problem for semilinear elliptic equations of second
order, and prove existence, uniqueness and regularity of solutions and pro-
vide computationally effective algorithms. We apply our results to the steady
state problem for the logistic population model with diffusion and an obstacle
to growth. (With this application in mind we require that the solution lies
below the obstacle.)

Our proof of existence in the Theorem 1 is based on constructing a mono-
tone sequence of iterations, converging to a solution. On each step one solves
the obstacle problem for a linear elliptic equation. For the initial iterate one
may take either the obstacle itself, or a subsolution, whose existence we as-
sume. Our solution then lies above the subsolution, which, in particular,
allows one to conclude existence of a nontrivial solution in the presence of a
trivial one.

Compared with the standard monotone scheme for elliptic equations (see
e.g. [1]), the situation is more involved here, since each iterate is not a classical
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260 Philip Korman, Anthony W. Leung, and Srdjan Stojanovic [2]

solution (it is only in W2'p and wfcf), which complicates the passage to the
limit. To pass to the limit, we derive W2<p bounds for the approximating (or
penalized) problem, which are independent of the approximation parameters
e and N, and the iteration index n. We then pass to the limit along a diagonal
subsequence, as e -+ 0, N, n -> oo.

Compared with the variational inequalities techniques (see e.g., [3], [2]),
we do not assume any special structure upon the nonlinear perturbation
f(x, u), such as the sign condition f(x, u)u > 0. (Although we do assume
Lipschitz continuity of / in u.)

In the Theorem 2, we prove uniqueness of the positive solution for a
general class of equations, including the logistic model. In the Theorem 3 we
prove regularity of free boundary, based on the results of L. A. Caffarelli [4],
D. Kinderlehrer and L. Nirenberg [7], see also A. Friedman [5].

In Section 4 we develop a Newton-like method with monotone convergence
for the obstacle problem (Theorem 5). The advantages of the method are
its quadratic convergence and a large domain of attraction for the solution
(initial guess does not have to be close to the solution). Also (as in the
Theorem 1) we have an automatic error bound on each step. In the Theorem
4 we present an analogous method for semilinear elliptic problems. A similar
approach was used previously by R. Bellman, R. Kalaba and their coworkers,
and developed by D. Cohen and H. Keller, see e.g., H. Keller [9] and the
references therein. However, it is required in [9] that L—fu(x, 0) is a positive
(or inverse-positive) operator, a rather restrictive condition, which is not
assumed in the Theorem 4.

We shall use the standard spaces C2 + a, Wmj> with || • ||m)P denoting the norm
in Wm'p (see e.g., [5]). We shall write c for all irrelevant positive constants.
By A i we denote the principal eigenvalue of -A on Q with zero Dirichlet
data, and by cp\ > 0 the corresponding eigenfunction with maxn <p\ = \, i.e.,
A<p\ + Ai9>i = 0 in Q, (p\ — 0 on dtl.

2. Existence, uniqueness and the regularity results

Let L denote the operator

iJ=\ dxtdxj .= 1
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[3] Iterations for nonlinear obstacle problem 261

Q a bounded domain in R". We consider the obstacle problem

Lu<f{x,u)\

w < q{x) > a.e. in Q,
(Lu-f(x,u))(u-q) = 0 J

u = g(x) on dQ (2.1)

Assume that L is uniformly elliptic operator with coefficients in CQ(Q),
q{x) e C2(Q), g(x) e C2+O(fi), #(.*) < q{x) on 3Q, 0Q e C2+a.

THEOREM 1. In addition to the conditions above, assume that there exists a
function (p € C2(Q) {a subsolution), such that

L<p < f(x, <p), <p(x) < q(x) in Q,

<p(x)<g{x) on dQ,

and that f(x, u) is Ca in x and uniformly Lipschitz in u, for x € Q, and <p(x) <
u < q{x). Then the problem (2.1) has a solution u(x) e W2-P{Q) n ^>

c°°(^)
for any p. Moreover, u > <p{x).

PROOF. Without loss of generality we may assume that the function / is
increasing in u and c(x) > 0 for all x e Q. (Substitute / by / 4- Mu,
and L by L + Mu, where M is large.) Also, we may assume that the set
{x e Q\Lq < f(x,q)} is nonempty, for otherwise q{x) is a supersolution,
and then there exists a solution u(x) for the problem Lu = f{x, u) in Q,
u = g(x) on Oil, which is also a solution of (2.1), see e.g., [2].

Let M° = q(x), and define a sequence of functions {u"(x)} by solving the
following variational inequality (« = 0,1,. . .)

Lun+l < f(x,unU

u"+i < q(x) > a.e. in fi,

(Lu"+l-f(x,un))(un+l-q) = 0 J
«"+» = g(x) on dil. (2.2)

Since f(x,u") € Ca(Q), the problem (2.2) has a unique solution M"+1(JC) e
W2'P(Q.) for any p ([6, p. 26]).

We show next that the sequence {un{x)} is monotone decreasing, i.e.,

M ° > M 1 > M 2 > •••. (2 .3 )

The proof is by induction. Let k be the first index where (2.3) is violated,
i.e., the (open) set G = {x e H\uk_l(x) < Wfc(x)} is non-empty. Then
uk-\ < Q{x) in G, and hence by (2.2),

Luk~x =f(x,uk~2) inG,
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while Luk < f(x,uk~l). By the inductive assumption,

L(uk-l-uk)>f(x,uk-2)-f{x,uk-l)>0 inG, «*-'-«* = 0 on 8G,

which leads to contradiction by the maximum principle. Similarly, we see
that M"(JC) > (p(x) for any n.

The monotone sequence {«"(;t)} will converge pointwise to a function
u(x) > q>{x). We proceed to show that u(x) solves (2.1). For this we prove
the estimate

I|M"I|2,P < c for any p, independently of n. (2.4)

It will imply that « " - • « weakly in W2<p(Q) for any p, and hence uniformly
infi .

Recall that un+l can be obtained as a limit when e -+ 0 (along some se-
quence e = em) of the solution u" of the penalized problem ([6]),

Lun
e
+i + 0e(u

ne+l -Q) = f(x, u") in Q

w"+1 = g{x) on dCl. (2.5)

Here pe{t) (0 < e < 1) is a family of C°° in t functions, satisfying the
properties

# ( 0 > 0 for -oo<t < oo, 0 < e < 1,

y?£(0 -» 0 for f < 0, e -» 0,

)Se(0 -• ex) if r > 0, e -+ 0,

A(0 > —c, jffe(0) < c (c is independent of e).

Recall that to solve (2.5) one introduces #,,#(0 = max{min(#,(f), N),-N},
and considers the problem

& , * « # - 9 ) = /(*,«") infl

By the Schauder's fixed point theorem and elliptic regularity, problem (2.6)
has a solution in C2+a(Q.).

We now proceed with the inductive proof of (2.5) assuming it to hold up
to an index n. We need a bound on the function £(x) = /?,>,#(M"Ĵ  - q). By
the definition of fie, £(x) > -c. Let now x° be the point of maximum £(x).
We may assume that <*(x°) > /?e(0) for 0 < e < 1. Notice that x° <£ d£l, for
otherwise

Z(x°) = PeAs -Q)< A,w(0) < A(0).

Next, if x° e Q then, since M"^1 - q takes its maximum at x°,

L(un
e$-q)>0 atx°.
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Then, using (2.6) and (2.4),

£(*°) < f(x°, un(x0)) + Lq(x°) < c.

So that
IPeAKjv ~ 9)\ < c independently of e, N, n. (2.7)

By LP estimates we conclude from (2.6)

H""jv h,P < c independently of e, N, n. (2.8)

Taking N sufficiently large, we see that w"^1 is a solution of the problem
(2.5), i.e., M ^ 1 = w£+1. Letting e -> 0, we complete the proof of (2.4).

As e = em —> 0 and n —> oo, we have

un
e -* un weakly in JV2-P(Q.), uniformly in H,

«" -»« weakly in W2'p{0), uniformly in Q.

Observe, that in both cases we have convergence of the full sequence, not
just for a subsequence, because u" is the unique solution of (2.2), and {«"}
a monotone sequence. Now we pass to the limit in (2.5) along the diagonal
sequence as e = em —» 0, n ^ oo. From (2.7) it follows that u < q(x) in Q.
Also, notice that

A(""+ 1 - 9) -> 0 on the set {JC|K(JC) < g(x)},

Urn A(«r'-«)>0.
e—*0,n—»oo

It follows that u(x) is a solution of (2.11). Observe, that here it is crucial
that we have un —> u for a full sequence.

Finally, since f(x, u") e Ca(U), it follows from [6, p. 31] that u e WJ£

REMARK 1. Similarly to the above, if we start with u° = <p, then the sequence
{u"(x)}, denned by (2.2), will be increasing in n, and converge to a solution
of (2.1).

REMARK 2. The solution obtained in the theorem and the one from the previ-
ous remark are respectively the maximal and the minimal solutions of (2.1).
Indeed, if T is the map u" —• un+l, denned by (2.2), and v is any solution of
(2.1), then v <u° = q, Tv = v < Tu° = ul, and so on (T is monotone).

REMARK 3. Let u\ denote the maximal solution of the problem (2.1) with
qx {x) in place of q(x) and fx (x, u) in place of f(x, u), qx (x) > q{x), f\ (x, u)
> f(x,u") for all x e Q and <p{x) <u< q\(x). Then u\{x) > u{x). The
proof is similar to that of the previous remark.
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REMARK 4. It is easy to generalize the theorem to allow less restrictive regu-
larity assumptions for the obstacle. Namely, it is enough to assume that

d2q/d£2 < c in ^ ' (Q o ) , for any direction £,

'where Qo is a neighborhood of Q (see Theorem 1.3.5 in [6]).

REMARK 5. One checks that the theorem 1 holds if q(x) e W2'"(n) with
p > n. Solution u is then in W2p(Q.) too. (See the problem 1 on p. 29 in
[6]).

THEOREM 2. In addition to the conditions of the Theorem 1 assume that
f(x, u) = ur(x, u), where r(x, u) is strictly decreasing in u for x e Q, u > 0.
Also, assume that Lu is of the form Lu = -J2lj=i w, [au(x)§Tj + cu w*tn

atj e Cl(il), c e C°(Q), atj = a,, for all i and j . Then the problem (2.1) can
have at most one positive in Q. solution of class W2'P(Q), p>2.

PROOF. Let u(x) be the solution of (2.1) produced in the theorem 1, and
w(x) any other solution of (2.1). Then u(x) > w(x). Define A = {x e
Cl\w(x) < u(x)}, and notice that Lw — f(x,w) in A. Notice also that at dQ.
the conormal vector points outside of Q, and hence the conormal derivative
of u is not greater than that of w. Then

0 < / g ( -r— ) = / wLu - uLw = / wLu - uLw

< / uw(r(x, u) -r(x,w)) < 0,
JA

and hence the set A is empty, i.e., u = w.

REMARK. Theorem 1 and 2 are applied in the next section to a population
model, where it is possible to establish existence of a subsolution <p(x) > 0.

Next we discuss regularity of the free boundary. Denote A = {x e
n\u{x) = q{x)}, N = {x e £l\u(x) < q{x)}, T = dN. For x0 € T, Br

(or Br(xo)) denotes the ball of radius r around xo; II denotes the Lebesque
measure of a set.

THEOREM 3. In the conditions of the Theorem 1 assume that at some point
XQ e T we have lim supr_0 ^jgj^ > °. and

-Lq(x0) + f(x0, q(x0)) > 0. (2.9)
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Assume also that q e C3, / e C1 in a neighborhood of x0. Then u e
C2((N u F) n Br) for some r>0 and F e Cl+a for any 0 < a < 1 in a neigh-
borhood of XQ. Furthermore if f e Cm+P in both arguments (m = integer >
1,0 < 0 < 1) then F e Cm+^+1. Finally iff is analytic so is F.

PROOF. Define v = q-u. Then from (2.1), v > 0 and

Lv -Lq + f(x, q - v) > 0 in Q.

At x0, -Lq + f(x,q - v) = -Lq{x0) + f(xo,q(xo)) > 0, and hence by the
Caffarelli's theorem [5], u e C2{(N U T) D Br) for some r > 0 and T € C1 in
some neighborhood of xo- Then our assertions follow by the Theorem 1' in
[10].

Next we give a useful condition for (2.9) to hold, in case L = -A.

PROPOSITION. For the problem (2.1) assume that f(x,q)+Aq andV{f{x,q) +
Aq) do not vanish simultaneously at xo e F; / in increasing in u, q eC3 and
feC1 in a neighborhood ofx0. Then (2.9) holds.

PROOF. From (2.1), y/ = Aq + f{x,q) > 0 a.e. on F. By continuity this
inequality holds everywhere on F. We show that y/ > 0 on F, following
the proof of the lemma 7.3 in [6, p. 195]. Suppose that y/{xo) — 0. Since
Vy/(xo) ^0, then for any small e > 0 one can find a small R > 0 such that

y/ < 0 in Ker\BR(x0),

where Ke is the cone KE — {-(x - xo, Vy/(xo)) > e\x - xo\}. The function
v = q -u then satisfies v > 0, v(xo) — 0, Vv(xo) = 0,

-Av = -Aq + Au> f(x, q) - f(x, u)>0 inKen BR(x0),

and then one gets the same contradiction as in [6].

3. Logistic population model with diffusion and an obstacle to growth

Let u(x, t) > 0 denote the population density of a certain species at the
position x eQ, and time t > 0, which obeys the logistic growth model with
diffusion:

u, -Au = u(a-u) in Q, « = 0 on dCl. (3.1)

Here the function a(x) represents the rate of reproduction, and the boundary
condition u = 0 can be interpreted as a "hostile environment", or "emigration
of species".
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As a first step in the analysis of (3.1), one usually considers the steady
state problem

AM + u(a - u) = 0 in Cl, M = 0 on Oil. (3.2)

We recall ([11]) that for a <k\ the problem (3.2) has no positive solutions,
whiie for a > k\ there exists a unique positive solution ua (with {a -).\)q>\ <
ua < a in case a = constant). Moreover, ua is increasing in a.

Now we assume that there is an obstacle to growth of the species, i.e., a
function q(x) e C2{Q), q{x) > 0 in Q, such that u(x) < q{x) in Q, and
look for a steady-state solution. The interesting case is, of course, when the
obstacle q(x) interferes with the "natural" steady state, i.e., the set {x e
il: q(x) < ua} is non-empty. In the coincidence set {M = q(x)} we require
that -AM < u(a — u), for otherwise u cannot be a steady state solution of
(3.1). (If this inequality was violated at some point, the population would
instantaneously decrease at that point.) So that we are looking for u(x) > 0,
satisfying the following variational inequality:

-AM < u(a -u) in Q.

(AM + u{a - M))(M - q) = 0 in Cl (3.3)

M<tfinQ,M = 0, on dil.

PROPOSITION. If a < k\, the problem (3.3) has no positive solution. If a > k\,
a € Ca(Q) and q{x) > d<p\ for some 8 > 0, then the problem (3.3) has a
unique positive solution of class W2'P(Q.) n W '̂C°°(Q) for any p > 2, which is
increasing in a.

PROOF. Multiply the first equation in (3.3) by u > 0 and integrate by parts.
We get:

- / |VM|2+ [ au2- [ M 3 >0 ,
Jn J Ja

and the non-existence for a < X\ follows from the inequality /f i |VM|2 >
Mn"2.

In the case a > k\, existence follows from the Theorem 1 (notice that 8q>\
is a subsolution for S sufficiently small). Uniqueness follows by the Theorem
2. Monotone dependence on a{x) follows by the Remark 3 to the Theorem
1.
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REMARK. By the Theorem 3 we can conclude that the free boundary is as
smooth as the function a{x), provided it is known to be Lipschitz continuous.

4. Monotone Newton's method

In this section we present a Newton-like method with monotone conver-
gence, first for semilinear elliptic problems and then for our obstacle problem
(2.1). Throughout the section we assume that L is a uniformly elliptic oper-
ator of the form

Lu = - £ -S-iau^-) + c(x)u, (4.1)
ij=i

 ax> axJ

with au e Cl+a(U), c(x) e Ca(U),c(x) > 0 for x e U,g(x) e C2+a(U),il
bounded domain in R" with C2+a boundary, 0 < a < 1.

THEOREM 4. Consider the problem

Lu = f{x,u) inQ (4.2)

M = g(x) on dQ,

In addition to the conditions above assume that g(x) > 0, and the following.
(i) There exists a function <p{x) > 0 in Q and <p{x) = 0 on Oil, (p{x) e

C2(Q), called subsolution, which satisfies

L(p < f(x, q>) in Q

<P < g(x) on dfi,

and a supersolution UQ{X) e C2(fl), which satisfies (4.3) with the inequality
signs reversed. Moreover uo(x) > <p{x) in Q, MoM > 0 in Cl.

(ii) For x e Q. and <p(x) < u < uo(x) the function f is concave down in u,
and of the form f(x, u) = ur(x, u) where r(x, u) is strictly decreasing in u.

(iii) / , fux e C° in x and u, and f e C2 in uforxeU and <p(x) <u<
UQ{X). Then the unique positive solution o/(4.2) can be obtained as a limit of
the sequence {un (x)}, defined by solving {starting with the supersolution uo{x))

Lun+X = f{x, un) + fu{x, un){un+x - un) in Q

un+x=g{x) on d^l. (4.4)

Moreover, the speed of convergence is quadratical.

PROOF. First we notice that the problem (4.2) has a unique positive solution
of class C2(Q). Existence is standard, see e.g., [2], where it is shown that there
exists a maximal solution w in the order interval [(/>, MQ], i.e., for any other
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solution u in the same order interval, one has u < w. Notice that at #O the
conormal vector uL = {vLU...,vLn), vLi = E"=i aUvj (with v = {vu...,vn)
denoting the normal vector) points outside of fl, and hence the conormal
derivative of w is not greater than that of u. Then

n . f du dw f
0 < / W-T «-— = / uLw - wLu

~ J dvL dvL J
an a

= I uw{r(x, w) - r(x,«)) < 0,
a

which implies that u = w. Hence we have uniqueness in the order interval
[<p, Mo]. Uniqueness for (4.2) will then follow from the observation that 0
and A «o are respectively sub- and supersolutions for any k > 1.

So let u{x) denote the unique positive solution of (4.2). We shall prove
inductively the following statements.

(i) The function un(x) is a supersolution of both (4.2) and (4.4) for all
n > 0. Indeed, by concavity

Lun+i = f{x, un) + fu(x, un)(un+i - un) > f{x, un+l),

establishing the first part of the claim. Then, the function un(x) is a super-
solution of (4.4).

(ii) cp is a subsolution of (4.4) for all n > 0. Indeed

L(p < f(x, <p) < f(x, UH) + fu{x, Un){q> - Un).

(iii) The problem (4.4) can have at most one solution. If there are two
solutions of (4.4), then their difference z satisfies

Lz-fu(x,un)z = 0 infl
z = 0 onafi. ( ' '

Let M denote the unique positive solution of

Lu = f{x,u) infl
u = 0 on dCl [ ' '

Claim: u<un for any n > 0. Indeed, un is a supersolution of (4.6) for all n,
while q> is a subsolution. Hence there exists a solution of (4.6) in the order
interval [<p, un], which by uniqueness is M.

From (4.6) we conclude that the principal eigenvalue of the problem

Lv - r(x,u)v = kv in Q
w = 0 onflQ
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is zero, and the principal eigenfunction is u > 0. (Recall that only the prin-
cipal eigenfunction of the uniformly elliptic operator does not change sign.)
By our assumptions and since u < un, it follows that

fu{x, u) = r(x, u) + uru(x, u) < r(x, u),

fu(x,un) < r{x,un) < r(x,u).

Hence, the principal eigenvalue of

Lz - fu{x, un)z = 2z infi, z = 0, on dil

is positive, and so (4.5) has only the trivial solution z — 0.

(iv) <p <u < un+i < un for all n > 0.

The problem (4.4) has a unique solution un+\ in the order interval [<p,un]
(existence again follows by the standard method of super- and subsolutions).
Since un+\ is a supersolution of (4.2), it follows that there exists a solution
of (4.2) in the order interval [<p,un+\], which by uniqueness has to be u(x)
(so that <p < u < un+\).

We have thus produced a sequence {un(x)} with <p<u<-<un<-<
«2 < «i < "o- It is clear that w(x) = lim un{x) exists. It will follow that

n—*oo

w = u, once we show that w(x) is a solution of (4.2). Write

- un) = f(x,un) - f(x,un-i) + fu(x, un)(un+l -un)

-fu(x,un-i)(un-un^i) i n Q

-un = 0 on dfi. (4.8)

Since fu{x, u) is bounded for x e Q, (p < u < UQ, it follows that the right
hand side of (4.8) tends to zero in LP{Q), for any p > 1. It follows by the
standard elliptic theory (see e.g., [1]) that un+\ - un -> 0 in W2'P(Q), and
then by the Sobolev's imbedding theorem, un+i - un —» 0 in CQ(Q) for any
0 < a < 1. Hence, w e Ca and ||Mn||c° < c uniformly in n. Once easily sees
that under our assumptions

< C(\\fux(x, Un)\\C° + \\fuu(X, M^Hcoll^llc- + \\fu(x, Un)\\C°)

< c (4.9)

Writing

f1

f(x,un)-f{x,un-i)= / fu(x,tun
Jousing the inequality ||MV||C° < 3||M||CO||T;||C« and (4.9), we see that the right

hand side of (4.8) tends to zero in Ca{Q). By the Schauder's estimates it
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follows that un+l - un —* 0 in C2+a(fl). Hence w e C2+Q, and we can pass
to the limit in (4.4), concluding that w{x) is a solution of (4.2).

It remains to show that the convergence of {un(x)} is quadratic. Write

L(un+l - un) - fu(x,un)(un+i -un) = f(x,un)-f(x,un-i)

"7 :_ r\
= j in at

« n + l - « „ = () ondQ. (4.10)

Since / = (l/2)fuu(x,8un + (1 - 0)u,,_i)(wn - un.x)
2 for some 0 < 6 < 1,

and for fixed / there exists a unique solution Mn+i - un of (4.10) (uniqueness
is proved similarly to (4.4)), it follows by the LP estimates and imbedding
theorems (for p > n),

\\un+\ - Un\\C° < C\\un+X - UnWwu < C\\fhp

< c\\un - Mn_i ||co (c is independent of n).

REMARK. A similar result for the logistic ODE appears in [12].
Next we take up the more involved case of the obstacle problem.

THEOREM 5. Consider the variational inequality (2.1). Assume that L, f(x, u),
g(x) and Gl satisfy the same conditions as in the theorem 4 with f being strictly
concave in u, and there exists a subsolution q>(x) > OinQ and(p{x) — Oon dCl,
defined as a C2(Q) function satisfying (4.3) and <p{x) < q{x) in Q. We also
assume that fu(x,u) ^_0 for <p < u < q and x e Q , and that q(x) € C2(Q),
g(x) < q{x) for x e Q. Then the unique positive solution of (2.1) which is
of class W2'p(il) for any p > 1, can be obtained as a limit of the sequence
{un(x)}, defined by letting u° = q and solving for n > 0

Lun+l < f(x, un) + fu(x, u"){u"+l - u") 1

u"+l <u" > a.e. in Q

[Lun+i - f(x, un) - fu(x, u")(un+l - u")](un+l - u") = 0 J
un+l=g(x) on d^. (4.11)

Moreover, the speed of convergence is quadratical.

PROOF. Existence and uniqueness of positive solution of (2.1) follows by the
Theorems 1 and 2. (Solution u" is in W2<P{Q). By our Remark 5 to the
theorem 1, the iterations in (4.11) can be continued for all n.) Notice next
that <p(x) is a subsolution of (4.11) for any n > 0. Indeed, <p(x) < g(x) on

p{x) < q(x) in Q, and by concavity

Lip < f(x, <p) < f{x, u") + fu(x, un)(<p - un).
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Applying the Theorem 1 to (4.11) with

f(x, un+l) = f(x, un) + /„(*, u")(un+1 - un)

in place of f(x,u), we see that the problem (4.11) has a positive solution.
Next we claim that the positive solution of (4.11) is unique. Indeed, (4.11)
is an obstacle problem for the linear operator L- fu(x,u") with the forcing
term f(x, u") - fu(x, u")u", so that uniqueness follows by the standard result
(see e.g., [6, p. 26]).

We have produced a sequence of iterates {un(x)} with

<p < • • • < un+l <u" < • • • < « ' < q .

Call w(x) = lim un(x). We proceed to show that w(x) is a solution of
n—>oo

(4.11). By uniqueness it will follow that w = u. To pass to the limit we need
to estimate ||wn(x)ll2,p independently of n. It is not clear how to get such an
estimate from (4.11), because the obstacle depends on n. To overcome this
difficulty we now introduce an equivalent auxiliary problem. Starting with
M° = q, define a sequence of iterates by solving (n — 0,1, . . .)

Lun+X < f(x,u") + fu(x,un)(un+i - u") }
w"+1 < q{x) > a.e. in fi

(Lun+l - f(x,u") - fu(x,u")(un+1 -u"))(un+l - q) = Oj

un+l = g(x) on a n . (4.11)'

Existence and uniqueness of solution of (4.11)' follows in the same way as
for (4.11).

We claim that u" = u" for all n > 0. For this it suffices to show that M"+1 <
u" for n = 1,2,..., in {x e Gl\un(x) < q(x)} (increasing the obstacle away
from the contact set does not change solution of the variational inequality
(4.11), and by the inductive assumption the problems (4.11) and (4.11)' differ
only in the obstacle). Assume that on the contrary that u"+1(x) and u"(x)
touch away from the obstacle, and let n > 1 be the first index where this
happens, i.e., at some point XQ e Q we have M"+1 (XQ) = U"(XQ) while «"(*o) <
q(xo). Then u"(xo) < u"~l(xo) (if n = 1 then obviously M'(XO) < q(xo) =
u°(x0)). By the first relation of (4.11) and the third one in (4.11)' it follows
that at xo

L(un+i - un) < f(x, u") - f(x,«"-') - fu(x, u"-l)(un - u" - ' ) . (4.12)

Since XQ is a point of maximum of u"+l - u", it follows that L(un+1 -u")>0
at xo, while the right hand side of (4.12) is negative by the strict concavity
of / , a contradiction. This proves our claim, and in particular that w(x) =
lim u"(x).77"

n—»oo
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Examining the proof of the Theorem 1, one sees that the W2>P(Q) norm
of the solution of (4.11)' is bounded independently of n (it depends only on
|<?|C2, jnax f{x, u), \g\wip and p). Since un = u", it follows that for any

n
j

x€.n,<p<u<q

||M"||H/2J, < c independently of n. (4.13)

we now pass to tne limn in (t.i iy, aropping tne oars ior convenience.
Recall that u"+l can be obtained as a limit when e -»• 0 of the solution

u"+l of the penalized problem (with pe(t) as in the Theorem 1)

Lu"e
+l - fu(x,un)u"e

+l + pe(u"e
+l -Q) = f{x,un) - fu{x,un)un in Q

un
e+

l=g(x) ondQ. (4.14)

(We are applying standard theory to the operator L — fu(x,u") in place of L.
Recall that fu(x, u") e Ca(Q).) Recall also that to solve (4.14) one introduces
pe>N{t) = max{min(fiE(t), N), -N}, and considers the problem

£<V " Mx, «")<V + AJV(<V -q) = f(x, un) - fu(x, un)u" in Q

K $ = * on^Q. (4.15)

We need a bound on the function £(x) = petN(u"~^ - q). By the definition
of fiE, £{x) > -c. Let now XQ be the point of maximum of £,{x). We may
assume that £(xo) > fie(0) for 0 < e < 1 (otherwise we have the desired
bound on £(x)). Notice that xo$d£l, for otherwise

Since M"^1 - q takes its maximum at XQ € Q,

L(un+J -q)>0 a t x 0 .

By (4.15) and our assumptions of /

Z(xo) < f(x0, u"(x0)) - MXQ, un(x0))u"(x0) - Lq(x0)
+ fu(xo,un(x0))u

n+l(x0)<c.

So that
\fieMuljf ~ q)\ ^ c independently of e, N, n. (4.16)

By the LP estimates we conclude from (4.15)

||«e,V Ikp < c independently of e, N, n.

Taking iV sufficiently large we see that u"^ is a solution of the problem
(4.14), i.e.,Me"+

1 =un
e+

x.
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As e —» 0 (along some sequence {em}) and n —• oo, we have

M£ -» w" weakly in W2j>(ft), uniformly in Q

un —> w weakly in W2>P(Q,), uniformly in fl.

Observe that by monotonicity of the sequence {u"(x)} we have convergence
for the full sequence. Now we pass to the limit in (4.14) along a diagonal
sequence as e = em -* 0, n —> oo. From (4.16) it follows that w < q(x) in Q..
Also, notice that

Pe(u"+l -<?)-» 0 on the set {x\w(x) < q(x)}

lim A(Me"
+1 - «) > 0.

e—>0,n—>oo

It follows that ty(x) is a solution of (2.1).
Turning to the quadratic convergence, we introduce the bilinear form

/ x f ( ^ , , d u d v . .

and the set
),u - ^ e H£(Q),v < q a.e. in Q).

Then the variational inequality (4.11)' can be written in the form (dropping
bars)

a(un+\v - «"+1) - f fu(x,u")un+l(v - un+l)
a

> f[f(x, u") - fu(x, u")un](v - u"+i) (4.17)
a

for any v eK (see [6]). Similarly

a(u",v - un) - f fu(x,u"-l)un(v - un)
n

> f[f(x,u"-1) - fu(x,u"-l)u"-l](v - u") for any v € K. (4.18)
a

Setting v = u" in (4.17) and v = u"+l in (4.18) and adding the resulting
inequalities, we obtain

- a(un+l - u", M"+1 -u")- f fu(x, u")(un+l - u")(un - u"+l)
Jn

> ~ flf(x, u") - f{x,«""') - fu(x,«""')(«" - u"-l)](u"+i - u").
n
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Since a{v,v) > c||u||^i for v e HQ, we obtain using the Schwarz inequality

| | , . n + l . . n i l s r\\it,n , . / i — l \ 2 i i

II" - « \\H'{a) S C\\(U -U ) W

REMARK. Our assumption that fu(x, u) < 0 is rather restrictive; in particular,
it excludes the logistic equation for which f{x-, u^ = ij(a(x} — u). This condi-
tion was used to ensure unique solvability of (4.11) and to prove quadratic
convergence.

5. Numerical experiments

Numerical experiments confirm superiority of the Newton method (as in
Theorem 5) to the monotone iteration method (as in Theorem 1). For ex-
ample, consider the following problem:

Lu-f(u)<0 \

« < i o l a.e. i n n = ( - l , l ) x ( - l , l )

(Lu -f(u))(u- 10) = 0 J
u = 0 on

with

Lu = -(l+ y2x2)d2u/dx2 _ (l + i ) £-£ + 15M,
dy2

/ («) = - M 2 + 30M.

At each step an obstacle problem is solved using piecewise linear finite el-
ements. Iterations are performed until supremum norm of the difference
between two consecutive iterates becomes less than e — 0.005. Each side
of the square is divided into 15 equal pieces. It took only four iterations
of the Newton method to achieve the desired accuracy, compared to eleven
iterations by the monotone iterations. Result is given in the Table 1 (com-
putations were performed on AMDAHL).

Similar computations were performed in one dimension. For example,
solving the obstacle problem for the equation —u" — M(5 - M) with 0 < x < 2,
M(0) = M(2) = 0, h = 0.1 and the obstacle q{x) = (x - I)2 + 1, took us
11 iterations and 65 seconds by Picard's iterations on a PC, while only 4
iterations and 41 seconds by Newton's method (calculations were terminated
when max, \un+i{xi) - Mn(x,)| < 10~6). In the Figure 1 we superimpose the
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TABLE 1
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solution of the above obstacle problem (right) with that of the same equation
without the obstacle (left).
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