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Abstract

In this paper, we first give a sufficient condition on the coefficients of a class of infinite time interval
backward stochastic differential equations (BSDEs) under which the infinite time interval BSDEs have a
unique solution for any given square integrable terminal value, and then, using the infinite time interval
BSDEs, we study the convergence of g-martingales introduced by Peng via a kind of BSDEs. Finally,
we study the applications of g-expectations and g-martingales in both finance and economics.

2000 Mathematics subject classification: primary 60H10, 60G48.
Keywords and phrases: infinite time interval BSDEs, g-expectation, g-martingale, upcrossing inequality
of g-martingale, convergence of g-martingale.

The adapted solution for a linear BSDE which appears as the adjoint process for a
stochastic control problem was first introduced by Bismut in 1973, then by Bensoussan
and others, while the first result for the existence and uniqueness of an adapted solution
to a nonlinear BSDE with finite time interval and Lipschitzian coefficient was obtained
by Pardoux and Peng [20]. Later many researchers developed the theory and its
applications in a series of papers (see for example Darling [5], Hu and Peng [16],
Lepeltier and Martin [18], Pardoux [19], Peng [24, 25], Karoui, Peng and Quenez [8]
and the references therein) under some other assumptions on coefficients but for fixed
terminal time. From these papers, the basic theorem is that, for a fixed terminal time
T > 0, under the suitable assumptions on terminal value £, coefficient g and driving
process M, the following BSDE has a solution pair (y,, z,) in the interval [0, T]:

(0.1) y, = t-+ f g(ys, zs, s)ds- I zs dMs, 0 < t < T.
Jt Jt
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188 Zengjing Chen and Bo Wang [2]

More recently, Peng [25] introduced the notions of ^-expectations and g-martingales
via the above finite time interval BSDEs driven by a Brownian motion process. In
Chen and Peng [1, 2] and Peng [24], some properties of ^-martingales (such as
upcrossing inequality, stopping sampling theorem and decomposition theorem for g-
martingales) are discussed. As a supplement, in this paper, we discuss the convergence
of ^-martingales. One difficulty of this problem is how to study the existence and
uniqueness of BSDE (0.1) when T = oo. In fact, such a problem has been investigated
by Peng [23], Pardoux [19], Darling and Pardoux [6], Pardoux and Zhang [21] and
other researchers under the assumption that terminal value f = 0 or EepT\%\2 < oo
for some constant p > 0 and random terminal time T. A natural question is under
which conditions on g, does BSDE (0.1) still have a unique solution pair for any given
square integrable £ when T = oo? Obviously, the assumptions on g in the papers
mentioned above do not solve this question. In this paper, we first give a sufficient
condition on coefficient g under which for any square integrable random variable £,
BSDE (0.1) still has a unique solution pair when T — oo. Furthermore, we explain
such a condition usually is necessary. We also give an example to show that our
conditions on g allow the coefficients to be unbounded, thus our result still extends
Pardoux and Peng's result even for finite time horizon BSDE. Using these results,
we show the convergence of g-martingales. Finally, we discuss some applications of
g-expectations and g-martingales.

This paper is organized as follows. In Section 1, we consider a class of infinite
time interval BSDEs: existence, uniqueness and convergence. In Section 2 we recall
the notions of ^-expectations and ^-martingales introduced by Peng via BSDE. In
Section 3, we show the convergence of g-martingales. In Section 4, we apply our
results to economic theory and the pricing of contingent claims in incomplete security
markets.

1. Infinite time interval BSDEs

Let (Q, <!?, &,, P) be a completed probability space, (W,),>0 be a d-dimensional
standard Brownian motion. For the ease of exposition, we assume that the driving
process (M,) in BSDE (0.1) is Brownian motion (W,) and [<!?,},>o is the natural
filtration generated by Brownian motion (W,),>0, that is,

Our method can be extended to the situation where (W,) is a martingale with jump
and {J?,} is the usual filtration. Suppose & = &„> = a( \Jl>0 <?,), let us adopt the
following notations.

S2 := {V : V all {< ,̂}-adapted processes with norm of
ol VC*)|)2]1/2 < oo};

https://doi.org/10.1017/S1446788700002172 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002172


[3] Infinite time interval BSDEs 189

JK2(fl, oo) := {V : V all {^,}-adapted processes with norm of
\\V\\M := [E fo°° \V(s)\2 ds]1/2 <oo};

L2{£1, &,, P) := {£ : £ all ^,-measurable random variables
such that E\%\2 < oo}, 0 < t < oo;

B2 := {(X, Y):XeS2,Ye J!2{0, oo)}.

For each (X, Y) € B2, we denote the norm of (X, Y) by

Obviously, B2 is a Banach space.
Consider the following infinite time interval BSDE

(1.1) y' = H + J ^ys,zs,s)ds-j ZsdWs,

where £ e L2(Q, &, P) is given and g e ££{v, u). Here ^f(v, u) is the set of all
functions g : R x Rd x R+ x £1 -> i? satisfying the following conditions:

(HI) For any (v, z) e /? x /?d, ̂ (y, z, •) is progressively measurable process such
thai E(f™\g{y,z,s)\ds) < oo.

(H2) g satisfies Lipschitz condition with Lipschitzian functions v :— {v(t)} and
u := {u(t)}, that is, there exist two positive non-random functions {v(t)} and
[u(t)} such that |g(y,, zut)- g(y2, z2, 01 < "(Olyi - y2| + «(0ki - Z2\,
V(yh Zi, t) € Rl+d x R+,i = 1,2.

In this section, we prove that the following conditions on v and u solve our ques-
tion:

(H3) /0°° v(s) ds < oo, /0°° u2(s) ds < oo.

To do so, let us first give an a priori estimate.

LEMMA 1.1. Suppose (HI), (H2) and (H3) hold for g. For any T e [0, oo], let
Ff e L2(Q, &T, P), ( F , Z1') anrf (>>', z') € B2 i a r i ^ the following equations

(1.2) y; = YT + f 8(y's> z ' s , s ) d s - J Z'sdWs, 0 < t < T < o c ; / = 1,2,

then for any x € [0, 7],

< 20 [E IK̂  - K2|2 + /(r, D |((y' - y2)l[r,r], (z
1 - z ^ W C ] ,

where /(r, 7) := (fz v(s) ds) + Jz u2(s) ds and l[r,r]() is an indicator function.
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PROOF. Without loss of generality, we assume that r = 0, T = oo, otherwise we
can replace g by g\[T,T\- Set

Y:=Y1-Y2, Z:=Zl-Z2, y:=yl-y2,

z:=zx-z\ gt-=g{y\z\t)-g(y\z\t).

Since (Y, Z) e B2, { /0' Zs dWs] is a martingale and from (1.2) we have

Y, = E \YT + J llt,T](s)gs

Applying Doob inequality, we deduce

= E (su E [?T +(1.3)

< 4 E ( \ Y T \ + J \gs\ds\ <S\

On the other hand, from (1.2) it follows that

g5ds] < (j°°\gs\ds) L

where (M) is the variation process generated by the martingale M. Note that

\g,\ds\ <

<2E\ f v(s)ds-sup \y,\] +2E\ f u2(s)ds- f \zs\
2 ds]

Uo i>o J L^o Jo J

= 2

< 2

a \2 /•»

) Jo

2(s)ds-\\z\\2
M

tf.*C
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[5] Infinite time interval BSDEs 191

Consequently, the last inequality, (1.3) and (1.4) imply

For any T, r e [0, oo]setgi(;y, z, t) := g(y, z, Ol[r,rj,thengi satisfies the assumption
(HI), (H2) and (H3) and its Lipschitz constants are vl[TT] and ul[zT]. Repeating the
above process, we obtain the result. •

THEOREM 1.2. Let % e L2(fi, J*\ P) be given, (HI), (H2) and (H3) hold for g,
then BSDE (1.1) has a unique solution (y, z) € B2.

PROOF. We prove the theorem in two steps.
Step 1. We assume [(/0°° v(s) ds) +/0°° u2(s) ds] < 1/V20. For any (y, z) e B2,
applying (HI), (H2) and (H3) we derive

oo \ 2

\g(ys,zs,s)\dsj

(\g(O,O,s)\ + v(s)\ys\ + u(s)\zs\)ds\
• oo \ 2

(g(0, O,s)ds
o \ 2 / »oo \ 2

^(5)1^1^) +AE\\ u(s)\zs\ds) .
\Jo ) \h /

Since

EU v(s)\ys\ds~\ <EU v{s)ds-s\xv\y,\\ = (j v(s)ds) \\y\\% < oo

and

f u(s)\zs\ds] < E \ f u2(s)ds- I \zs\
2ds\= f u2(s)ds • \\zfM < o o ,

0 J L̂ O J0 J ./O
we have

U + / g(ys,Zs,s)ds\ < oo,
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which means {£[£ + /0°° g(ys, zs, s) ds/J?,]},>0 is a square integrable martingale. Ac-
cording to the martingale representation theorem, there exists a unique Z e ^#2(0, oo)
such that

A = EU + j g(y,,z,,s)ds]

+ I Zs
->0

(1.5)

/ • '

:dWs, 0 < / < o o .
In

Let

(1.6) Y,:=EU+ g(y,,z,,s)ds/ft\, 0 < t < oo.
L •/» J

Obviously, (K, Z) e B2. Equations (1.5) and (1.6) have constructed a mapping from
B2 to B2, and we denote it by <p, that is,

<t>: (y,z)-*-(Y,Z).

If 0 is a contractive mapping with respect to the norm || • ||B2, by the fixed point
theorem, there exists a unique (y, z) € B2 satisfying (1.5) and (1.6), that is,

g(ys,zs,s)dsj + / zsdWs;

y, = EU+ I g(y,, z,, s) ds/^A , 0 < t < oo,

which is equivalent to BSDE (1.1).

We now prove that 0 is a contractive mapping. Suppose (yl, z') e B2, let (Y', Z')
be the map of (yl, zl), (i = 1, 2), that is,

We denote

Y:=Yl-Y2, Z:=Zl~Z2, y:=yl-y2,

z:=zl- z2, g, : = g(y\ zl,t)- g(y2, z\ t).

By Lemma 1.1 we have

v(s)ds\+j u2(s)ds\ \\(y,z)\\

Note that [ ( / 0 ° ° I ; ( J ) ^ ) 2 + f™ u2(s)ds]i/2 < 1/V20. Thus <p is a contractive
mapping from B2 to B2.
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[7] Infinite time interval BSDEs 193

Step 2. Since /0°° v(s) ds < oo, /0°° u2(s) ds < oo, then there exists a sufficiently
large constant T such that

(I v(s)ds) + I u2(s)ds
1/2

1

V20'

Let gi(y, z, t) := l[r.oo](OsO', z, 0, then (HI), (H2) and (H3) hold on gl whose
Lipschitzian constants are v(t) = l[r.ooj(Ov(0 and «(f) = l(r,oo](0"(0- Obviously,

poo \ 2 »oo

TJ(J) ds ) + I u

11/2
—2 1

V20'

By Step 1, there exists a unique (y, z) € 5 2 such that

/

OO /»OO

gi(y,,l,s)ds- zsdWs, 0 < r < 00.
For (y,, £,) given as above, let us consider the following infinite BSDE:

,= f g(y, + 9,,z, + z,,s)ds- f i,dw,, o<t<T-

y, = 0, z, = 0, f > T.

According to the Pardoux-Peng theorem (see Pardoux and Peng [20]), the above BSDE
has a unique solution (yn z,) in [0, T], thus the above BSDE has a unique solution
such that (yt, z,) — (0, 0), for every t > T.

Let

y ;=y +y, Z •= Z + Z.

It is easy to check that (y,, zt) is the unique solution of BSDE (1.1). •
REMARK 1. Suppose /x is a constant, if we choose v(t) = u(t) := fil[OiT](t), then

Theorem 1.1 is the main theorem in Pardoux and Peng [20].

REMARK 2. The condition (H3) usually is necessary. That is, if for any £ and
g € -S?(i>, M), BSDE (1.1) has a unique solution in B2, then the assumption (H3) is
necessary.

In fact, let us choose g(y, z, t) = v(t)y. Obviously, g € _£?(u, u) and for any
:= a, (a > 0 is a constant), the solution of BSDE

/

OO /»0O

v(s)ysds- / zsdWs, 0< t <

0 0
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is y, = a exp (f™ v(s) ds), and z, = 0. Since y0 < oo, then /0°° v(s) ds < oo.
Similarly, if we choose g(y, z, t) = M(0Z, then the solution of BSDE

r00 r00

y, = £ + / u(s)zs ds - zs
dWs

should be

u2(s)ds

Thus the assumption /0°° u2(s)ds < oo is necessary.
The following example shows that our assumptions allow the coefficients of BSDE

(1.1) to be unbounded. Thus Theorem 1.2 generalizes the result in Pardoux and Peng
[20] even for finite time horizon BSDE.

EXAMPLE 1. For given T > 0, let £ 6 L2(Q, &T, P), then the following BSDE
has a unique solution:

In fact, let us choose v and u as follows:

2, 0 < t < T;

t> T;
u(t) :=

\(T-t)-l/\ 0<t<T;

[0, t>T; [0, t > T.

It is easy to show that v and u satisfy condition (H3), but v and u are unbounded.

We now discuss the convergence of the solutions of infinite time interval BSDEs.
The following theorem is called the Continuous Dependence Theorem.

THEOREM 1.3. Suppose £,• 6 Z.2(£2, «F, P), (i - 1, 2), let (y \ z') fee rt<? solutions
of B S D E (1.1) corresponding to £ = £ , , £ = £2. respectively, then there exists a

constant C > 0 s«c/i

PROOF. Set y := / - y2; z := z1 - z2. Since (/0°° u(s) fi?s)2 + /0°° w2(i) rfs < oo,
we can choose a strictly increasing sequence 0 = t0 < t\ < • • • < tn < tn+\ = oo
such that

at := a'i+l \ 2 /•'.•+!

1/2
1

V20'
i = 0 , 1 , . . . ,n.
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[9] Infinite time interval BSDEs 195

Set L := max, at, since 1 - 20L2 > 0, thus N := x/20/Vl - 20L2 is well defined
and N > 1. Applying Lemma 1.1 we have

(y,z)l[l,,l,+l]\\B2<20Eyli+20 (J'+v(s)ds) +j"u2(s)ds \\(y,z)\{li,ti+l]\
2
B2

Thus

20
(1.7) |(5U)1[,,,,,+

<N2E \( s u p \y)
\\ti+l<S<ti+2

In particular,

(1.8) \\(9,

From (1.7) and (1.8) we have

i* < E
1=0

k rn-L 1 1 \

11/2

-^2|2 . D

Using Theorem 1.3, we can obtain the following convergence theorem for infinite
time interval BSDE.

THEOREM 1.4. Suppose £, & € L2(Q, &,P), (k = 1 ,2 , . . . ) , (HI), (H2) and
(H3) hold for g. Let ( / , z*) be the solution of the following BSDEs:

/

oo /-oo

g{yk
s,z

k
s,s)ds-1^ zk

sdWs, t = l , 2 , . . . .
/f £ | ^ — ^|2 —• 0 fli ̂  -> oo, //ien there exists a pair (y, z) € B2

 5MC/I f/zaf
II(yk — y-, zk — Z)\\B2 -^ 0 as k —*• oo. Furthermore, (y, z) is the solution of the

following BSDE:

(1.10)
/

OO / -0O

g(y,,z,,s)ds- I zsdWs.
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PROOF. For any n, m > 1, let (yn, z") and (ym, zm) be the solutions of BSDE (1.9)
corresponding to ft = £„ and t-k = £m. Due to Theorem 1.3, there exists a constant C
such that

Uy"-ym,z"-zm)\\2
Bi<CE\i;n-U

2

£|2 + £ | £ - £ | 2 ] ^ 0 a s n . m ^ o o

which means that (y", z") is a Cauchy sequence in B2, Thus there exists a pair
(y, z) e B2 such that \\(y" -y,z" - z)||B2 - • 0 as n - • oo.

Since

Z"00 »

< £ / [v(5)|Jz" - y,| + «(S)|Zj- - z,|] ^

oo 2 oo n 1 / / 2

< 2 (I v(s)ds)+j u2(s)ds\ \\(yn-y,zn-z)\\B2^0 as n oo.

Thus /0°° gty, z*) ds - • /0°°g(ys, z,, s)ds as n-^ oo in Ll(Q, &, P). Taking the
limit on both sides of BSDE (1.9), we deduce that (y, z) is the solution of BSDE (1.10).

•
The following corollary shows the relation of solutions between infinite time inter-

val BSDE (1.10) and the following finite time interval BSDE:

(1.11) y, = E[i;/#T]+ f g(ys,zs,s)ds- f zsdWs, 0 < t < T < oo.

COROLLARY 1.5. Assume f e L2(fi, &, P), (HI), (H2) and (H3) hold for g. Let
(y, z) be the solution of BSDE (1.10). For any T > 0, let (yT,zT) be the solution of
finite time interval BSDE (1.11), then (yT, ZT) -*• (y, z) as T -> oo in B2.

PROOF. Note that E[i-/&T] -> | in L2(Q,&, P) as T -» oo. The proof is
straightforward from Theorem 1.4. •

2. ^-expectation, £-martingale

Peng [25] introduced the notions of g-expectations and ^-martingales via a finite
time interval BSDE under the following assumption:

(H4) g(y, 0, t) = 0, for every (y, t) e R x R+.
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[11] Infinite time interval BSDEs 197

In this section, we first present the general notions of ^-expectations and the cor-
responding ^-martingales via the infinite time interval BSDE introduced in Section 1
under the hypothesis (H4).

DEFINITION 2.1. Suppose £ € L2(Sl, &, P) is given, (HI), (H2), (H3) and (H4)
hold for g. Let (y,, z,) e B2 be the solution of BSDE (1.1). We call <%[£], where

the g-expectation of random variable £.

In particular, if g(y, z, t) = ±u(t)\z\, we rewrite <£°g[§] simply as <£±u[f ], where u
is Lipschitz function defined in (H2) and (H3).

LEMMA 2.2. Suppose £ e L2(£2, &, P) and (H1)-(H4) hold for g, let (yf,zf) be
the solution of BSDE (1.1). Then for any A e &r (0 < r < oo) we have

r>0.

Here {yf**} is the solution of BSDE (1.1) corresponding to the terminal value l ^ .

PROOF. Set (y,, z,) := (yf, zf), for any A e J?r, multiplying 1A on both sides of

BSDE(l.l),wehave

lAg(ys,zs,s)ds- Uz,dWs, 0<t<oo.

Since y,\A is ^,-measurable for each t € [r, oo] and the relation g(lAy, zlA, t) =
^Agiy, z, t), for every (y, z, t) e R1+d x R+ holds under the assumption (H4), we
obtain that Cy,!*, z,lA) solves the following BSDE

(2.1)
/

OO /»OO

g(y,,z,,s)ds- I IsdWs, 0 < ? < o o ,
when r < t < oo.

It then follows, by the uniqueness of the solution of BSDE (2.1), that

^Ay,=y,, te[r, oo]

which means that l ^ f = y^ for every t G [r, oo]. In particular, lAyf = y^. The
proof is complete. •

The following lemma follows directly from the assumption (H4).
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LEMMA 2.3. Suppose £ e L2(S2,&r,P), (r > 0), (H1)-(H4) hold for g. Let
(yt, Zt) be the solution of infinite time interval BSDE (1.1) and let (yt,zt) be the
solution of the following finite time interval BSDE

y , = H+ I g(ys,zs,s)ds- j zsdws, 0<t <r.

Then

y, = y,, W 6 [0, r].

In particular, yo = yo.

PROOF. It is easy to check that (7,l[o,rj<o +1l(r,<»], z»l[o,/-i) is the solution of BSDE
(1.1). It then follows, by the uniqueness of BSDE (1.1), that we obtain the following
fact:

_ \jn t < r; Jz,, t < r;
\$, t > r, ' [0, t > r.

In particular, y0 — y~0. D

LEMMA 2.4. Suppose^ e L2(£2, J^\ P), then there exists a unique random variable
r) € L2(Cl, &„ P), such that

(2.2) 4 [ 1 ^ ] = 4 [ 1 ^ ] , V A e ^ , 0 < r < o o .

(We call r\ the conditional expectation of random variable % generated by function g
under &, and write it as <%[£/«^"f]-) Furthermore,

where y, is the value of the solution {y,} of BSDE (1.1) at time t.

PROOF. For any A e &„ by the definition of <%[•] and Lemma 2.2, we have

Set r) := yf, then t] e L2(fi, &„ P).
We now prove that r\ is unique. Indeed, if there exists another rj e L2(Q, &,, P)

such that

(2.3) £g[lAr,] = <

but P(r) ^rj)>0.
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[13] Infinite time interval BSDEs 199

Set B := [r] > rj}, without loss of generality, we assume that P(B) > 0. It then
follows, by Theorem A.3(2)(i) in Appendix, that

which is contrary to equality (2.3). •

REMARK 3. The notation <%[£] and &g[-/&,] comes from Peng [25]. Obviously,
if g = 0, then <%[£] and £g\%l&i\ are the classical mathematical expectation and
conditional expectation respectively

Furthermore, Peng proved that &g[-] and £g[-/&t\ preserve respectively many prop-
erties of the classical mathematical expectations and conditional expectations except
linearity (see Theorem A.2 and Theorem A.3 in Appendix). For that reason, Peng
calls the general expectation and general conditional expectation g-expectation and
conditional g-expectation respectively (see Peng [24, 25]).

The following counter-example shows that a conditional ^-expectation does not
exist without the assumption (H4).

EXAMPLE 2. Suppose £ e L2(Q, &, P), let g(y, z, t) = e~'. We choose r = 1.
Then there is no r] e L2(fi, &u P) satisfying (2.2).

In fact, if there exists such rj satisfying (2.2), that is,

In particular, if we choose A = £2

then, by Definition 2.1, <%[§] and <%[??] are the value of the solution (y,) of the
following BSDE at time t = 0 corresponding to X = % and X = rj, respectively

y, = X+ [ c-sysds- f zsdWs.
Jt Jo

Solving the above linear BSDE (see Theorem A.O in Appendix) we have

v, =

thus <%[£] = e££ and £g[r)] = eEr). That is,

(EQ) E£ = Er,.
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On the other hand, since r]\A is ^ measurable, by Lemma 2.3, ^[rjl/t] is equal to
the value of the solution (y,) of the following BSDE at time t = 0

, = r)+ / eT'ysds- / z,dW,,
Jt Jo

that is,

Consequently, e££ = <%[£] = &g[r)] = e1"6 ' Er), which is contrary to (EQ).

For notational simplicity, in the rest of this paper we always assume that g satisfies
(H1MH4).

DEFINITION 2.5. A real value ^-adapted process {X,},>0 is called a g-martingale
(supermartingale, submartingale) if for each t € [0, oo), E\X,\2 < oo, and for
0 <s <t < oo,

&g[X,/&s] = Xs (respectively < Xs, > Xs).

The following lemma is from Chen and Peng [1, 2]. Let us outline the proof for
the convenience of the reader.

LEMMA 2.6. Let {X,} be a g-supermartingale and t0, tu ... ,tn,... be a strictly
increasing sequence taking values in [0, oo). We denote by U%(X, n) the number of
upcrossing interval [a, b] of[X,.} before tn. Then

(2.4) S_u [Ub
a(X, n)] < -^-Ju [(X,, - a)~].

PROOF. Fory = 1, 2, • • • , n, let (y,0), z,0)) be the solution of the following BSDE

(2.5) y,t / ) = X , ; + T g(yV\z<f\s)ds- j ' z^dW,, 0<t<tj.

Set
f P(V<J) 7U) S)
\8W ,z, . )f w h e n z w > ^ 0 and i 6 ( r ,_ , , r y ] ;

v> a:a!s := j 2_
(O, otherwise, J=l

By (H2) and (H4),

(2.6) \g(y,z,t)\<u(t)\z\, for(y,z,t)eRx Rd x
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Thus \a,\ < u(t), for each / > 0. Since, for each j ,

(2.7) g(y?\z?\s) = as-z?\ j e (

BSDE (2.5) can be rewritten as

201

(2.8) y,y) = Xti + / a,z^ds - / zs
0) d Ws, = Xtj - / z f </W,, r € [0, /,•],

where W, := W, - / J as J j .
Let

By the Girsanov Theorem, {W,} is a Q- Brownian motion.
Since

~ f" (2as)
2 ds + T 2asdWs\ exp( f" a]

a In

u2

ds

(s)ds) < oo,

which means that {X,Jn>0 is integrable under Q.
Taking conditional expectation EQ[-/&,] on both sides of BSDE (2.8),

Since X, is a ^-supermartingale,

.J^] = <?g[Xtj/J?tjJ < Xtj_t, j = 1, 2, . . . , n.

Thus [Xtj }"=1 is a £?-supermartingale with respect to {^,J"=1.
Applying the classical upcrossing inequality of supermartingales, we have

(2.9)

Note that, by Theorem A.3 (2)(ii) in Appendix, for £ e L2(Q, ^, P),

This with (2.9) proves the result. D
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3. Convergence theorem of g-martingale

From Theorem 1.3, we can obtain the following corollary.

COROLLARY 3.1. If {X,} is a g-martingale (non-negative g-submartingale), then
there exists a constant C such that

E sup \X, \2 < C sup EX).
(>0 r>0

PROOF. Suppose {X,} is a g-martingale, then for any 0 < t < T < oo, by the
definition of g-martingale, there exists z such that (X, z) satisfies the BSDE

X, = XT+ f g(Xs,Zs,s)ds- ( zsdWs.
Ji Jt

By Theorem 1.3, there exists a constant C such that £supo<,5 r \X,\2 < CE\XT\2 <
C sup,>0 2?|X,|2. From this, we obtain our result. •

Using Lemma 2.6, we can easily prove the so-called convergence theorem of
g-martingales.

THEOREM 3.2. If {X,},>0 is a g-martingale such that sup( > 0£ |X, | 2 < oo, then
Xoo := lim^oo X, exists almost surely and Xoo € L2{Q., &', P). Furthermore, for
any t e [0, oo], we have

(3.1) £g[X00/&t\ = Xt, almost surely.

PROOF. Let Q denote the set of rational number of R and a, b e Qbe such that
a < b. Suppose that {h,... , tn,...} is a strictly increasing sequence with value in
R+ and let f/*(X, n) be the number of upcrossing interval [a, b] of {X,.}"=1 before tn.
Set Ub

a{X) := lim^oo Ub
a{X, n).

Since [\.{u^(x,n)>k)}n>o is a bounded and increasing sequence, it follows by Theo-
rem A.3(2)(iv), Lemma 2.6 and Theorem A.3(2)(iii) in Appendix that

tf(x.»)>*}] < l i m S-u \\ub
a(X, n)\

— sup Su \(X, - a)~ 1 < — a+ + sup Su

k(b - a) n>0
 L J k(b - a) \ n>0

k(b — a) V n>o
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where C is a constant defined in Theorem A.3(2)(iii) in Appendix. Let k —> oo, then

<£-. [l,u5(X)=oo)l < lim — (a+ + CsupE |X,J2) = 0.

Thus

P ({U*(X) = oo}) = 0, for a < b.

Finally, we obtain

p\ U {o>--Ub
a(XXco) = oo}\ =0 .

, a<b
U.fceQ

But

\co: liminf Xu(co) < lim Xln(co)\ = \ \ {co: Vb
a(X)(co) = 00}

aMQ

and it follows that

P (co : liminf X,,(&>) < lim Xln(a>)) = 0.

Let H := {co : liminf^oo X, ,M ^ lim^ooX^Co))}, then P(//) = 0. Thus the
limit of [X,J exists almost surely.

Set

I lim X, (co), coiH;

0, toe H,

then lim^oo X,n = X^ almost surely.
It then follows from Corollary 3.1 and the dominated convergence theorem that

{X,J^XocinL 2 (n , J? \ P).
Now we prove (3.1). Since {X,} is ̂ -martingale,

= X,, far tj>t.

By the definition of Sg[-\, {X,} is the solution of BSDE:

/

OO /»OO

g(X,,z,,s)ds- I zsdWs.
Note that E\Xtj - X^l2 ->• 0 as _/ ->• oo. Taking the limit on both sides of BSDE
(3.2) and applying Theorem 1.4, we complete the proof. •
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4. Some applications in security markets and economic theory

A. Application in the pricing of contingent claims in incomplete markets It is
well known that, in incomplete security markets, for a given contingent claim £, the
maximum price of the contingent claim at time t is given by

(4.1) V, =
veD

where

(1) D is the set of all /?d-valued ^-adapted processes {v,} such that for any T > 0,
£ / o

r | u J 2 ds < oo;
(2) for any v e D, Qv is a probability measure such that

(3) {W,} is a semimartingale such that for each v e D,{ W,} is a Q"-martingale.
For the ease of exposition, in this section we assume that for any v € D, [ W,} is a Qv

Brownian motion.
El Karoui and Quenez [9] and Kramkov [17] showed that under the assumption

£ > 0 and s u p ^ £e»£ < oo for each v € D {V,} is a (2"-supermartingale and has
the following optional decomposition theorem:

', = Vo + f Hsc
Jo

(4.2) V,= V0+ HsdWs-A,,
Jo

where {H,} is a predictable process and {A,} is an optional increasing process. Fur-
thermore, Kramkov gives a counter-example to show that Voo := lim^oo V, ^ £.

We naturally present the following problems:

(1) Under which conditions is the limit of {V,} equal to £ ?
(2) How to calculate {//,} and {A,} in optional decomposition theorem (4.2)?
(3) If £ is not positive, does the above decomposition theorem still hold?

Let us denote by Dx := {V : V € D such that| V(t)\ < u(t), for t > 0), where u
is defined in (H2) and (H3). In this subsection, we show

THEOREM 4.1. If we replace D in (4.1) by Dx and assume that f e L2(Q, &, P)
and [ V,} is the process defined in (4.1), then

(1) {V,} is a g-martingale (where g(y,z, t) := «(0kl), thus Xx := l i m , ^ V,
exists almost surely and X^ = f;
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(2) the predictable process {H,} and optional increasing process {A,} in (4.2) are
given by: H, = z, and A, — /0' u(s)\Hs\ ds. Here {z,} is the solution of the following
infinite time interval BSDE:

/

OO /»OO

u(s)\zs\ds-J zsdWs.
PROOF. By Theorem 1.2, let (y, z) be the solution of BSDE (4.3). We only need to

prove that {V,} defined in (4.1) is the solution of BSDE (4.3). In fact, for any v e D,
set yv, := E (?[%/&,]. By Bayes' rule, {yv} solves the following BSDE:

/

OO /»OO

vszsds-l ZsdWs.
Note that v,z < u(t)\z\ for all t > 0 and any z e Rd. By the Comparison Theorem
(Theorem A.2 in Appendix), we have yv

t < y, for all t > 0. Thus

(4.4) V, = ess sup j " < y,, t > 0.

ueD,

On the other hand, for the solution (y, z) of BSDE (4.3), set

u{t)\z,\
a, = z,

z, * 0;

0, z, = 0.

Obviously, a := {a,} 6 Di and BSDE (4.3) can be rewritten as the following linear
BSDE:

/

OO /»OO

aszsds- zsdWs.
Solving the above linear BSDE (see Theorem A.O in Appendix), we have

It then follows, since {a,} e Du that

(4.5) y, = Eo.[$/&] < ess sup Eptf/ft] = V,.

Consequently, from (4.4) and (4.5), we have y, = V,, for all t > 0.
Furthermore, for any T > t > 0, from BSDE (4.3),

u(s)\zs\ds -f zsdWs
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which means that {V,} is a ̂ -martingale (where g(y,z, t) = u(t)\z\). By Theorem 3.2,
Voo := lim,_oo V, exists. Obviously, Voo = £. The proof of (1) is complete.

Since {V,} is the solution of BSDE (4.3), BSDE (4.3) can be rewritten as

V, = Vo+ [ ZsdWs - f II(
Jo Jo

Set A, := /J H(S)|ZJ| ds and H, := zt, the proof of (2) is complete. •

B. Application in economic theory It is interesting that the notions of g -expecta-
tions can be applied in economic theory.

As we know, in the theory of individual behaviour toward uncertainty, Savage pro-
posed axioms regarding a binary relation on the set of acts which are necessary and
sufficient for it to be representable by the expectation of a von Neumann-Morgenstern
utility function. However, the famous Ellsberg and Allais Paradox have demonstrated
that the Savage axioms under uncertainty are contradicted. Such an evidence has
stimulated the development of generalized models of preference designed to accom-
modate aversion to ambiguity or uncertainty. The generalization that we consider now
is the Choquet expected utility, in which the subjective probability measure of Savage
is replaced by a non-additive probability that is more precisely termed a capacity (see
Epstein [10], Epstein and Wang [11], Gilboa and Schmeidler [13], Schmeidler [26]).
The definition of ^-expectation in this paper is related closely to this problem.

In fact, for any A € &, let us denote Pg(A) by

Pg(A) := 4(1A).

Then it is easy to check that Pg(-) is a Choquet capacity on (£2, &), that is,

(i) Pg(tt) = l, P,(0) = O;
(ii) assume A, B e &, if A C B, then Pg(A) < Pg{B);

(iii) assume An(n = 1,2,...), A e &, if An I A (An t A), then Pg(An) I Pg(A)
(Pg(An) t P g (A) ) , a sn^ oo.

PROOF, (i) is trivial; (ii) follows directly from Theorem A.3(2)(i) in Appendix; (iii)
follows from Theorem 1.3. D

The following is the definition of uncertainty aversion given by Schmeidler [26].
More recently, Epstein [10] gave an abstract definition of an uncertainty aversion.

DEFINITION. A binary relation >; is said to reveal uncertainty aversion, if for any
act £, ri and X, and for any a in [0, 1]: if £ >; X and r\ > X, then
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For definition of a strict uncertainty aversion, the conclusion should be a strict prefer-
ence >-.

By the definition of uncertainty aversion, we can obtain

THEOREM 4.2. lfg{y, z, t) := -u(t)\z\ and!-, r] e L2{Q., &, P), then the follow-
ing relation >_ denoted by

^>V<=> £_„[£] > £_„[„],

is an uncertainty aversion.

The next result follows from the next lemma.

LEMMA 4.3. Suppose £, t] e L2(Q, &, P), then for all a e [0, 1]

£-.[(1 - a)f + an] > (1 - «)<?_„[?] + «£-„[»?]•

PROOF. For any X € L2(Q, &, P), let (yx, zx) be the solution of BSDE:

/

OQ /»OO

u(s)\Zs\ds-J zsdWs.
It is easy to check that ((1 - a)yf + ary,\ (1 - a)zf + az,") is the solution of BSDE:

/

OO />OO

where f (t) := (1 - a)|zf | + alz,^ - |(1 - a)zf + az,11! > 0. By the Comparison
Theorem (see Theorem A.2 in Appendix), we have

In particular, when t = 0, by the definition of £g[-~\, we have ^>_«[(1 — a)£ + arj] >

PROOF OF THEOREM 4.2. Since

£ . J ( l - «)§ + a??] > (1 - «)£.„[£] + a^-Jij] > X

we obtain the result. D

https://doi.org/10.1017/S1446788700002172 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002172


208 Zengjing Chen and Bo Wang [22]

Appendix

The following are some theorems used in this paper.

THEOREM A.O. Suppose % e L2(Q,<^, P), {a,} and {b,} are two adapted processes
such that for any t > 0, \a,\ < v(t) and \b,\ < u(t). Let [f (t)} be an adapted process
such that E(f™ \f (s)\ ds)2 < oo (where v and u are Lipschitz constants of g in (H2)
and (H3)). Let (y, z) be the solution of the following linear BSDE:

(A.I) y' = ^ + f [^ys + bszs+f(s)]ds- J ZsdWs.

Then there exists a probability measure Q such that

y, = EQ UeF*d' + I™ f{s)eS>'drds/&} ,

where

PROOF. This result can be proved in much the same way as in Karoui, Peng and
Quenez [8], Peng [22, 23, 25]. Set

Q,:=ex.p(f bsdWs-
l-j \bs\

2 ds\ .

Applying Ito's formula to Q,y, exp (/„' as ds), we have the result. •

The following lemma plays an important role in the proof of Theorem A.2, Theo-
rem A.3 and Theorem A.4.

LEMMA A.I. Suppose £,, £2 € L2(Q., &, P) and (HI), (H2) and (H3) hold for gt

(i = 1, 2), let (y't, z',) be the solutions of the BSDE (1.1) corresponding to g = gu

g — g2 and | = £,-, ^ = 2̂» respectively. Then there exist a probability measure Q
and an adapted process {a,} which satisfies for any t > 0, \a,\ < v(t) such that

(gl(y
2, z], s) - g2(y

2, z2, s)) e^'"'dr

PROOF. Without loss of generality, we assume that the Brownian motion in BSDE
(1.1) is 1-dimensional, that is, d = 1. Set

0, otherwise,
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&i(v2 71) — 2i (v2 72}
5 1 \Js ' *-s ' ol \Ss ' *-s ' i f 71 - /• 72*

Oj : = z^ — zs

0, otherwise.

Thus, £ /0°° \as\ ds < /0°° v(s) ds < oo and £ /0°° | ^ | 2 cfa < /0°° u2(s) ds < oo since
the assumption (H2) and (H3) hold on g, where v and u are the Lipschitzian constants
of g in (H2) and (H3). In the above notations, the following BSDE

(gl(yl,zl,s)-g2(y
2,z2,s)ds)ds- / (zl-ZJ)dWs

can be rewritten as

y) -y2 = §, - & + /" [*,(?,' ->'s
2) + ^(zi

1 -zJ
2) + («,(y,2, z2, s)-g2(y

2, z2, s))] ds
Ji

-J (z]-z])dWs.

It then follows from Theorem A.O that there exists a probability measure Q such that

y) - y] = EQ 1^, - h)d- a" / s+| (gi(y
2, z2, s) - g2(y

2, z2, s)) J-"'dr ds j ^ ,

where

•
Using Lemma A. 1, we obtain the following Comparison Theorem.

THEOREM A.2. Under the assumptions of Lemma A.I, if g\(y, z, t) > g2(y, z.t),
for (y, z, t) 6 R x Rd x R+ and%x > %2, we have:

(1) (Comparison Theorem.)

y) > y^ fort - °-

(2) (Strict Comparison Theorem.) Furthermore, if P(%\ > %2) > 0, then

y! > yf, fort e [0- °°)-

PROOF. (1) is obvious. We now prove (2). By Lemma A.I and the assumption of
the theorem, there exist a probability measure Q and an adapted process {a,} which
satisfies \a,\ < v(t), for every / > 0, such that
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Thus we have

y] - yf >e-^v(s)dsEQ[(^ - %2M?A > t~^^dsE0 [(?, - hn^/J?,] > 0.

D

The following basic properties of g-expectations and conditional ^-expectations
presented by Peng [25] are still true.

THEOREM A.3. (1) Constant preserved: For each constant c € R, Sg\c\ = c.
(2) Monotonicity:

(i) / /£ , , £2 e L2(V,&, P) and £, > £2 a/mosr surely, then <%[£,] > ^[fc].
Particularly, if P(£, > £,), ffcera <%(£i) > ^(^2)-

(ii) Lcr? €L2(n,&, P),ifgi(y,z,-) < giiy, z, •) for all(y, z) e R x
4,[?] < « ] • Particularly, g.^] < ̂ [ f ] < <fM[̂ ].
(3) //^ e L2(ft, ^", P), f̂ en r/iere exists a constant C > 0 swcfc

(4) Continuity: If %„, % € L2(ft, J*\ P) ancf £|§B - £|2 - • 0 as n -> 00,

PROOF. (1) follows from Lemma 2.3; (2) follows from Lemma A.I and Theo-
rem A.2; (3) and (4) follow from Theorem 3.1 and Theorem 1.3. •

Similarly, we have

THEOREM A.4. (i) //£ is &,-measurable, t 6 [0, oo), then £g\$\&,\ = £.
(ii) Associativity Property: For each t,r e [0, 00), then gg[£g[%\&,]\&r] =

^KI^Arl . Particularly, *,[*[§/&,]] = *,[$].
(iii) If ^ > H2, then ^ K , | ^ ] > %[&&].
(iv) For all H e L2(Q, &, P), §-^\^A < <^KI^i] < &AH\&t\ t € [0, 00).
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