
1
Bayesian Learning

Bayesian learning is an inference method based on the fundamental law
of probability, called the Bayes theorem. In this first chapter, we introduce
the framework of Bayesian learning with simple examples where Bayesian
learning can be performed analytically.

1.1 Framework

Bayesian learning considers the following situation. We have observed a set
D of data, which are subject to a conditional distribution p(D|w), called the
model distribution, of the data given unknown model parameter w. Although
the value of w is unknown, vague information on w is provided as a prior
distribution p(w). The conditional distribution p(D|w) is also called the model
likelihood when it is seen as a function of the unknown parameter w.

1.1.1 Bayes Theorem and Bayes Posterior

Bayesian learning is based on the following basic factorization property of the
joint distribution p(D, w):

p(w|D)︸��︷︷��︸
posterior

p(D)︸︷︷︸
marginal

= p(D, w)︸���︷︷���︸
joint

= p(D|w)︸��︷︷��︸
likelihood

p(w)︸︷︷︸
prior

, (1.1)

where the marginal distribution is given by

p(D) =
∫
W

p(D, w)dw =
∫
W

p(D|w)p(w)dw. (1.2)

Here, the integration is performed in the domain W of the parameter w.
Note that, if the domain W is discrete, integration should be replaced with
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4 1 Bayesian Learning

summation, i.e., for any function f (w),∫
W

f (w)dw→
∑

w′∈W
f (w′).

The posterior distribution, the distribution of the unknown parameter w
given the observed data setD, is derived by dividing both sides of Eq. (1.1) by
the marginal distribution p(D):

p(w|D) =
p(D, w)

p(D)
∝ p(D, w). (1.3)

Here, we emphasized that the posterior distribution is proportional to the joint
distribution p(D, w) because the marginal distribution p(D) is a constant (as
a function of w). In other words, the joint distribution is an unnormalized
posterior distribution. Eq. (1.3) is called the Bayes theorem, and the posterior
distribution computed exactly by Eq. (1.3) is called the Bayes posterior when
we distinguish it from its approximations.

Example 1.1 (Parametric density estimation) Assume that the observed data
D = {x(1), . . . , x(N)} consist of N independent and identically distributed (i.i.d.)
samples from the model distribution p(x|w). Then, the model likelihood is
given by p(D|w) =

∏N
n=1 p(x(n)|w), and therefore, the posterior distribution

is given by

p(w|D) =

∏N
n=1 p(x(n)|w)p(w)∫ ∏N

n=1 p(x(n)|w)p(w)dw
∝

N∏
n=1

p(x(n)|w)p(w).

Example 1.2 (Parametric regression) Assume that the observed data D =
{(x(1), y(1)), . . . , (x(N), y(N))} consist of N i.i.d. input–output pairs from the
model distribution p(x, y|w) = p(y|x, w)p(x). Then, the likelihood function
is given by p(D|w) =

∏N
n=1 p(y(n)|x(n), w)p(x(n)), and therefore, the posterior

distribution is given by

p(w|D) =

∏N
n=1 p(y(n)|x(n), w)p(w)∫ ∏N

n=1 p(y(n)|x(n), w)p(w)dw
∝

N∏
n=1

p(y(n)|x(n), w)p(w).

Note that the input distribution p(x) does not affect the posterior, and accord-
ingly is often ignored in practice.

1.1.2 Maximum A Posteriori Learning

Since the joint distribution p(D, w) is just the product of the likelihood
function and the prior distribution (see Eq. (1.1)), it is usually easy to
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1.1 Framework 5

compute. Therefore, it is relatively easy to perform maximum a posteriori
(MAP) learning, where the parameters are point-estimated so that the posterior
probability is maximized, i.e.,

ŵMAP
= argmax

w
p(w|D) = argmax

w
p(D, w). (1.4)

MAP learning includes maximum likelihood (ML) learning,

ŵML
= argmax

w
p(D|w), (1.5)

as a special case with the flat prior p(w) ∝ 1.

1.1.3 Bayesian Learning

On the other hand, Bayesian learning requires integration of the joint distri-
bution with respect to the parameter w, which is often computationally hard.
More specifically, performing Bayesian learning means computing at least one
of the following quantities:

Marginal likelihood (zeroth moment)

p(D) =
∫

p(D, w)dw. (1.6)

This quantity has been already introduced in Eq. (1.2) as the normalization
factor of the posterior distribution. As seen in Section 1.1.5 and subsequent
sections, the marginal likelihood plays an important role in model selection
and hyperparameter estimation.

Posterior mean (first moment)

ŵ = 〈w〉p(w|D) =
1

p(D)

∫
w · p(D, w)dw, (1.7)

where 〈·〉p denotes the expectation value over the distribution p, i.e., 〈·〉p(w) =∫
·p(w)dw. This quantity is also called the Bayesian estimator. The Bayesian

estimator or the model distribution with the Bayesian estimator plugged in (see
the plug-in predictive distribution (1.10)) can be the final output of Bayesian
learning.

Posterior covariance (second moment)

Σ̂w =
〈
(w − ŵ)(w − ŵ)�

〉
p(w|D)

=
1

p(D)

∫
(w − ŵ)(w − ŵ)�p(D, w)dw, (1.8)
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6 1 Bayesian Learning

where � denotes the transpose of a matrix or vector. This quantity provides
the credibility information, and is used to assess the confidence level of the
Bayesian estimator.

Predictive distribution (expectation of model distribution)

p(Dnew|D) =
〈
p(Dnew|w)

〉
p(w|D) =

1
p(D)

∫
p(Dnew|w)p(D, w)dw, (1.9)

where p(Dnew|w) denotes the model distribution on unobserved new dataDnew.
In the i.i.d. case such as Examples 1.1 and 1.2, it is sufficient to compute the
predictive distribution for a single new sampleDnew = {x}.

Note that each of the four quantities (1.6) through (1.9) requires to compute the
expectation of some function f (w) over the unnormalized posterior distribution
p(D, w) on w, i.e.,

∫
f (w)p(D, w)dw. Specifically, the marginal likelihood,

the posterior mean, and the posterior covariance are the zeroth, the first, and
the second moments of the unnormalized posterior distribution, respectively.
The expectation is analytically intractable except for some simple cases, and
numerical computation is also hard when the dimensionality of the unknown
parameter w is high. This is the main bottleneck of Bayesian learning, with
which many approximation methods have been developed to cope.

It hardly happens that the first moment (1.7) or the second moment (1.8)
are computationally tractable but the zeroth moment (1.6) is not. Accordingly,
we can say that performing Bayesian learning on the parameter w amounts to
obtaining the normalized posterior distribution p(w|D). It sometimes happens
that computing the predictive distribution (1.9) is still intractable even if the
zeroth, the first, and the second moments can be computed based on some
approximation. In such a case, the model distribution with the Bayesian
estimator plugged in, called the plug-in predictive distribution,

p(Dnew|ŵ), (1.10)

is used for prediction in practice.

1.1.4 Latent Variables

So far, we introduced the observed data set D as a known variable, and the
model parameter w as an unknown variable. In practice, more varieties of
known and unknown variables can be involved.

Some probabilistic models have latent variables (or hidden variables) z,
which can be involved in the original model, or additionally introduced for
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1.1 Framework 7

computational reasons. They are typically attributed to each of the observed
samples, and therefore have large degrees of freedom. However, they are just
additional unknown variables, and there is no reason in inference to distinguish
them from the model parameters w.1 The joint posterior over the parameters
and the latent variables is given by Eq. (1.3) with w and p(w) replaced with
w = (w, z) and p(w) = p(z|w)p(w), respectively.

Example 1.3 (Mixture models) A mixture model is often used for parametric
density estimation (Example 1.1). The model distribution is given by

p(x|w) =
K∑

k=1

αk p(x|τk), (1.11)

where w = {αk, τk; αk ≥ 0,
∑K

k=1 αk = 1}Kk=1 is the unknown parameters. The
mixture model (1.11) is the weighted sum of K distributions, each of which
is parameterized by the component parameter τk. The domain of the mixing
weights α = (α1, . . . , αK)�, also called as the mixture coefficients, forms the
standard (K − 1)-simplex, denoted by ΔK−1 ≡ {α ∈ RK

+ ;
∑K

k=1 αk = 1} (see
Figure 1.1). Figure 1.2 shows an example of the mixture model with three
one-dimensional Gaussian components.

The likelihood,

p(D|w) =
N∏

n=1

p(x(n)|w),

=

N∏
n=1

⎛⎜⎜⎜⎜⎜⎝ K∑
k=1

αk p(x|τk)

⎞⎟⎟⎟⎟⎟⎠ , (1.12)

α1

α2

α3

α1 + α2 + α3 = 1

Figure 1.1 (K − 1)-simplex, ΔK−1, for K = 3.

1 For this reason, the latent variables z and the model parameters w are also called local latent
variables and global latent variables, respectively.
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Figure 1.2 Gaussian mixture.

for N observed i.i.d. samples D = {x(1), . . . , x(N)} has O(KN) terms, which
makes even ML learning intractable. This intractability arises from the summa-
tion inside the multiplication in Eq. (1.12). By introducing latent variables, we
can turn this summation into a multiplication, and make Eq. (1.12) tractable.

Assume that each sample x belongs to a single component k, and is drawn
from p(x|τk). To describe the assignment, we introduce a latent variable
z ∈ Z ≡ {ek}Kk=1 associated with each observed sample x, where ek ∈ {0, 1}K is
the K-dimensional binary vector, called the one-of-K representation, with one
at the kth entry and zeros at the other entries:

ek = (0, . . . , 0,

kth︷︸︸︷
1 , 0, . . . , 0︸������������������������︷︷������������������������︸
K

)�.

Then, we have the following model:

p(x, z|w) = p(x|z, w)p(z|w), (1.13)

where p(x|z, w) =
K∏

k=1

{p(x|τk)}zk , p(z|w) =
K∏

k=1

αzk

k .

The conditional distribution (1.13) on the observed variable x and the latent
variable z given the parameter w is called the complete likelihood.

Note that marginalizing the complete likelihood over the latent variable
recovers the original mixture model:

p(x|w) =
∫
Z

p(x, z|w)dz =
∑

z∈{ek}Kk=1

K∏
k=1

{αk p(x|τk)}zk =

K∑
k=1

αk p(x|τk).

This means that, if samples are generated from the model distribution (1.13),
and only x is recorded, the observed data follow the original mixture model
(1.11).
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1.1 Framework 9

In the literature, latent variables tend to be marginalized out even in
MAP learning. For example, the expectation-maximization (EM) algorithm
(Dempster et al., 1977), a popular MAP solver for latent variable models,
seeks a (local) maximizer of the posterior distribution with the latent variables
marginalized out, i.e.,

ŵEM
= argmax

w
p(w|D) = argmax

w

∫
Z

p(D, w, z)dz. (1.14)

However, we can also maximize the posterior jointly over the parameters and
the latent variables, i.e.,

(ŵMAP−hard, ẑMAP−hard) = argmax
w,z

p(w, z|D) = argmax
w,z

p(D, w, z). (1.15)

For clustering based on the mixture model in Example 1.3, the EM algorithm
(1.14) gives a soft assignment, where the expectation value ẑEM ∈ ΔK−1 ⊂
[0, 1]K is substituted into the joint distribution p(D, w, z), while the joint
maximization (1.15) gives the hard assignment, where the optimal assignment
ẑMAP−hard ∈ {ek}Kk=1 ⊂ {0, 1}K is looked for in the binary domain.

1.1.5 Empirical Bayesian Learning

In many practical cases, it is reasonable to use a prior distribution parame-
terized by hyperparameters κ. The hyperparameters can be tuned by hand or
based on some criterion outside the Bayesian framework. A popular method of
the latter is the cross validation, where the hyperparameters are tuned so that
an (preferably unbiased) estimator of the performance criterion is optimized.
In such cases, the hyperparameters should be treated as known variables when
Bayesian learning is performed.

On the other hand, the hyperparameters can be estimated within the
Bayesian framework. In this case, there is again no reason to distinguish the
hyperparameters from the other unknown variables (w, z). The joint posterior
over all unknown variables is given by Eq. (1.3) with w and p(w) replaced
with w = (w, κ, z) and p(w) = p(z|w)p(w|κ)p(κ), respectively, where p(κ) is
called a hyperprior. A popular approach, called empirical Bayesian (EBayes)
learning (Efron and Morris, 1973), applies Bayesian learning on w (and z) and
point-estimate κ, i.e.,

κ̂EBayes
= argmax

κ
p(D, κ) = argmax

κ
p(D|κ)p(κ),

where p(D|κ) =
∫

p(D, w, z|κ)dwdz.
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10 1 Bayesian Learning

Here the marginal likelihood p(D|κ) is seen as the likelihood of the hyperpa-
rameter κ, and MAP learning is performed by maximizing the joint distribution
p(D, κ) of the observed dataD and the hyperparameter κ, which can be seen as
an unnormalized posterior distribution of the hyperparameter. The hyperprior
is often assumed to be flat: p(κ) ∝ 1.

With an appropriate design of priors, empirical Bayesian learning combined
with approximate Bayesian learning is often used for automatic relevance
determination (ARD), where irrelevant degrees of freedom of the statistical
model are automatically pruned out. Explaining the ARD property of approxi-
mate Bayesian learning is one of the main topics of theoretical analysis in Parts
III and IV.

1.2 Computation

Now, let us explain how Bayesian learning is performed in simple cases. We
start from introducing conjugacy, an important notion in performing Bayesian
learning.

1.2.1 Popular Distributions

Table 1.1 summarizes several distributions that are frequently used as a model
distribution (or likelihood function) p(D|w) or a prior distribution p(w) in
Bayesian learning. The domain X of the random variable x and the domain
W of the parameters w are shown in the table.

Some of the distributions in Table 1.1 have complicated function forms,
involving Beta or Gamma functions. However, such complications are mostly
in the normalization constant, and can often be ignored when it is sufficient
to find the shape of a function. In Table 1.1, the normalization constant is
separated by a dot, so that one can find the simple main part. As will be
seen shortly, we often refer to the normalization constant when we need to
perform integration of a function, which is in the same form as the main part
of a popular distribution.

Below we summarize abbreviations of distributions:

GaussM(x;μ,Σ) ≡ 1

(2π)M/2 det (Σ)1/2
· exp

(
−1

2
(x − μ)�Σ−1(x − μ)

)
,

(1.16)

Gamma(x; α, β) ≡ βα

Γ(α)
· xα−1 exp(−βx), (1.17)
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Table 1.1 Popular distributions. The following notation is used: R : The set of all real numbers, R++ : The set of all
positive real numbers, I++ : The set of all positive integers, SM

++ : The set of all M × M positive definite matrices,
H

K−1
N ≡ {x ∈ {0, . . . , N}K ;

∑K
k=1 xk = N} : The set of all possible histograms for N samples and K categories,

ΔK−1 ≡ {θ ∈ [0, 1]K ;
∑K

k=1 θk = 1} : The standard (K − 1)-simplex, det (·) :Determinant of matrix, B(y, z) ≡∫ 1

0
ty−1(1 − t)z−1dt : Beta function, Γ(y) ≡

∫ ∞
0

ty−1 exp(−t)dt : Gamma function, and ΓM(y) ≡∫
T∈SM

++

det (T)y−(M+1)/2 exp(−tr(T))dT : Multivariate Gamma function.

Probability distribution p(x|w) x ∈ X w ∈ W

Isotropic Gaussian GaussM(x;μ, σ2 IM) ≡ 1
(2πσ2)M/2 · exp

(
− 1

2σ2 ‖x − μ‖2
)

x ∈ RM μ ∈ RM , σ2 > 0

Gaussian GaussM(x;μ,Σ) ≡ 1
(2π)M/2 det(Σ)1/2 · exp

(
− 1

2 (x − μ)� Σ−1 (x − μ)
)

x ∈ RM μ ∈ RM ,Σ ∈ SM
++

Gamma Gamma(x; α, β) ≡ βα

Γ(α) · x
α−1 exp(−βx) x > 0 α > 0, β > 0

Wishart WishartM(X; V, ν) ≡ 1
(2ν |V|)M/2ΓM ( ν

2 )
· det (X)

ν−M−1
2 exp

(
− tr(V−1 X)

2

)
X ∈ SM

++ V ∈ SM
++, ν > M − 1

Bernoulli Binomial1(x; θ) ≡ θx(1 − θ)1−x x ∈ {0, 1} θ ∈ [0, 1]

Binomial BinomialN(x; θ) ≡
(
N
x

)
θx(1 − θ)N−x x ∈ {0, . . . , N} θ ∈ [0, 1]

Multinomial MultinomialK,N(x; θ) ≡ N! ·∏K
k=1(xk! )−1θ

xk
k x ∈ HK−1

N θ ∈ ΔK−1

Beta Beta(x; a, b) ≡ 1
B(a,b) · x

a−1(1 − x)b−1 x ∈ [0, 1] a > 0, b > 0

Dirichlet DirichletK(x;φ) ≡ Γ(
∑K

k=1 φk)∏K
k=1 Γ(φk)

·∏K
k=1 xφk−1

k x ∈ ΔK−1 φ ∈ RK
++
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12 1 Bayesian Learning

WishartM(X; V, ν) ≡ 1

(2ν|V|)M/2ΓM

(
ν
2

) · det (X)
ν−M−1

2 exp

(
− tr(V−1X)

2

)
,

(1.18)

BinomialN(x; θ) ≡
(
N
x

)
· θx(1 − θ)N−x, (1.19)

MultinomialK,N(x; θ) ≡ N! ·
K∏

k=1

(xk! )−1θxk

k , (1.20)

Beta(x; a, b) ≡ 1
B(a, b)

· xa−1(1 − x)b−1, (1.21)

DirichletK(x;φ) ≡
Γ(

∑K
k=1 φk)∏K

k=1 Γ(φk)
·

K∏
k=1

xφk−1

k . (1.22)

The distributions in Table 1.1 are categorized into four groups, which are
separated by dashed lines. In each group, an upper distribution family is a
special case of a lower distribution family. Note that the following hold:

Gamma(x; α, β) =Wishart1

(
x;

1
2β

, 2α

)
,

BinomialN(x; θ) = Multinomial2,N

(
(x, N − x)�; (θ, 1 − θ)�

)
,

Beta(x; a, b) = Dirichlet2
(
(x, 1 − x)�; (a, b)�

)
.

1.2.2 Conjugacy

Let us think about the function form of the posterior (1.3):

p(w|D) =
p(D|w)p(w)

p(D)
∝ p(D|w)p(w),

which is determined by the function form of the product of the model likeli-
hood p(D|w) and the prior p(w). Note that we here call the conditional p(D|w)
NOT the model distribution but the model likelihood, since we are interested
in the function form of the posterior, a distribution of the parameter w.

Conjugacy is defined as the relation between the likelihood p(D|w) and the
prior p(w).

Definition 1.4 (Conjugate prior) A prior p(w) is called conjugate with a
likelihood p(D|w), if the posterior p(w|D) is in the same distribution family
as the prior.
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1.2 Computation 13

1.2.3 Posterior Distribution

Here, we introduce computation of the posterior distribution in simple cases
where a conjugate prior exists and is adopted.

Isotropic Gaussian Model
Let us compute the posterior distribution for the isotropic Gaussian model:

p(x|w) = GaussM(x;μ, σ2IM) =
1

(2πσ2)M/2
· exp

(
− 1

2σ2
‖x − μ‖2

)
. (1.23)

The likelihood for N i.i.d. samplesD = {x(1), . . . , x(N)} is written as

p(D|w) =
N∏

n=1

p(x(n)|w) =
exp

(
− 1

2σ2

∑N
n=1 ‖x(n) − μ‖2

)
(2πσ2)MN/2

. (1.24)

Gaussian Likelihood As noted in Section 1.2.2, we should see Eq. (1.24),
which is the distribution of observed data D, as a function of the parameter
w. Naturally, the function form depends on which parameters are estimated in
the Bayesian way. The isotropic Gaussian has two parameters w = (μ, σ2),
and we first consider the case where the variance parameter σ2 is known,
and the posterior of the mean parameter μ is estimated, i.e., we set w = μ.
This case contains the case where σ2 is unknown but point-estimated in the
empirical Bayesian procedure or tuned outside the Bayesian framework, e.g.,
by performing cross-validation (we set w = μ, κ = σ2 in the latter case).

Omitting the constant (with respect to μ), the likelihood (1.24) can be
written as

p(D|μ) ∝ exp

⎛⎜⎜⎜⎜⎜⎝− 1
2σ2

N∑
n=1

‖x(n) − μ‖2
⎞⎟⎟⎟⎟⎟⎠

∝ exp

⎛⎜⎜⎜⎜⎜⎝− 1
2σ2

N∑
n=1

‖(x(n) − x) + (x − μ)‖2
⎞⎟⎟⎟⎟⎟⎠

= exp

⎛⎜⎜⎜⎜⎜⎝− 1
2σ2

⎛⎜⎜⎜⎜⎜⎝ N∑
n=1

‖x(n) − x‖2 + N‖x − μ‖2
⎞⎟⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎟⎠

∝ exp
(
− N

2σ2

∥∥∥μ − x
∥∥∥2

)
∝ GaussM

(
μ; x,

σ2

N
IM

)
, (1.25)

where x = 1
N

∑N
n=1 x(n) is the sample mean. Note that we omitted the factor

exp
( − 1

2σ2

∑N
n=1 ‖x(n) − x‖2) as a constant in the fourth equation.
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The last equation (1.25) implies that, as a function of the mean parameter μ,
the model likelihood p(D|μ) has the same form as the isotropic Gaussian with
mean x and variance σ2

N . Eq. (1.25) also implies that the ML estimator for the
mean parameter is given by

μ̂ML
= x.

Thus, we found that the likelihood function for the mean parameter of the
isotropic Gaussian is in the Gaussian form. This comes from the following
facts:

• The isotropic Gaussian model for a single sample x is in the Gaussian form
also as a function of the mean parameter, i.e., GaussM(x;μ, σ2IM) ∝
GaussM(μ; x, σ2IM).

• The isotropic Gaussians are multiplicatively closed, i.e., the product of
isotropic Gaussians with different means is a Gaussian: p(D|μ) ∝∏N

n=1 GaussM(μ; x(n), σ2IM) ∝ GaussM

(
μ; x, σ2

N IM

)
.

Since the isotropic Gaussian is multiplicatively closed and the likelihood
(1.25) is in the Gaussian form, the isotropic Gaussian prior must be conjugate.
Let us choose the isotropic Gaussian prior,

p(μ|μ0, σ2
0) = GaussM(μ;μ0, σ2

0IM) ∝ exp

⎛⎜⎜⎜⎜⎝− 1

2σ2
0

‖μ − μ0‖2
⎞⎟⎟⎟⎟⎠ ,

for hyperparameters κ = (μ0, σ2
0). Then, the function form of the posterior is

given by

p(μ|D,μ0, σ2
0) ∝ p(D|μ)p(μ|μ0, σ2

0)

∝ GaussM

(
μ; x,

σ2

N

)
GaussM(μ;μ0, σ2

0)

∝ exp

⎛⎜⎜⎜⎜⎝− N
2σ2

∥∥∥μ − x
∥∥∥2 − 1

2σ2
0

∥∥∥μ − μ0

∥∥∥2
⎞⎟⎟⎟⎟⎠

∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝−Nσ−2 + σ−2
0

2

∥∥∥∥∥∥μ − Nσ−2x + σ−2
0 μ0

Nσ−2 + σ−2
0

∥∥∥∥∥∥
2⎞⎟⎟⎟⎟⎟⎟⎠

∝ GaussM

⎛⎜⎜⎜⎜⎝μ;
Nσ−2x + σ−2

0 μ0

Nσ−2 + σ−2
0

,
1

Nσ−2 + σ−2
0

⎞⎟⎟⎟⎟⎠ .

Therefore, the posterior is

p(μ|D,μ0, σ2
0) = GaussM

⎛⎜⎜⎜⎜⎝μ;
Nσ−2x + σ−2

0 μ0

Nσ−2 + σ−2
0

,
1

Nσ−2 + σ−2
0

⎞⎟⎟⎟⎟⎠ . (1.26)
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1.2 Computation 15

Note that the equality holds in Eq. (1.26). We omitted constant factors in the
preceding derivation. But once the function form of the posterior is found,
the normalization factor is unique. If the function form coincides with one of
the well-known distributions (e.g., ones given in Table 1.1), one can find the
normalization constant (from the table) without any further computation.

Multiplicative closedness of a function family of the model likelihood
is essential in performing Bayesian learning. Such families are called the
exponential family:

Definition 1.5 (Exponential families) A family of distributions is called the
exponential family if it is written as

p(x|w) = p(t|η) = exp
(
η� t − A(η) + B(t)

)
, (1.27)

where t = t(x) is a function, called sufficient statistics, of the random variable
x, and η = η(w) is a function, called natural parameters, of the parameter w.

The essential property of the exponential family is that the interaction
between the random variable and the parameter occurs only in the log linear
form, i.e., exp

(
η� t

)
. Note that, although A(·) and B(·) are arbitrary functions,

A(·) does not depend on t, and B(·) does not depend on η.
Assume that N observed samplesD = (t(1), . . . , t(N)) = (t(x(1)), . . . , t(x(N)))

are drawn from the exponential family distribution (1.27). If we use the
exponential family prior p(η) = exp

(
η� t(0) − A0(η) + B0(t(0))

)
, then the

posterior is given as an exponential family distribution with the same set of
natural parameters η:

p(η|D) = exp

⎛⎜⎜⎜⎜⎜⎝η� N∑
n=0

t(n) − A′(η) + B′(D)

⎞⎟⎟⎟⎟⎟⎠ ,

where A′(η) and B′(D) are a function of η and a function of D, respectively.
Therefore, the conjugate prior for the exponential family distribution is the
exponential family with the same natural parameters η.

All distributions given in Table 1.1 are exponential families. For example,
the sufficient statistics and the natural parameters for the univariate Gaussian
are given by η = ( μ

σ2 ,− 1
2σ2 )� and t = (x, x2)�, respectively. The mixture model

(1.11) is a common nonexponential family distribution.

Gamma Likelihood Next we consider the posterior distribution of the vari-
ance parameter σ2 with the mean parameter regarded as a constant, i.e.,
w = σ2.
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16 1 Bayesian Learning

Omitting the constants (with respect to σ2) of the model likelihood (1.24),
we have

p(D|σ2) ∝ (σ2)−MN/2 exp

⎛⎜⎜⎜⎜⎜⎝− 1
2σ2

N∑
n=1

‖x(n) − μ‖2
⎞⎟⎟⎟⎟⎟⎠ .

If we see the likelihood as a function of the inverse of σ2, we find that it is
proportional to the Gamma distribution:

p(D|σ−2) ∝ (σ−2)MN/2 exp

⎛⎜⎜⎜⎜⎜⎝− ⎛⎜⎜⎜⎜⎜⎝1
2

N∑
n=1

‖x(n) − μ‖2
⎞⎟⎟⎟⎟⎟⎠σ−2

⎞⎟⎟⎟⎟⎟⎠
∝ Gamma

⎛⎜⎜⎜⎜⎜⎝σ−2;
MN

2
+ 1,

1
2

N∑
n=1

‖x(n) − μ‖2
⎞⎟⎟⎟⎟⎟⎠ . (1.28)

Since the mode of the Gamma distribution is known as argmaxx

Gamma (x; α, β) = α−1
β

, Eq. (1.28) implies that the ML estimator for the
variance parameter is given by

σ̂2 ML =
1

σ̂−2 ML
=

1
2

∑N
n=1 ‖x(n) − μ‖2
MN

2 + 1 − 1
=

1
MN

N∑
n=1

‖x(n) − μ‖2.

Now we found that the model likelihood of the isotropic Gaussian is
in the Gamma form as a function of the inverse variance σ−2. Since the
Gamma distribution is in the exponential family and multiplicatively closed,
the Gamma prior is conjugate.

If we use the Gamma prior

p(σ−2|α0, β0) = Gamma(σ−2; α0, β0) ∝ (σ−2)α0−1 exp(−β0σ
−2)

with hyperparameters κ = (α0, β0), the posterior can be written as

p(σ−2|D, α0, β0) ∝ p(D|σ−2)p(σ−2|α0, β0)

∝ Gamma

⎛⎜⎜⎜⎜⎜⎝σ−2;
MN

2
+ 1,

1
2

N∑
n=1

‖x(n) − μ‖2
⎞⎟⎟⎟⎟⎟⎠ Gamma(σ−2; α0, β0)

∝ (σ−2)MN/2+α0−1 exp

⎛⎜⎜⎜⎜⎜⎝− ⎛⎜⎜⎜⎜⎜⎝1
2

N∑
n=1

‖x(n) − μ‖2 + β0

⎞⎟⎟⎟⎟⎟⎠σ−2

⎞⎟⎟⎟⎟⎟⎠ ,

and therefore

p(σ−2|D, α0, β0) = Gamma

⎛⎜⎜⎜⎜⎜⎝σ−2;
MN

2
+ α0,

1
2

N∑
n=1

‖x(n) − μ‖2 + β0

⎞⎟⎟⎟⎟⎟⎠ . (1.29)
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1.2 Computation 17

Isotropic Gauss-Gamma Likelihood Finally, we consider the general case
where both the mean and variance parameters are unknown, i.e., w = (μ, σ−2).
The likelihood is written as

p(D|μ, σ−2) ∝ (σ−2)MN/2 exp

⎛⎜⎜⎜⎜⎜⎝− ⎛⎜⎜⎜⎜⎜⎝1
2

N∑
n=1

‖x(n) − μ‖2
⎞⎟⎟⎟⎟⎟⎠σ−2

⎞⎟⎟⎟⎟⎟⎠
= (σ−2)MN/2 exp

⎛⎜⎜⎜⎜⎝− ⎛⎜⎜⎜⎜⎝N‖μ − x‖2
2

+

∑N
n=1 ‖x(n) − x‖2

2

⎞⎟⎟⎟⎟⎠σ−2

⎞⎟⎟⎟⎟⎠
∝ GaussGammaM

⎛⎜⎜⎜⎜⎝μ, σ−2

∣∣∣∣∣∣x, NIM ,
M(N − 1)

2
+ 1,

∑N
n=1 ‖x(n) − x‖2

2

⎞⎟⎟⎟⎟⎠ ,

where

GaussGammaM(x, τ|μ, λIM , α, β)

≡ GaussM(x|μ, (τλ)−1IM) · Gamma(τ|α, β)

=
exp

(
− τλ

2 ‖x − μ‖
2
)

(2π(τλ)−1)M/2
· βα

Γ(α)
τα−1 exp(−βτ)

=
βα

(2π/λ)M/2Γ(α)
τα+ M

2 −1 exp

(
−

(
λ‖x − μ‖2

2
+ β

)
τ

)
is the isotropic Gauss-Gamma distribution on the random variable x ∈ RM ,
τ > 0 with parameters μ ∈ RM , λ > 0, α > 0, β > 0.

Note that, although the isotropic Gauss-Gamma distribution is the product
of an isotropic Gaussian distribution and a Gamma distribution, the random
variables x and τ are not independent of each other. This is because the
isotropic Gauss-Gamma distribution is a hierarchical model p(x|τ)p(τ), where
the variance parameter σ2 = (τλ)−1 for the isotropic Gaussian depends on the
random variable τ of the Gamma distribution.

Since the isotropic Gauss-Gamma distribution is multiplicatively closed, it
is a conjugate prior. Choosing the isotropic Gauss-Gamma prior

p(μ, σ−2|μ0, λ0, α0, β0) = GaussGammaM(μ, σ−2|μ0, λ0IM , α0, β)

∝ (σ−2)α0+
M
2 −1 exp

(
−

(
λ0‖μ − μ0‖2

2
+ β0

)
σ−2

)
with hyperparameters κ = (μ0, λ0, α0, β0), the posterior is given by

p(μ, σ−2|D, κ) ∝ p(D|μ, σ−2)p(μ, σ−2|κ)

∝ GaussGammaM

⎛⎜⎜⎜⎜⎝μ, σ−2

∣∣∣∣∣∣x, NIM ,
M(N − 1)

2
+ 1,

∑N
n=1 ‖x(n) − x‖2

2

⎞⎟⎟⎟⎟⎠
· GaussGammaM(μ, σ−2|μ0, λ0IM , α0, β)
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18 1 Bayesian Learning

∝ (σ−2)MN/2 exp

⎛⎜⎜⎜⎜⎝− ⎛⎜⎜⎜⎜⎝N‖μ − x‖2
2

+

∑N
n=1 ‖x(n) − x‖2

2

⎞⎟⎟⎟⎟⎠σ−2

⎞⎟⎟⎟⎟⎠
· (σ−2)α0+

M
2 −1 exp

(
−

(
λ0‖μ − μ0‖2

2
+ β0

)
σ−2

)
∝ (σ−2)M(N+1)/2+α0−1

· exp
(
−

(
N‖μ−x‖2+λ0‖μ−μ0‖2

2 +
∑N

n=1 ‖x(n)−x‖2
2 + β0

)
σ−2

)
∝ (σ−2)α̂+

M
2 −1 exp

⎛⎜⎜⎜⎜⎜⎜⎝−
⎛⎜⎜⎜⎜⎜⎜⎝ λ̂

∥∥∥μ − μ̂∥∥∥2

2
+ β̂

⎞⎟⎟⎟⎟⎟⎟⎠σ−2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where

μ̂ =
Nx + λ0μ0

N + λ0
,

λ̂ = N + λ0,

α̂ =
MN

2
+ α0,

β̂ =

∑N
n=1 ‖x(n) − x‖2

2
+

Nλ0‖x − μ0‖2

2(N + λ0)
+ β0.

Thus, the posterior is obtained as

p(μ, σ−2|D, κ) = GaussGammaM(μ, σ−2 |̂μ, λ̂IM , α̂, β̂). (1.30)

Although the Gauss-Gamma distribution seems a bit more complicated
than the ones in Table 1.1, its moments are known. Therefore, Bayesian
learning with a conjugate prior can be analytically performed also when both
parameters w = (μ, σ−2) are estimated.

Gaussian Model
Bayesian learning can be performed for a general Gaussian model in a
similar fashion to the isotropic case. Consider the M-dimensional Gaussian
distribution,

p(x|w) = GaussM(x;μ,Σ) ≡ 1

(2π)M/2 det (Σ)1/2
· exp

(
−1

2
(x − μ)�Σ−1(x − μ)

)
(1.31)

with mean and covariance parameters w = (μ,Σ). The likelihood for N i.i.d.
samplesD = {x(1), . . . , x(N)} is written as

p(D|w) =
N∏

n=1

p(x(n)|w) =
exp

(
− 1

2

∑N
n=1(x(n) − μ)�Σ−1(x(n) − μ)

)
(2π)NM/2 det (Σ)N/2

. (1.32)
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1.2 Computation 19

Gaussian Likelihood Let us first compute the posterior distribution on the
mean parameter μ, with the covariance parameter regarded as a known
constant. In this case, the likelihood can be written as

p(D|μ) ∝ exp

⎛⎜⎜⎜⎜⎜⎝−1
2

N∑
n=1

(x(n) − μ)�Σ−1(x(n) − μ)

⎞⎟⎟⎟⎟⎟⎠
∝ exp

(
− 1

2

N∑
n=1

(
(x(n) − x) + (x − μ)

)�
· Σ−1

(
(x(n) − x) + (x − μ)

) )

= exp

(
− 1

2σ2

( N∑
n=1

(x(n) − x)�Σ−1(x(n) − x) + N(x − μ)�Σ−1(x − μ)

))
∝ exp

(
−N

2
(μ − x)�Σ−1(μ − x)

)
∝ GaussM

(
μ; x,

1
N
Σ

)
. (1.33)

Therefore, with the conjugate Gaussian prior

p(μ|μ0,Σ0) = GaussM(μ;μ0,Σ0) ∝ exp

(
−1

2
(μ − μ0)�Σ−1

0 (μ − μ0)

)
,

with hyperparameters κ = (μ0,Σ0), the posterior is written as

p(μ|D,μ0,Σ0) ∝ p(D|μ)p(μ|μ0,Σ0)

∝ GaussM

(
μ; x,

1
N
Σ

)
GaussM(μ;μ0,Σ0)

∝ exp

⎛⎜⎜⎜⎜⎝−N(μ − x)�Σ−1(μ − x) + (μ − μ0)�Σ−1
0 (μ − μ0)

2

⎞⎟⎟⎟⎟⎠
∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝− (
μ − μ̂)� Σ̂−1 (

μ − μ̂)
2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where

μ̂ =
(
NΣ−1 + Σ−1

0

)−1 (
NΣ−1x + Σ−1

0 μ0

)
,

Σ̂ =
(
NΣ−1 + Σ−1

0

)−1
.

Thus, we have

p(μ|D,μ0,Σ0) = GaussM

(
μ; μ̂, Σ̂

)
. (1.34)
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20 1 Bayesian Learning

Wishart Likelihood If we see the mean parameter μ as a given constant,
the model likelihood (1.32) can be written as follows, as a function of the
covariance parameter Σ:

p(D|Σ−1) ∝ det
(
Σ−1

)N/2
exp

⎛⎜⎜⎜⎜⎝−∑N
n=1(x(n) − μ)�Σ−1(x(n) − μ)

2

⎞⎟⎟⎟⎟⎠
∝ det

(
Σ−1

)N/2
exp

⎛⎜⎜⎜⎜⎜⎜⎝− tr
(∑N

n=1(x(n) − μ)(x(n) − μ)�Σ−1
)

2

⎞⎟⎟⎟⎟⎟⎟⎠
∝WishartM

⎛⎜⎜⎜⎜⎜⎜⎜⎝Σ−1;

⎛⎜⎜⎜⎜⎜⎝ N∑
n=1

(x(n) − μ)(x(n) − μ)�
⎞⎟⎟⎟⎟⎟⎠−1

, M + N + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Here, as in the isotropic Gaussian case, we computed the distribution on the
inverse Σ−1 of the covariance parameter. With the Wishart distribution

p(Σ−1|V0, ν0) =WishartM(Σ−1; V0, ν0)

=
1

(2ν0 det (V0))M/2 ΓM

(
ν0
2

) · det
(
Σ−1

) ν0−M−1
2 exp

⎛⎜⎜⎜⎜⎝− tr(V−1
0 Σ

−1)

2

⎞⎟⎟⎟⎟⎠
for hyperparameters κ = (V0, ν0) as a conjugate prior, the posterior is
computed as

p(Σ−1|D, V0, ν0) ∝ p(D|Σ−1)p(Σ−1|V0, ν0)

∝WishartM

⎛⎜⎜⎜⎜⎜⎜⎜⎝Σ−1;

⎛⎜⎜⎜⎜⎜⎝ N∑
n=1

(x(n) − μ)(x(n) − μ)�
⎞⎟⎟⎟⎟⎟⎠−1

, M + N + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
·WishartM(Σ−1; V0, ν0)

∝ det
(
Σ−1

) N
2 exp

⎛⎜⎜⎜⎜⎜⎜⎝− tr
((∑N

n=1(x(n) − μ)(x(n) − μ)�
)
Σ−1

)
2

⎞⎟⎟⎟⎟⎟⎟⎠
· det

(
Σ−1

) ν0−M−1
2 exp

⎛⎜⎜⎜⎜⎜⎜⎝− tr
(
V−1

0 Σ
−1

)
2

⎞⎟⎟⎟⎟⎟⎟⎠
∝ det

(
Σ−1

) ν0−M+N−1
2 exp

(
− tr((∑N

n=1(x(n)−μ)(x(n)−μ)�+V−1
0 )Σ−1)

2

)
.

Thus we have

p(Σ−1|D, V0, ν0)

=WishartM

⎛⎜⎜⎜⎜⎜⎜⎜⎝Σ−1;

⎛⎜⎜⎜⎜⎜⎝ N∑
n=1

(x(n) − μ)(x(n) − μ)� + V−1
0

⎞⎟⎟⎟⎟⎟⎠−1

, N + ν0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (1.35)
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1.2 Computation 21

Note that the Wishart distribution can be seen as a multivariate extension of
the Gamma distribution and is reduced to the Gamma distribution for M = 1:

Wishart1 (x; V , ν) = Gamma (x; ν/2, 1/(2V)) .

Gauss-Wishart Likelihood When both parameters w = (μ,Σ−1) are
unknown, the model likelihood (1.32) is seen as

p(D|μ,Σ−1) ∝ det
(
Σ−1

)N/2
exp

(
−

∑N
n=1(x(n)−μ)�Σ−1(x(n)−μ)

2

)
∝ det

(
Σ−1

)N/2
exp

(
− tr(∑N

n=1(x(n)−μ)(x(n)−μ)�Σ−1)
2

)
∝ det

(
Σ−1

)N/2
exp

(
− tr

(∑N
n=1((x(n)−x)+(x−μ))((x(n)−x)+(x−μ))�Σ−1

)
2

)
∝ det

(
Σ−1

)N/2
exp

(
− tr(N(μ−x)(μ−x)�+

∑N
n=1(x(n)−x)(x(n)−x)�)Σ−1)

2

)
∝ GaussWishartM

(
μ,Σ−1; x, N,

(∑N
n=1(x(n) − x)(x(n) − x)�

)−1
, M + N

)
,

where

GaussWishartM(x,Λ|μ, λ, V, ν)

≡ GaussM(x|μ, (λΛ)−1)WishartM(Λ|V, ν)

=
exp

(
− λ

2 (x − μ)� Λ (x − μ)
)

(2π)M/2det(λΛ)−1/2
·

det (Λ)
ν−M−1

2 exp
(
− tr(V−1Λ)

2

)
(2ν det (V))M/2ΓM

(
ν
2

)
= λM/2

(2ν+1π det(V))M/2ΓM( ν
2 ) det (Λ)

ν−M
2 exp

(
− tr((λ(x−μ)(x−μ)�+V−1)Λ)

2

)
is the Gauss–Wishart distribution on the random variables x ∈ RM ,Λ ∈ SM

++

with parameters μ ∈ RM , λ > 0, V ∈ SM
++, ν > M − 1.

With the conjugate Gauss–Wishart prior,

p(μ,Σ−1|μ0, λ0, α0, β0) = GaussWishartM(μ,Σ−1|μ0, λ0, V0, ν0)

∝ det
(
Σ−1

) ν−M
2 exp

(
− tr

(
(λ0(μ−μ0)(μ−μ0)

�
+V−1

0 )Σ−1
)

2

)
with hyperparameters κ = (μ0, λ0, V0, ν0), the posterior is written as

p(μ,Σ−1|D, κ) ∝ p(D|μ,Σ−1)p(μ,Σ−1|κ)

∝ GaussWishartM

(
μ,Σ−1; x, N,

(∑N
n=1(x(n) − x)(x(n) − x)�

)−1
, M + N

)
· GaussWishartM(μ,Σ−1|μ0, λ0, V0, ν0)
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∝ det
(
Σ−1

)N/2
exp

(
− tr(N(μ−x)(μ−x)�+

∑N
n=1(x(n)−x)(x(n)−x)�)Σ−1)

2

)
· det

(
Σ−1

) ν0−M
2 exp

(
− tr

(
(λ0(μ−μ0)(μ−μ0)

�
+V−1

0 )Σ−1
)

2

)

∝ det
(
Σ−1

) ν̂−M
2 exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(̂
λ
(
μ − μ̂) (μ − μ̂)� V̂

−1
)
Σ−1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where

μ̂ =
Nx + λ0μ0

N + λ0
,

λ̂ = N + λ0,

V̂ =
(∑N

n=1(x(n) − x)(x(n) − x)� + Nλ0
N+λ0

(x − μ0)(x − μ0)� + V−1
0

)−1
,

ν̂ = N + ν0.

Thus, we have the posterior distribution as the Gauss–Wishart distribution:

p(μ,Σ−1|D, κ) = GaussWishartM

(
μ,Σ−1 |̂μ, λ̂, V̂, ν̂

)
. (1.36)

Linear Regression Model
Consider the linear regression model, where an input variable x ∈ RM and
an output variable y ∈ R are assumed to satisfy the following probabilistic
relation:

y = a�x + ε, (1.37)

p(ε|σ2) = Gauss1(ε; 0, σ2) =
1

√
2πσ2

· exp

(
− ε2

2σ2

)
. (1.38)

Here a and σ2 are called the regression parameter and the noise variance
parameter, respectively. By substituting ε = y − a�x, which is obtained from
Eq. (1.37), into Eq. (1.38), we have

p(y|x, w) = Gauss1(y; a�x, σ2) =
1

√
2πσ2

· exp

(
− (y − a�x)2

2σ2

)
.

The likelihood function for N observed i.i.d.2 samples,

D = (y, X),

2 In the context of regression, i.i.d. usually means that the observation noise ε(n) = y(n) − a�x(n) is
independent for different samples, i.e., p({ε(n)}Nn=1) =

∏N
n=1 p(ε(n)), and the independence

between the input (x(1), . . . , x(N)), i.e., p({x(n)}Nn=1) =
∏N

n=1 p(x(n)), is not required.
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1.2 Computation 23

is given by

p(D|w) =
1

(2πσ2)N/2
· exp

(
−‖y − Xa‖2

2σ2

)
, (1.39)

where we defined

y = (y(1), . . . , y(N))� ∈ RN , X = (x(1), . . . , x(N))� ∈ RN×M .

Gaussian Likelihood The computation of the posterior is similar to the
isotropic Gaussian case. As in Section 1.2.3, we first consider the case where
only the regression parameter a is estimated, with the noise variance parameter
σ2 regarded as a known constant.

One can guess that the likelihood (1.39) is Gaussian as a function of a, since
it is an exponential of a concave quadratic function. Indeed, by expanding the
exponent and completing the square for a, we obtain

p(D|a) ∝ exp

(
−‖y − Xa‖2

2σ2

)
∝ exp

(
− (a−(X�X)−1 X�y)�X�X(a−(X�X)−1 X�y)

2σ2

)
∝ GaussM

(
a; (X�X)−1X�y, σ2(X�X)−1

)
. (1.40)

Eq. (1.40) implies that, when X�X is nonsingular (i.e., its inverse exists), the
ML estimator for a is given by

âML
= (X�X)−1X�y. (1.41)

Therefore, with the conjugate Gaussian prior

p(a|a0,Σ0) = GaussM(a; a0,Σ0) ∝ exp

(
−1

2
(a − a0)�Σ−1

0 (a − a0)

)
for hyperparameters κ = (a0,Σ0), the posterior is Gaussian:

p(a|D, a0,Σ0) ∝ p(D|a)p(a|a0,Σ0)

∝ GaussM

(
a; a0, 1

N σ2(X�X)−1
)

GaussM(a; a0,Σ0)

∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝− (a−(X�X)−1 X� y)�X�X(a−(X�X)−1 X� y)
σ2 +(a−a0)�Σ−1

0 (a−a0)

2

⎞⎟⎟⎟⎟⎟⎟⎠
∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝− (
a − â

)� Σ̂−1
a

(
a − â

)
2

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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where

â =
(

X�X
σ2
+ Σ−1

0

)−1 (
X�y
σ2
+ Σ−1

0 a0

)
,

Σ̂a =

(
X�X
σ2
+ Σ−1

0

)−1

.

Thus we have

p(a|D, a0,Σ0) = GaussM

(
a; â, Σ̂a

)
. (1.42)

Gamma Likelihood When only the noise variance parameter σ2 is unknown,
the model likelihood (1.39) is in the Gamma form, as a function of the
inverse σ−2:

p(D|σ−2) ∝ (σ−2)NM/2 exp

(
−‖y − Xa‖2

2
σ−2

)
∝ Gamma

(
σ−2;

NM
2
+ 1,

‖y − Xa‖2

2

)
, (1.43)

which implies that the ML estimator is

σ̂2 ML =
1

σ̂−2 ML
=

1
MN

N∑
n=1

‖y − Xa‖2 .

With the conjugate Gamma prior

p(σ−2|α0, β0) = Gamma(σ−2; α0, β0) ∝ (σ−2)α0−1 exp(−β0σ
−2)

with hyperparameters κ = (α0, β0), the posterior is computed as

p(σ−2|D, α0, β0) ∝ p(D|σ−2)p(σ−2|α0, β0)

∝ Gamma

(
σ−2;

MN
2
+ 1,

1
2
‖y − Xa‖2

)
Gamma(σ−2; α0, β0)

∝ (σ−2)MN/2+α0−1 exp

(
−

(
1
2
‖y − Xa‖2 + β0

)
σ−2

)
.

Therefore,

p(σ−2|D, α0, β0) = Gamma

(
σ−2;

MN
2
+ α0,

1
2
‖y − Xa‖2 + β0

)
. (1.44)

Gauss-Gamma Likelihood When we estimate both parameters w = (a, σ−2),
the likelihood (1.39) is written as
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p(D|a, σ−2) ∝ (σ−2)NM/2 exp
(
−‖y−Xa‖2

2 σ−2
)

∝ (σ−2)NM/2 exp

(
−

(
a−âML

)�
X�X

(
a−âML

)
+‖y−XâML‖2

2 σ−2

)
∝ GaussGammaM

(
a, σ−2; âML, X�X, M(N−1)

2 + 1, ‖y−XâML‖2
2

)
,

where âML is the ML estimator, given by Eq. (1.41), for the regression
parameter, and

GaussGammaM(x, τ|μ,Λ, α, β)

≡ GaussM(x|μ, (τΛ)−1) · Gamma(τ|α, β)

=
exp(− τ

2 (x−μ)�Λ(x−μ))
(2πτ−1)M/2 det(Λ)−1/2 · βα

Γ(α) τα−1 exp(−βτ)

=
βα

(2π)M/2 det(Λ)−1/2Γ(α)
τα+ M

2 −1 exp
(
−

(
(x−μ)�Λ(x−μ)

2 + β
)
τ
)

is the (general) Gauss-Gamma distribution on the random variable x ∈ RM ,
τ > 0 with parameters μ ∈ RM ,Λ ∈ SM

++, α > 0, β > 0. With the conjugate
Gauss-Gamma prior

p(a, σ−2|κ) = GaussGammaM(a, σ−2|μ0,Λ0, α0, β0)

∝ (σ−2)α0+
M
2 −1 exp

(
−

(
(a−μ0)�Λ0(a−μ0)

2 + β0

)
σ−2

)
for hyperparameters κ = (μ0,Λ0, α0, β0), the posterior is computed as

p(a, σ−2|D, κ) ∝ p(D|a, σ−2)p(a, σ−2|κ)

∝ GaussGammaM

(
a, σ−2; âML, X�X, M(N−1)

2 + 1, ‖y−XâML‖2
2

)
· GaussGammaM(a, σ−2|μ0,Λ0, α0, β0)

∝ (σ−2)NM/2 exp

(
−

(
a−âML

)�
X�X

(
a−âML

)
+‖y−XâML‖2

2 σ−2

)
· (σ−2)α0+

M
2 −1 exp

(
−

(
(a−μ0)�Λ0(a−μ0)

2 + β0

)
σ−2

)
∝ (σ−2)α̂+

M
2 −1 exp

⎛⎜⎜⎜⎜⎝− ⎛⎜⎜⎜⎜⎝ (a − μ̂)� Λ̂ (
a − μ̂)

2
+ β̂

⎞⎟⎟⎟⎟⎠σ−2

⎞⎟⎟⎟⎟⎠ ,

where

μ̂ = (X�X + Λ0)−1
(
X�XâML

+ Λ0μ0

)
,

Λ̂ = X�X + Λ0,

α̂ = NM
2 + α0,

β̂ = ‖y−XâML‖2
2 +

(̂aML−μ0)�Λ0(X�X+Λ0)−1 X�X(̂aML−μ0)
2 + β0.
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Thus, we obtain

p(a, σ−2|D, κ) = GaussGammaM(a, σ−2 |̂μ, Λ̂, α̂, β̂). (1.45)

Multinomial Model
The multinomial distribution, which expresses a distribution over the his-
tograms of independent events, is another frequently used basic component
in Bayesian modeling. For example, it appears in mixture models and latent
Dirichlet allocation.

Assume that exclusive K events occur with the probability

θ = (θ1, . . . , θK) ∈ ΔK−1 ≡
⎧⎪⎪⎨⎪⎪⎩θ ∈ RK ; 0 ≤ θk ≤ 1,

K∑
k=1

θk = 1

⎫⎪⎪⎬⎪⎪⎭ .

Then, the histogram

x = (x1, . . . , xK) ∈ HK−1
N ≡

⎧⎪⎪⎨⎪⎪⎩x ∈ IK ; 0 ≤ xk ≤ N;
K∑

k=1

xk = N

⎫⎪⎪⎬⎪⎪⎭
of events after N iterations follows the multinomial distribution, defined as

p(x|θ) = MultinomialK,N(x; θ) ≡ N! ·
K∏

k=1

θxk

k

xk!
. (1.46)

θ is called the multinomial parameter.
As seen shortly, calculation of the posterior with its conjugate prior is

surprisingly easy.

Dirichlet Likelihood As a function of the multinomial parameter w = θ, it is
easy to find that the likelihood (1.46) is in the form of the Dirichlet distribution:

p(x|θ) ∝ DirichletK(θ; x + 1K),

where 1K is the K-dimensional vector with all elements equal to 1. Since
the Dirichlet distribution is an exponential family and hence multiplicatively
closed, it is conjugate for the multinomial parameter. With the conjugate
Dirichlet prior

p(θ|φ) = DirichletK(θ;φ) ∝
K∏

k=1

θ
φ−1
k

with hyperparameters κ = φ, the posterior is computed as
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p(θ|x,φ) ∝ p(x|θ)p(θ|φ)

∝ DirichletK(θ; x + 1K) · DirichletK(θ;φ)

∝
K∏

k=1

θxk

k · θ
φk−1
k

∝
K∏

k=1

θ
xk+φk−1
k .

Thus we have

p(θ|x,φ) = DirichletK(θ; x + φ). (1.47)

Special Cases For K = 2, the multinomial distribution is reduced to the
binomial distribution:

p(x1|θ1) = Multinomial2,N

(
(x1, N − x1)�; (θ1, 1 − θ1)�

)
= BinomialN(x1; θ1)

=

(
N
x1

)
· θx1

1 (1 − θ1)N−x1 .

Furthermore, it is reduced to the Bernoulli distribution for K = 2 and N = 1:

p(x1|θ1) = Binomial1(x1; θ1)

= θx1
1 (1 − θ1)1−x1 .

Similarly, its conjugate Dirichlet distribution for K = 2 is reduced to the
Beta distribution:

p(θ1|φ1, φ2) = Dirichlet2
(
(θ1, 1 − θ1)�; (φ1, φ2)�

)
= Beta(θ1; φ1, φ2)

=
1

B(φ1, φ2)
· θφ1−1

1 (1 − θ1)φ2−1,

where B(φ1, φ2) = Γ(φ1)Γ(φ2)
Γ(φ1+φ2) is the Beta function. Naturally, the Beta distri-

bution is conjugate to the binomial and the Bernoulli distributions, and the
posterior can be computed as easily as for the multinomial case.

With a conjugate prior in the form of a popular distribution, the four quan-
tities introduced in Section 1.1.3, i.e., the marginal likelihood, the posterior
mean, the posterior covariance, and the predictive distribution, can be obtained
analytically. In the following subsections, we show how they are obtained.
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Table 1.2 First and second moments of common distributions.
Mean(x) = 〈x〉p(x|w), Var(x) =

〈
(x −Mean(x))2

〉
p(x|w)

,

Cov(x) =
〈
(x −Mean(x))(x −Mean(x))�

〉
p(x|w), Ψ (z) ≡ d

dz log Γ(z) :
Digamma function, and Ψm(z) ≡ dm

dzm Ψ (z): Polygamma function of order m.

p(x|w) First moment Second moment

GaussM(x;μ,Σ) Mean(x) = μ Cov(x) = Σ

Gamma(x; α, β) Mean(x) = α
β

Var(x) = α
β2

Mean(log x) Var(log x) = Ψ1(α)

= Ψ (α) − log β

WishartM(X; V, ν) Mean(X) = νV Var(xm,m′ ) = ν(V2
m,m′ + Vm,mVm′ ,m′ )

MultinomialK,N(x; θ) Mean(x) = Nθ (Cov(x))k,k′ =

{
Nθk(1 − θk) (k = k′)
−Nθkθk′ (k � k′)

DirichletK(x;φ) Mean(x) = 1∑K
k=1 φk
φ (Cov(x))k,k′ =

⎧⎪⎪⎨⎪⎪⎩ φk(τ−φk)
τ2(τ+1)

(k = k′)

− φkφk′
τ2(τ+1)

(k � k′)
Mean(log xk) where τ =

∑K
k=1 φk

= Ψ (φk) − Ψ (
∑K

k′=1 φk′ )

1.2.4 Posterior Mean and Covariance

As seen in Section 1.2.3, by adopting a conjugate prior having a form of one
of the common family distributions, such as the one in Table 1.1, we can have
the posterior distribution in the same common family.3 In such cases, we can
simply use the known form of moments, which are summarized in Table 1.2.
For example, the posterior (1.42) for the regression parameter a (when the
noise variance σ2 is treated as a known constant) is the following Gaussian
distribution:

p(a|D, a0,Σ0) = GaussM

(
a; â, Σ̂a

)
,

where â =
(

X�X
σ2
+ Σ−1

0

)−1 (
X�y
σ2
+ Σ−1

0 a0

)
,

Σ̂a =

(
X�X
σ2
+ Σ−1

0

)−1

.

3 If we would say that the prior is in the family that contains all possible distributions, this family
would be the conjugate prior for any likelihood function, which is however useless. Usually, the
notion of the conjugate prior implicitly requires that moments (at least the normalization
constant and the first moment) of any family member can be computed analytically.
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Therefore, the posterior mean and the posterior covariance are simply given by

〈a〉p(a|D,a0,Σ0) = â,〈
(a − 〈a〉)(a − 〈a〉)�

〉
p(a|D,a0,Σ0)

= Σ̂a,

respectively. The posterior (1.29) of the (inverse) variance parameter σ−2 of
the isotropic Gaussian distribution (when the mean parameter μ is treated as a
known constant) is the following Gamma distribution:

p(σ−2|D, α0, β0) = Gamma

⎛⎜⎜⎜⎜⎜⎝σ−2;
MN

2
+ α0,

1
2

N∑
n=1

‖x(n) − μ‖2 + β0

⎞⎟⎟⎟⎟⎟⎠ .

Therefore, the posterior mean and the posterior variance are given by〈
σ−2

〉
p(σ−2 |D,α0,β0)

=

MN
2 + α0

1
2

∑N
n=1 ‖x(n) − μ‖2 + β0

,

〈(
σ−2 −

〈
σ−2

〉)2
〉

p(σ−2 |D,α0,β0)
=

MN
2 + α0

( 1
2

∑N
n=1 ‖x(n) − μ‖2 + β0)2

,

respectively.
Also in other cases, the posterior mean and the posterior covariances can be

easily computed by using Table 1.2, if the form of the posterior distribution is
in the table.

1.2.5 Predictive Distribution

The predictive distribution (1.9) for a new data set Dnew can be computed
analytically, if the posterior distribution is in the exponential family, and hence
multiplicatively closed. In this section, we show two examplary cases, the
linear regression model and the multinomial model.

Linear Regression Model
Consider the linear regression model:

p(y|x, a) = Gauss1(y; a�x, σ2) =
1

√
2πσ2

· exp

(
− (y − a�x)2

2σ2

)
, (1.48)

where only the regression parameter is unknown, i.e., w = a ∈ RM , and the
noise variance parameter σ2 is treated as a known constant. We choose the
zero-mean Gaussian as a conjugate prior:

p(a|C) = GaussM(a; 0, C) =
exp

(
− 1

2 a�C−1a
)

(2π)M/2 det (C)1/2
, (1.49)

where C is the prior covariance.
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30 1 Bayesian Learning

When N i.i.d. samplesD = (X, y), where

y = (y(1), . . . , y(N))� ∈ RN , X = (x(1), . . . , x(N))� ∈ RN×M ,

are observed, the posterior is given by

p(a|y, X, C) = GaussM

(
a; â, Σ̂a

)
=

1

(2π)M/2det
(
Σ̂a

)1/2
· exp

⎛⎜⎜⎜⎜⎜⎜⎝− (
a − â

)� Σ̂−1
a

(
a − â

)
2

⎞⎟⎟⎟⎟⎟⎟⎠ , (1.50)

where

â =
(

X�X
σ2
+ C−1

)−1 X�y
σ2
= Σ̂a

X�y
σ2

, (1.51)

Σ̂a =

(
X�X
σ2
+ C−1

)−1

. (1.52)

This is just a special case of the posterior (1.42) for the linear regression model
with the most general Gaussian prior.

Now, let us compute the predictive distribution on the output y∗ for a
new given input x∗. As defined in Eq. (1.9), the predictive distribution is the
expectation value of the model distribution (1.48) (for a new input–output pair)
over the posterior distribution (1.50):

p(y∗|x∗, y, X, C) = 〈p(y∗|x∗, a)〉p(a|y,X,C)

=

∫
p(y∗|x∗, a)p(a|y, X, C)da

=

∫
Gauss1(y∗; a�x∗, σ2)GaussM

(
a; â, Σ̂a

)
da

∝
∫

exp

(
− (y∗−a�x∗)2

2σ2 − (a−â)�Σ̂−1
a (a−â)

2

)
da

∝ exp
(
− y∗2

2σ2

) ∫
exp

⎛⎜⎜⎜⎜⎜⎝− a�
(
Σ̂
−1
a +

x∗ x∗�
σ2

)
a−2a�

(
Σ̂
−1
a â+ x∗y∗

σ2

)
2

⎞⎟⎟⎟⎟⎟⎠ da

∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝−σ−2y∗2−
(
Σ̂
−1
a â+ x∗y∗

σ2

)�(
Σ̂
−1
a +

x∗ x∗�
σ2

)−1(
Σ̂
−1
a â+ x∗y∗

σ2

)
2

⎞⎟⎟⎟⎟⎟⎟⎠
·
∫

exp

⎛⎜⎜⎜⎜⎜⎝− (a−ă)�
(
Σ̂
−1
a +

x∗ x∗�
σ2

)
(a−ă)

2

⎞⎟⎟⎟⎟⎟⎠ da, (1.53)

where

ă =
(
Σ̂
−1
a +

x∗x∗�

σ2

)−1 (
Σ̂
−1
a â +

x∗y∗

σ2

)
.
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Note that, although the preceding computation is similar to the one for the
posterior distribution in Section 1.2.3, any factor that depends on y∗ cannot
be ignored even if it does not depend on a, since the goal is to obtain the
distribution on y∗.

The integrand in Eq. (1.53) coincides with the main part of

GaussM

⎛⎜⎜⎜⎜⎜⎝a; ă,

(
Σ̂
−1
a +

x∗x∗�

σ2

)−1⎞⎟⎟⎟⎟⎟⎠
without the normalization factor. Therefore, the integral is the inverse of the
normalization factor, i.e.,∫

exp

⎛⎜⎜⎜⎜⎜⎝− (a−ă)�
(
Σ̂
−1
a +

x∗ x∗�
σ2

)
(a−ă)

2

⎞⎟⎟⎟⎟⎟⎠ da = (2π)M/2det
(
Σ̂
−1
a +

x∗x∗�

σ2

)−1/2
,

which is a constant with respect to y∗. Therefore, by using Eqs. (1.51) and
(1.52), we have

p(y∗|x∗, y, X, C)

∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝−σ−2y∗2−
(
Σ̂
−1
a â+ x∗y∗

σ2

)�(
Σ̂
−1
a +

x∗ x∗�
σ2

)−1(
Σ̂
−1
a â+ x∗y∗

σ2

)
2

⎞⎟⎟⎟⎟⎟⎟⎠
∝ exp

(
− y∗2−(X�y+x∗y∗)�(X�X+x∗x∗�+σ2C−1)−1(X�y+x∗y∗)

2σ2

)
∝ exp

(
− 1

2σ2

{
y∗2

(
1 − x∗�

(
X�X + x∗x∗� + σ2C−1

)−1
x∗

)
− 2y∗x∗�

(
X�X + x∗x∗� + σ2C−1

)−1
X�y

})
∝ exp

(
− 1−x∗�(X�X+x∗x∗�+σ2C−1)−1

x∗

2σ2

·
(
y∗ − x∗�(X�X+x∗x∗�+σ2C−1)−1

X�y

1−x∗�(X�X+x∗x∗�+σ2C−1)−1
x∗

)2 )
∝ exp

⎛⎜⎜⎜⎜⎝− (y∗ − ŷ)2

2σ̂2
y

⎞⎟⎟⎟⎟⎠ ,

where

ŷ =
x∗�

(
X�X + x∗x∗� + σ2C−1

)−1
X�y

1 − x∗�
(
X�X + x∗x∗� + σ2C−1

)−1
x∗

,

σ̂2
y =

σ2

1 − x∗�
(
X�X + x∗x∗� + σ2C−1

)−1
x∗

.
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Figure 1.3 Predictive distribution of the linear regression model.

Thus, the predictive distribution has been analytically obtained:

p(y∗|x∗, y, X, C) = Gauss1

(
y∗; ŷ, σ̂2

y

)
. (1.54)

Figure 1.3 shows an example of the predictive distribution of the linear
regression model. The curve labeled as “True” indicates the mean y = a∗x
of the true regression model y = a∗x + ε, where a∗ = (−2, 0.4, 0.3,−0.1)�,
x = (1, t, t2, t3)�, and ε ∼ Gauss1(0, 12). The crosses are N = 30 i.i.d.
observed samples generated from the true regression model and the input
distribution t ∼ Uniform(−2.4, 1.6), where Uniform(l, u) denotes the uniform
distribution on [l, u]. The regression model (1.48) with the prior (1.49) for
the hyperparameters C = 10000 · IM , σ2 = 1 was trained with the observed
samples. The curve labeled as “Estimated” and the pair of curves labeled as
“Credible interval” show the mean ŷ and the credible interval ŷ ± σ̂y of the
predictive distribution (1.54), respectively.

Reflecting the fact that the samples are observed only in the middle region
(t ∈ [−2.4, 1.6]), the credible interval is large in outer regions. The larger
interval implies that the “Estimated” function is less reliable, and we see that
the gap from the “True” function is indeed large. Since the true function is
unknown in practical situations, the variance of the predictive distribution is
important information on the reliability of the estimated result.

Multinomial Model
Let us compute the predictive distribution of the multinomial model:

p(x|θ) = MultinomialK,N(x; θ) ∝
K∏

k=1

θxk

k

xk!
,
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p(θ|φ) = DirichletK(θ;φ) ∝
K∏

k=1

θ
φk−1
k ,

with the observed data D = x = (x1, . . . , xK) ∈ HK−1
N and the unknown

parameter w = θ = (θ1, . . . , θK) ∈ ΔK−1.
The posterior was derived in Eq. (1.47):

p(θ|x,φ) = DirichletK(θ; x + φ) ∝
K∏

k=1

θ
xk+φk−1
k .

Therefore, the predictive distribution for a new single sample x∗ ∈ HK−1
1 is

given by

p(x∗|x,φ) = 〈p(x∗|θ)〉p(θ|x,φ)

=

∫
p(x∗|θ)p(θ|x,φ)dθ

=

∫
MultinomialK,1(x∗; θ)DirichletK(θ; x + φ)dθ

∝
∫ K∏

k=1

θ
x∗k
k · θ

xk+φk−1
k dθ

=

∫ K∏
k=1

θ
x∗k+xk+φk−1
k dθ. (1.55)

In the fourth equation, we ignored the factors that depend neither on x∗

nor on θ.
The integrand in Eq. (1.55) is the main part of DirichletK(θ; x∗ + x+φ), and

therefore, the integral is equal to the inverse of its normalization factor:∫ K∏
k=1

θ
x∗k+xk+φk−1
k dθ =

∏K
k=1 Γ(x∗k + xk + φk)

Γ(
∑K

k=1 x∗k + xk + φk)

=

∏K
k=1 Γ(x∗k + xk + φk)

Γ(N +
∑K

k=1 φk + 1)
.

Thus, by using the identity Γ(x+ 1) = xΓ(x) for the Gamma function, we have

p(x∗|x,φ) ∝
K∏

k=1

Γ(x∗k + xk + φk)

∝
K∏

k=1

(xk + φk)x∗kΓ(xk + φk)
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∝
K∏

k=1

(xk + φk)x∗k

∝
K∏

k=1

⎛⎜⎜⎜⎜⎝ xk + φk∑K
k′=1 xk′ + φ k′

⎞⎟⎟⎟⎟⎠x∗k

= MultinomialK,1(x∗; θ̂), (1.56)

where

θ̂k =
xk + φk∑K

k′=1 xk′ + φk′
. (1.57)

From Eq. (1.47) and Table 1.2, we can easily see that the predictive mean
θ̂, specified by Eq. (1.57), coincides with the posterior mean, i.e., the Bayesian
estimator:

θ̂ = 〈θ〉DirichletK (θ;x+φ) .

Therefore, in the multinomial model, the predictive distribution coincides with
the model distribution with the Bayesian estimator plugged in.

In the preceding derivation, we performed the integral computation and
derived the form of the predictive distribution. However, the necessary infor-
mation to determine the predictive distribution is the probability table on the
events x∗ ∈ HK−1

1 = {ek}Kk=1, of which the degree of freedom is only K.
Therefore, the following simple calculation gives the same result:

Prob(x∗ = ek |x,φ) =
〈
MultinomialK,1(ek; θ)

〉
DirichletK (θ;x+φ)

= 〈θk〉DirichletK (θ;x+φ)

= θ̂k,

which specifies the function form of the predictive distribution, given by
Eq. (1.56).

1.2.6 Marginal Likelihood

Let us compute the marginal likelihood of the linear regression model, defined
by Eqs. (1.48) and (1.49):

p(D|C) = p(y|X, C)

= 〈p(y|X, a)〉p(a|C)

=

∫
p(y|X, a)p(a|C)da
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=

∫
GaussN(y; Xa, σ2IN)GaussM(a; 0, C)da

=

∫ exp
(
−‖y−Xa‖2

2σ2

)
(2πσ2)N/2

·
exp

(
− 1

2 a�C−1a
)

(2π)M/2 det (C)1/2
da

=

exp
(
−‖y‖

2

2σ2

)
(2πσ2)N/2(2π)M/2 det (C)1/2

·
∫

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−−2a� X�y
σ2 + a�

(
X�X
σ2 + C−1

)
a

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ da

=

exp
(
− 1

2

(
‖y‖2
σ2 − â�Σ̂

−1
a â

))
(2πσ2)N/2(2π)M/2 det (C)1/2

·
∫

exp

⎛⎜⎜⎜⎜⎜⎜⎝− (
a − â

)� Σ̂−1
a

(
a − â

)
2

⎞⎟⎟⎟⎟⎟⎟⎠ da, (1.58)

where â and Σ̂a are, respectively, the posterior mean and the posterior
covariance, given by Eqs. (1.51) and (1.52).

By using∫
exp

⎛⎜⎜⎜⎜⎜⎜⎝− (
a − â

)� Σ̂−1
a

(
a − â

)
2

⎞⎟⎟⎟⎟⎟⎟⎠ da =
√

(2π)Mdet
(
Σ̂a

)
,

and Eq. (1.58), we have

p(y|X, C) =
exp

(
− 1

2

(
‖y‖2
σ2 − y�XΣ̂a X�y

σ4

))
(2πσ2)N/2(2π)M/2 det (C)1/2

√
(2π)Mdet

(
Σ̂a

)

=

exp

(
−‖y‖

2−y�X(X�X+σ2C−1)−1
X�y

2σ2

)
(2πσ2)N/2det(CX�X + σ2IM)1/2

, (1.59)

where we also used Eqs. (1.51) and (1.52).
Eq. (1.59) is an explicit expression of the marginal likelihood as a function

of the hyperparameter κ = C. Based on it, we perform EBayes learning in
Section 1.2.7.

1.2.7 Empirical Bayesian Learning

In empirical Bayesian (EBayes) learning, the hyperparameter κ is estimated
by maximizing the marginal likelihood p(D|κ). The negative logarithm of the
marginal likelihood,
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FBayes = − log p(D|κ), (1.60)

is called the Bayes free energy or stochastic complexity.4 Since log(·) is
a monotonic function, maximizing the marginal likelihood is equivalent to
minimizing the Bayes free energy.

Eq. (1.59) implies that the Bayes free energy of the linear regression model
is given by

2FBayes = −2 log p(y|X, C)

= N log(2πσ2) + log det(CX�X + σ2IM)

+
‖y‖2 − y�X

(
X�X + σ2C−1

)−1
X�y

σ2
. (1.61)

Let us restrict the prior covariance to be diagonal:

C = Diag(c2
1, . . . , c2

M) ∈ DM . (1.62)

The prior (1.49) with diagonal covariance (1.62) is called the automatic
relevance determination (ARD) prior, which is known to make the EBayes
estimator sparse (Neal, 1996). In the following example, we see this effect by
setting the design matrix to identity, X = IM , which enables us to derive the
EBayes solution analytically.

Under the identity design matrix, the Bayes free energy (1.61) can be
decomposed as

2FBayes = N log(2πσ2) + log det(C + σ2IM) +
‖y‖2 − y�

(
IM + σ2C−1

)−1
y

σ2

= N log(2πσ2) +
‖y‖2

σ2
+

M∑
m=1

(
log(c2

m + σ2) −
y2

m

σ2
(
1 + σ2c−2

m
) )

=

M∑
m=1

2F∗m + const., (1.63)

where

2F∗m = log

(
1 +

c2
m

σ2

)
−

y2
m

σ2

(
1 +

σ2

c2
m

)−1

. (1.64)

In Eq. (1.63), we omitted the constant factors with respect to the hyperpa-
rameter C. As the remaining terms are decomposed into each component m,
we can independently minimize F∗m with respect to c2

m.

4 The logarithm of the marginal likelihood log p(D|κ) is called the log marginal likelihood or
evidence.
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Figure 1.4 The (componentwise) Bayes free energy (1.64) of linear regression
model with the ARD prior. The minimizer is shown as a cross if it lies in the
positive region of c2

m/σ2.

The derivative of Eq. (1.64) with respect to c2
m is

2
∂F∗m
∂c2

m
=

1
c2

m + σ2
−

y2
m(

1 + σ2c−2
m

)2 c4
m

=
1

c2
m + σ2

−
y2

m(
c2

m + σ2
)2

=
c2

m − (y2
m − σ2)

(c2
m + σ2)2

. (1.65)

Eq. (1.65) implies that F∗m is monotonically increasing over all domain c2
m > 0

when y2
m ≤ σ2, and has the unique minimizer in the region c2

m > 0 when
y2

m > σ2. Specifically, the minimizer is given by

ĉ2
m =

⎧⎪⎪⎨⎪⎪⎩y2
m − σ2 if y2

m > σ2,

+0 otherwise.
(1.66)

Figure 1.4 shows the (componentwise) Bayes free energy (1.64) for dif-
ferent observations, y2

m = 0, σ2, 1.5σ2, 2σ2. The minimizer is in the positive
region of c2

m if and only if y2
m > σ2.

If the EBayes estimator is given by ĉ2
m → +0, it means that the prior

distribution for the mth component am of the regression parameter is the Dirac
delta function located at the origin.5 This formally means that we a priori

5 When y2
m ≤ σ2, the Bayes free energy (1.64) decreases as c2

m approaches to 0. However, the
domain of c2

m is restricted to be positive, and therefore, ĉ2
m = 0 is not the solution. We express

this solution as ĉ2
m → +0.
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knew that am = 0, i.e., we choose a model that does not contain the mth
component.

By substituting Eq. (1.66) into the Bayes posterior mean (1.51), we obtain
the EBayes estimator:

âEBayes
m = ĉ2

m

(̂
c2

m + σ2
)−1

ym

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 − σ2

y2
m

)
ym if y2

m > σ2,

0 otherwise.
(1.67)

The form of the estimator (1.67) is called the James–Stein (JS) estimator
having interesting properties including the domination over the ML esti-
mator (Stein, 1956; James and Stein, 1961; Efron and Morris, 1973) (see
Appendix A).

Note that the assumption that X = IM is not practical. For a general design
matrix X, the Bayes free energy is not decomposable into each component.
Consequently, the prior variances {c2

m}Mm=1 that minimize the Bayes free energy
(1.61) interact with each other. Therefore, the preceding simple mechanism is
not applied. However, it is empirically observed that many prior variances tend
to go to ĉ2

m → +0, so that the EBayes estimator âEBayes is sparse.

https://doi.org/10.1017/9781139879354.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781139879354.003

