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Abstract

Fitting loss distributions in insurance is sometimes a dilemma: either you get a good fit for the small/medium
losses or for the very large losses. To be able to get both at the same time, this paper studies generalisations
and extensions of the Pareto model that initially look like, for example, the Lognormal distribution but have a
Pareto or GPD tail. We design a classification of such spliced distributions, which embraces and generalises
various existing approaches. Special attention is paid to the geometry of distribution functions and to
intuitive interpretations of the parameters, which can ease parameter inference from scarce data. The
developed framework gives also new insights into the old Riebesell (power curve) exposure rating method.
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1. Introduction
1.1 Motivation

Loss severity distributions and aggregate loss distributions in insurance often have a shape that
cannot easily be modelled with the common distributions implemented in software packages. In
the range of smaller losses and around the mean the observed densities often look somewhat like
asymmetric bell curves, being skewed to the right with one positive mode. This is not a problem in
itself as well-known models like the Lognormal distribution have exactly this kind of geometry.
Alternatively, distributions like the Exponential are available for cases where a strictly decreasing
density seems more adequate. However, it often occurs that the traditional models, albeit
incorporating the desired kind of skewness towards the right, have a less heavy tail than what the
data indicate (Punzo et al, 2018) - if we restrict the fit to the very large losses, the Pareto
distribution or variants thereof often seem the best choice. But, those typical heavy-tailed
distributions rarely have a shape fitting well below the tail area.

In practice, bad fits in certain areas can sometimes be ignored. When we are mainly focused on the
large majority of small and medium losses, we can often accept a bad tail fit and work with, for example,
the Lognormal distribution. It might have a tail that is too light, so we will underestimate the expected
value; however, often the large losses are such rare that their numerical impact is very low. Conversely,
when we are focused on extreme quantiles like the 200-year event or want to rate a policy with a high
deductible or a reinsurance layer, we only need an exact model for the large losses. In such situations we
could work with a distribution that models smaller losses wrongly (or completely ignores them). There
is a wide range of situations where the choice of the model can be made focusing just on the specific task
to be accomplished, while some inaccuracy in less important areas is willingly accepted.

However, exactness over the whole range of loss sizes, from the many smaller to the very few
large ones, becomes more and more important. For example, according to a modern holistic risk
management/capital modelling perspective we do not only look at the average loss (which often
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depends mainly on the smaller losses) but also want to derive the probability of very bad scenarios
(which depend heavily on the tail) - namely, out of the same model. Further, it has become
popular to study various levels of retentions for a policy, or for a portfolio to be reinsured.
A traditional variant of this is what reinsurers call exposure rating, see, for example, Parodi (2014),
Mack & Fackler (2003). For such analyses one needs a distribution model being accurate both in
the smaller loss area, which is where the retention typically applies, and in the tail area, whose
impact on the expected loss becomes higher the higher the retention is chosen. In other words: one
needs a flexible full model with a heavy tail.

Such situations require actuaries to abandon the distribution models they know best and proceed
to somewhat more complex ones. In the literature and in software packages there is no lack of such
models. For example, the seminal book by Klugman et al. (2008) provides generalisations of the
Gamma and the Beta distribution having up to four parameters and providing the desired
geometries. However, despite the availability of such models, actuaries tend to stick to their
traditional distributions. This is not (only) due to nostalgia - it has to do with a common experience
of actuarial work: lack of empirical data. In an ever changing environment it is not easy to gather a
sufficient amount of representative data to reliably infer several distribution parameters. A way to
detect and possibly avoid big estimation errors is to check the inferred parameters with market
experience, namely with analogous results calculated from other empirical data stemming from
similar business. It would be best to see at a glance whether the inferred parameters are realistic,
which means in particular that the parameters must be interpretable in some way.

To this end, it would be ideal to work with models looking initially like one of the traditional
distributions but having a tail shape like Pareto with interpretable parameters. Such models can be
constructed by piecewise definition on the lower versus large-loss areas; they are called spliced or
composite distributions.

1.2 Scientific context

Spliced models have been treated in the applied statistics literature for some decades, see the
survey paper by Scarrott & MacDonald (2012) for an early overview. Recently the models have
received a lot of attention in actuarial publications. We will discuss references in Section 6; let us
highlight just a few here. A simple Lognormal-Pareto variant was presented early by Knecht &
Kiittel (2003). The seminal paper for the topic is Scollnik (2007) proposing a more general
Lognormal-Pareto/GPD model that has inspired many authors to study variants thereof, in
particular alternatives for the Lognormal part, and to apply them to insurance loss data. Griin &
Miljkovic (2019) give a compact overview of this research, followed by an inventory of over 250
spliced distributions, which were notably all implemented and applied.

1.3 Objective

The main scope of our paper is to collect and generalise a number of spliced models having a
Pareto or GPD tail, and to design a general framework of variants and extensions of the Pareto
distribution family. Special attention is paid to the geometry of distribution functions and to
intuitive interpretations of parameters. We show where such intuition can ease parameter
inference from scarce data, e.g. by combining information from different sources.

1.4 Outline

Section 2 explains why reinsurers like the single-parameter Pareto distribution so much, and
collects some results that enhance intuition about distribution tails in general. Section 3 presents
parameterisations of the Generalised Pareto distribution that will make reinsurers (and some
others) like this model too. Section 4 explains how more Pareto variants can be created, catering in
particular for a more flexible modelling of smaller losses. Section 5 gives an inventory of spliced
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Lognormal-Pareto models that embraces as special cases various distributions introduced earlier
by other authors. Section 6 reviews analogous models employing other distributions in place of
Lognormal, plus some generalisations. Section 7 revisits the Riebesell model and another old
exposure rating method, in the light of the methodology developed so far.

The sections are somewhat diverse, from mixed educational-survey (2, 3, 4) to mainly literature
survey (6) to original research (5, 7). All content, be it well known, less common or novel, is
presented with the same practice-oriented aim: to provide intuition for models that can help in
scarce-data situations.

This paper emerges from an award-winning conference paper (Fackler, 2013), providing
updated and additional content. In particular, we treat the full range of the GPD, not only the
popular Pareto-like case having the exponent & > 0. Further we appraise the fast-growing
literature on spliced models by discussing both older and recent references.

1.5 Technical remarks

In most of the following we will not distinguish between loss severity and aggregate loss
distributions. Technically, model fitting works the same way, further the shapes being observed for
the two distribution types overlap. For aggregate losses, at least in case of large portfolios and not too
many dependencies between the single risks, it is felt that distributions should mostly have a unique
positive mode (maximum density) like the Normal distribution; however, considerable skewness
and heavy tails cannot be ruled out (Knecht & Kiittel, 2003). Severity distributions are observed to be
more heavy-tailed; here a priori both a strictly decreasing density and a positive mode are plausible,
let alone multimodal distributions requiring very complex modelling (Klugman et al., 2008).

For any loss severity or aggregate loss distribution, let F(x) = 1 — F(x) = P(X > x) be the
survival function, f(x) the probability density function (where it exists), that is, the derivative of
the cumulative distribution function F(x). As it is geometrically more intuitive (and a bit more
general), we will formulate as many results as possible in terms of cdf instead of pdf, mainly
working with the survival function, which often yields simpler formulae than the cdf.

Unless specified otherwise, the model parameters appearing in this paper are (strictly) positive
real numbers.

2. Pareto - reinsurer’s old love

One could call it the standard model of the reinsurance pricing actuaries: The Pareto distribution,
also called Type I Pareto, European Pareto, or Single-parameter Pareto, has survival function

Fx) = (9, 6=<x

In this paper we reserve the name “Pareto” for this specific model, noting that is used for other
variants of the large Pareto family as well.

Does the Pareto model have one or two parameters? It depends — namely on what the
constraint # < x means. It may mean that no losses between 0 and 6 exist, or alternatively that
nothing shall be specified about losses between 0 and 6. Unfortunately, this is not always clearly
mentioned when the model is used. Formally, we have two very different cases:

Situation I: There are no losses below the threshold 6.

This model has two parameters « und 6. Here 0 is not just a parameter, it is indeed a scale
parameter (as defined e.g. in Klugman et al., 2008) of the model.

We call the above model Pareto-only, reflecting the fact that there is no area of small losses
having a distribution shape other than Pareto.

This model is quite popular, despite its unrealistic shape in the area of low losses, whatever 0 is.
(If 6 is large, there is an unrealistically large gap in the distribution. If 8 is small, say 6 = 1 Euro,
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the gap is negligible, but a Pareto-like shape for losses in the range from 1 to some 10,000 Euro is
rarely observed in the real world.)

Situation 2: Only the tail is modelled, so to be precise we are dealing with the conditional
distribution

- 0\~
F(x|X > 0) = (;) , 0 < x.

This model only has parameter «, while 6 is the known lower threshold of the model.
Situation 1 implies Situation 2 but not vice versa. We will later see distributions combining a
Pareto tail with a quite different distribution of the smaller losses.

2.1 A memoryless property

Why is the Pareto model so popular among reinsurers? The most useful property of the Pareto tail
model is without doubt the closedness and parameter invariance when modelling upper tails: if we
have F(x|X > 6) = (£)* and derive the model for a higher threshold d > 6, we get

= (é)a7 d S x’
X

which is again Pareto with d taking the place of 6. We could say, when going “upwards” to model
somewhat larger losses only, the model “forgets” the original threshold 6, which is not needed any
further - instead the new threshold comes in. That implies:

F(x[X >0) (9"~
FdlX>6) (9~

Fx|X > d) =

« Ifadistribution has a Pareto tail and we only need to model quite large losses, we do not need
to know exactly where that tail starts. As long as we are in the tail (let us call it Pareto area)
we always have the same parameter o, no matter which threshold is used.

o It is possible to compare data sets having different (reporting) thresholds. Say for a MTPL
portfolio we know all losses above 2 million Euro, for another one we only have the losses
exceeding 3 million Euro available. Although these tail models have different thresholds, we
can judge whether the underlying portfolios have similar tail behaviour or not, according to
whether they have similar Pareto alphas. Such comparisons of tails starting at different
thresholds are extremely useful in the reinsurance practice, where typically, to get a
representative overview of a line of business in a country, one must collect data from several
reinsured portfolios, all possibly having different reporting thresholds.

o This comparability across tails can lead to market values for Pareto alphas being applicable as
benchmarks: see Schmutz & Doerr (1998) and Section 4.4.8 of FINMA (2006). Say we observe
that a certain type of Fire portfolio in a certain country frequently has Pareto tails starting
somewhere between 1 and 2 million Euro, having an alpha typically in the range of 1.8.

With the option to compare an inferred Pareto alpha to other fits or to market benchmarks, it
becomes an interpretable parameter.

2.2 Basic formulae

Let us recall some useful facts about losses in the Pareto tail (Schmutz & Doerr, 1998). These are
well known but we will show some less-known generalisations soon.
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2.2.1 Pareto extrapolation equation for frequencies
To relate frequencies at different thresholds d;,d, > 6, the Pareto model yields a famous, very
simple, equation, called Pareto extrapolation:

frequency atd, _ (d;\“
frequency at d,  \d,

2.2.2 Structure of layer premiums

Consider a (re)insurance layer Cxs D, that is, a cover paying, of each loss x, the part
min((x — D)™, C). (Infinite C is admissible for « > 1.) Suppose the layer operates fully in the
Pareto area, that is, D > 6. Then the average layer loss equals

. D C\!@ C
E(mln(X—D,C)|X>D)=—1 1-— 1—{—5 — DIn 1—}—1—) ,
o — a—>

which is well-defined (taking the limit) also for « = 1.
If n is the loss frequency at 6, the frequency at D equals 7($)®. Thus, the risk premiums of layers
have a particular structure, equalling a function Dl_“l//(%). This yields a further simple

extrapolation equation.

2.2.3 Pareto extrapolation equation for layer risk premiums

C
risk premium of C,xsD,  (C, + D,)'"* — D} N ln(l + D_z)
risk premium of C;xsD;,  (C; + D))" —DI"* a1 ln(l + %)
1

2.3. Testing empirical data

Distributions having nice properties only help if they provide good fits to real-world data. From
the (re)insurance practice it is known that not all empirical tails look like Pareto; in particular the
model often seems to be somewhat too heavy-tailed at the very large end, see Albrecher et al.
(2021) for Pareto modifications catering for this effect. Nevertheless Pareto can be a good model
for a wide range of loss sizes. For example, if it fits well between 1 and 20 million Euro, one can use
it for layers in that area independently of whether or not beyond 20 million Euro a different model
is needed.

To quickly check whether an empirical distribution is well fit by the Pareto model, at least for a
certain range of loss sizes, there is a well-known graphical method available:

. 1:3 (x) is Pareto is equivalent to
o F(x) is a straight line on double-logarithmic paper (having slope -).

So, if the log-log-graph of an empirical survival function is about a straight line for a certain
range of loss sizes, in that area a Pareto fit should work well.

2.4 Local property

Thinking of quite small intervals of loss sizes being apt for Pareto fits leads to a generalisation
being applicable to any smooth distribution: the local Pareto alpha (Riegel, 2008). Mathematically,
it is the negative derivative of F(x) on log-log scale.
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At any point x > 0 where the survival function is positive and differentiable, we call

In(F(e")) = x%

a, = ——
* At |1y

the local Pareto alpha at x.

If a, is a constant on some interval, this interval is a Pareto-distributed piece of the distribution.
In practice one often, but not always, observes that, for very large x (far out in the million Euro
range), o, is a (slowly) increasing function of x. The resulting distribution tail is somewhat less
heavy than that of distributions with Pareto tail, where «, is constant for large x.

The above Pareto extrapolation equation for frequencies yields an intuitive interpretation of the
local Pareto alpha: it is the speed of the decrease of the loss frequency as a function of the
threshold. One sees quickly that if we increase a threshold d by p percent (for small p), the loss
frequency decreases by approximately o, p percent. Or equivalently, if we keep the threshold fixed
but the losses increase by p percent (say due to inflation), the loss frequency at d increases by
approximately o; p percent. See Chapter 6 of Fackler (2017) for how this leads to a general theory
of the impact of inflation on (re)insurance layers.

3. Generalised Pareto - a new love?

Now we study a well-known generalisation of the Pareto model, see in the following Embrechts
et al. (2013). Apparently less known is that it shares some of the properties making the Pareto
model so popular.

The Generalised Pareto distribution, shortly denoted as GP(D), has survival function

Fx|X > 6) = ((1 reiT 9)+)_é, 6 <x.

T

This is a tail model like Pareto, having two parameters £ und 7, while 6 is the known model
threshold. However, 6 is the third parameter in the corresponding GP-only model having no losses
between 0 and 6, analogous to the Pareto case. £ can take any real value, while T must be positive.
We use 7 instead of the more common o in order to reserve the latter for the Lognormal
distribution. The GPD has finite expectation iff £ < 1. For negative & the losses are (almost surely)
bounded, having the supremum 6 4+ *;. The case § = 0 is well defined (take the limit) and yields
the Exponential distribution

F(x|X > 0) = exp(—x?g).

We call the case & > 0 proper GPD.

Proper GP is largely considered the most interesting case for the insurance practice. Some
authors notably mean only this case when speaking of the GPD.

The parameterisation for the Generalized Pareto distribution in comes from Extreme Value
Theory (EVT), which is frequently quoted in the literature to justify the use of the GPD for the
modelling of insurance data exceeding large thresholds.

The core of this reasoning is the famous Pickands-Balkema-De Haan Theorem stating that,
simply put, for large-enough thresholds, the distribution tail asymptotically equals the GPD; see
Balkema & De Haan (1974), Pickands (1975). It could, however, be that the relevance of this
theorem for the insurance practice is a bit overrated. A warning comes notably from a prominent
EVT expert (Embrechts, 2010): the rate of convergence to the GPD can be extremely slow (much
slower than one is used to from the Central Limit Theorem), thus could be too slow for practical
relevance.
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Further, most real-world loss distributions must have limited support. Insured risks usually
have finite sums insured, which also limits the loss potential of accumulation losses and aggregate
losses. And even where explicit insurance policy limits don’t apply, most losses should be bounded
by, say, 300 times today’s world GDP. With such upper bounds, EVT still applies, but here “high-
enough threshold” could mean five Dollars less than the upper bound, which would again not be
of practical interest.

Whether or not one is optimistic about the applicability of EVT, there are practical reasons for
using the GPD. Widespread application in (and beyond) insurance shows that it provides good fits
to a lot of tail data. Further, one can make its parameters interpretable, which can be helpful in
scarce-data situations. This option emerges from a parameter change proposed by Scollnik (2007)
for the proper GPD.

Setazzé >0, :=at—60 > — 6. Now we have

- 0 + A\

The parameter space is quite intricate here as 4 may (to some extent) take on negative values.
So, for parameter inference other parameterisations may work better. Yet, apart from this
complication, the above representation will turn out to be extremely convenient, revealing in
particular a lot of analogies to the Pareto model.

3.1. Names and parameters
At a glance we note two well-known special cases:

Case 1. A = 0. This is the Pareto tail model from Section 2.

Case 2. / > 0,0 = 0. This is not a tail model but a ground-up model (full model) for losses of any
size. In the literature it is often called Pareto as well. However, some more specific names have
been introduced: Type II Pareto, American Pareto, Two-parameter Pareto, Lomax.

Let us look briefly at a third kind of model. Every tail model reflecting a conditional distribution
X|X > 0 has a corresponding excess model X — 6|X > 6. If the former is proper GP as above, the

0-+21
x+0+4

latter has the survival function ( )a, which is Two-parameter Pareto with parameters o and

6 4+ A > 0. However, in the Pareto case the survival function (ﬁ)a looks like Two-parameter

Pareto but is materially different: here 0 is the known threshold - this model has the only
parameter a.

The names Single versus Two-parameter Pareto (apart from anyway not being always
consistently used in the literature) are somewhat misleading — as we have seen, both models have
variants having 1 or 2 parameters, respectively. Whatever the preferred name, when using a Pareto
variant, it is essential to make always clear whether one is using it as a ground-up model, a tail
model, or an excess model.

3.2. Memoryless property

Let us come back to the GP tail model, for which in the following we borrow a bit from Section 6.5
of Fackler (2017). If we as above derive the model for a higher tail starting at d > 0, we get
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0+2\* o
F(x|X > d) = Eg;a = (i_—::j) , d <x.

As in the Pareto case, the model is still (proper) GP but “forgets” the original threshold 6,
replacing it by the new one. Again the parameter o remains unchanged but also the second
parameter A. Both are thus invariants when modelling higher tails. The standard parameterisation
of the GPD has only the invariant parameter &, while the second parameter changes in an intricate
way when shifting from a tail threshold to another one. There is, however, a variant that is tail
invariant and works notably for any real & replace t by the so-called modified scale
w=71—E0 > — &0, see, for example, Scarrott & MacDonald (2012). This yields

_ £0 + )%
Fx|X>0)=——]), 0<x
N
and for higher tails one just has to replace 6 by the new threshold (which for & < 0 must be below
the supremum loss 6 + % = £).
The tail invariance of & and 4, or of £ and w for the whole GPD, yields the same advantages for
tail analyses as the Pareto model - interpretable parameters:

o There is no need to know exactly where the tail begins,
« one can compare tails starting at different thresholds,
« it might be possible to derive market values for the two parameters in certain business areas.

Thus, one can use the GPD in the same way as the Pareto model. The additional parameter
adds flexibility — while on the other hand requiring more data for parameter inference.
The parameters a > 0 and 4 = aw of the proper GPD have a geometric interpretation:

o A is a “shift” from the Pareto model having the same alpha. (Note that 4 has the same
“dimension” as the losses, for example, Euro or thousand US Dollar.) We could think of starting
with a Pareto distribution having the threshold 6 + 4 > 0, then all losses are shifted by A to the
left (by subtracting 4) and we obtain the GPD. Thus, in graphs (with linear axes), proper GP tails
have exactly the same shape as Pareto tails; just their location on the x-axis is different.

o The parameter «, apart from belonging to the corresponding Pareto model, is the local Pareto
alpha at infinite: oo, = . More generally, one sees quickly that oy = 7% a.

2
The behaviour of «; as a function of d is as follows:
Case 1. 1 > 0: o rises (as is often observed for fits of large insurance losses).
Case 2. A = 0: Pareto (6 > 0).

Case 3. 1 < 0: oy decreases (6 > — 1 > 0).

For any d > 6 one easily gets
= oy (X —a
F(x|X > d) = (1+—<——1)) , d < x,

which is an alternative proper-GP parameterisation focusing on the local alphas (Riegel, 2008).
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3.3. Proper GPD formulae

Bearing in mind that proper GP is essentially Pareto with the x-axis shifted by 4, we get without
any further calculation compact formulae very similar to the Pareto case:

frequency atd,  (d; + 1\*
frequency atd, \d, + 1

: D+2 C \! C
E(mln(X_D7 C)|X > D) = ﬁ (1 - (1 + M) ) a_:1> (D +/1)11’1(1 + DH.)

risk premium of CyxsD, __ (C,+D,+4)!*—(D,+1)! n(1+5%;
risk premium of CyxsD; ~ (C;+D;+4)!"*—(D,+4)!7¢ _ C
p 1XsDy (C+D,+4) (Dy+4) =1 1n(1+Dler)

Summing up, proper Generalised Pareto is nearly as easy to handle as Pareto, but has two
advantages: greater flexibility and the backing from both Extreme Value Theory and practical
experience making it a preferred candidate for the modelling of high tails.

3.4. The complete picture

Formally, the parameters « and 4 are not only applicable for the proper GPD but also for £ < 0.
However, in the latter case their negatives are far more intuitive. Indeed, we get with
B = —a:—é >0, vi=—1= fo =0+ fr =60+ 5 > 0 the equation

F(x|X > 0) = (%)ﬁ, 0 < x,
which shows at a glance that this GP case is a piece of a shifted power curve having g as (positive)
exponent and v as supremum loss (and centre of the power curve).

If £ is close to zero, this supremum is very high and the distribution is fairly close to a heavy
tailed one (a bit less so than Exponential). Such GPDs can be an adequate model for situations
where one observes initial heavy-tailedness but ultimately has bounded loss sizes. Instead, values &
well below 0 will hardly appear in fits to insurance loss data: £ = —1 yields the uniform
distribution between the threshold and the supremum, while for £ < — 1 the pdf rises, i.e. larger
losses are overall more likely than smaller losses, a rather unrealistic case.

The local Pareto alpha, which in general for the GPD reads

o) —_d___ _d
d ™ T3E(d—0) — w+&d>’

for & < 0 equals oy = -4 B, which is always an increasing and diverging (as d /'v) function in d.
The same holds in the Exponential case, where o; = % = % is a linear function.

To conclude, we illustrate the variety of properties that GP tails starting at a given threshold
0 > 0 can have, using the original parameters £ and 7 > 0. They span an open half-plane, which

can be split in two parts by a half-line in four different ways (see Figure 1):

o £ = —1 (uniform): rising vs falling density

« & = 0 (Exponential): finite vs infinite support

o £ = +1: finite vs infinite expectation

o &6 = 7 (Pareto): rising vs falling local Pareto alpha

The fourth half-line represents indeed the Pareto model, which requires # > 0 and has 1 = 0.

(If 6 = 0, this half-line falls out of the parameter space and coincides with the right half of the &
axis, such that there is no sector between the two where the local Pareto alpha would decrease.)
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Figure 1. Areas of the GPD parameter space.

The most plausible (but not exclusive) parameter area for the modelling of large losses is the
infinite trapezoid defined by the inequalities 0 < & < 1 and 7 > &6, which contains the proper-GP
models having finite expectation and rising or constant local Pareto alpha.

As for the estimation of the GPD parameters, see Brazauskas & Kleefeld (2009) studying
various fitting methods, from traditional to newly developed, and showing that the latter are
superior in case of scarce data. (Note that the paper uses the parameter y = —&.) See also the
many related papers of the first author, for example, Zhao et al. (2018), Brazauskas et al. (2009)
and (on estimation of the Pareto alpha) Brazauskas & Serfling (2003).

4. Construction of distribution variants

We strive after further flexibility in our distribution portfolio. Before focusing on the smaller
losses, let us have a brief look at the opposite side, the very large losses.

4.1. Cutting distributions

Sometimes losses greater than a certain maximum are impossible: X < Max. If one does not find

suitable models with finite support (like the GPD with negative £), one can adapt distributions with

infinite support, in two easy ways: censoring and truncation. We follow the terminology of Klugman

et al. (2008), noting that in the literature we occasionally found the two terms interchanged.
Right censoring modifies a survival function as follows.

- Fx, 0 <x < Max
ch(x):{ (()) Max < x

Properties of the resulting survival function:

« mass point (jump) at Max with probability F(Max);
o below Max same shape as original model.

A mass point at the maximum loss is indeed plausible in some real-world situations. For

example, there could be a positive probability for a total loss (100% of the sum insured) in a
homeowners’ fire policy, which occurs if the insured building burns down completely.
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Right truncation modifies a survival function as follows.

= F(x)—F(Max)
Fo(x) = § TR0y @ O =% < Max
0, Max < x

Properties of the resulting survival function:

« equals the conditional distribution of X|X < Max;

 continuous at Max, no mass point;

o shape below Max is a bit different from original model, tail is thinner, but the numerical
impact of this deviation is low for small/medium losses.

Of course, both variants yield finite expectation even when the expected value of the original
model (e.g. GP tails with & > 1) is infinite, which eases working with such models.

Left censoring and left truncation are analogous. We have seen the latter earlier: an upper tail
model is formally a left truncation of the full model it is derived from.

Both ways to disregard the left or right end of the distribution can be combined and applied to
any distribution, including the Pareto family. Right truncation is, in particular, a way to get tails
being thinner than Pareto in the area close to the maximum.

The right-censored/truncated versions of models having a GP/Pareto tail preserve the memoryless
property stated above.

For censoring this is trivial — the only change is that the tail ends in a jump at Max.

As for truncating, let F be a survival function having a proper-GP tail, i.e. F(x) = F(6) (%)a
for x > 6. As each higher tail is again GP with the same parameters, for any Max > x > d > 6 we
have F(x) = F(d) (i—ﬁ)a, which leads to

F Fy(x) _ F-F(M ) Gin)"
Fu(x|X > d) = pnzg = pg;_ng:ﬁ; = (Tz d(+\//1[ v

Max+2.

The original threshold 6 disappears again; each truncated GP tail model has the same
parameters o, 4 and Max. The same reasoning works for the whole GPD with the parameters £ and
o (however, the case £ < 0 has a supremum loss anyway, such that further truncation is rarely of
interest).

Truncated Pareto-like distributions get increasing attention in the literature, see, for example,
Clark (2013) and Beirlant et al. (2016).

4.2. Basic full models
Now we start investigating ground-up models having a more plausible shape for smaller losses
than Pareto/GP-only, with its gap between 0 and 6. We have already seen an example, a special
case of the proper GPD.

The Lomax model has the survival function

Fr= ()" = (&)

This is a ground-up distribution having two parameters, the exponent and a scale parameter. It
can be generalised via transforming (Klugman et al,, 2008), which yields a three-parameter
distribution model.

https://doi.org/10.1017/51357321725100226 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321725100226

12 M. Fackler

The Burr model has the survival function

F(x) = (Hb)a

For large x this model asymptotically tends to Pareto-only with exponent ay, but in the area of
the small losses it has much more flexibility. While Burr distributions with y < 1 and Lomax
(y = 1) have a strictly decreasing density, such that their mode (point of maximum density)
equals zero, for the Burr variants with y > 1 the (only) mode is positive. This is our first example
of a unimodal distribution having a density looking roughly like an asymmetric bell curve and at
the same time a tail similar to Pareto.

More examples can be created via combining distributions. There are two handy options for
this, see in the following Klugman et al. (2008).

4.3. Mixed distributions

In general, mixing can make distributions more flexible and more heavy-tailed (Punzo et al,
2018). We treat only finite mixtures, which are easy to handle and to interpret. A finite mixture of
distributions is simply a weighted average of two (or more) distributions. The underlying intuition
is as follows: We have two kinds of losses, for example, material damage and bodily injury in
MTPL, having different distributions. Then it is most natural to model them separately and
combine the results, setting the weights according to the frequencies of the two loss types. The
calculation of cdf, pdf, (limited) expected value and many other quantities is extremely easy — just
take the weighted average of the figures describing the two original models.

A classical example is a mixture of two Lomax distributions.

The five-parameter Pareto model has the survival function

F(x) = r(lerllll)ol1 +(1-7) (xffllz)az.

The four-parameter Pareto model has the same survival function with the number of
parameters reduced via the constraint oy = o, + 2.

Sometimes mixing is used even when there is no natural separation into various loss types. The
idea is as follows. There is a model describing the smaller losses very well but underestimating the
large-loss probability. If this model is combined with a quite heavy-tailed model and the latter gets
only a tiny weight, the resulting mixture will, for small losses, be very close to the first model,
whose impact will fade out for larger losses, letting the second model take over and yield a good
tail fit.

4.4. Spliced distributions

Pursuing this idea more strictly, one naturally gets to spliced, i.e. piecewise defined, distributions.
The basic idea is to just put pieces of two or more different models together. We focus on the case
of two pieces, noting that more can be combined in an analogous manner, see, for example,
Albrecher et al. (2017).

In the literature, splicing is frequently defined in terms of densities. In order to make it
geometrically intuitive and a bit more general, we formulate it via the survival function.

The straightforward approach is to replace the tail of a model by another one:

For survival functions F,(x) and F,(x), tail replacement of the former at a threshold 6 > 0, by
means of the latter, yields the survival function
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Table 1. Structure of a spliced distribution

Function Weight Range Name Description
Fy(x) r 0<x<6 Body Small/medium-loss distribution
Fe(x) 1—r 0<x Tail Large-loss distribution
- Fy(x 0<x<6
F(X) — o 1( )7_ =
Fi(O)F,(x), 6=x

Note that, to get a continuous function, the second survival function must be tail-only starting
at 0, that is, F,(9) = 1; while the first one may admit the whole range of loss sizes, but its tail is
ignored.

We could in principle let the spliced survival function have a jump (mass point) at the
threshold 6, but jumps in the middle of an elsewhere continuous survival function are hardly
plausible in the real world, such that typically one combines continuous pieces to obtain a
continuous function (apart from maybe a mass point at a maximum as it emerges from right
censoring). Beyond being continuous, the two pieces often are (more or less) smooth, so it could
make sense to demand some smoothness at 6 too. A range of options is provided below.

Tail replacement seems natural, but splicing can be more general. The idea is to start with two
distributions that do not intersect:

o The body distribution F,(x) has all loss probability between 0 and 6, that is, F,(x) = 0 for
0 < x.
o The tail distribution F,(x) has all probability above 6, that is, F,(x) = 1 for x < 6.

The spliced distribution is simply the weighted average of the two, which means that formally
splicing is a special case of mixing, allowing for the same easy calculations. For an overview see
Table 1.

Note that here the weights can be chosen arbitrarily. r is a parameter and quantifies the
probability of a loss being not greater than the threshold 6, while 1 — r is the large-loss probability.

If we combine an arbitrary cdf F; with a tail-only cdf F, starting at 6, we formally first have to
right truncate F, at 6, which after some algebra yields a compact equation.

For a threshold 6 > 0 and two models represented by their survival functions, the body (also
called the bulk or head) model F,(x) and the tail model F,(x), where F,(6) = 1, the distribution
model spliced at 6 has the survival function

1_111_?6)131(")’ 0<x<6

(1-rF,(x), 0<x (1)

oo = {

The parameters of this model are the threshold or splicing point 0, the body weight r and the
parameters of the two underlying models.

Tail replacement is the special case r = F) (), where we speak of a proper body (weight).

One could in the definition, more generally, drop the restriction on F,, which then in Formula 1
has to be replaced by its left truncation at 6. However, for Pareto/GPD tails this generalisation is
not needed.

The special case r = F,(6) (proper body) has one parameter less. In all other cases the body
part of the spliced distribution is similar to the underlying distribution represented by F; but not
identical: it is distorted via the probability weight of the body. This adds flexibility and can thus
greatly improve fits, but it makes interpretation difficult: the parameters of a spliced model having
a Lognormal body are comparable to other such models, or to a pure Lognormal model, only for
proper bodies. For such bodies one can compare fits to different data and possibly identify typical
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parameter values for some markets, which makes the parameters interpretable, just like Pareto
alphas (and possibly GPD lambdas).

The distinction of proper versus general body weight seems to go largely unnoticed in the
literature: typically authors either use proper spliced models (tail replacement) without considering
more general splicing, or use arbitrary body weights without mentioning that the resulting body
part of the spliced cdf is different from the original one.

In all spliced models, r is an important quantity, describing the percentage of losses below the
large-loss area, which for real-world ground-up data should mostly be close to 1. Yet, in many
splicings treated in the literature, r does not explicitly appear, especially when they are defined in
terms of pdf. In such cases, however, one can calculate r, and should do so: this is a quick way to
detect implausible inference results, which may be due to problems with the fit or particular (e.g.
incomplete) data.

Although splicing is quite technical, it has a number of advantages. First, the interpretation
(smaller versus large losses) is very intuitive. Second, by combining suitable types of distributions,
we can precisely achieve the desired geometries in the body and the tail area, respectively, without
having the blending effects of traditional mixing. In particular, by tail replacement we can give
well-established ground-up distributions a heavier tail, ideally having interpretable parameters in
both the body and the tail. Third, splicing offers very different options for parameter inference, as
we will see now.

4.5. Inference: the two worlds

Despite some variation in the details, there are in principle two approaches to the estimation of the
model parameters. The first one is theoretically more appealing, the second has more practical
appeal.

4.5.1. All-in-one inference

The basic idea is that the spliced model can be treated as if it was a traditional model with a
compact cdf or pdf equation. This usually means maximum likelihood (ML) estimation of all
parameters in one step, requiring in most (but notably not all) cases a smooth pdf or equivalently a
C2 cdf. This approach is coherent and well founded on theoretical grounds, but in practice is
challenging. Although the C2 condition reduces the number of parameters, the method requires a
lot of data. More importantly, it can pose numerical challenges. ML inference (also least squares,
etc.) means finding an optimum of a function on a multi-dimensional space, and the splicing
makes this space geometrically very complex. In particular, the inference of the splicing point can
be difficult, as examples in Section 6 will illustrate.

4.5.2. Threshold-first approach
Alternatively, one can first estimate the threshold 6, then split the empirical data and infer the
parameters of body and tail separately. To avoid interaction of the inference in the two areas, one
must dispense with smoothness conditions; only continuity of the cdf at 6 can (and is usually)
required. Thus one has more parameters than with smoother models, but nevertheless inference
here is technically much easier — in each of the two areas one has a traditional inference problem
with rather few parameters.

Determining the threshold where the large-loss area (and the typical tail geometry) starts, is
admittedly sometimes based on judgement, but it can be based on statistics too, namely Extreme
Value Analysis (Albrecher et al., 2017). Technically, the threshold-first option means to:

« set the threshold 6 (according to e.g. preliminary analysis, expert choice, data situation, and
s0 on),

https://doi.org/10.1017/51357321725100226 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321725100226

British Actuarial Journal 15

« split the empirical losses into two parts, smaller versus larger than 6,
o calculate the percentage of the smaller losses, which estimates 7,
« fit the respective models to the smaller/larger losses.

As an option, proper bodies are possible. Here the inference of the body parameters is altered
by the constraint r = F,(6), but is still independent of the tail inference. The inferred parameters
are interpretable and can be compared with market experience.

Generally, if the large losses are too few for a reliable tail fit, there could be the possibility of
inferring the tail parameters from some larger data set collected from similar business. Such data
may be left censored due to a reporting threshold, but they are applicable as long as this threshold
is not greater than 6. For the Pareto/GPD tail model there is the additional option to validate its
tail-invariant parameters by comparing the inferred ones with typical market values.

5. The Lognormal-Pareto world

Let us now apply the splicing procedure to the Lognormal and the proper GP distribution. Starting
from the most general case and successively adding constraints, we get a hierarchy (more precisely
a partially ordered set) of distributions. While some of the distributions were published earlier,
mainly by Scollnik (2007), the overall system and its compact notation for the models are our
contribution. As before we mostly show the survival function F(x).

5.1. General model

Using the common notation ¢ (and later ¢) for the cdf (pdf) of the standard normal distribution:
The LN-GPD-0 model has the survival function

In(x)—
W@(W), 0§X<9

F(x) = Q- r)(%)“, .

)

This is a continuous function in six parameters, inheriting ; and o from Lognormal, « and 4
from proper GP, plus the splicing point 6 and the body weight . As for the parameter space, t can
take any real value; 0,0, > 0; A > —#6; 0 <r < 1. Limiting cases are Lognormal (r =1,
0 = oo) and proper-GP-only (r = 0).

To simplify the notation about the Normal distribution, we will sometimes write shortly

q)x — q)(ln(x;—p.), d)x — ¢(ln(x;—u)

The body part of LN-GPD-0 then compactly reads 1 — - 3, P

For more flexibility beyond a proper-GP tail, one can replace the latter by the whole GPD, using
the standard parameters &, t or the tail-invariant &, w. The resulting model in six parameters has
the same dimension, just a larger parameter space. However, the main motivation of splicing is to
get a considerably heavier tail than the body distribution has. For the Lognormal model this means
attaching a proper GPD, which is why we (and many other authors) mainly look at this case.

5.2. Natural submodels

From the above six-parameter model we can derive special cases, having less parameters, in three
straightforward ways:

Tail: We can choose a Pareto tail, that is, set 1 = 0. This is always possible, whatever values the
other parameters take. We call the resulting model LN-Par-0.
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Body weight: The distribution in the body area is in general not exactly Lognormal, instead it may
be distorted via the weight r. For a Lognormal body (tail replacement), one must set the body weight

r=d, = o0+,

This choice is always possible, whatever values the other parameters take. We call this model
PLN-GPD-0, where “pLN” means proper Lognormal.

Smoothness: If we want the distribution to be smooth, we can require that the pdf be
continuous, or more strongly the derivative of the pdf too, and so on. Analogously to the classes
Co, C1, C2, ... of more or less smooth functions we call the resulting distributions LN-GPD-0,
LN-GPD-1, LN-GPD-2, ..., according to how many derivatives of the cdf are continuous.

How many smoothness conditions can be fulfilled must be analysed step by step. For C1 we
must have that the pdf at 60— and 6+ be equal. Some algebra yields the following equations,
coming in three equivalent variants:

a=fO0) =fEn =00, =g e=As 0

The second equation describes the local Pareto alpha at 6+ and 6—, respectively, while the
third one makes clear that one can always find an « > 0 fulfilling the Cl-condition, whatever
values the other parameters take.

Note that all LN-GPD variants with continuous pdf must be unimodal: The proper-GP density
is strictly decreasing (this holds more generally for the GPD with £ > — 1), thus the pdf of any
smooth spliced model with proper-GP tail must have negative slope at 6. Thus, the mode of the
Lognormal body must be smaller than 6 and is thus also the (unique) mode of the spliced model.
This gives the pdf the (often desired) shape of an asymmetric bell curve with a heavy tail.

If the pdf is instead discontinuous at 6, the resulting spliced CO model can be bimodal. Say the
Lognormal mode is smaller than 6 and the pdf of the GPD takes a very high value at 6+ . Then
both points are local supremums of the density.

We have not just found three new distributions - the underlying conditions can be combined with
each other, which yields intersections of the three (or more, if we go beyond C1) defined function
subspaces. So, we get (up to Cl1) eight distributions, which constitute a three-dimensional grid. We
label them according to the logic used so far: Body-Tail-n, where n is the degree of smoothness.

For an overview see Figure 2, which shows all C0 and C1 models plus some smoother ones,
illustrating the parameter reduction along the three dimensions. Note that in the step-wise
parameter reduction via increasing smoothness there is no natural choice which parameter to
drop; the variants presented here are convenient but there may be alternatives.

5.3. Published submodels
Several distributions from Figure 2 appear in the literature, but interestingly only smooth ones.

5.3.1 Czeledin distribution
The model pLN-Par-1 was introduced by Knecht & Kiittel (2003), who name it Czeledin
distribution.

Czeledin is the Czech translation of the German word Knecht, meaning servant. Precisely, with
all accents available, it would be spelt Celedin.

This is a (proper) Lognormal distribution with a Pareto tail attached, having three parameters and a
continuous pdf. The Czeledin model is quite popular in reinsurance and considered adequate to fit
real-world aggregate loss distributions (or equivalently loss ratios). However, its geometry makes it
suitable for loss severities, too. Let us rewrite its survival function in a compact manner:
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Figure 2. Hierarchy of spliced LN-GPD distributions: models and respective parameters.

B = 1-,, 0<x<6, )
= (1_¢9)(§)a7 QSX, “ _O'(l—q)g)

5.3.2 David Scollnik’s models
Scollnik (2007) introduced at first LN-Parl and LN-GPD-1 but used them only as intermediates
on the way to explore more smoothness. The C2 condition f'(—) = f'(6+) leads to

2 af—A

111(9) —MKH=0 0+ 0

where the right hand side simplifies to o« in the Pareto case. Note that this equation is not
unrelated to the parameter r, which is connected via Formula 3, the C1 constraint. The resulting
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LN-Par-1
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1 pLN-Par-1
,0,0
LN-Par-2
o,0,r

Figure 3. Hierarchy of spliced LN-GPD distributions: excerpt.

system of equations yields solutions, thus LN-Par-2 and LN-GPD-2 exist and are called second and
third composite Lognormal-Pareto model, respectively. (An initial first model turned out to be too
inflexible for practical use, see Section 5.4.)

Testing whether a C3 model is possible leads to the equation

@) —p—1= 02[(014— 1)(9%)2 — 1].

In the Pareto case the right hand side simplifies again to o, which is inconsistent with the
preceding equation. Thus, a C3 spliced Lognormal-Pareto model does not exist; for LN-GPD-3
only non-Pareto tails are possible. The resulting model has three parameters.

5.3.3 Connection between models
To get more insight, let us compare two models: pLN-Par-1 (Czeledin) and LN-Par-2, Scollnik’s
second composite model. Both have three parameters (thus as for complexity are similar to the
Burr distribution), being special cases of the model LN-Par-1 having parameters j, o, 0, r. See the
relevant part of the grid in Figure 3.

Are these two three-parameter distributions the same, at least for certain values of the
parameters? Or are they fundamentally different? If yes, in what way?

In other words: can we attach a Pareto tail to a (proper) Lognormal distribution in a C2 (twice
continuously differentiable) manner?

For any real number z we have z < 5.

Proof. Only the case z > 0 is not trivial. Recall that the Normal density fulfils the differential
equation ¢'(x) = —x¢(x). From this we get

Z(1—®(2)) =z [ ¢p(x)dx = [ zp(x)dx < [ xp(x)dx = — [ ¢/ (x)dx = ¢(z)

and are done.

In the Pareto case the C1 condition to the right of Equation 3 reads o = q;ﬁ 1= This is fulﬁlled

in both models we are comparing. LN-Par-2 in addition meets the C2 condltlon ln(@) = o’a.

Plugging in « and rearranging we get
In@)—p P __ r_
o bo 1-r"

ln(9)ﬂt

If we apply the result on z = , we see that the left hand side of the latter equation is

we have ;= < li%e or equivalently r < ®,. That means: the weight r of

the body of LN Par 2 is always smaller than ®,, which is the body weight in all proper spliced
Lognormal models, including the Czeledin function. We conclude:

The spliced models LN-Par-2 and pLN-Par-1 are fundamentally different.

If one wants to attach a Pareto tail to a Lognormal curve, the smoothest option is a CI function
(continuous pdf). If one wants to attach the tail in a smoother way, the Lognormal curve must be
distorted. More precisely it must be distorted in such a way that the part of small/medium losses gets
less probability weight, while the large losses get more weight, than in the proper Lognormal case.
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5.4 Special splicing

For completeness we mention a fourth method of parameter reduction, which appears more than
once in the literature and looks quite natural at first glance. Instead, we will show that it is
restrictive in a way that is by no means natural. This splicing model, which we shall call special
spliced model, is usually derived from the densities of the two distributions (body and tail) in the
following way:

— Cfl (X), 0 =x< 0
=G 05
The constant ¢ must be chosen such that one has a density. The probability of losses up to 9

under the first distribution equals F,(6). The probability of losses exceeding 6 under the second
distribution equals 1 — F,(0) = F,(#). Thus, we must have

_ 1
C=RO+RO)

With our above restriction F,(6) = 1, one gets ¢ = 1++1(9)’ which yields the survival function
_ _h®)
F(x) = {1 ,1(+]§~‘1<6>’ 0<x<6
F,(x
TFF, @) 0 <x

Recall that the general spliced model with arbitrary weight r has the survival function

F) = {1—%_1‘71(36), 0<x<86

(1-rF,(x), 6<x

£ (0)

1+F,(0)"
F,(0), the weight of the body in the proper spliced model. This means that compared to the
corresponding proper spliced model, the special spliced model is distorted in such a way that it has
less body weight and more tail weight. While such distributions could occur in the real world, it
seems too restrictive to impose a priori that the body weight be smaller than that of the proper
model. If one wants to restrict r in a spliced model a priori, the only natural choice is the proper
body weight.

Cooray & Ananda (2005) introduced the model sLN-Par-2, where “s” means special. Scollnik
(2007) calls it the first composite Lognormal-Pareto model and shows that the C2 condition makes
it extremely inflexible: here the weight r is indeed a constant, namely 0.39, which means that in
this model 61% of the losses belong to the Pareto tail, whatever values the other parameters take.
Pareto tails with such a high probability weight hardly appear in insurance practice.

Thus, the special spliced model is the one where r = This value is always smaller than

6. Variants and applications

This section collects variants of the models discussed so far, referring in particular to fits to real-
world data. Apart from the Czeledin function, insurance applications apparently focus on loss
severity distributions. This is not surprising as here, if lucky, tens of thousands of losses per year
are observed, such that one can work well with complex models having three or more parameters.
Instead, aggregate losses typically provide only one data point per year, which is scarce even for the
application of two-parameter distributions.

6.1. Market data

The potentially richest data sources for parametric modelling purposes are arguably institutions
that routinely pool loss data on behalf of whole markets. For example in the USA, for most non-
life lines of business, this is Insurance Services Office (ISO); in Germany it is the insurers’
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association GdV. Such institutions would typically, due to confidentiality rules, neither disclose
their data nor the details of their analyses to the general public. However, in many cases their
overall methodology is disclosed and may even be part of the actuarial education. So, for certain
business segments it is widely known (to practitioners in the industry) which type of model the
market data collectors found useful. Although from a scientific viewpoint one would prefer to have
the data and the details of the analyses available, such reduced information can nevertheless give
an orientation about which distributions might be apt for which kind of business.

As for ISO, it is well known that they successfully applied the above four-parameter Pareto
model to certain classes of general liability business (Klugman et al., 2008). Later a less heavy-
tailed but otherwise very flexible model came into play: a mixture of several Exponential
distributions (Meyers, 2020).

GdV regularly supports insurers with a parametric market model providing the deductible
credit for certain common property fire policies, embracing a wide range of sums insured. Some 20
years ago they proposed a variant that was incompletely specified in the following sense: the body
was Lognormal up to 5% of the sum insured, while the empirical tail beyond 5% was heavier than
what Lognormal would yield, resulting in an overall average loss exceeding that of the Lognormal
model by a certain percentage, which was equal for all risks embraced by the model. This model,
albeit not a complete fit, was sufficient to yield the desired output for the typical deductibles
offered in practice. However, if one wanted to rate deductibles higher than 5%, or layer policies,
one would need to extend the Lognormal fit by attaching an explicit tail. The above proper LN-
GPD distributions are suitable candidates for this. Let us give a numerical example that is inspired
by the GAV model (but duly anonymised).

We look at two fire risks being part of the market model.

The sum insured (SI) of the first one is half a million Euro and the maximum payable amount is
10% higher, catering for extra expenses due to debris removal, etc. As a severity model we consider
distributions being right censored at Max = 550 TEUR. A censored Lognormal with parameters
u =7 and o = 2.4 yields an expectation of 13.9 TEUR.

For a higher expectation we combine the Lognormal body geometry with a heavier tail starting
at § = 25 TEUR (5% of the SI), by using the Czeledin distribution, a proper C1 LN-Par model. If
we again censor at the supremum, we get a model having the above parameters i, o, Max, plus the
threshold 6. This model has Pareto alpha o = 0.739 and body weight » = 0.90. Both models have
identical distributions for the lower 90% of the losses, but the heavier tail of the Czeledin model
yields an average loss of 16.5 TEUR, which is 19% higher than in the Lognormal case.

The second risk has a SI of two million Euro (Max = 2200 TEUR) and Lognormal parameters
w = 7.5and o = 2.4. If we again use a Czeledin function with splicing point 5% (6 = 100 TEUR),
we get a lower surcharge than the desired 19%. We thus need a further degree of freedom, which
we get by moving one step up in the hierarchy of proper LN-GPD distributions (see Figure 2).
There are two options:

(1) A GPD tail instead of Pareto lets us keep the C1 condition; we get the additional parameter .
(2) A CO model lets us keep the Pareto tail, whose alpha is now a parameter.

Table 2 collects parameters and key figures (e.g. the local alpha at the threshold) of the three
models, Czeledin for the first risk and the two options for the second one. The money amounts
(which include 1) are given in thousand EUR.

6.2. Alternative bodies

Trying alternative distributions for the body is straightforward, by replacing Lognormal by
another distribution with cdf F,(x). The resulting survival function is
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Table 2. Parametric models for two fire risks, key results

Model Sl Max 0 n o r 7 (7 o4 A Ein Ein_gpD
pLN-Par-1 500 550 25 7 2.4 0.90 0.739 0.739 0.739 0 13.9 16.5
pLN-GPD-1 ~ 2000 2200 100 >7.5 24 095  0.869 ‘0.869 0.808 -7 263 ‘ JL3
pLN-Par-0 2000 2200 100 7.5 2.4 0.95 0.869 0.834 0.834 0 26.3 313

1— = P(X) 0<x<¥6
9) 1 ) =
{ Fi(60) ()

Fx) = (1 —r)(%), f<x

Let us discuss five such models, which appear in various literature. We indicate by “wGPD”
when authors more generally admit the “whole” GPD as tail model; noting, however, that their
analyses largely focus on the proper GPD case (§ =1 > 0), as do ours. The general model (with
standard GPD parameters) reads

3 1 — = F(x), 0<x<¥6
F(x) = { E(0) !

1-n(1+E=97)F o<x ®

As with Lognormal, the model on top of the hierarchy has four parameters more than the body
model, adding 6, r and the two GPD parameters.

6.2.1. Weibull-GPD

Fie =G

Like Burr, the Weibull distribution has either a strictly falling density (y < 1) or a unique
positive mode (y > 1), see Klugman et al. (2008). So, for Weibull-GPD both geometries are
possible.

As with Lognormal, at first the less flexible special C2 model sWei-Par-2 was introduced
(Ciumara, 2006), being taken up, for example, by Cooray (2009).

Scollnik & Sun (2012) proceed analogously to Scollnik (2007), deriving parameterisations for
both Wei-GPD-1/2/3 and Wei-Par-1/2 (C3 here doesn’t exist either), and applying the respective
C2 models and their Lognormal counterparts to a data set being very popular in the actuarial
literature: the Danish fire data (McNeil, 1997). Both papers explain how parameter inference can
be done in an all-in-one procedure, noting that the spliced structure of the distributions poses a
numerical challenge: 0 is hard to estimate. The papers also tested the three-parameter models LN/
Wei-GPD-3, but found them far less flexible than the C2 models, of which the LN/Wei-Par-2
models have the same number of parameters. It seems that the C3 condition ties the geometries of
body and tail very much together.

Brazauskas & Kleefeld (2016) apply the same C2 models to another popular data set: the Norwegian
fire claims. However, these are left truncated: losses below half a million Norwegian kroner are not
reported. Albeit this threshold is rather low, this is not a full data set, a part of the body is missing.
Thus, here the models yield rather piecewise fits of the medium/large losses than full-range fits.

For comparison, the Danish fire data is largely considered a full data set. However, it could be
that many policies covering the Danish losses had high deductibles, such that a lot of the smaller
losses were not recorded - in fact there are surprisingly few (13%) losses below one million Danish
kroner and the data in that area looks partly left truncated (at thresholds between 0.3 and 0.8
million?), see the descriptive statistics and Figure 4 given in Scollnik & Sun (2012). So, technically,
the Danish fire data may be full data, but if a similar portfolio was insured by policies having no or
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very low deductibles, one would arguably see a larger body — and possibly a quite different body
geometry.

6.2.2. Exponential-GPD

Fi(x) = en

The Exponential pdf is strictly decreasing, thus Exp-GPD cannot provide bell-shaped densities.
The resulting models are less complex than their Lognormal and Weibull counterparts, having one
parameter less.

Teodorescu & Vernic (2009) follow Scollnik (2007) and derive parameterisations for Exp-GPD-
2 and Exp-Par-2, showing that further smoothness is not possible.

Riegel (2010) uses pExp-Par-1 as severity model for various property market data, providing fits
for classical empirical exposure curves (Salzmann, Hartford) and handy approximations for the
well-known Swiss Re exposure curves. This severity model has the nice property that in the body
area the local Pareto alpha increases linearly from 0 to the alpha of the tail.

Practitioners remember that some decades ago pExp-Par-0 was a model option for some
ISO data.

Lee et al. (2012) treat a generalisation, using as body a mixture of two Exponential distributions.
One could call this model pMix(2)Exp-wGPD-0. The authors study parameter inference, notably
in an all-in-one procedure without imposing any smoothness, via the EM algorithm, and apply the
model, for example, to the Danish fire data.

6.2.3. Gamma-GPD

B =T(r2), A0 =2%5

For y > 1 the shape of the Gamma distribution is similar to Lognormal, while for y <1 the
Gamma density falls strictly, such that overall one has as much flexibility as in the Weibull case.
Both models embrace Exponential as special case y = 1.

Behrens et al. (2004) investigate pGam-wGPD-0 via simulation studies and an application to
financial data, using a Bayesian setting. The authors prefer the CO model over smoother variants,
stating that the true density could be discontinuous at the large-loss threshold, and that with the
CO0 model the inference of the threshold is the easier the larger this discontinuity is.

In Section 4.3.1 of Albrecher et al. (2017) a generalisation is studied: the body is modelled by a
mixture of k Gamma distributions, which have a common parameter p, while the second
parameters are (different) positive integers. In compact notation one could call this model Mix(k)
Erlang-wGPD-0. The special case Mix(k)Erlang-Par-0 is treated by Reynkens et al. (2017). Both
publications look more generally at right and/or left truncations of the models in question, and
notably propose the threshold-first approach that we sketched in Section 4.5.2.

Another generalisation of the Gamma-GPD is proposed by Laudagé et al. (2019), who adapt it
for premium rating based on multivariate data, in the following way: each data subset (tariff cell)
has a specific Gam-wGPD-0 severity model, but these models are closely tied by a common
threshold 6, which is determined at first, and common GPD parameters.

6.2.4. Normal-GPD

Fi(x) = ®(=1), 0<x

a
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Although the Normal distribution is symmetric, attaching a heavy tail to the right could make it
a fair model for insurance. However, to ensure nonnegative losses one would, strictly speaking, be
using a Normal distribution being left censored at zero.

Carreau & Bengio (2009) study a (very) particular case: sNormal-wGPD-2, a special spliced
model with three parameters. To add flexibility, the authors apply mixtures of this model. They
use a threshold-first approach.

6.2.5. Power function-GPD

Fi(x) = (3), 0<x<#@

The power function with exponent 8 > 0 can be seen as a cdf concentrated between 0 and 6,
which makes it a perfect candidate for the body in a spliced model. Thus, we can define the
survival function Pow-GPD-0:

N 1—r(3)", 0<x<¥0
F(x) = { (a _r)(%)a’ 6<x

It has as few parameters as Exp-GPD, but the shape of the density below 6 is very flexible: for
B > 1 rising, for 8 < 1 decreasing, for § = 1 we have a uniformly distributed body.

The special case Pow-Par-1 is well known (far beyond the actuarial world), appearing in the
literature as (asymmetric) Log-Laplace or double Pareto distribution, see Kozubowski & Podgorski
(2003) for a comprehensive overview.

Generally we have f(6—) = % and f(6+) = (1912“, thus the C1 condition reads ;- = %ﬁ, for
the Pareto case this means ;= = ¢ or equivalently r = ¢

The C2 condition turns outtobe 8 =1 — (¢ + 1) ﬁ%, which can be fulfilled by a positive 8 iff
A > af. Thus, the parameter space of Pow-GPD-2 is somewhat restricted. In particular, Pareto tails
are impossible; double Pareto cannot be C2.

The distinction of proper and distorted bodies is meaningless for this model as every power-

curve body can be rewritten as proper: for x < 6 we have r(3)? = (’—;)ﬂ, where ¢ = 0r 7 > 6, thus

we can interpret each Pow-GPD model with parameters 6, B, r as being a pPow-GPD model with
threshold 6 and further parameters ¢, 8.

6.2.6. Further options
The body distributions presented here offer a large variety of geometries. If still more flexibility is
needed, one can analogously construct spliced functions with other bodies. For each combination
of a body with a GP tail there is a hierarchy of models, analogously to the LN-GPD case discussed
in detail, linking the most general continuous function Body-(w)GPD-0 with its subclasses Pareto/
proper/C1, C2, ... and intersections thereof. However rich the resulting class of spliced functions
with GP tail ultimately becomes, all of them are comparable as for tail behaviour via the
parameters  and 4, or £ and w if the whole GPD is considered.

Woang et al. (2020) treat four proper CO models: pLN-GPD-0, pWei-GPD-0, pGam-GPD-0 and
a model we have not seen yet: pLogGam-GPD-0. Its body is strictly speaking LogGamma-only as
the distribution allows no losses in a neighbourhood of 0. The threshold-first approach is used; a
simulation study compares several threshold selection methods.

Scarrott & MacDonald (2012) review semi/nonparametric models for the body. Some of them
are related to an approach emerging from Extreme Value Theory (Embrechts et al., 2013): when a
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lot of empirical data is available, one can construct a fair model by combining a GPD fit above
some appropriate threshold with the empirical distribution of the losses below: pEmpir-GPD-0.
For an overview of the vast array of models discussed here, see Appendix A.

6.3. Alternative tails

The main interest of much recent literature on spliced models in an insurance context is
apparently not the search for alternative bodies but for other generalisations, in particular in the
tail area. Despite their diversity, the following papers are similar in that they treat C2 models
(which means a C1 pdf, as most authors formulate it) and apply them to the Danish fire data set.

Pigeon & Denuit (2011) generalise LN-Par-2 via a varying (Gamma distributed) threshold 6.

Calderin-Ojeda and Kwok (2016) combine Lognormal and Weibull bodies with a Stoppa tail, a
particular generalisation of the Pareto model. More strongly than C2 they require
f'(6—) = 0 = f'(6+), which means that threshold and (positive) mode coincide.

Other papers combine a Lognormal (Nadarajah & Abu Bakar, 2014) or Weibull (Abu Bakar
et al., 2015) body with tails resulting (by left truncation) from the (ground-up) transformed Beta
models as defined by Klugman et al. (2008). The first paper uses the three-parameter Burr
distribution, the second one compares Burr and seven alternatives.

One of these alternatives is called “Generalized Pareto”, a name the authors (like many others)
take up from the widely used inventory of distributions provided by Klugman et al. (2008). Note
that this is a full three-parameter transformed Beta model and different from the GPD as we (and
many authors) define it, while “Pareto” from the inventory means Lomax, which as a tail model
yields the proper GPD.

6.4. Model selection

A much wider set of models is presented by Griin & Miljkovic (2019), who add transformed
Gamma models taken also from Klugman et al. (2008). Overall they study 16 (ground-up)
distributions having one to three parameters, and adapt each via truncation as body and tail,
which yields 256 spliced C2 models having two to six parameters. They estimate the parameters in
an appropriately developed all-in-one procedure that works for this whole variety of distributions,
and measure goodness of fit according to BIC, while also looking at AIC and some other criteria.
As a body model, Weibull turns out to be among the best fits to the Danish data and far better than
Lognormal. Yet, as stated earlier, the lowest Danish fire losses are arguably incomplete, so it could
be that, with missing losses added, Lognormal would perform very well, as it does in many
situations. As a tail model, several models (e.g. Burr and Inverse Weibull) fit better than the
(proper) GPD, which is, however, not surprising with 16 models to choose from. The overall best
fit is Wei-InvWei-2.

Marambakuyana & Shongwe (2024) apply the same models to the Danish data and to a further
data set, comparing them to 256 analogously constructed finite mixtures.

While it is impressive to see that automatic choice among so many complex models can work,
in the insurance practice one will come across many situations where the data are too scarce for
reliable best-fit results, or where other aspects seem more important.

For example, one could be particularly interested in a good tail fit and/or in a plausible
extrapolation beyond the largest empirical losses. Or one has found out that certain body models
usually perform similarly. In such situations the choice of body and tail could be pragmatic in the
following fashion: in this line of business Lognormal has always worked fairly well for the small/
medium losses, so let’s take it and check (if any) at most two alternatives; for the large losses we
need a heavy tail, so let’s take the standard model here. This would lead to the (preferably proper)
spliced LN-GPD models, such that it remains to decide about the degree of smoothness, which in
spliced models is closely tied to the number of parameters.
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6.5. Parsimony

How many parameters are adequate? This decision requires a trade-off. Smoothness reduces
parameters, which helps when the data are not abundant. Furthermore it often eases numerical
ML (and other) estimation procedures.

Apparently, the latter is the main motivation for the many authors who perform all-in-one
inference; almost all use C2 models, mostly without further restrictions. C3 was tested by Scollnik
(2007) and Scollnik & Sun (2012), and discarded for lack of flexibility. Some authors used special
splicing, but apparently as a seemingly natural choice, not with the intent to reduce parameters
compared to general body weights. Interestingly, proper C2 models were not tested; this could be a
more flexible option for parameter reduction than C3.

On the downside, smoothness links the geometries of body and tail, reducing the flexibility
spliced models are constructed for. Real-world application of smooth spliced distributions yields
examples where the inferred good body fit largely determines the tail parameters, such that the
resulting tail is an extrapolation from the body rather than a fit to the large losses. More
fundamentally, there could be different (e.g. physical) processes underlying the two loss categories
(large versus smaller losses), such that the two respective distributions contain little information
about each other (Scarrott & MacDonald, 2012) and should accordingly not influence each other’s
fit too much. The recently popular C2 models tie body and tail possibly too strongly for such
situations, let alone C3 models. C1 models have a somewhat lower body-tail interaction, while CO
models have none.

For the latter there is the threshold-first option as explained in Section 4.5.2, where parameter
inference for body and tail is done separately, each estimating only a few parameters - and
possibly using different data sources. This may offset the large number of parameters to be
estimated in these models. Variants with a proper body have one parameter less and the additional
benefit that the body parameters are comparable to other such bodies and thus interpretable.

Whatever the model structure, as in practice two-parameter distributions are only occasionally
flexible enough for good fits over the whole range of loss sizes, it is plausible that usually a
minimum of three or rather four parameters is necessary. Yet, to avoid overfitting it is certainly
advisable not to use many more. So, maybe the best trade-offs are the following spliced models
with GPD tail, according to the preferred inference method:

« for all-in-one inference a C2 model with a two-parameter body and general body weight,
having four parameters in total

o for threshold-first inference a CO model with a one/two-parameter body and a proper or
general body weight, having altogether at most five parameters

The great advantage of spliced models with GP or Pareto tails over other models of similar
complexity (same number of parameters) is parameter interpretability, as highlighted in Sections 3
and 4. From other analyses we might have an idea of what range of values « (and 4, if applicable, or
more generally & and w) in practice take on. Although potentially being vague, this kind of
knowledge can be used for parameter inference, for example, via Bayesian modelling in the spirit
of the Credibility estimate of the Pareto alpha proposed by Rytgaard (1990), or simply by
restrictions of the parameter space. This should enable actuaries to work with more parameters
than they would feel comfortable with if they had to rely only on the data at hand. Models with
proper body also have interpretable body parameters and are thus the most intuitive distributions.

A moderate way to increase flexibility, applicable in case of limited loss size, is right truncation
as explained in Section 4.1. It can be applied to all models discussed so far. Truncating adds the
parameter Max, but being a linear transformation of the original curve it does not affect the overall
geometry of the distribution too much. Thus, truncating should generally be less sensitive than
other extensions of the parameter space. Moreover, in practice there are many situations where
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parameter inference is greatly eased by the fact that the value of the maximum loss is
(approximately) known, resulting from insurance policy conditions or other knowledge.

7. A new look at old exposure rating methods

Focusing on the mathematical core, exposure rating is essentially the calculation of the limited
expected value

LEV(C) = E(min(X, C)) = [£ F(x)dx

of a ground-up loss severity distribution, for varying C, see, for example, Mack & Fackler (2003).
So, one needs a full severity distribution model. The various ones presented in this paper could
make their way into the world of exposure rating models. Some have been there long-since. We
discuss two of them, the arguably oldest parametric models in their respective areas.

7.1. An industrial fire exposure curve

Mack (1980) presents an exposure rating model derived from loss data of large industrial fire risks.
As is common for property risks (and various hull business), the losses are not modelled in Dollar
amounts but as loss degrees, i.e. as a percentage of the sum insured - or of another figure describing
insured value (or loss potential), for a comparison of variants see Riegel (2010). The proposed
model is in our terminology right truncated Pareto-only having severity

Na _ (0
F(x) — (x) (Max) 0 <x< Max,

0 Yo
1= (5i)
with a very small & = 0.01% and Max = 100% (of the SI). « values like 0.65 and even lower are
proposed.
Interestingly, for this Pareto variant the parameter space of o can be extended to all real
numbers, due to the right truncation. « = —1 yields the uniform distribution between 6 and Max,

while for @ < — 1 higher losses are more likely than lower ones (which makes this parameter area
rather implausible for practical use). For negative « this distribution shares some properties with
the GPD case &€ < 0 having the supremum loss Max; however, apart from the uniform distribution
embraced by both, the two models are different.

Distributions with zero probability for small losses (here between 0 and ) can emerge in
practice if the loss data stems from business having high deductibles that cut off the whole body of
smaller losses, which leads to left truncated data. If in such a case one wanted to model the same
risks for lower or no deductibles, one could extend the model to a spliced one having the original
model as its tail.

7.2. The Riebesell (power curve) model for liability policies

7.2.1 History

The Riebesell model for liability policies, also called the power curve method, dates back as far as
1936. However, initially it was just an intuitive premium rating scheme. Much later it turned out
to have an underlying stochastic distribution model, namely a spliced model with a Pareto tail, see
Mack & Fackler (2003). We rewrite their proof of existence (Sections 4-6) in much more detail,
using the framework introduced in this paper, slightly generalising their findings and extending
them with a particular focus on the geometry of the small-loss distribution.

The Riebesell rule states that if the (first-loss) limit of a liability policy is doubled, the risk
premium increases by a fixed percentage z, whatever the policy limit. Let us call z the doubled
limits surcharge (DLS), following Riegel (2008). In theory, values between 0 and 100% make sense.
In practice, a typical DLS is 20%, but figures vary greatly according to type of liability coverage,
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ranging from single-digit percentages for personal liability to 40% or more for certain professional
liability business, see Section 6.3.5.3 of Schwepcke (2004).

As the risk premium of first-loss covers is the product of frequency and (limited) expected
value, the Riebesell rule can be formulated equivalently in terms of LEV:

LEV(2C) = (1 + z) LEV(C)

Note that if we have a rule for all LEV's, we can rate the risk premium for first-loss covers as well
as for layer policies, see, for example, Parodi (2014).

The above LEV rule can be consistently extended to arbitrary multiples of C.

The Riebesell rule for the risk premiums of liability policies with underlying risk X is as follows.
For two policies with limits C and bC, b > 0, we have

LEV(bC)

- ld(b) — pld(1+2)
LEvic) ~ 1+

where 1d is the logarithm to the base 2, and z € (0, 1) is the surcharge for the doubling of the
limit (DLS).

Under the Riebesell rule, the function LEV(x) = [ F(z)dz, up to a constant, equals x4+,
Taking the derivative, we get the survival function, which up to a factor must equal x™*, where

a=1-1d(1+2) € (0,1).

Thus, the loss severity has a Pareto tail with o < 1. This part of the story was notably widely
known across the reinsurance industry decades before the paper by Mack & Fackler (2003)
appeared. Now two problems seem to arise.

First, Pareto must start at a threshold # > 0, which means that the Riebesell rule cannot hold
below. However, if the threshold were very low, say in the range of 10 Euro, this would be no
material restriction as such low deductibles and limits in practice hardly exist.

Second, this Pareto distribution has infinite expectation. However, as almost all liability policies
have a limit, one could in principle insure a risk having infinite expected value; perhaps this occurs
unwittingly in some real-world situations. Moreover, it could be that a severity distribution is
perfectly matched by a Pareto curve with & < 1 up to a rather high value Max being larger than the
limits needed in practice, while beyond it has a much lighter tail or even a maximum loss. In this
case the well-fitting Pareto distribution is an adequate model for practical use, always bearing in
mind its limited range of application.

7.2.2. Three conditions
So, a possibly limited range where the Riebesell rule holds is in practice no problem, provided it is
large enough. Let us adapt the above deduction of the Pareto tail for this situation.

We call a severity distribution whose LEV function fulfils the Riebesell rule on some interval:
Riebesell distribution; the respective interval: Riebesell interval.

Now assume that the rule holds for a severity, with a DLS z € (0, 1), for all policy limits
contained in an open interval (6, Max), 0 < 6 < Max < oo. This implies the following necessary
condition:

- 0\*
F(x|X>0)=(;) , 0<fO<x<Max, a=1-1d(1+2) (6)

This follows as above, by taking, for x € (6, Max), the derivative of LEV(x). Note that with
LEV(x) being a continuous function, the Riebesell rule extends to the closed interval from 0
to Max.
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In order to find a sufficient condition for the Riebesell rule, we write the ground-up survival
function in generality: as a proper spliced model starting with some survival function F; (x), whose
tail is replaced by Pareto, such that Equation (6) holds.

S F,(x), 0<x<06
Feo = { F1(0)(9~, 6 <x < Max

Whether or not F(x) can be continuous has to be established. It is easy to see that, for

0 < x < Max, we have with r = F,(6):

LEV(x) = LEV(0) + F(O)E(min(X — 0,x — 0)|X > 6)

— LEV(0) + (1 — 1) —2 (1—(5)1‘“)=LEV(9)—91_;+91_r(f)1‘“

a—1 0 1-— l1—a\fg
Thus, for the Riebesell rule to hold, we must, together with Equation (6), meet the condition
1-—
LEV(9) = 0+ T 7)

To see whether and how this can be fulfilled, note that for any severity one has
0 < LEV(0) < 6. The right hand side of Equation (7) is always non-negative; to ensure that it
not be greater than 6 one must meet a further necessary condition:

a<r (8)

This relationship between Pareto alpha and body weight is somewhat hidden; Mack & Fackler
(2003) didn’t need or mention it in their proof of existence. However, the explicit use of 7 eases the
geometric interpretation of the survival function we are studying — and will make clear below that
there is not too much flexibility for the choice of its body part.

Altogether we have the situation

O<a<r<l.

Note that in practice « is often rather close to 1, being the closer the smaller the DLS. For
example, for z = 20% we have @ = 0.737. In other words: 1 — r = F(9), that is, the probability of
a loss being in the tail starting at 6, must be rather small, namely not greater than
1 —a =1d(1 + 2). Thus, in terms of probabilities, the Pareto tail is only a small part of the overall
distribution. This model is very different from the Pareto-only model: we must have plenty of
losses up to size 6, namely 1000:% or more.

Thus, in real-world situations, 6 cannot be as low as 10 Euro; it must be a good deal larger.
While this does not restrict the application of the Riebesell rule to the (typically rather large) sums
insured (e.g. comparison of the risk premiums for the policy limits 2 versus 3 million Euro), we
cannot hope that the Riebesell rule be applicable for the calculation of the credit to be given for a
deductible of say 200 Euro, although mathematically this is the same calculation as those involving
million Euro figures.

In a way the Riebesell rule is a trap. The equation seems so simple, having one parameter only
with no obvious limitation for the Riebesell interval. However, the attempt to construct severity
distributions fulfilling the rule in a general way has revealed (more or less hidden) constraints.
That does not mean that it is impossible to find a Riebesell distribution having realistic
parameters. It simply means that such a model is much more complex than a one-parameter
model and that the geometry of its cdf inevitably confines the Riebesell interval to some extent.

How do Riebesell distributions look? Let us first consider the case r = a. Here Equation (7)
yields LEV(6) = 6, meaning that all losses up to size 6 must equal 6, such that there are (almost
surely) no losses below 0. This indeed defines a model, which has only two parameters 6 and «. Its
survival function is discontinuous at 6§, having there a (large) mass point with probability «,
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beyond which the Pareto tail starts:

0<x<¥6

. 1,
Fx) = { (1-a)(@)e, <x

Thus, Riebesell distributions exist and, as we will see, this is by far the simplest one. It was
introduced by Riegel (2008) who, apart from providing a comprehensive theory of LEV functions,
generalises the Riebesell model in various ways, focusing on the higher tail of the loss severity.

We instead take a closer look at the body area, aiming at finding all Riebesell distributions.
Consider the conditional distribution of X|X < 6. For any r > « we want to rewrite Equation (7)
in terms of an intuitive quantity: the average smaller loss

y = E(X|X < 6) = LEV(§|X < ).

As the distribution of X can be written as a mixture of the conditional distributions of X|X < 6
and X|X > 6, we have

LEV(6) = rLEV(0|X <0) + (1 —r)LEV(O|X > 0) = ry + (1 —1)6.
Plugging this into Equation (7), we get equivalently

a 1—r

y==0 9)
l—a r

Equation (8) ensures that the RHS of Equation (9) is between 0 and 6, including the maximum

in caser = a. For each t € (0, 6], it is easy to find a body distribution on [0, 8] having expectation f;

we will show examples below. Thus, Equation (9) can be fulfilled; no further restrictions emerge.

7.2.3 Summary
Now we can give an intuitive classification of the severity distributions leading to the Riebesell rule
for the risk premiums of first-loss policies:

Existence and structure of Riebesell distributions:

Assume that for a risk X the Riebesell rule holds, with a DLS z € (0, 1), for all policy limits
contained in the open Riebesell interval (6, Max), 0 < 6 < Max < 00.

Then 0 > 0 and with « = 1 — Id(1 + z) the survival function is a spliced model such that, for
some r, we have, for 0 < x < Max,

By = (1—1) (z)a (10)

For r, being the percentage of the smaller losses not exceeding 9, we have
O<a<r<l. (11)
The (conditional) distribution of these smaller losses is such that for their average we have

1_
y=EX|X <) =02 r

l—a r (12)
The Riebesell distribution has the parameters o (or equivalently z), r, 6, Max (unless being
infinite), plus additional degrees of freedom for the distribution beyond Max (constituting the third
piece of this spliced distribution), plus additional degrees of freedom for the distribution up to 0
(unless r = «, which lets it be concentrated at 0).
If I is the closed Riebesell interval, that is, [0, Max] or [0, 00 ), we have, for all policy limits C
contained in I,
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1—r (C\!™ r (C\!I™

If we interpret policies having limit C and no deductible as special layers C xs 0 and further, for
any layer C xs D, call D the attachment point and C + D the detachment point, then the Pareto
extrapolation equation for layers

risk premium of C,xs D,  (C, + D,)'"* — D)@
risk premium of C;xs D;  (C, 4+ D;)' ™ — DI

(14)

holds for all layers detaching in I and attaching either in I or at zero.

For each z € (0,1) and for each interval (6, Max), 0 < 6 < Max < 0o, there is a Riebesell
distribution such that the Riebesell rule holds with DLS z on the (closed) given interval.

It only remains to prove Equation (14). It follows immediately from the Equation (13), which
holds for both C € I and C = 0.

It is remarkable that although the Riebesell rule does not apply in the area (0,0) of smaller
losses, Equation (14) holds for policies insuring these losses, provided they cover them completely.
Like the Riebesell rule, this extrapolation equation depends on « (or z) only, while r, § and Max
come in only indirectly via the respective admissible range of policy limit and deductible.

7.2.4. Small-loss geometry

In order to gather more intuition about the smaller losses now suppose r > «, the only case
leaving room for speculation about how the smaller losses are distributed and which parametric
models could be applied. According to the distance between r and «, the average smaller loss
y = 601% =" can take on any value between 0 and 6. Looking at the extremes, we get two
border cases:

Case 1. If r is close to «, y is close to 6, which yields a distribution having most smaller losses
concentrated just to the left of the threshold 6 and not leaving over much probability for very small
losses. Although it is, with some effort, possible to find even smooth cdf’s fulfilling this condition,
the distribution will be similar to the case r = o having a mass point at the threshold.

Case 2. If r is closer to 1, y is smaller, leaving many options for common distribution models to be
applied. However, very large r means that almost all losses are below the threshold 6 (tiny tail
weight), which in practice implies that € is rather large.

There is a trade-off between range and shape of the body. Rather low values of 0 are appealing,
due to the resulting wide Riebesell interval. Yet, such Riebesell functions have to pay with a
somewhat uneven shape of the body distribution being concentrated just below 6.

See finally two examples for how the body part of a Riebesell distribution could look.

1) If we use the trivial constant random variable with y being the mass point, we get the spliced
Const-Par model, which is a straightforward generalisation of the case r = a:

1 0<x<y
F(x) = 1—r y<x<®0
1-n®* 6=<x<Max

This survival function is continuous at the splicing point 6 but not so at y < 6. The LEV is
piecewise linear in the body area, where we have
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X, 0<x=<y

LEV(x):{ ry+(1—rx, y<x<86

Mack & Fackler (2003) used this example to prove the existence of Riebesell distributions, albeit
with a totally different parameterisation.

2) To get an at least continuous survival function, let us try a power-curve body. Pow-Par-0 has
the survival function

S r(%)?, 0<x<06
Fo = {(1 N®®, 6 <x<Max
The conditional body distribution has the survival function 1 — (%)# with expected value 0L~ -

Thus, Equation (12) reads m = ;% L=r, which yields 8 = a 1=, where the right hand side is

always positive and can be matched by a unique B. So, for any given parameters 0 < o« <r < 1
there is a (unique) power curve yielding a continuous Riebesell distribution. This is a model in
three parameters o, 7, 6.

Note that the exponent f has an intuitive interpretation: the ratio 8/« equals the ratio of the
distances of r from 1 and from o, respectively. If r tends to «, 8 becomes very large, having as
limiting case the discontinuous survival function of the r = « case.

The Riebesell Power-Pareto function is CO but not CIl. Indeed, one quickly gets
f(6-) = re = r;—a, while the left part of Formula 3 yields f(6+) = (1 —r)§. The former
divided by the latter yields ; -, which is greater (in practice usually much greater) than 1.

With the pdf being larger just before the discontinuity at 6 than just thereafter, it is clear that
the area where the losses are overall most concentrated is the left neighbourhood of 6, see Figure 4.

The LEV is a Cl function, which in the area 0 < x < 0 equals

r X\ p+1 r—o X\ r=e
LEV(x) = x— 6 (—) —x—0 (—)
() =x=027715 G

7.2.5. Testing empirical data

Note that in Theorem 7.5 it is not assumed that 6 be optimal, i.e. the minimum threshold for
application of the Riebesell rule (with DLS z). In fact, it is obvious that if the rule holds for a 9, it
holds for all thresholds between 6 and Max, each leading to a different spliced representation of
the Riebesell distribution with different parameters 6, r, y — only « is invariant.

This point is of practical interest. When working with real-world data, it might be impossible to
find the exact threshold where the Pareto area starts: frequently one can only say that an empirical
distribution looks very much like Pareto from a certain threshold 6 upwards, while somewhat
below it could have the same geometry, but this cannot be verified as the relevant empirical loss
data are unavailable or arguably incomplete.

Nevertheless, in such a data situation it could be possible to verify whether for the underlying
severity the Riebesell rule holds (albeit it might be impossible to find the whole Riebesell interval).
To this end, it is possible (and sometimes necessary) to combine various data sets from similar
business. In any case one needs a representative loss record embracing losses of all sizes (full data),
as primary insurers collect it. For small/medium losses grouped data may be sufficient; however,
the largest losses are ideally given one by one. If this data set has a fair amount of large losses, but
not enough for a robust assessment of the tail geometry, data from similar business could help,
even when it is not full data but left truncated by a reporting threshold (large-loss data), as
reinsurers collect it. A practical procedure could be as follows, being inspired from the threshold-
first parameter inference as sketched in Section 4.5.2:
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Figure 4. CO Power-Pareto survival function.

o In a first step the tail data (possibly pooled from several available data sets) are analysed.

o If the empirical tail has a Pareto shape on some interval and yields estimates for 6, Max and
a < 1, one infers r from the full-data set, by relating the large-loss count (greater than 6) to
the overall loss count.

o If the derived r fulfils Equation (11), then Equation (12) for y can be calculated and
compared with the average smaller loss estimated from the full-data set. This estimate can
possibly be validated with market statistics, too. If Equation (12) is fulfilled, we have a
Riebesell distribution (bearing in mind that all estimates are somewhat uncertain).

Summing up, the conditions of Theorem 7.5 are such that they can be verified involving quite
diverse data sources:

« Equation (10) affects the tail distribution only.

« Equation (11) relates the overall loss frequency to that at the threshold, involving nothing
about the shape of the body distribution.

« Equation (12) connects the tail parameters with the body distribution, but from the latter
only the average loss is needed, not the exact shape.

8. Conclusion - Pareto reinvented

In this paper we have looked at the Pareto and the Generalised Pareto distribution in a particular
way, interpreting them essentially as tails of full models. This makes the Pareto family much
larger, yielding tail models, excess models and most importantly ground-up models. Among the
latter we have drawn the attention to the rich group of continuous spliced models with GP tail,
which offer a great deal of flexibility and are at the same time all comparable among each other in
terms of tail behaviour: via the threshold-invariant proper-GP parameters « and 4, or via £ and @
if we embrace the whole GPD.

We have developed a framework to order all spliced distributions being constructed out of the
same model for the body of small/medium losses, according to three criteria: tail shape (Pareto or
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GP), body shape (proper or distorted) and smoothness. This yields a hierarchy (more precisely a
three-dimensional grid) of distributions having a decreasing number of parameters, with a rather
complex CO model on top.

Among a number of practical applications, we have in particular revisited the traditional
Riebesell (or power curve) model for the exposure rating of liability business. We have specified
and illustrated the necessary and sufficient conditions leading to this model, constructing finally,
as an example, a spliced CO PowerFunction-Pareto model.

We hope to have inspired the reader to share the view on the Pareto world outlined here, and to
apply some of the presented models (data permitting). Let us conclude with a few key points.

« Distinguish (conditional) tail models from tail-only (ground-up) models. The latter are not
too realistic but useful upper pieces of spliced distributions.

o Wherever possible, write spliced models in terms of cdf, not in terms of pdf.

« In spliced models, pay attention to the body weight r, even when it is not a parameter. When
fitting real-world data, r is usually rather large (close to 1). If not, your data may be incomplete in
the small-loss area, which frequently occurs due to deductibles or reporting thresholds.

« Consider the special case of proper spliced models. They have one parameter less and their
body and its parameters are interpretable — both makes inference easier.

o When applying spliced models to data, consider both approaches: the threshold-first
approach and the all-in-one parameter inference. What is preferable depends strongly on the
data situation.

Acknowledgments. The author thanks Thomas Schlereth and David Scollnik for making him aware of very useful literature,
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Appendix: Body models

This appendix collects the body models discussed in Section 6, extending the representation of LN-GPD given in Section 5.
The general set of spliced models with GPD tail has a hierarchical structure in three dimensions:

Tail: We use the hierarchy: whole GPD, proper GPD, Pareto. Recall that, unlike the other restrictions, the step from whole
to proper GPD reduces the parameter space but not the number of parameters.

Body weight: The general (arbitrary) weight can be specified in two different ways: proper body versus special splicing,
which have one parameter less.

Smoothness: Each step, from CO to C1, then to C2, etc., reduces the number of parameters by one.

We show the body models in a double table, which is ordered by body weight and tail.

3

o The upper part of Table Al unites all smoothness levels, indicating them by the extension “-n”. For each model our

main reference is added.
o The lower part of Table A1 shows the smoothness levels separately, focusing on the spliced models treated deeply in the
literature. We indicate for each model variant how many parameters it has in addition to those of its body model.

Table Al. Body models used with GPD tails: overview with source (upper part) and number of additional parameters
compared to the body model (lower part)

Tail \ Body weight Proper General Special
Whole GPD Gam-0 (Behrens et al., Gam-0 (Laudagé et al., 2019) Nor-2 (Carreau &
2004) Mix(k)Erlang-0 (Albrecher et al., 2017) Bengio, 2009)
Mix(2)Exp-0 (Lee et al.,
2012)
Proper GPD LN-0, Wei-0, Gam-0, LN-2 (-1, —3) (Scollnik, 2007)
LogGam-0 (Wang et al., Wei-2 (=1, —3) (Scollnik & Sun, 2012)
2020) Empir-0 (EVT) Exp-2 (Teodorescu & Vernic, 2009)
Pareto LN-1 (Knecht & Kuttel, LN-2 (=1) (Scollnik, 2007) LN-2 (Cooray &
2003) Wei-2 (—1) (Scollnik & Sun, 2012) Ananda, 2005)
Exp-0 (I1SO) Exp-2 (Teodorescu & Vernic, 2009) Wei-2 (Ciumara,
Exp-1 (Riegel, 2010) Mix(k)Erlang-0 (Reynkens et al., 2017) 2006)
Pow-1 (Kozubowski & Podgorski, 2003)
Smoothness co C1 Cc2
Tail \ Body weight Proper General Special Proper General Special Proper General Special
Whole GPD 3 4 3 2 3 2 1 2 1
Gam Gam Nor
Mix(2)Exp Mix(k)
Erlang
Proper GPD 3 4 3 2 3 2 1 2 1
LN, Wei LN, Wei
Gam, LogGam Exp
Empir
Pareto 2 3 2 1 2 1 0 1 0
Exp Mix(k) LN Pow LN, Wei LN,
Erlang Exp Exp Wei
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