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OPTIMAL DRIVING STRATEGIES FOR A TRAIN ON A TRACK
WITH CONTINUOUSLY VARYING GRADIENT
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Abstract

This paper derives key equations for the determination of optimal control strategies in an
important engineering application. A train travels from one station to the next along a track
with continuously varying gradient. The journey must be completed within a given time
and it is desirable to minimise fuel consumption. We assume that only certain discrete
throttle settings are possible and that each setting determines a constant rate of fuel supply.
This assumption is based on the control mechanism for a typical diesel-electric locomotive.
For each setting the power developed by the locomotive is directly proportional to the
rate of fuel supply. We assume a single level of braking acceleration. For each fixed
finite sequence of control settings we show that fuel consumption is minimised only if the
settings are changed when certain key equations are satisfied. The strategy determined by
these equations is called a strategy of optimal type. We show that the equations can be
derived using an intuitive limit procedure applied to corresponding equations obtained by
Howlett [9, 10] in the case of a piecewise constant gradient. The equations will also be
derived directly by extending the methods used by Howlett. We discuss a basic solution
procedure for the key equations and apply the procedure to find a strategy of optimal type
in appropriate specific examples.

1. Introduction

A train travels from one station to the next along a track with continuously varying
gradient. The journey must be completed within a given time and it is desirable to
minimise the fuel consumption. We assume that only certain discrete control settings
are possible. This conforms to the most common situation in railway locomotives.
Each traction control setting determines a constant rate of fuel supply. The power
developed by the locomotive is directly proportional to the rate of fuel supply and
the corresponding acceleration is non-negative. A single brake control gives constant

1 Scheduling and Control Group, School of Mathematics, University of South Australia, The Levels,
Australia, 5095. Email "p.howlett@unisa.edu.au"
© Australian Mathematical Society, 1997, Serial-fee code 0334-2700/96

388

https://doi.org/10.1017/S0334270000000746 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000746


[2] Optimal driving strategies for a train on a track with continuously varying gradient 389

negative acceleration.
The train will be controlled using a finite sequence of traction phases and a final

brake phase. During each phase the control setting is constant. The points where the
control setting is changed are determined by the driver and are called the switching
points. Each fixed sequence of control settings and the associated switching points
determine a control strategy. For each control strategy there is a uniquely defined
speed profile determined by the equations of motion. We will say that a strategy is
feasible if the distance and time constraints are satisfied.

We wish to find a feasible strategy that minimises fuel consumption. In specific
terms we wish to extend the key equations of Cheng and Howlett [15, 17] on a
level track and Howlett [9, 10] on a track with piecewise constant gradient to a track
with continuously varying gradient. To introduce the problem and to describe the
detailed formulation we have chosen to repeat the relevant discussion from the paper
by Howlett [10]. This material is contained in the first three sections.

1.1. Applications of the work The cost of fuel is the most significant expenditure in
many large rail organisations. Reduction of fuel consumption using energy-efficient
driving strategies is a primary concern in these organisations. The development of a
suitable driver advice system is therefore a high priority. The work in this paper is
part of a long term project carried out by the Scheduling and Control Group at the
University of South Australia. The aim of the project is to produce an on-board advice
unit that can be used by train drivers to ensure energy-efficient driving strategies. The
Metromiser system has already achieved audited fuel savings of 13% in service with
the State Transport Authority of South Australia.

1.2. A driver perspective on the problem To understand the essence of the problem
it is helpful to consider a simplified model.

Suppose the locomotive has only three discrete control settings: power, coast and
brake. Consider the possible control options for the driver. The strategy must begin
with a power phase and follow with alternate phases of coast and power. The strategy
must end with a semi-final coast phase and a final brake phase although it is possible
that one or other of these two phases could become degenerate. We assume that
braking will be used only to stop the train.

The driver can decide the number of phases and the points at which the control
setting will be changed.

The nature of the problem is not changed by allowing a greater range of discrete
control settings. The driver must decide the precise sequence of control settings and
then determine the optimal position for the switching points.

The driver must make these decisions in such a way that fuel consumption is
minimised.
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1.3. Formulation of a well-posed problem Because the control strategy is restricted
to a finite sequence of discrete settings the problem described above is not well-
posed. In general there will be no admissible strategy for which the minimum fuel
consumption is achieved and hence no definitive conditions for optimality.

We overcome this difficulty in the following way. Consider the set of all possible
control strategies. We divide the set into disjoint subsets. Each subset is defined
by a fixed finite sequence of control settings. There are many different strategies in
each subset all using the same sequence of control settings but each one determined by
different switching points. To find a feasible strategy that minimises fuel consumption
within the given control subset we need to find the optimal locations for the switching
points. A strategy satisfying these requirements will be called a strategy of optimal
type.

The problem of determining a global minimum for the fuel consumption is then
reduced to a comparison of the various strategies of optimal type.

1.4. A preview of the new results We consider the train control problem on a track
with continuously varying gradient. In this paper

• we use an intuitive limit procedure to obtain key equations for a journey of optimal
type from the corresponding equations obtained by Howlett [9, 10] on a track with
piecewise constant gradient;

• we extend the methods of Cheng and Howlett [15, 17] and Howlett [9, 10] to
obtain a direct derivation of the key equations;

• we present a formal algorithm for solution of the key equations and show how
this algorithm can be used to determine strategies of optimal type in appropriate
specific examples.

2. Previous research

The train control problem has been studied by a number of authors. There are two
widely used models.

The Mechanical Energy model was introduced by Milroy [19] and has since been
discussed by Howlett [5, 6, 7, 8], Asnis et al. [1] and Benjamin et al. [2]. This
model was also discussed in the recent review paper by Howlett et al. [12]. In this
model the applied acceleration is the control variable and the cost of the strategy is
the mechanical energy required to drive the train. A continuous range of values is
allowed for the control variable.

The Fuel Consumption model was introduced by Benjamin et al. [3] and is based on
observations of the control mechanisms for a typical diesel-electric locomotive. The
control variable is essentially a throttle setting and the cost of the strategy is the total
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fuel consumption. In practical terms the important points are the observations that only
a finite number of discrete control settings are allowed, that each setting determines a
constant rate of fuel supply and that the power developed by the locomotive is directly
proportional to the rate of fuel supply. This model has been studied in detail by Cheng
and Howlett [15, 16, 17, 18], Howlett [9, 10] and Howlett et al. [11, 12, 13, 14].

In general terms it is now known that an optimal strategy contains segments of
maximum power, speedhold, coast and brake. The segments occur in this order unless
disrupted by the effect of significant track gradients. For the fuel consumption model
the speedhold segment is replaced by an approximate speedhold segment using a
control sequence of coast-power pairs.

3. Mathematical formulation of the problem

3.1. The control strategies To describe the control mechanism we introduce a con-
trol variable j . Each non-negative value of the control variable determines a traction
control and the single negative value determines a braking control. Let

^f= {-1,0, 1,2,...,m} (1)

denote the set of all possible values for j . Let / , be the fuel supply rate corresponding
to the control setting j and assume that

O = /_, = / o < / i < / 2 < • • • < / « . (2)

Consider a fixed sequence {j (k + l)}*=o,i n of control settings. We suppose that for
k < n the index j (k + 1) takes integer values between 0 and m from the set c€. The
semi-final phase is a coast phase with j(n) = 0 and the final phase is a brake phase
with j(n + 1) = — 1. This sequence defines a subset

^(O"(*+D}*=o.i ») (3)

of control strategies each with n + 1 distinct control phases. We use the real variable
x to denote the position of the train and define a partition

0 = x0 < x, < x2 < • • • < xn+l (4)

of the x-axis, where x0 is the starting point, {xk}k=\tl„ are the switching points and
xn+i is the stopping point. The value j(k + 1) is the control setting on the interval
(xk, xk+]). The control strategy from the given subset with the above switching points
is denoted by

...J. (5)
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3.2. The equations of motion When j > 0 the power developed by the locomotive
is directly proportional to the rate of fuel supply. When j < 0 there is a constant
negative acceleration applied to the train. If we write Kj for the brake acceleration
then Kj = 0 for j > 0 and K_] = —K is a negative constant. The equations of
motion for a point mass train are

dx
» «9

and

dv Hf<
— =-^ + Kj - r(v) + g(x), (7)

where x is the distance along the track, v = v(x) is the speed of the train, r(v) is the
resistive acceleration caused by friction, g(x) is the gravitational acceleration caused
by the track gradient and H is a constant. We assume that r(0) > 0, r(v) is strictly
increasing and that the graph y = vr(v) is strictly convex. We note that in practice we
normally use a formula of the form r (v) = a + bv + cv2 where a, b and c are positive
constants. The preceeding assumptions are certainly true in this case. The importance
of this assumption is discussed in Section 7. Although Equations (6) and (7) are
directly applicable to a point mass train it is important to remark that similar equations
with a modified average gradient acceleration can be used to describe a train with
distributed mass. This issue is discussed elsewhere by Howlett et al. [11, 12]. It is
often convenient to rewrite the equations of motion in the form

ax v
and

dv Hfi
K ()

3.3. Notation We consider a control strategy S = S({[j (k+l); {xk, Xjt+i)]}*=o,i n)-
The length of the interval (xk, xk+\) is denoted by ft+] and the time taken to traverse
this interval is denoted by T*+I. We use the variable £ = (fi, • • • . £n) 6 K" as
the independent variable. We note that the length fn+1 of the final interval depends
on £ and that the nature of this dependence can be determined from the constraint
v(xn+i) = 0. We assume this constraint and the constraint v(x0) = 0 throughout the
paper. For the given control strategy the total distance travelled is x(%) = YH=o%k+i
and the total time taken is t(£) = YH=oTk+\- We use X to denote the distance between
the two stations and T to denote the time allowed for the journey. We write

Fk{x, v) = Hfj{k+l)/v + KJ(k+l) - r(v) + g(x) (10)

on the interval (xk,xk+i).
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3.4. Fuel consumption The total fuel consumption for the strategy S =

1); (xk, x*+i)]}*=o,i n) is given by

/,(*+!)**+,. ( ID

3.5. A precise statement of the problem The problem can now be stated precisely.
For a fixed control sequence {j (k+ l)U=o,i n, we wish to choose the switching points
{**}*=i,2....,n to define a control strategy

S{{[j{k + 1); (**,**+,)]}*=„,,.....„) € S>{{j(k + l)}*=0,.,...,n) (12)

with v(x0) = 0, u(xn+1) = 0, f (!) = T and x{t-) — X in such a way that ./(£) is
minimised. The corresponding strategy is called a strategy of optimal type.

3.6. Solution of the problem for piecewise constant gradient Oh a track with
piecewise constant gradient, Howlett [9, 10] obtained a solution which we now de-
scribe briefly. Consider the set 5? — y({j(k + l)}*=o,i n) of all control strategies
with a fixed sequence {j(k + l)}*=o,i,...,n of control settings. Subdivide the interval
[0, X] by setting

0 = fc0 <hi <h2 < ••• < V M =X (13)

and suppose the track gradient gq is constant on each subinterval (hq, hq+]). Outside
the interval [0, X] the gradient will be assumed to be zero. When x G (xk, xk+1) D
(hq,hq+i) we write

dv
Hf/ + K - r(v) + gq

= Flk,q](v). (14)

It is necessary to specify the locations of the variable points {x*}*=i n+i in relation
to the fixed points {/i,}9=o,i,2 P+i- Let {?(^)} t>e the essentially unknown sequence
with^(O) = 0 a n d ^ ( n + l ) = p a n d w i t h ^ e [hqW, hqW+1) for each k = 1, 2 , . . . , « .
We use vq = v(hq) and Vk = v(xk) and for each 5 with q{k) < s < q(k + 1) we
define

R. = % ^ . (15)

For each q with q (it) < q < q(k + 1) we write

ÎMI = n *'•
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For each measurable function / : SR+ —> 3t we define a special gradient weighted
average value at the point x e [hq, hq+l] c [**, xk+l] by the formula

, q(k+\)-l

+ £ M£

We use the notation s4k\f] to indicate that the average is taken over the control interval
(xk, xk+i) and that the interval [0, X] is divided into p + 1 subintervals (hq, hq+x) of
constant gradient. We say that &fk

p[f(v)](x) is the effective value of f{v) at the point
x. Somewhat perversely the effective speed yk

p(x) is defined by

Let //, be a non-negative constant. The corresponding energy density is given by

£„(«) = - + r ( v ) (19)

and the effective energy density is defined by

W'(x) = <[£M(v)](x) . (20)

Howlett showed that the following conditions on the switching points [xk] are
necessary for a strategy of optimal type. There are non-negative constants A. and /x
such that xn < X is a solution to

WM = X' (21)

jcn_i < xn is a solution to

u
\6nln-\\X) = — + gq(n) (•£••£)

and in general xk < xt+i for each k = 1,2,... ,n — 2 is a solution to

{^M}^(JC) = £M(Vt+I). (23)

It has been shown by Howlett [9, 10] that (21), (22) and (23) have a unique solution
when the track is not steep.
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4. The main results

To explain the main results in this paper it is necessary to introduce some further
terminology. For each k = 1,2,... , n and for each interval [a, b] C [xk, xk+i] we
define

-L a iky*,V(x))

" 1
dg{x) (24)

)a Fk(x,v(x))

and write %{x) = %(x, xk+i) and $)k = %{xk). To describe the necessary condi-
tions for a strategy of optimal type we use a notation similar to that used above in the
case of a piecewise constant gradient. For each measurable function / : SR+ ->• £ft we
define the effective value at the point x e [xk, xk+i] by the formula

(25)f
In particular the effective velocity "%(.*) is defined by

1 * [ ] ( ) (26)
Tk(x) v-

and we write % = yk(xk). For each /x > 0 the effective energy density is defined by

I. (27)

The following conditions on the switching points [xk] are necessary for a strategy
of optimal type. There are non-negative constants A. and /x such that xn < X is a
solution to

^M=K (28)

*„_! < xn is a solution to

{*„}-,(*) = £ + *(*.) (29)

and in general xk < x k + l for each k = 1 , 2 , . . . , n — 2 is a solution to

(30)

It will be shown that these equations have a unique solution when the track is not
steep. Equations (28), (29) and (30) will be called the key equations and they can
be solved to determine the strategies of optimal type. The equations are derived in
Sections 5 and 6.
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5. An intuitive derivation of the main results

In this section, we will describe an intuitive derivation of the main results. For
each k = 1,2,... , n and for q(k) < s < q(k + 1) it is easy to see that

log R, = log Flk^u(vs) - log F[M(u,) * ~ Ags, (31)

where Ags = gs — gs-i. Therefore

log#[*.,] = (-D £ ir-^*8'- ( 3 2 )

If q is chosen so that x € [hq, hq+\] and if we take the limit as Ahs -*• 0, then

log^?*(jt) = lim log^?[Jfe,,] = — I dg(i-) = —@k{x) (33)

and hence

Stk(x) = «"*w. (34)

Now since

1 1 1 «<*+!)-' i r 1 1 1
(35)

it follows that

1
lim

Similarly we can see that

{<̂ »}*W = l im W*(*) - (37)

The key equations (28), (29) and (30) are now obtained from (21), (22) and (23) using
the above limit procedure.

6. Lagrangian function and Kuhn-Tucker equations

Define a Lagrangian function of the form

'-, X, ix) = HJ(£) + k[X - *(f)] + /Li[f (£) - T], (38)
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[10] Optimal driving strategies for a train on a track with continuously varying gradient 397

where k, \x and are the Lagrange multipliers. To find the strategy of optimal type for
the given sequence of throttle settings we apply the Kuhn-Tucker equations

= 0 (39)
35*

for k = 1,2,... , n and the complementary slackness conditions

= 0 and A*[r(f)-T] = O. (40)

If we weaken the equality constraints to read A:(|) > X and f(f) < T then we
can also guarantee that k, /x are non-negative. It is intuitively obvious that the
weakened problem has the same solution. Although the application of the Kuhn-
Tucker equations is elementary in principle, the detailed calculations are complicated.
The basic formulae for the relevant partial derivatives are given in Appendix A.2.
An essentially inductive argument is used to simplify the equations. An outline of
this argument is given below. The details are tedious and similar to the details of a
corresponding argument in Howlett [9, 10] and are therefore omitted.

For convenience we will use the notation

Fk{xk,Vk)

for each k = 1, 2 , . . . , n — 1. The equation

3 /
- ^ - = 0 (42)

can be simplified to give

(-l)k + n— =0. (43)

When the equation

= 0 (44)

is combined with (43) we deduce that

Now the equation

= 0 (46)
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can be combined with (43) and (45) to obtain

{ r i i "I

[fM + ///,-(„_,)] — — + Fn_2(xn_,, Vn_,
H[fj(n-\) — fj(n-2)]

Vn-2

If we assume that

(47)

HfHh+l)] T ^ - ^ - 1 + Fh(xh+U Vh+l)

_ H\.fj(h+\) — fj(h)] . . „ .

for each h with k < h < n — 2 then the additional equation

% ^ = 0 (49)
°s*

allows us to deduce that

\ji + HfKk+l)] \^r - - L ] + Fk(xk+U Vk+l)

Therefore the hypothesis is established for h = k. We can now deduce that (50) is
valid for all k = 1,2,... , n — 2. It is a straightforward matter to show that (43), (45)
and (50) can be rewritten in the equivalent forms (28), (29) and (30).

7. An algorithm for solving the key equations

For a given journey there will be a strategy of optimal type associated with each
fixed value of n. Although fuel consumption decreases as n increases it seems that
in practice we can obtain highly efficient strategies for very small values of n. This
issue is discussed in more detail by Cheng and Howlett [16, 18] and Howlett [9, 10].

We suppose that the control sequence [j(k + l)}*=o,i n is given and that we seek
a strategy of optimal type from the subset «5̂ ({y (k + l)}*=o,i n). Following the work
of Cheng and Howlett [16, 18] we assume that n is even and that

if k is even

if k is odd
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for k < n. In this regard we note that it has been shown by Howlett [9, 10] that any
time interval of non-negative measurable control can be approximated as accurately
as we please by a sequence of alternate coast and power controls.

To find a strategy of optimal type we must solve the key equations. To do this we
need to understand the nature of the functions involved. We assume for the moment
that X and /J, are known and we calculate the positions of the switching points in
reverse order. We assume that the track is not steep. That is, we assume that as x
increases v(x) increases during each power phase and decreases during each coast
phase. We also assume that g(x) = 0 for x £ [0, X].

During the final phase v(x) decreases as x increases and hence from the formula

dxe

we see that the expression l/Vn(x) increases as x increases. There is therefore at most
one point, x = xn, where (28) is satisfied. We use an appropriate numerical scheme
to find v = v(x) in the region x < X from the differential equation

vp- = Fn(x, v) (53)
dx

with Vn+i = v(X) = 0. We can now calculate yn(x) and hence find x = xn < X and
Vn = v(xn).

During the semi-final phase v(x) also decreases as x increases. Thus from the
formula

£ £ (54)
and from Lemma 1 in Appendix A3 we see that the expression {<£>}„_!(x) increases
as x increases when v < toM and decreases as x increases when v > w^. Since
r(v) > g(x) during this phase, {<^}n-i(xn) = £M(Vn) > /x/Vn + g(xn) and there is
either no solution to (29) or else one solution with v < w^ and one solution with
v > u>M in the region x < xn. The former solution does not allow solutions to
the remaining key equations. Thus we choose the solution x = jcn_i < xn with
Vn_i = v(xn-t) > u>M. We make the required calculations by solving the differential
equation

dv
v— = Fn_x(x,v) (55)

dx

with v(xa) = Vn in the region x < xn.
In general note that

£ [ ] >̂ (56)
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and from Lemma 1 in Appendix A.3 we see that for a power phase the expression
{<̂ i}*0O increases as x increases when v > w^ and decreases as x increases when
v < u v Since {<^}*(**+i) = £^(Vt+1) where Vk+l = v(xk+l) > w^ there is at
most one solution, x = xk, with v < w^ in the region x < xk+i. In this case
Vk = v(xk) < w^ < v(xk+i) = Vk+i. The required calculations are made by solving
the differential equation

dv
v— = Fk(x, v) (57)

dx
with v(xk+i) = Vk+\ in the region* < xk+i.

A similar argument applies for a coast phase but in this case Vk = v(xk) > u>M >
v(xk+i) = Vk+1.

Finally note that the task of determining k and \x is an iterative process. In the case
of level track the key equation (30) reduces to the form EM(u) = A.. For k > E^iw^)
this equation has precisely two solutions V and W with V < w^ < W. Thus an
approximate speedholding strategy is obtained with the speed oscillating between V
and W. Since w^r'iw^,) = /x and since w^ > X/T we can begin the iterative process
with ix = /xest, where

(f)V(f)* (58)
and € is a small positive number. Since the value k must be greater than £M(u;M) we
can begin with k = kesu where

Ks^E^Jw^J + S (59)

and 8 is a small positive number. As S decreases the values of V and W move closer
together and the length of each phase decreases. Thus we adjust S until *0 = 0 is
obtained. This means that the distance constraint is satisfied. It is also necessary to
satisfy the time constraint. We calculate

dx. (60)
)o v(x)

lfT)1>T then fx must be increased. If TM < T then /x must be decreased. The whole
process is now repeated. On level track it is easy to see that 8 and e are both positive.
On non-level track this may not be the case. The solution process will be illustrated
with two particular examples.

For the purposes of numerical calculation various standard schemes of approximate
calculation can be used. We have normally used our own implementation of an
adaptive Runge-Kutta scheme for solution of the various differential equations. It is
relatively easy to check the calculations on a PC using a standard package such as
MATLAB.
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8. Examples

The following examples are based on data obtained from train models used by the
Scheduling and Control Group at the University of South Australia. These examples
have been used in other papers to illustrate the nature of a journey of optimal type. In
this paper our particular aim is to show how the parameters X and /x can be found.

Length is measured in metres and time is measured in seconds. In each example
we consider a journey with X = 18000 and T = 1500. We assume that r(u) =
a + bv + cv2 where a = 1.5 x 10~2, b = 3 x 10"5 and c = 6 x 10~6. We take
H = 1.5 and K = 1 and assume only two allowable fuel supply rates with f0 = 0
and / , = 1. We seek a strategy of optimal type with an initial power phase, an
approximate speedhold phase with nine coast-power pairs, a semi-final coast phase
and a final brake phase. For each x e [0, X] we take g(x) = ax(X — 2x)(X — x)
where a is a constant. Outside the interval [0, X] we assume g(x) = 0. We consider
two examples. When a = 0 the track is flat. When a = (—2) x 10~14 the track
passes over a small hill. Note that the gradient in this case is so small that the track
would appear flat to the naked eye. In fact the height of the track is determined by the
formula

' •o JO9.
~)

-x2(X-x)2 (61)
19.6

and so when a = (—2) x 10~14 it is clear that \h(x)\ < 6.7 for all x. Thus there is a
rise and fall of less than 6.7 metres in a total distance of 18 kilometres.

8.1. Level track In this case a = 0. We have X/T = 12 and we choose e = 0.05
and 8 = 0.000001. Thus nesl = 122 x r'(12) + 0.05 = 0.030056. From the equation

WnJr'(WnJ = Mest (62)

we calculate w^ % 12.796 and hence find Xesl = E^w^J+0.000001 % 0.018716.
By solving the key equations for these parameter values we obtain the results given
in Table 1. Since x0 = 8531.904 > 0 the distance travelled is too small and we must
increase A.est. We choose 8 = 0.000006 to give Xesl % 0.018721. By solving the
key equations for the increased value of X^ we obtain the results given in Table 2.
Although *o = 2962.619 > 0 and we have still not travelled far enough, we can now
see that t0 < 0 and hence the time taken is too long. Thus the hold speed is too low
and consequently we must increase the value of/i.est- We choose e = 0.015 and retain
8 = 0.000006. This gives fiat % 0.040056, A.est % 0.019457 and w^ % 14.156.
By solving the key equations we obtain the results given in Table 3. Once again we
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observe that the distance travelled is too small and so once again we must increase
kest. By repeating this procedure the correct parameter values \x « 0.058577 and
k «* 0.020680 are eventually obtained. We now have w^ % 16.170 and solving the
key equations gives the appropriate strategy of optimal type. The results are given in
Table 4.

k
0
1
2
3
.
.

19
20
21

tk

420.867
483.181
510.273
514.670

.
766.581
1498.418
1500.000

xk
8531.904
9079.825
9426.531
9482.810

.

12706.685
17998.730
18000.000

vk
0.000
13.020
12.576
13.019

13.019
1.605
0.000

Table 1

Table 3

k
0
1
2
3
.

.
19
20
21

tk
-13.253
52.432
118.783
129.561

746.594
1498.418
1500.000

xk
2962.619
3554.978
4404.489
4542.594

.

12443.516
17998.730
18000.000

vk
0.000
13.347
12.261
13.347
.

13.347
1.605
0.000

Tables 1 and 2

k
0
1
2
3
.

19
20
21

tk

418.753
495.155
515.927
519.794

.

.
716.902
1498.418
1500.000

Xk

7797.265
8537.769
8831.838
8886.580

.
11677.070
17998.730
18000.000

vk
o.ooo
14.330
13.984
14.329

14.330
2.059
0.000

Table 2

k
0
1
2
3

19
20
21

tk
0.000

104.513
152.528
163.348

.

634.034
1497.209
1500.000

xk
0.000

1176.226
1952.765
2127.808

9740.468
17996.048
18000.000

vk
0.000
16.583
15.764
16.583

.

16.583
2.833
0.000

Table 4
Tables 3 and 4

8.2. A small hill In this case a = (-2) x 10~14. As before X/T = 12 and we
choose e = 0.04 and S = -0.006. Thus //,«, = 122 x r'(l2) + 0.04 = 0.065056.
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Now we solve the equation

wu

403

(63)

to calculate w^ as 16.772 and hence find Xest = £ M o I (uO - 0.006 as 0.015070.
By solving the key equations for these parameter values we obtain the results given in
Table 5. Since the distance travelled is too large we must decrease X^. We eventually
choose 8 = -0.0061938 to give Xest as 0.014876. By solving the key equations for
the decreased value of Xes, we obtain the results given in Table 6. Since we have
taken too long, but not travelled far enough, the hold speed is too low. Therefore we
must increase the value of n^t- We now choose e = 0.07. By eventually choosing
S = -0.0065158 we obtain /xest as 0.095056 and Xest as 0.016223. Therefore
u)Mesl as 19.135 and solving the key equations gives the results shown in Table 7.
Since we have travelled too far, but have not used all of the available time, the hold
speed is now too high and consequently fiest must be decreased. By continuing in this
way we converge to the correct parameter values fx as 0.090879 and X as 0.016021.
We now have u>M as 18.839 and solving the key equations gives the appropriate
strategy of optimal type. The results are shown in Table 8.

k
0
1
2
3

.

19
20
21

h
-6562.804
-6362.616
-5790.284
-5645.573

.

100.008
1495.745
1500.000

xk
-112117.507
-109065.776
-99238.823
-96648.355

.

.
2854.887
17990.815
18000.000

vk
0.000

22.242
12.322
22.242

21.918
4.317
0.000

k

0
1
2
3

19
20
21

tk
-115.926

0.076
22.786
31.910

.

276.947
1495.689
1500.000

Xk

203.366
1561.117
1942.040
2095.114

6205.495
17990.574
18000.000

vk
0.000
17.058
16.484
17.063

17.062
4.373
0.000

Table 5 Table 6
Tables 5 and 6

9. Conclusion

The Scheduling and Control Group at the University of South Australia have shown
that application of optimal control methods can be used to save fuel on trains by
supplying advice to drivers about energy-efficient driving strategies. This paper is part
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k
0
1
2
3
.
.

19
20
21

tk

0.825
142.737
165.826
172.466

.

320.002
1494.224
1500.000

-308.418
1716.614
1967.057
2094.127

.

5025.774
17983.080
18000.000

vk
0.000
19.306
18.963
19.307

.

19.309
5.859
0.000

Table 7

k

0
1
2
3

19
20
21

tk

0.000
148.575
161.447
168.021

320.002
1494.409
1500.000

Xk

0.0000
1952.211
2194.708
2318.567

5181.827
17984.142
18000.000

vk
0.000
19.011
18.667
19.012

19.013
5.672
0.000

Tables 7 and 8
Table 8

of a long term project that began some ten years ago and has resulted in development
of the Metromiser and Cruisemiser systems for metropolitan and long-haul freight
trains respectively.

A. Appendix

A.I Some results from perturbation theory Let I = [x\, x2] x [vt, v2] c R2

and let $ : / —*• OS be a real valued function on / with <$>(x, v) continuous and
^(x, v) well defined and continuous for (x, v) e I. For the differential equation

dv
— = <t>(x, v)
dx

the following standard results can be found in Birkhoff and Rota [4].

(64)

THEOREM 1. There is exactly one solution v(x) = f[a, V](x) satisfying the differen-
tial equation (64) and passing through the point (a, V) e /.

COROLLARY 1. Let the solutions f[a, V](x) be defined on some interval [yit y{\for
each V € [ui\, w2] and suppose that (a, Va) e int J where J = [yt, y2]x[w\, w2] ^ /.
If we define

= f[a, Va + A](x) (65)

for each sufficiently small A then /A -» /0 uniformly on [yt, ^2] as A -> 0.
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We use these two results to prove two useful corollaries.

COROLLARY 2. Let the solutions f[a, V](x) be defined on the interval [yu y2] for
each V e [101, w2] and suppose that (a, Va) e int J. If we define Vx = /O(JC) and if
(x, Vx) e int J for all x e [a, b] then

( 6 6 )

PROOF. We write V,(A) = fA(x) and use the notation A / 0 0 = /ACO - /oM- Now

= <D(JC, Mx)) - * (* , fo(x))

= / -r-(.x,Mx) + w)dw. (67)
Jo 3"

From the uniqueness theorem, Theorem 1, A/(x) ^ 0 for all x e [y\, yi\ when A ^ 0
and hence

O] 1 rA'M 3<D
) Af(x) Jo dvA:,\

By integrating from x = a to x = b we obtain

(68)

[A/(a)J J lA/(x)J 3 J

Since A/(x) = VX(A) - Vx(0) = AVX this becomes

ln = f
and since A/(x) —> 0 uniformly on [_yi, y{\ as AVa = A —>• 0 the result follows by
taking the limit as A —> 0.

We will normally rewrite the result of Corollary 2 in a more convenient form. From
the formula

— {<&(x, fo(x))} = —— (x, fo(x)) H (x, /o(x))<t>(;c, fo(x)) (71)

we have, by formal manipulation,
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and hence, in a formal sense,
fbf 3<D

Ja dv

where

(74)

Therefore we will normally write the result of Corollary 2 in the form

8Va <t>(a,Va)

where the right hand side is strictly defined by (73) above.

COROLLARY 3. Let A(£), <$(£) be real-valued continuously differentiable functions
with A(0) = 0, 8(0) = 0. Define x(%) = x + 8, V(f) = V + A and K(A, 8) =
f[a, V + A](x + S). If(x, Vx) 6 int J for all x e [a,b] then

PROOF. We have

Vb(A,8)-

= <P(b, Vb)8'(0) 4

- Vb(0,0) = Mb-\

/•b+S= l '
= 1 (

dVt

-8)-

1 0

L

- /oW

Mx))dx-

Mx))cIx-

- <t>(a, Va)8'

- 1Mb) - /o

\-[Vb(A,0)-

Jo av/

(0) .

_l

(*)]

Vl,(0,0)]

0)rfa

(76)

(77)

and in similar fashion

Va(A, 8) - Va(0, 0) = fA(a + 8)- fo(a)

= [Ma + 8)- fA(a)] + [Ma) - Ma)]
ra+S

<i>(x, fA(x))dx + A. (78)

By combining these two equations it follows that

Vb(A,8)-Vb(0,0) 1 '*+*

+ T / ^-(o,0)do\-
AJ0 8Va I

- / <t>(x,Mx))dx\. (79)
J]•

The desired result now follows by taking the limit as £ —> 0.
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A.2 Calculation of some useful derivatives To begin, observe that the constraint
Vn+1 = 0 determines £n+i implicitly as a function of | i , . . . , £ „ . In the case where
Vn+i ( £ i , . . . , £n +i) = € > 0 note that for each h < n

_|±i + _^±i_| t i=0 (80)

implies

_I?±i = (_l) —2+1 /—2+1. (81)

Since we also have

CIVVH = Fn(xn+l,e) ( 8 2 )

and, using the results of Appendix A.I,

( 8 3 )

for h < n, it follows that

— ^ = (-1) 11 + - 1 + " " M e~@" | • (84)
3?/, I L Fn(xn,Vn)j J

Since (84) is independent of e it will also be true when Vn+) = 0. In this context it
is pertinent to observe that Sln remains well defined by the formula

1 dg(x) (85)
Fn(x, v(x))

when Vn+1 = 0. In general, for h < n we have

dVh F,

and for h < k + 1 < n we use the results of Appendix A.I to deduce that

Fk(xk+l, Vk+i)

9& Vk+l

By an inductive process applied to (87) it follows that

(86)

H f(-1 + G*) + 0 - 1 + G.)(f[ Qj+le-®o\e-®k\ (88)0
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and by applying the same process to (84) it follows that

^ ± = (-1) J 1 + | ( - l + Qn) + p _ l + e,.)(fj Q1+Xe~*')\ e~9-j . (89)

From the formula

/ tfg (90)
/o

the results of Appendix A. 1 can be used to establish that for h < n and Vn+\ = e > 0

+ • ' '

Hence, using integration by parts and the appropriate definition to show that

it follows that

3rnH

Fn(xn,vn)jyn
( 9 3 )

Since (93) is independent of e it will also be true when Vn+1 = 0. By an inductive
process applied to (93) it now follows that

) \Wn
e\-9 £* [V" \_ i=h j=i

In general, for h < n, a similar argument shows that

and for h < k + 1 < n that

3|* V4+1 V, Ft(jct,Vi)JLV»+I %
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from which it follows again by an inductive argument that

409

(97)

k-

i=h vk+i
Although the derivation is more difficult it should be noted that the formulae of this
section have essentially the same form as the corresponding formulae obtained by
Howlett [9, 10].

A.3 An elementary result In solving the key equations we use the following
lemma with <p(v) = vr(v). In this case it is easily seen that w^ satisfies the equation

LEMMA 1. Let <p : K+ -> R, where <p(v) is strictly convex and <p(v)/v -> oo as
v -> oo. Let /x € K with (i + <p(0) > 0. Define £M : K+ ->• K by the formula

(98)

Then there is a unique point w^ > 0 with E^'(w^) = 0 and such that £M'(u) < Ofor
v < w^ and £M'(u) > Ofor v > u>M.

PROOF. Define by the formula

(99)

We show that the equation ty^iv) = 0 has a unique solution u = w^ in the region
u > 0. First note that ir^'iv) = v<p"(v) > 0 and hence xj/^v) is strictly monotone
increasing. Since (p{v)/v —> oo as i> —>• oo it follows that £M(u) —> oo as v —> oo.
Therefore we can find some point w^ > 0 with £M'(«JM) > 0. Thus ^ ( ^ e ) > 0.
Since ^ ( 0 ) = — [/* + *>(0)] < 0 there is precisely one point tuM e (0, IoM) with
&n(wii) = 0- For u € (0, tuM) we have ^ ( u ) < 0 and for v € (u;M, oo) we have
V^(v) > 0. Since Vf

M(i;) = v1EIJL'(y) the result is now established.
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