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Abstract. We generalize the notion of summable Szlenk index from a Banach space
to an arbitrary weak∗-compact set. We prove that a weak∗-compact set has summable
Szlenk index if and only if its weak∗-closed, absolutely convex hull does. As a conse-
quence, we offer a new, short proof of a result from Draga and Kochanek [J. Funct. Anal.
271 (2016), 642–671] regarding the behavior of summability of the Szlenk index under c0

direct sums. We also use this result to prove that the injective tensor product of two Banach
spaces has summable Szlenk index if both spaces do, which answers a question from Draga
and Kochanek [Proc. Amer. Math. Soc. 145 (2017), 1685–1698]. As a final consequence
of this result, we prove that a separable Banach space has summable Szlenk index if and
only if it embeds into a Banach space with an asymptotic c0 finite dimensional decomposi-
tion, which generalizes a result from Odell et al. [Q. J. Math. 59, (2008), 85–122]. We also
introduce an ideal norm s on the class S of operators with summable Szlenk index and
prove that (S, s) is a Banach ideal. For 1 � p �∞, we prove precise results regarding the
summability of the Szlenk index of an �p direct sum of a collection of operators.

2010 Mathematics Subject Classification. Primary: 46B03, 47L20; Secondary: 46B28

1. Introduction. Since its inception in [19], the Szlenk index has been a funda-
mental object in the geometry of Banach spaces, including the non-linear theory (see [9]
and [10]). The Szlenk index and Szlenk power type are fundamentally connected to asymp-
totically uniformly smooth renorming properties of spaces and operators, as was shown in
[4, 6, 13, 17]. Such properties have seen significant recent use in the non-linear asymptotic
theory (see [2, 12, 14]). Of particular importance is the notion of a Banach space hav-
ing summable Szlenk index. In [10], a characterization is given of those separable Banach
spaces which have summable Szlenk index in terms of the behavior of the modulus of
asymptotic uniform smoothness under equivalent norms. Furthermore, it is shown there
that if X has summable Szlenk index, and if Y is uniformly homeomorphic to X , then Y
has summable Szlenk index.

In this work, we define what it means for a weak∗-compact set to have summable
Szlenk index, which generalizes the notion of a Banach space having summable Szlenk
index. Our first result is the following.

THEOREM 1.1. Let X be a Banach space and let K ⊂ X ∗ be weak∗-compact. Then,

K has summable Szlenk index if and only if abs co
weak∗

(K) does.

Our first application of this result is the following embedding result, which generalizes a
result from [16].
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THEOREM 1.2. If X is a separable Banach space, then X has summable Szlenk index
if and only if there exists a Banach space Z with finite dimensional decomposition (FDD)
E such that E is asymptotic c0 in Z and Z admits a subspace isometric to X .

Our second application answers a question posed in [8].

THEOREM 1.3. Let A0 : X0 → Y0, A1 : X1 → Y1 be bounded, linear operators. If A0, A1

have summable Szlenk index, then so does the induced operator A0 ⊗ A1 : X0⊗̂εX1 →
Y0⊗̂εY1 between the injective tensor products. If neither A0 nor A1 is the zero operator,
then the converse holds as well.

One last application of Theorem 1.1 is a short proof of an operator version of a result
from [7].

THEOREM 1.4. Let � be a non-empty set and let Aλ : Xλ → Yλ be a uniformly
bounded collection of linear operators. Then, the induced operator A : (⊕λ∈�Xλ)c0(�) →
(⊕λ∈�Yλ)c0(�) has summable Szlenk index if and only if the operators Aλ have uniformly
summable Szlenk index.

We also study the ideal properties of the class S of operators with summable Szlenk index,
as well as introduce a way to assign to each operator A a value �(A) ∈ [0, ∞] such that
A has summable Szlenk index if and only if �(A) < ∞. Moreover, the quantity s(A) :=
‖A‖ + �(A) defines an ideal norm on S. In this direction, we prove the following.

THEOREM 1.5. The class (S, s) is a Banach ideal.

We also study the behavior of summable Szlenk index of �p direct sums of operators for
1 � p �∞. Such a study is trivial in the setting of spaces, since the norm of the identity
operator of a Banach space is either 0 or 1, but non-trivial for operators. We prove the
following.

THEOREM 1.6. Let � be a non-empty set and let Aλ : Xλ → Yλ be a uniformly
bounded collection of linear operators. Then, for any 1 � p �∞, the induced operator
A : (⊕λ∈�Xλ)λp(�) → (⊕λ∈�Yλ)�p(�) has summable Szlenk index if and only if (‖Aλ‖)λ∈� ∈
c0(�) and (�(Aλ))λ∈� ∈ �p(�).

2. Definitions. Throughout, K will denote the scalar field (either R or C), and
“operator” will mean “bounded, linear operator.”

Given a directed set D and n ∈ N, we let D�n = ∪n
i=1Di. Given t = (ui)

k
i=1 ∈ D�n, we

let |t| = k, t− = (ui)
k−1
i=1 (where (ui)

0
i=1 =∅ by convention), and for 0 � j � k, t|j = (ui)

j
i=1.

Given t = (ui)
k
i=1 ∈ {∅} ∪ D�n−1 and u ∈ D, we let t � u = (u1, . . . , uk, u) ∈ D�n. For s, t ∈

D�n, we let s � t be the concatenation of s and t. If X is a Banach space, we say a collec-
tion (xt)t∈D�n ⊂ X is weakly null provided that for every t ∈ {∅} ∪ D�n−1, (xt�u)u∈D is a
weakly null net. We say a map φ : D�n → D�n is a pruning provided that |φ(t)| = |t| and
φ(t)− = φ(t−) for each t ∈ D�n and such that the collection (x′

t)t∈D�n is weakly null, where
x′

t = xφ(t). The following can be easily proved by induction on n. We will use this result
frequently.

PROPOSITION 2.1. Let D be a directed set, n ∈ N, X a Banach space, and (xt)t∈D�n a
weakly null collection. Let (M, d) be a compact metric space and suppose F : Dn → M is
any function. Then, for any δ > 0, there exist a pruning φ : D�n → D�n and 	 ∈ M such
that d(	, F(φ(t)))� δ for any t ∈ Dn.
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For a Banach space X and n ∈ N, we let {X }n denote the set of all norms | · | on Kn such
that for any b > 1, there exists a directed set D, a weakly null collection (xt)t∈D�n ⊂ SX such
that for any (ai)

n
i=1 ∈ S�n∞ and any t ∈ Dn,

b−1

∥∥∥∥∥
n∑

i=1

aixt|i

∥∥∥∥∥�
∣∣∣∣∣

n∑
i=1

aiei

∣∣∣∣∣� b

∥∥∥∥∥
n∑

i=1

aixt|i

∥∥∥∥∥.
A standard compactness argument yields that {X }n 
=∅ whenever dim X = ∞. In keeping
with the terminology in [11], we say that X is Asymptotic c0 if dim X = ∞ and there exists
a constant C � 1 such that

C−1

∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥
�n∞

�
∣∣∣∣∣

n∑
i=1

aiei

∣∣∣∣∣� C

∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥
�n∞

for each n ∈ N, each | · | ∈ {X }n, and each (ai)
n
i=1 ∈ Kn. We remark that since the canonical

Kn basis is normalized and monotone in (Kn, | · |) for each | · | ∈ {X }n, we always have∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥
�n∞

� 2

∣∣∣∣∣
n∑

i=1

aiei

∣∣∣∣∣,
so the upper inequality is the only one we need to check in order to establish that a given
infinite dimensional space is Asymptotic c0.

Let us also note that in the previous paragraph, the definition of {X }n involves weakly
null trees indexed by D�n for some directed set D. However, it is equivalent to include only
the definition of {X }n trees indexed by D�n, where D is a fixed weak neighborhood basis at
0 in X . Moreover, if X ∗ is separable, it is sufficient to include in the definition only those
trees indexed by N�n.

We recall that a sequence E = (En)
∞
n=1 of finite dimensional subspaces of the Banach

space X is called an FDD for X provided that for each x ∈ X , there exists a unique
sequence (xn)

∞
n=1 ∈∏∞

n=1 En such that x =∑∞
n=1 xn. In this case, for each m ∈ N, the pro-

jection PE
m

∑∞
n=1 xn =∑m

n=1 xn is continuous. We let PE
0 = 0. By the Principle of Uniform

Boundedness, sup0�m<n

∥∥PE
n − PE

m

∥∥< ∞. If 0 = m0 < m1 < · · · and Fn = ⊕mn
i=mn−1+1Ei,

then F = (Fn)
∞
n=1 is also an FDD for X . In this case, we say F is a blocking of E. We say E

is shrinking if {(PE
n )∗(X ∗) : n ∈ N} is dense in X ∗, which occurs if and only if (E∗

n)
∞
n=1 is an

FDD for X ∗. Here, E∗
n is identified with (PE

n )∗(X ∗) ∩ ker((PE
n−1)

∗). We say E is asymptotic

c0 in X if there exists C � 1 such that for any n � k0 < · · · < kn and any xi ∈ ⊕ki−1
j=ki−1

Ej,

C−1 max
1�i�n

‖xi‖�
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥� C max
1�i�n

‖xi‖.

We remark that if b = sup0�m<n

∥∥PE
n − PE

m

∥∥ and if (xi)
n
i=1 is any block sequence with

respect to E,

max
1�i�n

‖xi‖� b

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥,
so the upper inequality is the only one we need to check in order to establish that E is
asymptotic c0 in X .
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We next define the Szlenk derivations and the Szlenk index. The definition goes back
to Szlenk [19] in a somewhat different form which is equivalent for separable spaces not
containing �1. Given a Banach space X , a weak∗-compact subset K of X ∗, and ε > 0, we
let sε(K) denote the subset of K consisting of those x∗ ∈ K such that for each weak∗-
neighborhood V of x∗, diam(V ∩ K) > ε. For convenience, we let sε(K) = K whenever
ε � 0. We then define by transfinite induction

s0
ε(K) = K,

sξ+1
ε (K) = sε(s

ξ
ε (K)),

and if ξ is a limit ordinal, we let

sξ
ε (K) =

⋂
ζ<ξ

sζ
ε (K).

If there exists an ordinal ξ such that sξ
ε (K) =∅, we let Sz(K, ε) be the minimum such ordi-

nal. If no such ordinal exists, we write Sz(K, ε) = ∞. We define Sz(K) = supε>0 Sz(K, ε).
If A : X → Y is an operator, we let Sz(A, ε) = Sz(A∗BY ∗ , ε) and Sz(A) = Sz(A∗BY ∗). If X is a
Banach space, we let Sz(X , ε) = Sz(BX ∗ , ε) and Sz(X ) = Sz(BX ∗). For M � 0, we say K has
M-summable Szlenk index provided that if ε1, . . . , εn ∈ R (equivalently, if ε1, . . . , εn > 0)
are such that sε1 . . . sεn(K) 
=∅,

∑n
i=1 εi � M . This implies that Sz(K, ε)� M/ε + 1 for

all ε > 0, and in particular, Sz(K)�ω. We say K has summable Szlenk index if it has
M-summable Szlenk index for some M � 0.

We let Ban denote the class of all Banach spaces over K. We let L denote the class
of all operators between Banach spaces and for X , Y ∈ Ban, we let L(X , Y ) denote the set
of operators from X into Y . For I⊂L and X , Y ∈ Ban, we let I(X , Y ) = I∩L(X , Y ). We
recall that a class I is called an ideal if

(i) For any W , X , Y , Z ∈ Ban, any C ∈L(W , X ), B ∈ I(X , Y ), and A ∈L(Y , Z),
ABC ∈ I,

(ii) IK ∈ I,
(iii) for each X , Y ∈ Ban, I(X , Y ) is a vector subspace of L(X , Y ).

We recall that an ideal I is said to be closed provided that for any X , Y ∈ Ban, I(X , Y ) is
closed in L(X , Y ) with its norm topology.

If I is an ideal and ι assigns to each member of I a non-negative real value, then we
say ι is an ideal norm provided that

(i) for each X , Y ∈ Ban, ι is a norm on I(X , Y ),
(ii) for any W , X , Y , Z ∈ Ban and any C ∈L(W , X ), B ∈ I(X , Y), A ∈ I(Y , Z), ι(ABC)�

‖A‖ι(B)‖C‖,
(iii) for any X , Y ∈ Ban, any x ∈ X , and any y ∈ Y , ι(x ⊗ y) = ‖x‖‖y‖.

If I is an ideal and ι is an ideal norm on I, we say (I, ι) is a Banach ideal provided that for
every X , Y ∈ Ban, (I(X , Y ), ι) is a Banach space.

3. An ideal seminorm. Given a Banach space X and a weak∗-compact subset K
of X ∗, for x ∈ X , we let rK(x) = 0 if K =∅, and otherwise we let rK(x) = maxx∗∈K Re x∗(x).
We note that rA∗BY∗ (x) = ‖Ax‖, rBX∗ (x) = ‖x‖, and rK = rcoweak∗

(K) for any weak∗-compact K.
Note also that rK is a sublinear functional, and it is a seminorm if K is balanced. Given
n ∈ N, we let �n(K) be the infimum of those s > 0 such that for every directed set D, every
weakly null (xt)t∈D�n ⊂ BX ,
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inf
t∈Dn

rK

(
n∑

i=1

xt|i

)
� s.

We let �(K) = supn �n(K). If A : X → Y is an operator, we let �n(A) = �n(A∗BY ∗),
�(A) = �(A∗BY ∗). If X is a Banach space, we let �n(X ) = �n(IX ), �(X ) = �(IX ).

REMARK 3.1. We note that it is convenient to allow any directed set in the definition
of �n. However, we obtain the same value of �n(K) if in the definition we only consider
weakly null collections indexed by D�n

1 , where D1 is a fixed weak neighborhood basis
at 0 in X . Indeed, if for some s ∈ R, (xt)t∈D�n ⊂ BX is a weakly null collection such that
inft∈Dn rK

(∑n
i=1 xt|i

)
> s, one can define by induction some map φ : D�n

1 → D�n such that
|φ(t)| = |t| and φ(t−) = φ(t)− for all t ∈ D�n, and (xφ(t))t∈D�n

1
is also weakly null. From

this it follows that with x′
t = xφ(t), (x′

t)t∈D�n
1

⊂ BX is weakly null and

inf
t∈D n

1

rK

(
n∑

i=1

x′
t|i

)
� inf

t∈D n
rK

(
n∑

i=1

xt|i

)
> s.

In what follows, S denotes the set of unimodular scalars. We let SK = {εx∗ : ε ∈ S,

x∗ ∈ K}.
PROPOSITION 3.2. Let X be a Banach space, L, K, K1, K2, . . . , Kl ⊂ X ∗ weak∗-

compact, and n ∈ N.

(i) K is norm compact if and only if �1(K) = 0 if and only if �(K) = 0.
(ii) If R � 0 is such that K ⊂ RBX ∗ , �n(K)� Rn.

(iii) �n(K + L)��n(K) + �n(L).
(iv) If ε is a unimodular scalar, �n(εK) = �n(K).
(v) �n

(∪l
i=1Ki

)= max1�i�l �n(Ki).

(vi) �n(K) = �n(SK).

(vii) �n

(
abs co

weak∗
(K)

)= �n(K).
(viii) For s > 0, �n(K) < s if and only if for every (xt)t∈D�n ⊂ BX , there exists a

pruning φ : D�n → D�n such that

sup
t∈Dn

sup
(ai)

n
i=1∈B�n∞

rK

(
n∑

i=1

aixφ(t)|i

)
< s.

(ix) If dim X = ∞, �n(K) is the infimum of those s > 0 such that for every directed
set D and every weakly null (xt)t∈D�n ⊂ SX ,

inf
t∈Dn

rK

(
n∑

i=1

xt|i

)
� s.

Proof.

(i) Since rK is a sublinear functional, it follows that �n(K)� n�1(K), so �(K) = 0
if and only if �1(K) = 0 is clear. The fact that K is norm compact if and only if
�1(K) = 0 follows from the fact that K is norm compact if and only if for any
bounded, weakly null net (xλ) ⊂ BX , limλ rK(xλ) = 0.

(ii) This follows from the fact that rK � R‖ · ‖, so �n(K)� n�1(K)� Rn.
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(iii) Fix a > �n(K) and b > �n(L). Fix a weakly null (xt)t∈D�n ⊂ BX . By apply-
ing Proposition 2.1 twice, we may fix a pruning φ : D�n → D�n such that
either rK

(∑n
i=1 xφ(t)|i

)
� a or rK

(∑n
i=1 xφ(t)|i

)
> a for all t ∈ Dn, and such

that either rL

(∑n
i=1 xφ(t)|i

)
� b or rL

(∑n
i=1 xφ(t)|i

)
> b for all t ∈ Dn. Since

a > �n(K), rK

(∑n
i=1 xφ(t)|i

)
� a for all t ∈ Dn. Similarly, since b > �n(L),

rL

(∑n
i=1 xφ(t)|i

)
� b for all t ∈ Dn. Then, fix any t ∈ Dn and note that

rK+L

(
n∑

i=1

xφ(t)|i

)
= rK

(
n∑

i=1

xφ(t)|i

)
+ rL

(
n∑

i=1

xφ(t)|i

)
� a + b.

From this it follows that

inf
t∈Dn

rK+L

(
n∑

i=1

xt|i

)
��n(K) + �n(L).

Since (xt)t∈D�n ⊂ BX was an arbitrary weakly null collection, �n(K + L)�
�n(K) + �n(L).

(iv) This follows from the fact that rεK

(∑n
i=1 xt|i

)= rK

(∑n
i=1 εxt|i

)
and (xt)t∈D�n ⊂

BX is weakly null if and only if (εxt)t∈D�n ⊂ BX is.
(v) Obviously, �n(∪l

i=1Ki)� max1�i�l �n(Ki). Now fix a < �n(∪l
i=1Ki) and a

weakly null collection (xt)t∈D�n ⊂ BX such that

inf
t∈Dn

r∪l
i=1Ki

(
n∑

i=1

xt|i

)
> a.

Now for each t ∈ Dn, fix it ∈ {1, . . . , l} and x∗
t ∈ Kit such that

x∗
t

(
n∑

i=1

xt|i

)
= r∪l

i=1Ki

(
n∑

i=1

xt|i

)
.

Define f : Dn → {1, . . . , l} by f (t) = it and fix a pruning φ : D�n → D�n and
i ∈ {1, . . . , l} such that f ◦ φ|Dn ≡ i. We may do this by Proposition 2.1. Then,

a < inf
t∈Dn

Re x∗
φ(t)

(
n∑

i=1

xφ(t)|i

)
��n(Ki).

(vi) Obviously, �n(K)��n(SK). For any δ > 0, we may fix a finite subset T of S

such that SK ⊂ (∪ε∈TεK) + δBX ∗ . We now combine (ii)–(v) to deduce that

�n(SK)��n(∪ε∈TεK) + �n(δBX ∗)��n(K) + δn.

Since this holds for any δ > 0, we deduce (vi).
(vii) Since rSK = rcoweak∗

(SK),

�n(SK) = �n(coweak∗
(SK)) = �n

(
abs co

weak∗
(K)

)
.

By (vi), �n(K) = �n(SK).
(viii) Assume �n(K) < s′ < s. Fix R > 0 such that K ⊂ RBX ∗ and δ > 0 such that

Rδn + s′ < s. Fix a finite δ-net F of B�n∞ and (xt)t∈D�n ⊂ BX . By applying
Proposition 2.1 repeatedly, once for each (ai)

n
i=1 ∈ F, we may fix a pruning

φ : D�n → D�n such that for each (ai)
n
i=1 ∈ F, either
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rK

(
n∑

i=1

aixφ(t)|i

)
� s′

or

rK

(
n∑

i=1

aixφ(t)|i

)
> s′

for all t ∈ Dn. Since (a|t|xt)t∈D�n ⊂ BX is weakly null, the latter is impossible. By
our choice of R and δ, we deduce that

rK

(
n∑

i=1

aixφ(t)|i

)
� s

for all (ai)
n
i=1 ∈ B�n∞ and t ∈ Dn.

The converse is clear.
(ix) Assume dim X = ∞. Let �′

n(K) be the infimum of those s > 0 such that
for every directed set D and every weakly null (xt)t∈D�n ⊂ SX , inft∈Dn

rK

(∑n
i=1 xt|i

)
� s. It is clear that �′

n(K)��n(K). Seeking a contradiction,
assume s, s′ > 0 are such that �′

n(K) < s′ < s < �n(K). Fix R > 0 such that
K ⊂ RBX ∗ and fix δ > 0 such that 2Rnδ < s − s′. Fix (xt)t∈D�n ⊂ BX such that

inf
t∈Dn

rK

(
n∑

i=1

xt|i

)
> s.

By applying Proposition 2.1 and relabeling, we may assume there exist numbers
a1, . . . , an ∈ [0, 1] such that for each t ∈ D�n, |‖xt‖ − a|t|| < δ/2. Let I = {i �
n : ai � δ} and note that

inf
t∈Dn

rK

(∑
i∈I

xt|i

)
> s − Rδn.

Let M be a weak neighborhood basis at 0 in X and note that there exists
a map φ : M�|I| → D�n such that (xφ(t)/‖xφ(t)‖)t∈M�|I| is weakly null (see
[5, Proposition 7.2]). Note that �|I|(K)��n(K) < s′, since dim X = ∞. Then,
with x′

t = xφ(t)/‖xφ(t)‖, applying Proposition 2.1 as usual to (εix′
t)t∈M�|I| for each

(εi)
|I|
i=1 ∈ {±1}|I|, we may relabel one more time and assume that for each t ∈ M |I|

and (εi)
|I|
i=1 ∈ {±1}|I|,

rK

( |I|∑
i=1

aix
′
t|i

)
> s − 2Rδn and rK

(∑
i=1

εix
′
t|i

)
< s′.

But these conditions are in contradiction, since rK is sublinear, s′ < s − 2Rδn,
and

∑|I|
i=1 aix′

t|i lies in the convex hull of
{∑|I|

i=1 εix′
t|i : (εi)

|I|
i=1 ∈ {±1}|I|}.

The following lemma uses standard techniques. It is a generalization of results from
[10] (specifically, Proposition 3.4 and Lemmas 3.1–3.3, 4.3) to arbitrary, weak∗-compact
sets in the duals of possibly non-separable spaces. We note that these techniques for
arbitrary weak∗-compact sets and non-separable spaces have appeared for example in
[3, Theorem 2.2]. For these reasons, we only sketch the proof.
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LEMMA 3.3. Let X be a Banach space and let K ⊂ X ∗ be weak∗-compact.

(i) If K has M-summable Szlenk index, �(K)� M.
(ii) If �(K)� M/4, then K has M-summable Szlenk index.

Proof.

(i) Assume �(K) > M ′ > M and fix n ∈ N, (xt)t∈D�n ⊂ BX weakly null, and
(x∗

t )t∈Dn ⊂ K such that

M ′ < inf
t∈Dn

Re x∗
t

(
n∑

i=1

xt|i

)
.

Fix R > 0 such that K ⊂ RBX ∗ and define f : Dn → RB(�n∞)R by f (t) = (Re x∗
t

(xt|i))n
i=1. Fix δ > 0 such that M + 3δn < M ′ and apply Proposition 2.1 and relabel

to assume there exists a sequence (ai)
n
i=1 ∈ RB(�n∞)R such that

|ai − Re x∗
t (xt|i)| < δ

for all t ∈ Dn and 1 � i � n. Then,

M ′ < nδ +
n∑

i=1

ai.

Now an easy induction proof yields that for any 0 � i � n and any t ∈ {∅} ∪ D�i,
there exists x∗

t ∈ sai+1−2δ . . . san−2δ(K) such that if ∅< s � t, Re x∗
t (xs)� a|s| − δ.

In particular, x∗
∅

∈ sa1−2δ . . . san−2δ(K). Since

n∑
i=1

(ai − 2δ) > M ′ − 3δn > M,

this shows that K does not have M-summable Szlenk index.
(ii) Assume that K does not have M-summable Szlenk index. Then, there exist

ε1, . . . , εn > 0 such that sε1 . . . sεn(K) 
=∅ and
∑n

i=1 εi = M ′ > M . Fix δ > 0 such
that M ′ − δn > M . Let D be a weak neighborhood basis at 0 in X and let N be a
weak∗-neighborhood basis at 0 in X ∗. Then, by standard techniques, we may fix
(x∗

t )t∈{∅}∪N�n ⊂ K such that for each t ∈ {∅} ∪ D�n−1, weak∗-limv∈N x∗
t�v = x∗

t and

for each v ∈ N , ‖x∗
t�v − x∗

t ‖ > ε|t|+1/2. Now we may define a map φ : D�n → N�n

and a weakly null collection (xt)t∈D�n ⊂ BX such that Re x∗
φ(t)(xs)� (ε|s| − δ)/4 for

any ∅< s � t. In particular,

inf
t∈Dn

rK

(
n∑

i=1

xt|i

)
� inf

t∈Dn
Re xφ(t)

(
n∑

i=1

xt|i

)
� 1

4

(
n∑

i=1

εi − nδ

)
> M/4.

This shows that �(K) > M/4.

COROLLARY 3.4. Let X be a Banach space and let K ⊂ X ∗ be weak∗-compact. Then,

K has summable Szlenk index if and only if �(K) < ∞ if and only if abs co
weak∗

(K) has
summable Szlenk index.

For each operator A, let s(A) = ‖A‖ + �(A) and let S denote the class of all operators
with summable Szlenk index. Note that by Corollary 3.4, S is the class of all operators A
such that s(A) < ∞.
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THEOREM 3.5. The class (S, s) is a Banach ideal.

Proof. Fix X , Y ∈ Ban and note that by Proposition 3.2 and the positive homogeneity
of �, � is a seminorm on S(X , Y ). From this we can deduce that (S(X , Y ), s) is a normed
space.

Now fix W , Z ∈ Ban, C : W → X , B : X → Y , and A : Y → Z with ‖A‖ = ‖C‖ = 1. Fix
n ∈ N and a weakly null (xt)t∈D�n ⊂ BW . Then, (Cwt)t∈D�n ⊂ BX is weakly null, and

inf
t∈Dn

∥∥∥∥∥ABC
n∑

i=1

wt|i

∥∥∥∥∥� inf
t∈Dn

∥∥∥∥∥B
n∑

i=1

Cwt|i

∥∥∥∥∥��n(B).

Thus, �n(ABC)��n(B). By homogeneity, we deduce that �n(ABC)� ‖A‖�n(B)‖C‖ and
s(ABC)� ‖A‖s(B)‖C‖ for any C : W → X and A : Y → Z.

Next, since �(A) = 0 for any compact operator, S contains all finite rank operators
and s(x ⊗ y) = ‖x ⊗ y‖ = ‖x‖‖y‖ for each x ∈ X and y ∈ Y .

It remains to show that (S(X , Y ), s) is complete. To that end, fix a s-Cauchy sequence
(Ak)

∞
k=1 in S(X , Y ). Since (Ak)

∞
k=1 is also norm Cauchy, it is norm convergent to some A.

Since �n(A − Ak)� n‖A − Ak‖ for any n, k ∈ N, it follows that

�(A) = sup
n

�n(A)� sup
n

lim sup
k

�n(Ak)� lim sup
k

�(Ak) < ∞

and

lim sup
n

�(A − An)� lim sup
n

lim sup
k

�(Ak − An) = 0.

REMARK 3.6. The class S is not a closed ideal. Indeed, let Xn be the completion of
c00 with respect to the norm∥∥∥∥∥

∞∑
i=1

aiei

∥∥∥∥∥
Xn

= max

{∑
i∈T

|ai| : |T | = n

}
.

It is quite clear that �(Xn) = n, so that A : (⊕∞
n=1Xn)c0 → (⊕∞

n=1Xn)c0 given by A|Xn =
n−1/2IXn quite obviously fails to have summable Szlenk index, but is the norm limit of
operators which have summable Szlenk index.

4. Embedding. The equivalence of (i) and (iii) of the next theorem is no doubt
known to specialists. We are unaware of any mention of this fact in the literature, and we
will need it for later results, so we include it here. We mention that in the case that X has
an FDD, the equivalence of (ii)−(iv) was shown in a dual form in [13, Proposition 6.7].

THEOREM 4.1. Let A : X → Y be an operator. The following are equivalent:

(i) �(A) < ∞.
(ii) A has summable Szlenk index.

Furthermore, if A = IX and dim X = ∞, each of the above is equivalent to the
condition

(iii) X is Asymptotic c0.
Finally, if A = IX , dim X = ∞, and X has a shrinking FDD E, each of the above
is equivalent to the condition

(iv) There exists a blocking F of E which is asymptotic c0 in X .
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Proof of Theorem 4.1. The equivalence of (i) and (ii) comes from Corollary 3.4. The
equivalence (ii) ⇒ (iii) follows from Proposition 3.2 (viii) and (ix).

Assume A = IX , dim X = ∞, and E is a shrinking FDD for X . Fix C � 1 such that
|∑n

i=1 ei|� C for every n ∈ N and | · | ∈ {X }n. Fix C1 > C. For an infinite subset M of N,
if M = {m1, m2, . . .} with m1 < m2 < . . . and m0 = 0, let FM be the blocking of E given by
FM

n = ⊕mn
j=mn−1+1Fj. Let V denote the set of those infinite subsets M of N such that there

exists (xi)
n
i=1 ⊂ BX such that xi ∈ FM

2i for each 1 � i � n and ‖∑n
i=1 xi‖� C1. Arguing as

in [15, Theorem 3.3], we deduce the existence of some infinite subset M of N such that for
any infinite subset N of M , N /∈ V . From the definition of V , if (xi)

2n
i=1 ⊂ BX is any block

sequence of FM , then ∥∥∥∥∥
2n∑

i=1

xi

∥∥∥∥∥�
∥∥∥∥∥

n∑
i=1

x2i−1

∥∥∥∥∥+
∥∥∥∥∥

n∑
i=1

x2i

∥∥∥∥∥� 2C1.

Since we may do this for any n, a standard diagonalization procedure yields that
(iii) ⇒ (iv).

Last, (iv) ⇒ (iii) is obvious.

The following result provides a negative solution to a conjecture from [10].

COROLLARY 4.2. There exists an �1 predual which has summable Szlenk index but
contains no isomorph of c0.

Proof. By [1, Proposition 5.7], there exists an L∞ Banach space X with FDD E
such that E is asymptotic c0 in X and such that X contains no isomorph of c0 and X ∗
is isomorphic to �1. This space X has summable Szlenk index.

The following result generalizes a theorem from [16], where it was shown that any separa-
ble, reflexive, Asymptotic c0 space embeds into a Banach space with Z with FDD E such
that E is asymptotic c0 in Z.

THEOREM 4.3. Let X be a separable Banach space. Then X is Asymptotic c0 if and
only if there exists a Banach space Z with FDD E such that E is asymptotic c0 in Z and Z
is isometric to a subspace of Z. Moreover, if X is reflexive, Z can be taken to be reflexive.

Proof. By [18], there exists a weak∗-compact set B ⊂ BX ∗ and a Banach space Z with
shrinking FDD E such that X embeds isomorphically into Z and such that Z is reflexive if

X is. Furthermore, there exist a subset B ⊂ BZ∗ such that abs co
weak∗

(B) = BZ∗ , a constant
c > 0, and a map I∗ : Z∗ → X ∗ such that

I∗(sε1 . . . sεn(B)) ⊂ sε1/c . . . sεn/c(B).

Each of these properties except the last comes from the construction of the space Z.
The last property follows from an inessential modification of [18, Lemma 5.5]. If X
has summable Szlenk index, so does B, and therefore so does B. By Corollary 3.4,

BZ∗ = abs co
weak∗

(B) has summable Szlenk index as well. This means Z is Asymptotic
c0, and therefore some blocking of E is asymptotic c0 in Z.

5. Injective tensor products. Let us recall that the injective tensor product is the
closed span in L(Y ∗, X ) of the operators x ⊗ y : Y ∗ → X , where x ⊗ y( y∗) = y∗( y)x. For
i = 0, 1, if Ai : Xi → Yi is an operator, we may define the operator A0 ⊗ A1 : X0⊗̂εX1 →
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Y0⊗̂εY1. This operator is given by A0 ⊗ A1(u) = A0uA∗
1 : Y ∗

1 → Y0. A convenient and more
common description of A0 ⊗ A1 is given by its action on simple tensors, which is given by
(A0 ⊗ A1)(x0 ⊗ x1) = A0x0 ⊗ A1x1.

Given subsets K0 ⊂ X ∗
0 , K1 ⊂ X ∗

1 , we let

[K0, K1] = {x∗
0 ⊗ x∗

1 : x∗
0 ∈ K0, x∗

1 ∈ K1} ⊂ (X0⊗̂εX1)
∗.

PROPOSITION 5.1. Let J be a finite set. Suppose that R > 0 and for each i = 0, 1
and j ∈ J, Ki, j ⊂ RBX ∗

i
is a weak∗-compact set. Then, for any ε1, . . . , εn ∈ R and any

n ∈ {0} ∪ N,

sε1 . . . sεn

⎛
⎝⋃

j∈ J

[K0, j, K1, j]
⎞
⎠⊂

⋃
j∈ J ,(ki)

n
i=1∈{0,1}n

[
sk1
ε1/4R . . . skn

εn/4R(K0, j), s1−k1
ε1/4R . . . s1−kn

εn/4R(K1, j)
]
.

Proof. We induct on n with the n = 0 case true by definition.
It is easy to see that if R > 0, x∗

0, z∗
0 ∈ RBX ∗

0
, x∗

1, z∗
1 ∈ RBX ∗

1
, and ‖x∗

0 ⊗ x∗
1 − z∗

0 ⊗ z∗
1‖ > ε,

then

max
{‖x∗

0 − z∗
0‖, ‖x∗

1 − z∗
1‖
}

> ε/2R.

Now assume the result holds for n and

u∗ ∈ sε1 . . . sεn+1

(
∪j∈J [K0, j, K1, j]

)
= sε1

(
sε2 . . . sεn+1

(
∪j∈J [K0, j, K1, j]

))
.

This means there exists a net (u∗
λ) ⊂ sε2 . . . sεn+1

(
∪j∈J [K0, j, K1, j]

)
converging weak∗ to u∗

such that ‖u∗ − u∗
λ‖ > ε1/2 for all λ. By the inductive hypothesis, for each λ there exists

jλ ∈ J and (kλ
i )n+1

i=2 ∈ {0, 1}n such that

u∗
λ ∈

[
s

kλ
2

ε2/4R . . . s
kλ

n+1

εn+1/4R(K0, jλ ), s
1−kλ

2
ε2/4R . . . s

1−kλ
n+1

εn+1/4R(K1, jλ )
]
.

By passing to a subnet, we may assume there exist j ∈ J and (ki)
n+1
i=2 ∈ {0, 1}n such that

j = jλ for all λ, ki = kλ
i for all λ and 2 � i � n + 1. For each λ, write

u∗
λ = x∗

0,λ ⊗ x∗
1,λ ∈

[
sk2
ε2/4R . . . skn+1

εn+1/4R(K0, j), s1−k2
ε2/4R . . . s1−kn+1

εn+1/4R(K1, j)
]
.

By passing to a subnet again, we may assume x∗
0,λ →

weak∗ x∗
0 ∈ sk2

ε2/4R . . . skn+1

εn+1/4R(K0, j),

x∗
1,λ →

weak∗ x∗
1 ∈ s1−k2

ε2/4R . . . s1−kn+1

εn+1/4R(K1, j), and either

‖x∗
0 − x∗

0,λ‖ > ε1/4R

for all λ or

‖x∗
1 − x∗

1,λ‖ > ε1/4R

for all λ. For this we are using the fact that u∗ = x∗
0 ⊗ x∗

1. If ‖x∗
0 − x∗

0,λ‖ > ε1/4R for all λ,
let k1 = 1, and otherwise let k1 = 0. Then,

u∗ = x∗
0 ⊗ x∗

1 ∈
[
sk1
ε1/4R . . . skn+1

εn+1/4R(K0, j), s1−k1
ε1/4R . . . s1−kn+1

εn+1/4R(K1, j)
]
.
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COROLLARY 5.2. Let A0 : X0 → Y0, A1 : X1 → Y1 be non-zero operators. Then, A0, A1

have summable Szlenk index if and only if A0, A1 do.

Proof. If A0 ⊗ A1 has summable Szlenk index, by the ideal property, A0, A1 do.

Let K = [A∗
0BY ∗

0
, A∗

1BY ∗
1
] ⊂ (X0⊗̂εX1)

∗ and note that abs co
weak∗

(K) = (A0 ⊗ A1)
∗

B(Y0⊗̂εY1)∗ by the Hahn–Banach theorem. By Corollary 3.4, it is sufficient to show that
K has summable Szlenk index. Assume A0 has M0-summable Szlenk index and A1

has M1-summable Szlenk index. Let R = max{‖A0‖, ‖A1‖}. Fix ε1, . . . , εn > 0 such that∑n
i=1 εi > 4R(M0 + M1). Then, for any (ki)

n
i=1 ∈ {0, 1}n,

M0 + M1 <

n∑
i=1

kiεi/4R +
n∑

i=1

(1 − ki)εi/4R,

so that either
∑n

i=1 kiεi/4R > M0 or
∑n

i=1(1 − ki)εi/4R > M1. In either case,[
sk1
ε1/4R . . . skn

εn/4R

(
A∗

0BY ∗
0

)
, s1−k1

ε1/4R . . . s1−kn
εn/4R

(
A∗

1BY ∗
1

)]=∅.

By Proposition 5.1,

sε1 . . . sεn(K) ⊂
⋃

(ki)
n
i=1∈{0,1}n

[
sk1
ε1/4R . . . skn

εn/4R(A∗
0BY ∗

0
), s1−k1

ε1/4R . . . s1−kn
εn/4R(A∗

1BY ∗
1
)
]
=∅,

whence K has 4R(M0 + M1)-summable Szlenk index.

The following answers a question from [8].

COROLLARY 5.3. Let X0, X1 be non-zero Banach spaces. Then, X0⊗̂εX1 is Asymptotic
c0 if and only if X0, X1 are. Equivalently, X0⊗̂εX1 has summable Szlenk index if and only if
X0, X1 do.

6. Direct sums. The first result of this section is an operator version of a result
from [7]. However, we will use Corollary 3.4 to give a new proof.

THEOREM 6.1. Suppose that � is a non-empty set and for each λ ∈ �, Aλ : Xλ →
Yλ is an operator. Assume also that supλ∈� ‖Aλ‖ < ∞ and let A : (⊕λ∈�Xλ)c0(�) →
(⊕λ∈�Yλ)c0(�) be the operator such that A|Xλ

= Aλ.
Then, A has summable Szlenk index if and only if there exists M such that for each

λ ∈ �, Aλ has M-summable Szlenk index.

Proof. Throughout the proof, we will identify each Xλ in the natural way with a sub-
space of (⊕λ∈�Xλ)c0(�), and the same with Yλ and X ∗

λ , Y ∗
λ . This does not change the

hypotheses or the conclusion, since the identification of the dual of X ∗
λ with the natural

subspace of the direct sum is an isometric, weak∗–weak∗ homeomorphism.
It is clear that if A has M-summable Szlenk index, Aλ has M-summable Szlenk index

for each λ ∈ �, which gives one direction.
Now suppose there exists M such that Aλ has M-summable Szlenk index for each

λ ∈ �. Let K =⋃
λ∈� A∗

λBY ∗
λ
. It is clear that for any n ∈ N and ε1, . . . , εn,

sε1 . . . sεn(K) ⊂ {0} ∪
⋃
λ∈�

sε1 . . . sεn

(
A∗

λBX ∗
λ

)
.
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From this it follows that with M ′ = M + 2 supλ∈� ‖Aλ‖, K has M ′-summable Szlenk index.
Indeed, suppose ε1, . . . , εn > 0 are such that

∑n
i=1 εi > M ′. Note that εi � 2 supλ∈� ‖Aλ‖

for each 1 � i � n. This means that
∑n

i=2 εi > M , whence

sε1 . . . sεn(K) ⊂ sε1

(
{0} ∪

⋃
λ∈�

sε2 . . . sεn

(
A∗

λBY ∗
λ

))= sε1({0}) =∅.

We now conclude by Corollary 3.4, since by the geometric Hahn–Banach theorem,

A∗B(⊕λ∈�Y ∗
λ )∗c0(�)

= abs co
weak∗

(K).

We next turn to a facet of this problem which is of interest for operators, but not for spaces.
Above we considered c0 direct sums, while below we wish to consider �p direct sums,
1 � p �∞. However, if (Xλ)λ∈� is a collection of non-zero Banach spaces, (⊕λ∈�Xλ)�p(�)

contains a copy of �p and therefore cannot have summable Szlenk index except in the case
that � is finite. Our final goal is to elucidate the situation for operators.

PROPOSITION 6.2. Fix 1 � p �∞. For any operators Ai : Xi → Yi, 1 � i � k and n ∈ N,

�n

(
A : (⊕k

i=1 Xi

)
�k

p
→ (⊕k

i=1 Yi

)
�k

p

)
�
∥∥(�n(Ai))

k
i=1

∥∥
�k

p

and

�
(

A : (⊕k
i=1 Xi

)
�k

p
→ (⊕k

i=1 Yi

)
�k

p

)
= ∥∥(�(Ai))

k
i=1

∥∥
�k

p
.

Proof. In the proof, we identify Xi and Yi with subspaces of X = (⊕k
i=1 Xi

)
�k

p
and Y =(⊕k

i=1 Yi

)
�k

p
, respectively. Let A : X → Y denote the operator with A|Xj = Aj. Let Pj : X → X

denote the projection from X onto Xj. Then, �n(Ai) = �n(APi).
Fix n ∈ N and a weakly null collection (xt)t∈D�n ⊂ BX . For each i ∈ I , fix ai > �n(Ai).

By applying Proposition 2.1 to (Pjxt)t∈D�n for each j = 1, . . . , k and relabeling, we may
assume ∥∥∥∥∥APj

n∑
m=1

xt|m

∥∥∥∥∥� aj,

and ∥∥∥∥∥A
n∑

m=1

xt|m

∥∥∥∥∥=
∥∥∥∥∥∥
(∥∥∥∥∥APj

n∑
m=1

xt|m

∥∥∥∥∥
)k

j=1

∥∥∥∥∥∥
�k

p

�
∥∥(ai)

k
i=1

∥∥
�k

p
.

Since ai > �n(Ai) was arbitrary, we conclude

�n(A)�
∥∥(�n(Ai))

k
i=1

∥∥
�k

p
.

Now for each 1 � i � k, fix 0 < bi < �(Ai) if �(Ai) > 0 and otherwise let bi = 0. If bi > 0,
fix ni ∈ N such that bi < �ni(Ki), and otherwise let ni = 1. Let n = max1�i�k ni. Let D be
a weak neighborhood basis at 0 in X . By Remark 3.1, we may fix for each 1 � j � k some
weakly null collection (xj

t)t∈D�n ⊂ BXj ⊂ BX such that

inf
t∈Dn

∥∥∥∥∥A
n∑

m=1

x j
t|m

∥∥∥∥∥� bj.
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Now fix t ∈ D�kn and assume |t| = ( j − 1)n + r, j, r ∈ N, 0 � r < n. We may write
t = s � s′, where |s| = ( j − 1)n and |s′| = r, and let xt = xj

s′ . Then, (xt)t∈D�kn ⊂ BX is weakly
null and

inf
t∈Dkn

∥∥∥∥∥A
kn∑

m=1

xt|m

∥∥∥∥∥� ∥∥(bi)
k
i=1

∥∥
�k

p
.

This shows that �(A)� ‖(�(Ai))
k
i=1‖�k

p
. The reverse inequality follows from the previous

paragraph.

COROLLARY 6.3. Fix 1 � p �∞. Assume that � is a non-empty set and for each λ ∈ �,
Aλ : Xλ→Yλ is an operator. Assume also that supλ∈� ‖Aλ‖<∞ and let A : (⊕λ∈� Xλ

)
�p(�)

→(⊕λ∈�Yλ)�p(�) be the operator such that A|Xλ
= Aλ. Then, A has summable Szlenk index

if and only if (‖Aλ‖)λ∈� ∈ c0(�) and (�(Aλ))λ∈� ∈ �p(�). Moreover, in this case,

�(A) = ‖(�(Aλ))λ∈�‖�p(�).

Proof. Throughout the proof, for a finite subset ϒ of �, let PϒA denote the map given
by PϒA|Xλ

= Aλ if λ ∈ ϒ and PϒA|Xλ
= 0 if λ ∈ � \ ϒ .

If (‖Aλ‖)λ∈� ∈ �∞(�) \ c0(�), then A preserves an isomorphic copy of �p and cannot
have summable Szlenk index. By Proposition 6.2,

�(A)� sup{�(PϒA) : ϒ ⊂ � finite} = sup{‖(�(Aλ))λ∈ϒ‖�p(ϒ) : ϒ ⊂ � finite}
= ‖(�(Aλ))λ∈�‖�p(�).

Therefore, if A has summable Szlenk index, (‖Aλ‖)λ∈� ∈ c0(�) and ‖(�(Aλ))λ∈�‖�p(�) �
�(A) < ∞.

Now if (‖Aλ‖)λ∈� ∈ c0(�) and ‖(�(Aλ))λ∈�‖�p(�) < ∞, A ∈ {PϒA : ϒ ⊂ � finite}.
Arguing as in the proof of Theorem 3.5,

�(A)� sup{�(PϒA) : ϒ ⊂ � finite} = ‖(�(Aλ))λ∈�‖�p(�) < ∞.
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