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ABSTRACT

In this paper we revisit an economic model of Buhlmann (ASTIN Bulletin,
1980) and derive equilibrium pricing transforms. We obtain the Esscher Trans-
form and the Wang Transform under different sets of assumptions on the
aggregate economic environment. We show that the Esscher Transform and the
Wang Transform exhibit very different behaviors when used in pricing insurance
risks.
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1. INTRODUCTION

In the actuarial research literature, there have developed many probability
transforms for pricing financial and insurance risks. Since the pricing of risk
is always done in an economic/market environment, it is theoretically desirable
to derive pricing transforms from a sound economic model that reflects the
collective risk preferences of the market participants. Dr. Hans Buhlmann, in
his milestone paper published in 1980 ASTIN Bulletin, has developed such an
economic model.

* This paper is dedicated to Dr. Hans Buhlmann for his tremendous contributions to the actuarial
profession and the international actuarial community.
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Buhlmann argued that in real-life situations premiums are not only depend-
ing on the risk to be covered but also on the surrounding market conditions.
He defined an economic premium principle as 

H: (X, Z) → Price[X],

where Z represents the market condition (e.g., aggregate risk, collective wealth,
correlation, etc).

With the goal of developing a sound economic premium principle, Buhl-
mann considered a risk-exchange model where all individual agents are acting
to maximize his/her own expected utility. Buhlmann’s risk-exchange model has
roots in mathematical economics.

Under a set of assumptions on the aggregate economic environment, Buhl-
mann derived equilibrium premiums as those obtained from the Esscher Trans-
form, which is a simple exponential tilting of the probability density: f*(x) =
c · f (x) · exp(lx), where c is a re-scaling constant.

In another major line of research, Venter (1991) made an observation that
insurance prices by (excess-of-loss) layer imply a transformed distribution. This
inspired Wang (1995, 1996) to propose premium calculation by applying a dis-
tortion to the cumulative distribution function:

F*(x) = g[F(x)],

where g: [0,1] → [0,1] is an increasing function with g (0) = 0 and g (1) = 1. The
proportional hazards (PH) transform, an elementary example of a distortion
function, is familiar to most actuaries. A newly emerged distortion, the Wang
Transform, extends CAPM for underlying assets and Black-Scholes formula
for options, which has brought distortion function research to a new territory
bordering with financial economics. In this paper we shall discover how the dis-
tortion approach is related to Buhlmann’s equilibrium pricing model.

In sections 2, we revisit the economic model of Buhlmann and derive equi-
librium pricing transforms. We obtain the Esscher Transform and the Wang Trans-
form from the equilibrium model, but under distinct sets of assumptions regard-
ing the aggregate economic environment. By focusing on assumptions underlying
these pricing transforms, we gain insights about their differences and connections.

In section 3, we compare the properties of the Esscher Transform and the
Wang Transform in pricing insurance risks.

In Appendix A, we discuss “general exponential tilting” to further explore
Buhlmann’s results. We show that distortion functions are special cases of
exponential tilting.

In Appendix B, built upon Buhlmann’s results, we discuss how systematic
risks can be reflected by the distortion pricing approach.

In Appendix C we give interpretations for the general economic model of
Buhlmann (1984).

2. BUHLMANN’S EQUILIBRIUM-PRICING MODEL

Consider risk exchanges among a collective of agents j = 1, 2, …, n, (typically
reinsurers, insurers, buyers of direct insurance, etc).
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Each agent is characterized by his/her 
(i) utility function uj(x), with uj�(x) > 0, and uj� (x) ≤ 0;
(ii) initial wealth Wj.

Each agent j is facing a risk of potential loss Xj(w) and is buying a risk-exchange
Yj (w), where w represents a state in a probability space (W, P). If agent j is an
insurance company, we can think of Yj(w) as the sum of all (re)insurance poli-
cies bought and sold by j as if it were “one” contract.

Whereas the original risk Xj belongs to agent j, the risk exchange Yj can be
freely bought/sold by agent j in the market. Buhlmann introduced the concept
of a pricing density ƒ(w) such that

jj ( ) ( ) ( ),Pr Y Y dice Pw w w
W

= z#8 B (2.1)

Buhlmann pointed out that the pricing density ƒ(w) could be understood as an
alteration of the actuarially objective probabilities.

Definition 2.1: The pair {Ye, j and ƒe} are called in equilibrium if

(C-1). For all j, E8uj(Wj –Xj +Ye, j – Price[Ye, j])B is maximum among all pos-
sible choices of the exchange variables Yj.

(C-2). ( )Y w 0,e jj
n

1
=

=
! for all w in W.

In the equilibrium, Ye, j is called the equilibrium exchange, and ƒe the equilibrium
price density.

Theorem 2.1 [Buhlmann, 1980] Assume that each agent j has an exponential
utility function uj(x) = 1 – exp(–lj x), the equilibrium price density satisfies:
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is the aggregate risk, and l satisfies 
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From Theorem 2.1, the equilibrium price for any risk X is
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with Z in equation (2.3) and l in equation (2.4).
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Buhlmann (1980) further assumed that X and Z – X are independent, and
derived that
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Theorem 2.2 Under the set of assumptions:

(AS-1a): The insurance market contains a small number of agents, and
(AS-1b): Individual risk X is independent from Z – X, where Z is the aggre-
gate risk,

the equilibrium price in equation (2.6) is the same as that obtained from the
Esscher Transform:
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Now we examine more carefully the assumptions underlying the derivation of
the Esscher Premium in equation (2.6).

For an insurance market with a large number of agents (policy-holders,
insurers and reinsurers), the size of an individual risk X is negligible relative
the industry aggregate loss Z. According to equation (2.4), the parameter l will
be close to zero. Using equation (2.6) we get
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For an insurance market in which any individual risk is negligible relative to
the size of the aggregate risk, under the assumption that X and Z – X are inde-
pendent, the equilibrium premium for risk X equals the expected loss without
risk loading.

To avoid the complexity of dealing with infinitely large Z and infinitely
small l, it is useful to re-scale Z to Z0 = (Z – E[Z]) /s[Z] and rewrite (2.5) into
the following:
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Note that Z0 has mean = 0 and variance = 1. For the re-scaled aggregate risk
Z0, the parameter l0 represents the market price per unit of risk.

To carry on the analysis of Buhlmann (1980), we make the following set of
revised assumptions:

(AS-2a). In aggregate, the total loss Z has a normal distribution, thus the
re-scaled variable Z0 = (Z – E[Z])/s[Z] has a standard normal distribution F.
(AS-2b). For risk X with cdf F(x), there exists a standard normal variable V
such that X = F –1(F(V)), and {V, Z0} have a bivariate normal distribution
with correlation coefficient r.
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Remarks:

• Assumption (AS-2a) is reasonable for an insurance market in which (i) there
are a large number of agents and uncorrelated risks, and (ii) each individual
risk is negligible in size relative to the aggregate industry risk.

• Assumption (AS-2b) is a direct extension of the multivariate normal assump-
tion used in the derivation of CAPM. For risks with general marginal distri-
butions, here we are assuming a normal-copula correlation structure between
X and Z (see Wang, 1998; Frees and Valdez, 1998; Embrechts et al. 2002).

Based on the assumption (AS-2b) that {V, Z0} have a bivariate normal distri-
bution with correlation coefficient r, the variable Y = Z0 – r ·V is independent
of X. Taking Z0 = r ·V +Y into equation (2.7), and using the independence
between X and Y, we have
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which further leads to
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Theorem 2.3 Under the set of assumptions in (AS-2a) and (AS-2b), the equi-
librium premium in equation (2.8) is identical to that obtained by the Wang
Transform 

F*(x) = F[F–1(F (x)) – l],

with l = rl0.

Proof: See Appendix A, Example A.1.

Recall that l0 represents the aggregate market price per unit of risk and r is the
correlation coefficient between the normalized variables V and Z0. The relation
l = rl0 is a generalization of the classic CAPM to risks with general probabi-
lity distributions (see Wang, 2000, 2002).

Remark: As noted in Buhlmann (1984), the main result in Theorem 2.1 is
still valid under general utility function assumptions for the participants. There-
fore, under the assumptions (AS-2a) & (AS-2b), Theorem 2.3 effectively gives
an independent derivation of CAPM.

The correlation between risk X and the aggregate portfolio risk Z is the
main driver for risk load. The relation l = rl0 is rather intuitive since highly
correlated risks demand higher risk loading, such as natural or man-made
catastrophe risks. In practice, the meaning of correlation should be interpreted
more broadly than the statistical association in the claim generating process.
From an insurer’s perspective, the correlation in profitability between insurance
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contracts is as important as the correlation in insurance claims. Parameter
uncertainty, pricing cycle, and regulatory capital requirements all contribute to
the correlation in profitability between insurance contracts.

3. ESSCHER TRANSFORM VERSUS WANG TRANSFORM

Consider a variable X with a probability (density) function f (x) and cumula-
tive distribution function F(x). The Esscher Transform applies an exponential
tilting to the probability (density) function:
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(3.1)

The Wang Transform is directly applied to the cumulative distribution:
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The Esscher Transform has received considerable attention, thanks to Buhl-
mann’s economic model, and subsequently the work of Gerber and Shiu (1994)
in pricing options. The Esscher Transform has become the subject for numerous
recent papers and doctorial thesis. Buhlmann et al. (1998) advocate that Esscher
Transform qualifies as a general formula for pricing financial risks.

The Wang Transform is a newly emerged distortion function among the dis-
tortion family that includes the PH-transform. Under a set of axioms, Wang,
Young and Panjer (1997) showed that all coherent risk measures can be represented
by a distortion. Among the family of distortions, only the Wang Transform can
recover CAPM for underlying assets and Black-Scholes formula for options.

We have seen the Esscher Transform and the Wang Transform both com-
ing out of Buhlmann’s equilibrium pricing model. Despite this connection, the
Esscher Transform and the Wang Transform exhibit dramatically different
behaviors when used in pricing insurance risks.

For the Esscher transform in (3.1) we denote
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For the Wang Transform in (3.2) we denote
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When X has a Normal(m, s2) distribution, the Esscher Transform gives another
normal distribution with m* = m + ls2, and s* = s. Thus, for normally distri-
buted risks, the Esscher premium recovers the variance loading:

Esscher ; .H X E X Var Xl l $= +6 6 6@ @ @
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When X has a Normal(m, s2) distribution, the Wang Transform gives another
normal distribution with m* = m + ls, and s* = s. Thus, for normally distrib-
uted risks, the Wang Transform reduces to the standard deviation loading:

; .H X E X Xl l sWang $= +6 6 6@ @ @

For any positive constant b, it can be shown that

Esscher Esscher; ; .H bX b H X bl l$=6 6@ @ (3.5)

For the Esscher Transform, the pricing parameter l depends on the scale of X.
Not surprisingly, the Esscher premium principle, which uses the same l to
price risks of various sizes, is not coherent in the sense of Artner et al (1999).

For any positive constant b, it can be shown that

; ; .H bX b H Xl lWang Wang$=6 6@ @ (3.6)

For the Wang Transform, the parameter l is independent of the scale of X.
The Esscher premium does not always preserve stochastic dominance, while

the Wang Transform does (see Wang, 2000).

Example 3.1 Consider two loss variables X and Y with

P[X = 0, Y = 0] = P[X = 0, Y = 1] = P[X = 3, Y = 3] = 1/3.

Clearly we have X ≤ Y. [Taken from Kaas et al., 1994, pp. 17].

(a) For the Esscher Transform with l = 1, we get HEsscher[X; l] = 2.73, which
is greater than HEsscher[Y; l] = 2.65. This counter-intuitive result is due to
the fact that Var(X) = 2 is a greater than Var(Y) = 1.56, and the Esscher
premium behaves like a variance loading. Note that this violation of sto-
chastic dominance can be avoided if we use different l values for the two
variables X and Y.

(b) For the Wang Transform with l = 1, HWang[X; l] = 2.15, which is less than
HWang[Y; l] = 2.35. The Wang Transform preserves the stochastic dom-
inance between X and Y.

The Esscher premium is not layer-additive, while the Wang Transform produces
additive premiums by layer (see Wang, 1996).

Example 3.2 Consider a risk X with

P[X = 0] = P[X = 1] = P[X = 2] = 1/3.

We divide X into two (excess-of-loss) layers: X(0,1] represents the 1xs0 layer,
and X(1,2] represents the 1xs1 layer. Clearly X = X(0,1] + X(1,2].

(a) For the Esscher Transform with l = 0.4, we have HEsscher[X(0,1]; l] + HEsscher

[X(1,2]; l] = 0.749 + 0.427 = 1.176 which is less than HEsscher[X; l] = 1.260.
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(b) For the Wang Transform with l = 0.4, we have HWang[X(0,1]; l] + HWang

[X(1,2]; l] = 0.797 + 0.488, which is exactly equal to HWang[X; l] = 1.285.
The Wang Transform is layer-additive.

When it comes to portfolio diversification, the Esscher Transform is additive
for independent risks, and super-additive for positively correlated risks. By
contrast, the Wang Transform is sub-additive for independent risks, and addi-
tive for co-monotone risks.

Example 3.3 Consider a portfolio consisting of two risks: X ∼ Normal(0,1) and
Y ∼ Normal(0,1). Assume that X and Y have bivariate normal distributions
with correlation r. We have X +Y ∼ Normal(0,2 (1+ r)).

(a) For the Esscher Transform we have
HEsscher [X +Y; l] = l(1 + r),

and
HEsscher [X; l] + HEsscher [Y; l] = l.

When X and Y are positively correlated,
HEsscher [X +Y; l] > HEsscher [X; l] + HEsscher [Y; l] for l > 0.

(b) For the Wang Transform we have
HWang [X +Y; l] = l ( )r2 1+ ,

and 
HWang [X; l] + HWang [Y; l] = 2l.

For r < 1 we have sub-additivity:

HWang [X +Y; l] < HWang [X; l] + HWang [Y; l],

reflecting the benefit of portfolio diversification.
Equality holds if and only if (=1, i.e., when X and Y are perfectly correlated.

Zehnwirth (1981), Gerber (1981), and Van Heerwaarden et al. (1989) expressed
similar criticisms of the counter-intuitive properties of the Esscher premium
principle.

The Wang Transform satisfies all the desirable properties for a coherent risk
measure in Artzner et al. (1999), and is consistent with the first four axioms in
Wang, Young and Panjer (1997).

The Wang Transform in (3.2) has close connections with financial econom-
ics. It can be used to price assets by switching the sign of l from “minus” to
“plus”. For a normally distributed asset return R and risk-free interest rate r,
we get an implied l = (E[R] – r) /s[R], which is exactly the Sharpe Ratio, a com-
mon benchmark for asset risk-return tradeoff. When applied to the aggregate
loss distribution for a risk portfolio, the Wang Transform quantifies the diver-
sification benefit, with parameter l extending the traditional Sharpe Ratio used
in asset portfolio management.
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The Esscher Transform has shown tremendous successes in pricing options,
as demonstrated in Gerber and Shiu (1994) and numerous follow-up papers.
However, as pointed out by Mildenhall (2000), there are fundamental differ-
ences between actuarial-pricing approaches and the option-pricing paradigm.
The lack of coherence of the Esscher Transform only reduces its effectiveness
in pricing insurance risks. Apparently this does not affect its successful appli-
cations in option pricing.

4. SUMMARY

In an incomplete market such as insurance, equilibrium prices will generally
depend on assumptions about the utility functions of the market participants.
Buhlmann’s (1980) economic model is very profound in that equilibrium pricing
transforms can be derived under general utility functions of the market partic-
ipants. Other reference papers on equilibrium risk-exchanges include Aase (1993),
Taylor (1992), Gerber and Pafumi (1998). In a practical context, Meyers (1996)
also takes an equilibrium pricing approach to calculating risk load.

Using Buhlmann’s optimal risk-exchange model, we have derived the Esscher
Transform and the Wang Transform as two equilibrium-pricing transforms, but
under distinct sets of assumptions regarding the aggregate economic environment.
We also showed that the Wang Transform satisfies the required properties for
a coherent risk measure, while the Esscher Transform does not.

We encourage interested readers to read the Appendices for a more in-depth
discussion of Buhlmann’s economic model and its intimate connections to the
distortion pricing approach.
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APPENDIX A.

EXPONENTIAL TILTING & DISTORTION

To explore further Buhlmann’s main results in equation (2.2) and (2.5), we define
a general exponential tilting and discuss its connections with the distortion
transform.

Consider variables X and Z in a probability space (W, P) with probability dis-
tributions F and Q, respectively.

Definition A.1 The transformed probability (density) function

*( ) ( ) ( )
( )

,exp
exp

f x f x E Z
E Z X x

l
l

$=
=

6

6

@

@
(A.1)

is called an exponential tilting of X, induced by Z.

Note that equation (A.1) is very general, allowing for any correlation structure
between X and Z. One can assume any copula between X and Z, and use
numerical techniques to calculate f *(x). Recall that Theorem 2.3 considers
the case that X and Z have a normal copula, and Z has a normal distribution.
In this Appendix we consider some special cases in which equation (A.1) yields
mathematically tractable results.

As a special case of Definition A.1, when Z = X we recover the Esscher
Transform. When Z = h (X) is an increasing function of X, we recover the gen-
eralized Esscher transform by Heilmann (1989), including the special case of
h (X) = 1 – exp(–lX) in Kamps (1998).

Next we consider the cases that X and Z are co-monotone while the proba-
bility distribution of Z is unaffected by the distribution of X. We say that X and
Z are co-monotone if there exists a uniform random variable U such that X =
F–1(U) and Z = Q–1(U).
Note that for any probability distribution F(x), the inverse function is defined as

F –1(u) = sup{x: F (x) < u}, for 0 ≤ u ≤ 1.

Here “co-monotone” means perfect correlation, which extends beyond the con-
cept of perfect linear correlation. There is no diversification benefit between
“co-monotone” risks, see Wang and Dhane (1998). When X and Z are co-mono-
tone, it may be impossible to express Z as a direct function of X. For example,
consider the case that X has a Bernoulli distribution and Q is an exponential dis-
tribution.

Theorem A.1 When X and Z are co-monotone, the exponential tilting in equa-
tion (A.1) implies a transform: F(x) → F*(x) by

*( ) ( ) ( ) ,expF x M Q u dul l1
( )

Q

F x
1

0

$=
-# ` j (A.2)
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where

( ) ( )expM Q u dul lQ
1

0

1

$=
-# ` j

exists for some l > 0.

• When F is continuous at x, the transformed probability density at x is 

*( ) ( )
( ) ( )

.
exp

f x M
f x Q F x

l
l

Q

1
$ $

=

-
^` hj

(A.3)

• When F is discrete on {x1, x2, …, xm}, the transformed probability at xj is

j
)

)

* ( ) ( ) .expf x M Q u dul l1

(

(

Q F x

F x
1

j

j

1

$=
-

-

#` `j j (A.4)

We call equation (A.2) a co-monotone exponential tilting, induced by the kernel Q.

Consider an important case when the kernel Q is unrelated to the distribu-
tion F.

Theorem A.2 When the kernel Q is independent of the distribution F, the co-mono-
tone exponential tilting (A.2) is equivalent to a distortion F*(x) = g(F(x)) with

( ) ( )

( )

.

exp

g u M

Q v dv

l

l

Q

u
1

0

$

=

-# ` j

(A.5)

Proof: The key here is that Q is independent of F. It then follows directly from
the co-monotone exponential tilting equation (A.2).

¡

Example A.1 When the kernel Q = F is the standard normal distribution, the
co-monotone exponential tilting (A.2) recovers the Wang Transform:

*( ) ( ) .F y F y lF F 1
= -

-
^` h j

Example A.2 When the kernel Q(t) = 1 – exp(–t), for t ≥ 0, is an exponential dis-
tribution, the co-monotone exponential tilting (A.2) recovers the proportional
hazards (PH) transform as introduced in Wang (1995):

*( ) ( )F x F x1 1 l1= - - -
^ h , with 0 ≤ l < 1,

which corresponds to the distortion g(u) = 1 – (1 – u)1–l.
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This result gives an interpretation of the parameter l in the PH-transform.

Example A.3 When the kernel Q(t) = t, for 0 ≤ t ≤ 1 is a uniform distribution,
the co-monotone exponential tilting (A.2) recovers the exponential distortion:

( ) ( )
( )

, < .exp
exp

g u
u

uforl
l

1
1

0 1#=
-
-

Example A.4 When the kernel Q(z) = Gamma(z; �, b) has a gamma distribu-
tion with mean = �/b, the co-monotone exponential tilting (A.2) corresponds
to the following distortion:

( ) ( ); , .�g u Q uGamma b l1
= -

-
` j

For the distortion in (A.5) we have

( ) ( ) > .expg u Q ul 0� 1
$=

-
` j (A.6)

When Q (x) is differentiable, we have 

( ) ( ) / ( ) , > .expg u Q u Q Q u forl l l0 0� �1 1
$ $=

- -
` `j j (A.7)

For the Beta family of distortion (Wirch and Hardy, 1999)

( ) ( , )
( )

F x a b
t t

dtG1
1

( ) a bF x 1 1

0

1

= -
-

- --

#

to be an exponential tilting with l > 0, it is necessary that a ≤ 1 and b ≥ 1.

Finally we offer a comment on the numerical implementations of co-monot-
one exponential tilting. Computer calculations almost always use discrete data
points. Consider a discrete representation {x1 < x2 < … < xm} of variable X, where
F(xm) = 1. One would need to perform numerical integration to carry out the
exponential tilting as shown in equation (A.4). The reader needs to be aware
of that the simple approximation by 

j j j*( ) ( ) ( ) / ( )expf x f x Q F x Ml lQ
1

$. -
`` jj (A.8)

is often very poor, especially at the tails of the distribution. For the Wang
Transform and PH-transform, we have Q –1(F(xm)) = +∞, thus the approxima-
tion f *(xm) in (A.8) is undefined. Such numerical difficulties can be avoided
by applying the distortion in (A.5) directly on the (discrete) cumulative distri-
bution function.
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APPENDIX B.

SYSTEMATIC RISKS & THE DISTORTION APPROACH

Consider Buhlmann’s economic model in section 2, we assume that risk X can
be decomposed into two parts 

X = Xsys + Xnon ,

where 

• Xsys (being co-monotone with Z) represents the systematic portion of X, and 

• Xnon (being uncorrelated with Z) represents the idiosyncrasy or non-syste-
matic portion.

• By definition, Xsys and Xnon are uncorrelated.

From equations (2.5) & (2.6) we have 

nonBuhlmann
sys

, ( )
( )

.exp
exp

H X E X E Z
E X Z

l l
l$

= +6 7
6

8

@ A
@

B

(B.1)

In other words, Buhlmann’s equilibrium pricing model indicates that only the
systematic risk requires risk loading.

For convenience, we assume that the distribution F for a risk X only reflects
the systematic risk of X. For practically minded reader, this is quite in agreement
with reality. For instance, life insurers are generally not too concerned about
the volatility of an individual life contract, but rather more concerned about
the systematic errors in their estimate of mortality rates, and systematic shocks.
As a result, in the pricing exercise by insurers, only systematic risks enter into
the distribution F, manifested in the modeling of potential variations for a
large block of contracts, or for a whole line of business, etc.
In light of equation (B.1) we now make the following simplifying assumptions:

(AS-3a). All potential variations that are reflected in the distribution Fj are
systematic risk only. As a result, risk Xj is co-monotone with the aggregate
risk Z.

(AS-3b). There are many market participants so that the re-scaled aggregate
variable Z0 = (Z – E[Z]) / s[Z] has a distribution Q which is unrelated to the
individual risk distribution Fj .

Theorem B.1 Under the assumptions in (AS-3a) and (AS-3b), the equilibrium
price density in equation (2.2) is identical to the distortion F*(x) = g(F(x)) with 

( ) ( )

( )

.

exp

g u M

Q v dv

l

l

Q

u
1

0

$

=

-# ` j

70 SHAUN S. WANG

https://doi.org/10.2143/AST.33.1.1039 Published online by Cambridge University Press

https://doi.org/10.2143/AST.33.1.1039


Specially,

• when Q is an Exponential(1) distribution, we recover the PH-transform;

• when Q is standard normal distribution, we recover the Wang Transform.

EQUILIBRIUM PRICING TRANSFORMS 71

https://doi.org/10.2143/AST.33.1.1039 Published online by Cambridge University Press

https://doi.org/10.2143/AST.33.1.1039


APPENDIX C.

BUHLMANN’S GENERAL ECONOMIC MODEL

In a follow-up paper, Buhlmann (1984) extended his economic premium princi-
ple using general utility functions for each participant. He discovered that all equi-
librium prices are locally like the one where agents have exponential utilities.
The only difference lies in that risk aversion is no longer constant but depends
on the agents’ net wealth. His general economic model provides further insights
on the relation between risk premium and aggregate market conditions.

Under general utility assumptions, Buhlmann used the notion of absolute
risk aversion of Pratt (1964):

lj (x) = –uj�(x) / uj�(x), (C.1)

which depends on the amount of net wealth x. Note that for an exponential
utility function uj(x) = 1 – exp(–ljx) we have lj(x) = lj being a constant.

Buhlmann showed that equilibrium exists under only modest theoretical
assumptions. He pointed out that this equilibrium also coincides with the Pareto
optimal exchange in Borch (1962).

As an important observation, Buhlmann pointed out that in equilibrium Ye, j
and ƒe should depend on w only through j( ) ( )Z Xw w

j
n

1
=

=
! .

Theorem C.1 [Buhlmann, 1984] Under general utility assumptions, the equi-
librium pricing density satisfies

( )
( )

( , ),
Z
Z

W Zl
e

e =
z
z�

(C.2)

where l (W,Z) is the total risk aversions satisfying

( , ) ,
" "W Z W Net Loss to given total loss Zjl l

1 1

j j
j
n

1
=

-=
!

` j
(C.3)

where “Net Loss to j given total loss Z” = Xj (Z) –Ye, j(Z) + Price[Ye, j(Z)].

From equation (C.2) we can see that the local behavior for the equilibrium
pricing density is the same as that for the exponential utilities.

Theorem C.1 provides additional insights to the parameter l = l(W,Z). As
the total risk-aversion of the market, the parameter l depends on the aggregate
net wealth (or capital) of market participants. The presence of excessive cap-
ital will drive down the parameter l = l(W,Z) and the resulting risk premiums.
A shortage of capital can boost the level of l = l(W,Z) and the resulting risk
premiums.

The insurance industry has experienced surprises by unexpected catastrophe
events, for instance, the huge insurance losses due to 1992 Hurricane Andrew,
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and the September 11, 2001 Terror Attack on America. Buhlmann’s economic
model can explain some of the after effects of unexpected catastrophe events:

a) As a Bayesian update, the estimated probability of loss will increase, espe-
cially for large loss amounts.

b) A catastrophe may simultaneously impact many lines of business. This
will elevate the perceived correlation between lines of business, and have
an effect of increasing the systematic risk for Xj.

c) The market price of risk, l= l (W,Z) in equation (C.3), will increase
because of the depletion of the aggregate wealth after paying for the
occurred catastrophe loss. Note that the September 11 event did not increase
the likelihood of California earthquake, however the price of earthquake
cover increased significantly after September 11, due to an increase in the
market price of risk, l= l(W,Z).

d) The combined effect of these factors is a dramatic increase in risk load
and premium rates.

e) Because of the increase in the prospective Sharpe ratio l= l(W,Z) in
(C.3), “smart” capital may be injected from the outside to take advan-
tage the increased risk-return prospect, as evidenced in new entrants to
the insurance market after hurricane Andrew & Terror Attack.
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