
9
Finite temperatures

Finite-temperature quantum field theories at thermodynamic equilibrium
are naturally described by Euclidean path integrals. The time-variable
in this approach is compactified and varies between 0 and the inverse
temperature 1/T . Periodic boundary conditions are imposed on Bose
fields, while antiperiodic ones are imposed on Fermi fields in order to
reproduce the standard Bose or Fermi statistics, respectively.
The lattice formulation of QCD at finite temperature is especially sim-

ple, since the Euclidean lattice has a finite extent in the temporal di-
rection. The Wilson criterion of confinement is not applicable at finite
temperatures and is replaced by another one based on the thermal Wil-
son lines passing through the lattice in the temporal direction. They are
closed owing to the periodic boundary condition for the gauge field.
When the temperature increases, QCD undergoes [Pol78, Sus79] a de-

confining phase transition which is associated with a liberation of quarks.
At low temperatures below the phase transition, thermodynamical prop-
erties of the hadron matter are well described by a gas of noninteracting
hadrons while at high temperatures above the phase transition these are
well described by an ideal gas of quarks and gluons.
The situation with the deconfining phase transition becomes less def-

inite when the effects of virtual quarks are taken into account. The de-
confining phase transition makes strict sense only for large values of the
quark mass. For light quarks, a phase transition associated with the
chiral symmetry restoration at high temperatures occurs with increasing
temperature. It makes strict sense only for massless quarks.
In this chapter we first derive a path-integral representation of finite-

temperature quantum field theories starting from the Boltzmann distribu-
tion. Then we apply this technique to QCD and discuss the confinement
criterion at finite temperatures as well as the deconfining and chiral sym-
metry restoration phase transitions.
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9.1 Feynman–Kac formula

Thermodynamic properties of an equilibrium system in 3 + 1 dimensions
are determined by the thermal partition function

Z(T, V ) =
∑
n

e−En/T ≡ Tr e−H/T (9.1)

which is associated with the Boltzmann distribution at the temperature
T . Here H is a Hamiltonian of the system and Tr is calculated over any
complete set of states, say, over eigenstates of the Hamiltonian, eigenval-
ues of which are characterized by the energy levels En.
For a quantum theory of a single scalar field ϕ(�x, t), the (Schrödinger)

states are described by the bra- and ket-vectors 〈g| and |f〉:

〈g|�x〉 = g(�x) , 〈�x |f〉 = f(�x) , (9.2)

as is explained in Sect. 1.1. A matrix element of the evolution operator
exp (−H/T ) is given by the formula

〈g| e−H/T |f〉 =
∫

ϕ(9x,0)=f(9x)
ϕ(9x,1/T )=g(9x)

Dϕ(�x, t) e−
∫ 1/T
0

dtL[ϕ] , (9.3)

where L is a proper Lagrangian, say for example,

L[ϕ] =
∫
V

d3�x
[
1
2
(∂µϕ)2 +

1
2
m2ϕ2 +

λ

3!
ϕ3
]

(9.4)

for the cubic self-interaction of ϕ. The derivation is quite analogous to
that of Problem 1.9 on p. 22.
In order to calculate the trace over states, one should put g(�x) =

f(�x) and perform the additional integration over f(�x). This yields the
Feynman–Kac formula∗

Tr e−H/T =
∫
Df(�x) 〈f | e−H/T |f〉

=
∫

ϕ(9x,1/T )=ϕ(9x,0)

Dϕ(�x, t) e−
∫ 1/T
0 dtL[ϕ] . (9.5)

Note that the path integral in Eq. (9.5) is taken with periodic boundary
conditions for the field ϕ:

ϕ(�x, 1/T ) = ϕ(�x, 0) . (9.6)

∗ Its derivation in the modern context of non-Abelian gauge theories, which extends
the Feynman derivation [Fey53] for statistical mechanics, is due to Bernard [Ber74].
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As T → 0 it reproduces the standard Euclidean formulation of quantum
field theory which is discussed in Chapter 2. The point is that nothing
depends on real time for a system at thermodynamic equilibrium. The
variable t in Eq. (9.5) is just the proper time of the disentangling proce-
dure. This analogy between the partition functions of statistical systems
and the Euclidean formulation of quantum field theory has already been
mentioned in the Remark on p. 33.

Remark on thermal density matrix

A statistical-mechanical counterpart of the propagator in Euclidean quan-
tum field theory is the (unnormalized) thermal density matrix〈

y
∣∣∣ e−H/T

∣∣∣x〉 =
∑
n

e−En/T Ψ∗
n(y)Ψn(x) , (9.7)

where Ψn(x) denotes the wave function of the nth eigenstate. This equal-
ity can be derived by inserting a complete set of states. The thermal
partition function (9.1) is then given by the space integral of the diagonal
element:

Z(T, V ) =
∫
V

ddx
〈
x
∣∣∣ e−H/T

∣∣∣ x〉 . (9.8)

For a quantum particle with the nonrelativistic Hamiltonian (1.107),
the path-integral representation of the thermal density matrix (9.7) is
given by Eq. (1.118) with τ = 1/T . This pursues the analogy between
Euclidean quantum field theory and statistical mechanics.
More concerning the thermal density matrix (9.7) can be found in the

book [Fey72].
Problem 9.1 Derive the Feynman–Kac formula for a quantum particle with
the nonrelativistic Hamiltonian (1.107).
Solution The matrix element 〈x | exp (−H/T )|x〉 is determined by Eq. (1.118)
to be 〈

x
∣∣∣ e−H/T

∣∣∣ x〉 =
∫

zµ(0)=xµ

zµ(1/T )=xµ

Dzµ(t) e−
1/T
0 dtL(t), (9.9)

where the Lagrangian L(t) is given by Eq. (1.119). Using Eq. (9.8), we ob-
tain [Fey53]

Tr e−H/T =
∫
V

ddx
〈
x
∣∣∣ e−H/T

∣∣∣ x〉
=

∫
zµ(0)=zµ(1/T )

Dzµ(t) e−
1/T
0 dtL(t). (9.10)
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This integral is over the trajectories with periodic boundary conditions

zµ(0) = zµ(1/T ) . (9.11)

Problem 9.2 Calculate the partition function (9.10) for the free case.

Solution The Gaussian path integral with the boundary conditions

zµ(0) = zµ(1/T ) = xµ (9.12)

is calculated in Sect. 1.5 with the result given by Eq. (1.90). In order to calculate
the partition function (9.10), we need to integrate this expression over xµ which
yields [Fey53]

Z(T, V ) =
∫
V

ddxF (1/mT ) = V

(
mT

2π

)d/2
. (9.13)

The formula (9.13) is to be compared with that given by the Boltzmann dis-
tribution in classical statistics. Since the energy of a free nonrelativistic particle
is

E(�p) =
�p2

2m
, (9.14)

the Boltzmann distribution is given by the sum over positions of the particle in
a box of volume V and the integration over its momentum �p:

Z(T, V ) = V

∫
dd�p
(2π)d

e−E(*p)/T = V

(
mT

2π

)d/2
, (9.15)

which coincides with Eq. (9.13) derived from the path integral.

Problem 9.3 Calculate the thermal density matrix (9.7) for the free case.

Solution The calculation is the same as in Sect. 1.5 for τ = 1/mT . The result
is 〈

y
∣∣∣ e−H/T

∣∣∣x〉 =
(
mT

2π

)d/2
e−mT (x−y)2/2 . (9.16)

This formula can alternatively be derived using Eq. (9.7) for the wave functions
associated with the plane waves

Ψ*p(x) =
1√
V
e−i*p*x . (9.17)

Then we obtain∑
n

e−En/T Ψ∗
n(y)Ψn(x) =

∫
ddp
(2π)d

ei*p(*y−*x)−p
2/2mT

=
(
mT

2π

)d/2
e−mT (x−y)2/2 (9.18)

which reproduces Eq. (9.16).
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Problem 9.4 Calculate the partition function (9.10) for a harmonic oscillator
with V (x) = mω2x2/2.

Solution The path integral in Eq. (9.10) can be calculated using the mode
expansion

z(t) = a0 +
√
2

∞∑
n=1

[
an cos (2πntT ) + bn sin (2πntT )

]
, (9.19)

where the sin and cos functions form a set of orthogonal basis functions on the
interval [0, 1/T ] and satisfy the boundary condition (9.11). The expansion (9.19)
is of the same type as Eq. (1.82).
Substituting (9.19) into the action, we have

m

2

1/T∫
0

dt
(
ż2 + ω2z2

)
=

mω2

2T
a20+

m

2T

∞∑
n=1

[
(2πnT )2+ω2

] (
a2n + b2n

)
. (9.20)

Representing the measure as

Dz(t) =
dda0
(2π)d/2

∞∏
n=1

ddan
(2π)d/2

ddbn
(2π)d/2

, (9.21)

which is of the same type as Eq. (1.83), and performing the Gaussian integral
over the an and bn, we obtain for the partition function (9.10)

Z(T ) =

[ √
T√
mω

∞∏
n=1

T/m

(2πnT )2 + ω2

]d
. (9.22)

The infinite product can be calculated by virtue of the formula

∞∏
n=1

(
A+

n2

B

)
=

2√
A
sinh(π

√
AB) (9.23)

which implies a zeta-function regularization. Finally, we obtain

Z(T ) =
[

1
2 sinh (ω/2T )

]d
(9.24)

for the thermal partition function of a nonrelativistic harmonic oscillator with
frequency ω. Equation (9.24) can be derived alternatively by simply substituting
the oscillator spectrum En = ω

(
n+ 1

2

)
into the Boltzmann formula (9.1).

In contrast with Eq. (9.13), there is no volume-dependence in Eq. (9.24), which
comes usually from the translational zero mode, since now the particle oscillates
near the origin. It is clear from the integral over a0 that the volume factor is
reproduced as V ∼ (T/mω2)d/2 when ω → 0. Then Eq. (9.13) is reproduced as
ω → 0.
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Problem 9.5 Calculate the thermal density matrix (9.7) of the harmonic oscil-
lator.

Solution It is convenient to use the mode expansion

z(t) = zcl(t) +
√
2

∞∑
n=1

cn sin (πntT ) , (9.25)

where

zcl(t) = x
sinh [ω(1/T − t)]
sinh (ω/T )

+ y
sinh (ωt)
sinh (ω/T )

(9.26)

obeys the classical equation of motion

z̈cl − ω2zcl = 0 (9.27)

with the boundary condition z(0) = x, z(1/T ) = y. This reproduces Eq. (1.84)
with τ = 1/T as ω → 0. The sin functions form an appropriate set of orthogonal
basis functions for the interval [0, 1/T ].
Inserting the mode expansion (9.25) into the action, we obtain

m

2

1/T∫
0

dt
(
ż2 + ω2z2

)
= Scl(x, y) +

m

2T

∞∑
n=1

[
(πnT )2 + ω2

]
c2n , (9.28)

where

Scl(x, y) =
mω

2

[
(x2 + y2) coth(ω/T )− 2xy 1

sinh(ω/T )

]
. (9.29)

Substituting the measure as in Eq. (9.21) and performing the Gaussian integra-
tion over cn, we have

〈
y
∣∣∣ e−H/T

∣∣∣ x〉 ∝
∞∏
n=1

[
T/m

(πnT )2 + ω2

]d/2
e−Scl(x,y). (9.30)

Finally, using Eq. (9.23), we obtain

〈
y
∣∣∣ e−H/T

∣∣∣x〉 =
[

mω

2π sinh (ω/T )

]d/2
e−Scl(x,y) (9.31)

for the thermal density matrix of a nonrelativistic harmonic oscillator with fre-
quency ω. The formulas of Sect. 1.5 are reproduced as ω → 0 which fixes an
ω-independent normalization factor in Eq. (9.30). The partition function (9.24)
is reproduced when we set y = x in Eq. (9.31) and integrate over x.
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Problem 9.6 Calculate the partition function (9.5) for the free case.

Solution Since the path integral over ϕ(�x, t) is Gaussian, it can be represented
as

lnZ(T, V ) = −1
2
ln det
(
−∂2µ +m2

)
= − 1

2
Tr ln
(
−∂2µ +m2

)
= −1

2
V

∫
dd�p
(2π)d

Trt ln
(
−D2 + ω2

)
, (9.32)

where

ω =
√
�p2 +m2 . (9.33)

We have used the fact that the �x variable is not restricted, while the remaining
trace of the one-dimensional operator is to be calculated with periodic boundary
conditions.
We shall perform the calculation by expressing the trace via the diagonal

resolvent of the same operator as has already been done in Problem 4.4 on p. 73.
The Green function Gω(t − t′) is no longer given by Eq. (1.38) because of the
periodic boundary conditions. Instead, we obtain the sum over even Matsubara
frequencies:

Gω(t− t′) = T

+∞∑
n=−∞

e2πinT (t
′−t)

(2πnT )2 + ω2
, (9.34)

which satisfies Gω(1/T ) = Gω(0), as it should for periodic boundary conditions,
and reproduces Eq. (1.38) as T → 0. The diagonal resolvent is given by

Gω(0) = T

+∞∑
n=−∞

1
(2πnT )2 + ω2

=
1
2ω

coth
ω

2T
. (9.35)

Therefore,

Trt ln
(
−D2 + ω2

)
=

ω2∫
dω2

1/T∫
0

dtGω(0)

=

ω∫
dω
1
T
coth

ω

2T

=
ω

T
+ 2 ln

(
1− e−ω/T

)
(9.36)

modulo an ω-independent constant. Substituting into Eq. (9.32), we obtain

lnZ(T, V ) = −V
∫

dd�p
(2π)d

[ ω
2T

+ ln
(
1− e−ω/T

)]
, (9.37)

which is the standard result for an ideal Bose gas in quantum statistics modulo
the first term on the RHS associated with the zero-point energy of the vacuum.
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9.2 QCD at finite temperature

QCD at finite temperatures is described by the partition function

Z(T, V ) =
∫
DAµDψ̄Dψ e−

∫ 1/T
0 dt

∫
V d39xL[Aµ,ψ,ψ̄] , (9.38)

which is the proper analog of Eq. (9.5). The path integral is taken with
the boundary conditions

Aµ(�x, 1/T ) = Aµ(�x, 0) , (9.39)
ψ(�x, 1/T ) = −ψ(�x, 0) , (9.40)
ψ̄(�x, 1/T ) = −ψ̄(�x, 0) , (9.41)

which are periodic for the gauge field (gluon) and antiperiodic for the
Fermi fields (quarks). The antiperiodicity of the Fermi fields is related,
roughly speaking, with the famous extra minus sign of fermionic loops in
the vacuum energy.

Problem 9.7 Calculate the partition function for free massive one-dimensional
fermions with antiperiodic boundary conditions

ψ(1/T ) = − ψ(0) , ψ̄(1/T ) = − ψ̄(0) . (9.42)

Solution The calculation is analogous to that of Problem 9.6. We obtain

lnZ(T, V ) = ln det (D +m) = Tr ln (D +m) . (9.43)

The fermion Green function Gm(t− t′) is given by the sum over odd Matsubara
frequencies:

Gm(t− t′) = T

+∞∑
n=−∞

eπi(2n+1)T (t′−t)

iπ(2n+ 1)T +m
, (9.44)

which satisfies Gm(1/T ) = −Gm(0), as it should for antiperiodic boundary con-
ditions.
As T → 0, we obtain

Gm(t− t′) =

+∞∫
−∞

dε
2π

eiε(t
′−t)

iε+m
= θ (t− t′) (9.45)

since the contour of integration over ε can be closed for t > t′ (t < t′) in the lower
(upper) half-plane. We have thus reproduced the fermionic Green function (5.34)
from Problem 5.3 on p. 90.
The diagonal resolvent is given by

Gm(0) = T

+∞∑
n=−∞

1
iπ(2n+ 1)T +m

=
1
2
tanh

m

2T
, (9.46)
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which differs from Eq. (9.35) by the change of the coth for tanh. Therefore,

lnZ(T, V ) =

m∫
dm

1
T
tanh

m

2T

=
m

2T
+ ln
(
1 + e−m/T

)
(9.47)

modulo anm-independent constant. The second term on the RHS involves a plus
sign, which characterizes Fermi statistics (remember that ω = m if there are no
spatial dimensions). If we were choose periodic boundary conditions instead of
antiperiodic ones, we would have a minus sign as in Eq. (9.37) which is wrong
for fermions. The first term on the RHS is again associated with the zero-point
energy of the vacuum.
An extension of Eq. (9.47) to d dimensions can be obtained on substituting

m by ω, given by Eq. (9.33), and integrating over the phase space, which results
in a formula of the type of Eq. (9.37) but with the plus sign in the second term
on the RHS.

The discussion of the previous section concerning the relation between
the finite-temperature and Euclidean formulations explains why the latter
allows one to calculate only static quantities in QCD, say hadron masses
or interaction potentials, which do not depend on time. It is also worth
noting that we did not add a gauge-fixing term in Eq. (9.38), having in
mind a lattice quantization as before.
The lattice formulation of finite-temperature QCD is especially simple.

One should take an asymmetric lattice whose size along the temporal axis
is much smaller than that along the spatial ones:

Lt =
1
Ta

! L . (9.48)

This guarantees that the system is in the thermodynamic limit. Then the
temperature is given by

T =
1
aLt

, (9.49)

i.e. it coincides with the inverse extent of the lattice along the temporal
axis. The periodic boundary conditions are usually imposed on the lattice
by construction.
Since the lattice spacing a and the bare coupling constant g2 are related

by Eq. (6.85), the temperature (9.49) can be rewritten as

T =
1
Lt
ΛQCD exp

[∫
dg2

B(g2)

]
. (9.50)

Therefore, one can change the temperature on the lattice by varying either
the size along the temporal axis, Lt, or g2.
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Fig. 9.1. Polyakov loop which winds around compactified temporal direction.

9.3 Confinement criterion at finite temperature

Wilson’s confinement criterion, which is discussed in Sect. 6.6, is not
applicable at finite temperatures. A proper criterion for confinement at
finite temperatures was proposed by Polyakov [Pol78].
The Polyakov criterion of confinement at finite temperature uses the

thermal Wilson loop which goes along the temporal direction:

L(�x) = trP ei
∫ 1/T
0 dtAd(9x,t). (9.51)

It is gauge invariant because of the periodic boundary conditions for the
gauge field and is called the Polyakov loop or the thermal Wilson line.
One can imagine that the time-variable t ≡ xd is compactified so that the
Polyakov loop winds around the temporal direction as shown in Fig. 9.1.
The lattice Polyakov loop

L9x = tr
∏
xd

Ud(x) (9.52)

is just the trace of the product of the link variables along a line which
goes in the temporal direction through the lattice with imposed periodic
boundary conditions.
Using the lattice gauge transformation (6.13), almost all link variables,

associated with links pointing in the temporal direction, can be set equal
1 except for one time slice since the gauge transformation is periodic:

Ω(�x, 0) = Ω(�x, 1/T ) . (9.53)

The average of the Polyakov loop is related to the free energy F0(�x)
of a single quark (minus that of the vacuum) located at the point �x of a
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three-dimensional space by

〈L(�x)〉 = e−F0/T . (9.54)

If F0 is infinite, which is associated with confinement, then

〈L(�x)〉 = 0 confinement . (9.55)

In contrast,

〈L(�x)〉 �= 0 deconfinement (9.56)

is associated with deconfinement. This is the Polyakov criterion of con-
finement at finite temperature.
This criterion establishes a connection on a lattice between confinement

and the Z(3) symmetry – the center of SU(3). The Z(3) transformation
of the link variables

Ud(x) → Zxd
Ud(x) (Zxd

∈ Z(3)) (9.57)

leaves the lattice action invariant. This transformation is not of the same
type as the local gauge transformation (6.13) since only the temporal
link variables are transformed. The parameter Zxd

of the transforma-
tion (9.57) depends on xd, but is independent of the spatial coordinates
�x so the symmetry is a global one.
While the lattice action is invariant under the transformation (9.57),

the Polyakov loop transforms as

L9x → Z L9x (Z ∈ Z(3)) , (9.58)

where

Z =
∏
xd

Zxd
. (9.59)

Therefore, Eq. (9.55) holds if the symmetry is unbroken, while Eq. (9.56)
signals spontaneous breaking of the symmetry. Thus, confinement or
deconfinement are associated with the unbroken or broken global Z(3)
symmetry, respectively.
On a lattice of finite volume, the number of degrees of freedom is finite

and spontaneous breaking of the Z(3) symmetry is impossible. Then, it
is more convenient to use a criterion which is based on the correlator of
two Polyakov loops separated by a distance R along a spatial direction.
This correlator determines the interaction energy E(R) between a quark
and an antiquark by the formula〈

L(�x)L†(�y)
〉
conn

= e−E(R)/T . (9.60)
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A finite correlation length is now associated with confinement, while an
infinite one corresponds to deconfined quarks.
More details concerning the Z(3) symmetry in finite-temperature lattice

gauge theories can be found in the review by Svetitsky [Sve86].

Problem 9.8 Calculate the correlator (9.60) to the leading order of the strong-
coupling expansion.

Solution The calculation is analogous to that of Sect. 6.5. The group integral
is nonvanishing when the plaquettes completely fill a cylinder, spanned by two
Polyakov loops, with area equal to R/T . This is analogous to the filling shown
in Fig. 6.8. Contracting the indices, we find〈

L*xL
†
*y

〉
conn

= [W (∂p)]R/T , (9.61)

where W (∂p) is given by Eq. (6.72). This yields the same interaction potential
E(R) as before (see Eqs. (6.76) and (6.77)).

Remark on high temperatures

At high temperatures T → ∞, the temporal direction shrinks and the
partition function (9.38) reduces to a three-dimensional one with the cou-
pling constant

g23D = g2T , (9.62)

which has the dimension of [mass] in three dimensions. Three-dimensional
QCD and QED always confine. If we take a Wilson loop in the form of a
rectangle along spatial directions in four-dimensional QCD at high tem-
perature, its average coincides with that in three dimensions and obeys the
area law. This does not mean, however, that we are in a confining phase
since the confinement criterion at finite temperature is different [Pol78].

9.4 Deconfining transition

The effects of finite temperatures are negligible under normal circum-
stances in QCD where the typical energy scale is of the order of hundreds
of MeV, while a temperature of, say, T ≈ 300 K is associated with the en-
ergy∗ kT ≈ 3×10−8 MeV. However, for times of the order of 10−4 seconds
after the big bang in the very early universe, the energies of thermal fluc-
tuations were ∼ 100 MeV, i.e. of the order of the mass of the π-meson.
Therefore, π-mesons can be created out of the vacuum at those times,
while their density in a unit volume is described by the thermodynamics
of an ideal gas. Heavier hadrons are suppressed at these energies by the
Boltzmann factor.

∗ Here k = 8.6× 10−11 MeV K−1 is the Boltzmann constant.
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The energy density E(T ) of the hadron matter is given by the standard
thermodynamical relation

E(T ) = 1
V

∂

∂(1/T )
lnZ(T, V )

∣∣∣∣
V

, (9.63)

with Z(T, V ) being given by Eq. (9.38).
When the density of hadrons is small, E(T ) is given by the formula

Eh(T ) =
T

2π2
∑

i=π,ρ,ω,...

gi
[
m3

iK1(mi/T ) + 3m2
iK2(mi/T )

]
, (9.64)

where gπ = 3, gρ = 9, gω = 3, . . . are the statistical weights of the π, ρ,
ω, . . . mesons, while K1 and K2 are the modified Bessel functions.

Problem 9.9 Derive Eq. (9.64) starting from the partition function (9.37).

Solution For a dilute gas, the logarithm in Eq. (9.37) can be expanded in
exp (−E/T ). Therefore, we find

lnZ(T, V ) =
const
T

+ V

∫
d3�p
(2π)3

e−
√
*p2+m2/T

=
const
T

+
V Tm2

2π2
K2(m/T ) . (9.65)

The second term on the RHS describes the classical statistics of an ideal gas of
relativistic particles. Equation (9.64) can now be derived by differentiating this
formula with respect to 1/T according to Eq. (9.63) and taking into account
the statistical weights of the hadron states. The zero-point energy term gives a
T -independent contribution to Eh, which only changes the energy reference level.

At low temperatures, the hadron matter is in the confinement phase.
However, when the temperature is increased, a phase transition associ-
ated with deconfinement occurs at some temperature T = Tc as was first
pointed out by Polyakov [Pol78] and Susskind [Sus79]. For T < Tc the in-
teraction potential between static quarks is linear, as is shown in Fig. 6.9a
on p. 117, while for T > Tc the potential is deconfining, as is shown in
Fig. 6.9b. The state of the hadron matter with deconfined quarks and
gluons is often called the quark–gluon plasma.
There exists a very simple physical argument as to why the deconfining

phase transition must occur in QCD when the temperature is increased.
It is based on the string picture of confinement which was considered in
Sect. 6.6. The string is made of the gluon field between static quarks
in the confining phase, which are associated with the string end points.
With increasing temperature, condensation of strings of infinite length
will inevitably occur owing to the large entropy of such states, which
corresponds to a deconfining phase transition.
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Problem 9.10 Derive the temperature of a phase transition for an elastic string
by analyzing the temperature dependence of its free energy.

Solution Let us consider the thermodynamics of an elastic string with fixed end
points. For low temperatures, thermal fluctuations of the length of the string
are suppressed by the Boltzmann factor since the energy is proportional to the
length. Therefore, the string is tightened along the shortest distance between
the quarks which leads to a linear potential.
When the temperature is increased, entropy effects associated with fluctua-

tions of the shape of the string become essential. An increment of the string
length l by ∆l increases energy by

∆E =
∂E

∂l
∆l = K∆l , (9.66)

where K is the string tension as before, but causes a gain of the entropy

∆S =
∂S

∂l
∆l . (9.67)

The change of free energy is given by

∆F = ∆E − T∆S =
(
K − T

∂S

∂l

)
∆l . (9.68)

A phase transition occurs at the temperature

Tc = K

(
∂S

∂l

)−1

, (9.69)

when the changes of energy and entropy compensate each other, so that the free
energy ceases to depend on ∆l. Therefore, the phase transition is associated
with a condensation of arbitrarily long strings.

The energy density E(T ) is described by a free gas of hadrons for low
temperatures, as has already been mentioned, and by a free gas of quarks
and gluons at high temperatures. The latter statement is a result of
asymptotic freedom, which says that the effective coupling constant de-
scribing a strong interaction at temperature T is given by

g2(T ) =
1

b ln
(
ΛQCD
T

) (9.70)

with

b =
1
4π2

(
−11 + 2

3
Nf

)
(9.71)

and Nf being the number of fermion species (or flavors) with mass much
less than T . This formula has the same structure as the running constant
g2(Q), which describes the strong interaction at a momentum of Q. Since
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Q ∼ T for thermal fluctuations, these two coupling constants coincide
with logarithmic accuracy.∗

The energy density E(T ) of the quark–gluon plasma is given by Boltz-
mann’s law

Ep(T ) = gp
π2

30
T 4 +B , (9.72)

where

gp = 2 · 8 + 7
8
· 2 · 2 · 3 ·Nf (9.73)

is the statistical weight, i.e. the number of independent internal degrees
of freedom of the particles of the ideal gas. There are two spin and eight
color states for gluons, and two spin, two particle–antiparticle, three color
and Nf flavor states for quarks (Nf = 2 for the u- and d-quarks). The
factor of 7/8 is the usual one for fermions.
The T -independent constant B > 0 in Eq. (9.72) is associated with

the fact that the vacuum energy in the plasma phase is higher than in
the hadron phase. In other words, the energy density of the perturbative
vacuum is larger by B than that of a nonperturbative one. It is because of
this energy difference that hadrons are stable at low temperatures. Such a
shift of energy densities between perturbative and nonperturbative vacua
is typical for bag models of hadrons.
Numerical Monte Carlo simulations of lattice gauge theory at finite

temperature indicate that the deconfining phase transition is of first or-
der and occurs at Tc ≈ 200 MeV. The actual dependence of the energy
density on T , calculated by the Monte Carlo method, is well described
by Eq. (9.64) for T < Tc and Eq. (9.72) for T > Tc. This behavior is
illustrated in Fig. 9.2.

Problem 9.11 Calculate Tc and the latent heat ∆E , approximating Eh by an
ideal gas of massless π-mesons.

Solution It is reasonable to disregard the mass of the π-mesons for T �
200 MeV. Then,

Eh (T ) = gh
π2

30
T 4 , (9.74)

where gh = 3 as a result of the three isotopic states (π+, π−, and π◦). Eh (T )
for the plasma state is given by Eq. (9.72).

∗ The perturbative calculations in QCD at finite temperature are described in the book
by Kapusta [Kap89] and in the more recent review by Smilga [Smi97] and the book
by Le Bellac [Bel00].
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Fig. 9.2. Temperature dependence of the energy density for hadron matter.
E(T ) for the hadron and the plasma phases are given by Eqs. (9.64) and (9.72).
The difference Ep−Eh at the temperature Tc of the deconfining phase transition
is equal to the latent heat ∆E .

The pressure for the relativistic gases with the energy densities (9.74) and
(9.72) is given, respectively, by

Ph (T ) = gh
π2

90
T 4 (9.75)

and

Pp (T ) = gp
π2

90
T 4 −B . (9.76)

The positive constant B in the energy density (9.72) leads to a negative pres-
sure in the plasma state at low temperatures. Therefore, the hadron phase is
preferable at low temperatures. This is in the spirit of the bag model of hadrons.
At high energies the pressure is higher for the plasma phase, since

gp = 37 > gh = 3 , (9.77)

so that the plasma phase is realized. The behavior of the pressure versus T 4 is
shown in Fig. 9.3 for both phases of hadron matter.
The deconfining phase transition occurs when the pressures in both phases

coincide. Therefore, we obtain

T 4
c =

B
π2

90 (gp − gh)
(9.78)

and

∆E ≡ Ep (T )− Eh (T ) = 4B . (9.79)

If we were set gh = 0 in Eq. (9.78), this would change the value of Tc by a few
per cent. This justifies the approximation of massless π-mesons.
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Fig. 9.3. Pressure versus T 4 for the two phases of hadron matter. The solid and
dashed lines represent Eqs. (9.75) and (9.76), respectively. The hadron phase is
stable for T < Tc, while the plasma phase is stable for T > Tc.

Remark on the deconfining phase transition in the early universe

The confining phase transition from a quark–gluon plasma to hadrons
happened in the early universe when its age was ≈ 10−5 seconds. The
equation of state of the hadron matter is described by Eqs. (9.72) and
(9.76) before that time and by Eqs. (9.64) and (9.75) after that time.
There are presumably no cosmological consequences of this phase tran-
sition, which survive to our time, since it happened too long ago. For
instance, fluctuations of the hadron matter density which might have
occurred just after the phase transition were washed out by further ex-
pansion. The confining phase transition in the early universe is considered
in the review [CGS86], Section 6.

9.5 Restoration of chiral symmetry

The chiral symmetry is broken spontaneously in QCD at T = 0, as is
discussed in Sect. 8.5. With increasing temperature, the chiral symmetry
should be restored at some temperature Tch (which does not necessarily
coincide with Tc) since perturbation theory is applicable at high T . This
restoration occurs as a phase transition with

〈
ψ̄ψ
〉
being the proper order

parameter. Therefore, the quark condensate is destroyed at T = Tch.
Monte Carlo simulations indicate that this chiral phase transition is of
first order.
However, there is a subtlety in the above string picture of quark con-

finement when virtual quarks are taken into account. The effects of vir-
tual quarks are suppressed when their mass m is infinitely large and the
picture of confinement is the same as in pure gluodynamics: quarks are
permanently confined by strings constructed from the flux tubes of the
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Fig. 9.4. Breaking of the flux tube by creating a quark–antiquark pair (depicted
by the open circles) out of the vacuum.

gluon field. This is associated with a linear interaction potential.
For light virtual quarks, the flux tube can break creating a quark–

antiquark pair out of the vacuum, as is shown in Fig. 9.4. This happens
when the energy saved in the flux tube is large enough to compensate the
kinetic energy of the particles produced. Hence, the linear growth of the
potential will stop at such distances.
The average of the Polyakov loop (9.51) is no longer a criterion for quark

confinement in the presence of virtual quarks. The test static quark can
always be screened by an antiquark created out of the vacuum (a quark
created at the same time will go to infinity). Therefore, the free energy
F0 in Eq. (9.54) is always finite so that 〈L(�x)〉 �= 0 in both phases.
The effects of virtual quarks usually weaken a phase transition in a

pure gauge theory. If the deconfining phase transition in the SU(3) pure
gauge theory was of second order rather than first order, it would pre-
sumably disappear for an arbitrarily large but finite value of m. Such a
phenomenon happens in the Ising model where an arbitrarily small ex-
ternal magnetic field (which is an analog of the quark mass) destroys
the second-order phase transition. A discontinuity of 〈L(�x)〉 at the first-
order deconfining transition continues in the (T,m)-plane as illustrated
by Fig. 9.5. It seems to terminate at some value mc of the quark mass.
This situation with the order parameter for the deconfining phase tran-

sition is somewhat similar to that for the chiral phase transition.
〈
ψ̄ψ
〉

vanishes in the unbroken phase only for m = 0. If m �= 0 but is small,
there is a small explicit breaking of chiral symmetry owing to the quark
mass. Since the chiral phase transition is of first order form = 0, it is nat-
ural to expect that a discontinuity of

〈
ψ̄ψ
〉
continues in the (T,m)-plane

up to some value mch of the quark mass.
If mch < mc, the phase diagram in the (T,m)-plane may look like

that shown in Fig. 9.5. In the intermediate region mch < m < mc, the
behavior of neither 〈L(�x)〉 nor

〈
ψ̄ψ
〉
can answer the question of whether a

phase transition (or two separate transitions) occurs. A proper parameter,
which signals a phase transition is this region, could be the temperature-
dependence of the energy density E(T ) that undergoes discontinuities at
the points of first-order phase transitions.
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Fig. 9.5. Expected phase diagram of the hadron matter in the (T,m)-plane.
The deconfining phase transition starts at T = Tc for m =∞. 〈L(�x)〉 is its order
parameter for m > mc. The chiral phase transition starts at T = Tch for m = 0.
ψ̄ψ is its order parameter for m < mch.

It is worth noting that an alternative behavior of the phase diagram
in the (T,m)-plane, when mch > mc, is not confirmed by Monte Carlo
simulations.
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Reference guide

There are many very good introductory lectures/reviews on lattice gauge
theory. For a perfect description of motivations and the lattice formula-
tion, I would recommend the original paper [Wil74] and lectures [Wil75]
by Wilson. Original papers on lattice gauge theories are collected in the
book edited by Rebbi [Reb83]. Various topics within lattice gauge theory
are covered in the well-written book by Creutz [Cre83]. The book by
Seiler [Sei82] contains some mathematically rigorous results. The more
recently published book by Montvay and Münster [MM94] contains a
comprehensive look at lattice gauge theory.
I shall also list some of the old reviews on lattice gauge theory which

might be useful for deeper studies of the lattice methods. The strong-
coupling expansion and the mean-field method are discussed in the re-
view by Drouffe and Zuber [DZ83]. The Monte Carlo method and some
results of numerical simulations are considered in [CJR83, Mak84]. The
fermion doubling problem and the Wilson fermions are discussed in the
lectures [Wil75].
An introduction to quantum field theory at finite temperature is given

in the book by Kapusta [Kap89], which contains, in particular, a dis-
cussion of perturbation theory in QCD at finite temperature. Lattice
gauge theory aspects of the deconfining phase transition at finite temper-
ature are considered in the review by Svetitsky [Sve86]. A description
of the thermal phases of hadron matter, a comparison with results of
Monte Carlo simulations and a discussion of the deconfining phase tran-
sition in the early universe are contained in the review [CGS86]. Various
physical aspects of thermal QCD are considered in the recent review by
Smilga [Smi97] and book by Le Bellac [Bel00].
Most of the reviews mentioned above were written in the 1980s and
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contain a description of lattice methods as well as early Monte Carlo
results. The best way to follow current developments of the subject is via
plenary talks at the annual Lattice Conference ([Lat00] and those for the
preceding years).
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in terms of particle-string variables: spin, internal symmetries, and
arbitrary dimension’. Phys. Rev. D16 (1977) 2476.

[HP81] Hamber H. and Parisi G. ‘Numerical estimates of hadron masses
in a pure SU(3) gauge theory’. Phys. Rev. Lett. 47 (1981) 1792.

[Kad76] Kadanoff L.P. ‘Recursion relations in statistical physics and field
theory’. Ann. Phys. 100 (1976) 359.

[Kap89] Kapusta J.I. Finite-temperature field theory (Cambridge Univ. Press,
1989).



182 Bibliography to Part 2

[Kob79] Kobe D.H. ‘Aharonov–Bohm effect revisited’. Ann. Phys. 123 (1979)
381.

[KM81] Khokhlachev S.B. and Makeenko Yu.M. ‘Phase transition over
the gauge group center and quark confinement in QCD’. Phys. Lett.
B101 (1981) 403.

[KMN83] Kluberg-Stern H., Morel A., Napoly O., and Petersson B.
‘Flavors of Lagrangian Susskind fermions’. Nucl. Phys. B220 (1983)
447.

[KS75] Kogut J. and Susskind L. ‘Hamiltonian formulation of Wilson’s
lattice gauge theories’. Phys. Rev. D11 (1975) 395.

[KS81a] Karsten L.H. and Smit J. ‘Lattice fermions: species doubling,
chiral invariance and the triangle anomaly’. Nucl. Phys. B183 (1981)
103.

[KS81b] Kawamoto N. and Smit J. ‘Effective Lagrangian and dynamical
symmetry breaking in strongly coupled lattice QCD’. Nucl. Phys.
B192 (1981) 100.

[Lat00] Lattice 2000, Proc. of the XVIIIth Int. Symp. on lattice field theory,
ed. T. Bhattacharya et al. Nucl. Phys. B (Proc. Suppl.) 94, 2001.

[LN80] Lautrup B. and Nauenberg M. ‘Phase transition in four-
dimensional compact QED’. Phys. Lett. B95 (1980) 63.

[Lon27] London F. ‘Quantenmechanische Deutung der Theorie von Weyl’.
Z. Phys. 42 (1927) 375.

[LR82] Lang C.B. and Rebbi C. ‘Potential and restoration of rotational
symmetry in SU(2) lattice gauge theory’. Phys. Lett. B115 (1982)
137.
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