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Abstract

We prove that polynomial rings in one indeterminate over nil rings are antiregular radical and uniformly
strongly prime radical. These give some approximations of Kothe's problem. We also study the
uniformly strongly prime and superprime radicals of polynomial rings in non-commuting indeterminates.
Moreover, we show that the semi-uniformly strongly prime radical coincides with the uniformly strongly
prime radical and that the class of semi-superprime rings is closed under taking finite subdirect sums.

2000 Mathematics subject classification: primary 16N20, 16N40, 16N80.

1. Introduction and preliminaries

Kothe's Problem (is the sum of two nil left ideals nil?) is perhaps the most challenging
problem in ring theory. It was posed in 1930 at the genesis of radical theory [5].
This problem has many equivalent formulations. One of the most interesting, which
stimulated many further studies, is the following one due to Krempa [6]:

Does R e i/f imply that the polynomial ring R[x] in indeterminate x over R is
in ^ , where jY and ^ denote the classes of nil rings and Jacobson radical rings,
respectively?

In [11] it has been proved that R e Jf implies R[x] e Sf, where <g stands for
the Brown-McCoy radical. This result can be viewed as an approximation of Kothe's
Problem from above, because / c S?. One can try to improve this approximation
replacing ^ with some other radicals containing Jf. Among the most natural radicals
to consider are:
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• The Behrens radical SB. This is the upper radical determined by the class of
rings possessing a non-zero idempotent.

• The antiregular radical Wv. This is the upper radical determined by the class
v of all von Neumann regular rings.

• The uniformly strongly prime radical u. A ring R is said to be uniformly
strongly prime, if there exists a finite subset F of R, called a uniform insulator, such
that xFy ^ 0 whenever 0 ^ x, y 6 R. The uniformly strongly prime radical is the
upper radical determined by the class of uniformly strongly prime rings [8].

• The superprime radical. A ring R is said to be (right) superprime [15] if
every non-zero ideal I of R contains an element a such that rR(a) = 0, where rR(a)
denotes the right annihilator of a in R. The superprime radical a is the upper radical
determined by the class of all superprime rings.

The relations among these radicals are well known (see for instance [16]), and we
summarize them in the following proposition.

PROPOSITION 1.1. JY <z J <Z SB (Z'S, SB <z <ftv, Jf c a c u. Moreover
<£ || %v, tf || u, Wv || u, J? || u, where \\ stands for the relation 'not comparable'.

COROLLARY 1.2. SS c Wv n <g c & and <% v'n y c

PROOF. Let V be a countably infinite dimensional space over the two element field
GF(2) and let T be the ring of finite valued linear transformations of V. Further,
let t be the linear transformation of V such that t(e2n) = 0 and t{e2n-\) = e2n,
n = 1 ,2 , . . . , where {e{, e2,...} is a basis of V. Let R be the subring of the ring
of linear transformations of V generated by T U [t]. It is not hard to check that R
is a subdirectly irreducible ring with heart equal to T and R/ T is nilpotent. Since
T contains idempotents, R ^ SS. As R/ T is a non-zero nilpotent ring and R is
subdirectly irreducible, we conclude that R € Wv. Clearly R e *3. The rest follows
immediately from Proposition 1.1. •

The upper radical jYs determined by the class of rings which contain no non-zero
nil left ideals or, equivalently, no non-zero nil right ideals is called the lower strong
radical determined by J/'. Clearly, <// c jYs and Kothe's problem is equivalent to the
equality vK = J\fs. In this context it is natural to ask whether J/s behaves similarly to
Jf when one takes polynomials. In [10, Corollary 3.3], it was observed that from the
results of [11] it follows that if L is a nil left ideal of a ring R, then (L + LR)[x] € $.
This and the well-known fact (see for instance [7]) that the class [R \ R[x] € Sf} is
radical easily imply that for every ^- radica l ring R, R[x] € <£. We shall show that
the same holds if & is replaced by *% v or u (for u we in fact get more, namely that
polynomial rings in non-commuting indeterminates over rings in ^Vs are in u).
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We do not know whether for every nil ring R the polynomial ring R [x ] belongs to a.
However we show that it does not hold for polynomial rings in sets of non-commuting
indeterminates. We also answer some questions raised in [9] concerning u and a.

Given a ring R, R* will denote the ring obtained by adjoining an identity to R.
Throughout this paper R[x] denotes the polynomial ring in an indeterminate x over

a ring R and R(X) denotes the ring of polynomials in non-commuting indeterminates
from a set X. If X = {x), then obviously R(X) = R[x].

2. The antiregular radical

The following theorem gives in particular an approximation of Kothe's problem by
the antiregular radical.

THEOREM 2.1. For every ^-radical ring R, R[x] € <%v.

PROOF. Note first that if e is a right identity of a ring A, that is, ae = a for every
a e A, then rA(e) is an ideal of A. Indeed, if b e rA(e), then Ab = Aeb = 0. Clearly,
a — ea e rA(e) for each a € A. Hence e + rA(e) is an identity of A/rA(e). Thus A
can be mapped homomorphically onto a ring with an identity. Consequently, A is not
Brown-McCoy radical.

Suppose now that R[x] & ty/v. Then there exists a surjective homomorphism
f : R[x] -*• B such that 0 / B e v. Since von Neumann regular rings contain
no non-zero nilpotent ideals, applying the Andrunakievich Lemma, one gets that
ker/ is an ideal of R*[x]. Consequently, (R D ker/)[;c] c ker/ . Let / be the
canonical homomorphism of R[x], where R = R/(R D ker/) , onto B induced by
/ . Since R € JVS and R is a non-zero homomorphic image of R, R contains a
non-zero nil left ideal L. Obviously f (r) ^ 0 for some r e L. Since B is von
Neumann regular, there exists an idempotent e € B such that Bf (r) = Be. Now
f((Rr)[x]) = f(R[x]r) = f(R[x])f(r) = Bf'(r) = Be. Obviously e is a right
identity of Be, so Be is not Brown-McCoy radical and consequently (Rr)[x] is not
Brown-McCoy radical. On the other hand, Rr is a nil ring, so by [11, Corollary 3],
the polynomial ring (Rr)[x] is Brown-McCoy radical, a contradiction. •

3. The uniformly strongly prime radical

THEOREM 3.1. (i) Given a set X, a ring R is uniformly strongly prime if and
only if the polynomial ring R{X) is uniformly strongly prime.

(ii) For every ring R and every set X, u(R(X}) = u(R)(X).
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PROOF, (i) Suppose that R is a uniformly strongly prime ring with uniform insulator
F. Let a = £ a,m; and b = X ^ ; nj > where a,, bj e R and m,, n, are monomials, be
non-zero elements of R(X). Suppose that mx and nx are some of monomials of the
least degree for which at ^ 0 and bx ^ 0. Then ax Fb\ ^ 0, which easily implies that
also aFb ^ 0. Hence F is a uniform insulator for R{X).

Assume now that R(X) is uniformly strongly prime with a uniform insulator
G = [gu ... , gk}. Let g, = £ rumu, ... , gk = £ rkimki, where r,, e /? and m;,
are monomials. The set F of all r;, is finite and it is clear that if aFb = 0 for some
a, b G R, then also aGb = 0. Since G is a uniform insulator in #(X) we conclude
that a = 0 or b = 0. Thus F is a uniform insulator for R.

(ii) If u(R) = 0, then /? is a subdirect sum of uniformly strongly prime rings /?;.
Clearly R{X) is a subdirect sum of Rt(X). Hence by (i) we get that u(R(X)) = 0.
It remains to prove that if R is uniformly strongly prime radical, then so is R(X).
Suppose that R(X) contains a proper ideal / such that R(X)/I is uniformly strongly
prime. Note that / is also an ideal of R*(X). Let 0 be the canonical homomorphism
of R*{X) onto R*{X)/I. Clearly R(X)/I is generated by (j)(R)<p(T), where T is
the free monoid generated by X. Let F = {/i, . . . , / „ } be a uniform insulator of
R(X)/I. Each / , is a finite sum of elements of the form a^m^, where ay e <p(R)
and m,; € 0(7*). It is clear that the set of all a>- is a uniform insulator of </>(/?), so
0(/?) is uniformly strongly prime. This contradicts the assumption that R is uniformly
strongly prime radical. •

PROPOSITION 3.2. Suppose that S is a multiplicative semigroup with O.IfS is nil,
then for every finite (non-empty) subset F of S and every a e S for which a Fa ^ 0
there exists b € S such that aba ^ 0 and \abaFaba\ < |aFa| .

PROOF. Suppose that F = [xt,... ,xn] and a Fa ^ 0. We can assume that
ax\a ^ 0. Let k be a natural number such that {ax\)k ^ 0 but (axi)k+l — 0. If
(axi)ka 5^0, then for b = Xi(axt)

k~l (fork = 1 we take b -xx),aba — {ax\)ka ^ 0
and abaFaba c aba{x2, • • • , xn}aba, so we are done. If (ax\)ka = 0, then k > 2
and for b = xi(axi)k~2, aba =£ 0 and abaxxaba = {ax\)kaba = 0. Hence again
\abaFaba\ < \aFa\. The result follows. •

COROLLARY 3.3. (i) If S is a non-zero nil semigroup with 0, then for every
finite subset F of S there is a non-zero a € S such that aFa = 0.

(ii) IfR is a ring generated by a nil subsemigroup S of the multiplicative semigroup
ofR, then R € u.

PROOF. Statement (i) is a direct consequence of Proposition 3.2.
(ii) Let 0 be a ring homomorphism of R onto R'. Obviously /?' is generated by

<p(S). Take any rx,... , rn e R'. For every 1 < i < n there is a finite set {s,y} c 0(5)
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and integers e,y such that r, = J2jeusU- Since the semigroup 0(5) is nil, by (i),
0(5) = 0 or there is 0 ^ a e 0(5) such that as^a = 0 for all i, j . Hence arta = 0
for all 1 < i < n. This shows that R' is not uniformly strongly prime. Consequently,
R € u. •

Clearly Corollary 3.3 (ii) implies that
gives more.

Q u (see for example [14]). In fact it

COROLLARY 3.4. c u.

PROOF. Obviously it suffices to prove that if a ring R has a non-zero nil left ideal
L, then u(R) ^ 0. Note that [lr \ I 6 L, r € R*} is a nil subsemigroup of the
multiplicative semigroup of R generating LR* as a ring. Hence by Corollary 3.3 (ii),
LR* e u. Consequently, 0 ^ LR* C U(R). •

Theorem 2.1, Theorem 3.1 and Proposition 1.1 along with the quoted result of [11]
yield

COROLLARY 3.5. IfR e J/, then R[x\ € tyv<l& Du. The positive solution of
Kothe's Problem would imply that R[x] e J? C\ ufor every nil ring R.

Thus Corollary 3.5 provides also "another equivalent formulation of Kothe's Prob-
lem: Does RajY imply R[x] € J D ui

The position of the radical classes discussed so far is given in the following diagram:

Olson, Le Roux and Heyman [9] defined a ring R to be semi-uniformly strongly
prime if every non-zero ideal I of R contains a finite subset F, called an insulator of
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/, such that for every 0 ^ i € / , iFi' j= 0. They proved that the class of all semi-
uniformly strongly prime rings is weakly special. The upper radical u' determined by
this class could be potentially another radical to examine when approximating Kothe's
Problem. However, as we shall show, it coincides with the uniformly strongly prime
radical. This answers a question raised in [9].

We shall need the following two lemmas proved by Handelman in [3].

LEMMA 3.6 ([3, Lemma 7]). If a semiprime ring R contains no infinite direct sums
of non-zero ideals, then R satisfies the ascending and descending conditions on
annihilators of ideals.

LEMMA 3.7 ([3, Lemma 8]). If I is a non-zero ideal in a semiprime ring R and the
annihilator I of I is maximal among annihilators of ideals in R, then R/I is a prime
ring.

PROPOSITION 3.8. The radical u' coincides with the uniformly strongly prime rad-
ical u.

PROOF. It suffices to prove that every semi-uniformly strongly prime ring R can be
homomorphically mapped onto a non-zero uniformly strongly prime ring. Clearly R
is semiprime and contains no infinite direct sum of non-zero ideals. Hence applying
Lemma 3.6 and Lemma 3.7 we obtain that R contains a non-zero ideal K such that
R/K is a prime ring. We claim that R/K is uniformly strongly prime. Let F
be an insulator of K. We shall prove that F + K is a uniform insulator of R/K.
Suppose that x, y € R \ K and xFy c K. Let P = {r € R | xFr c K] and
L = [r e R\ rFP C.K}. Clearly P and L are right and left ideals of R, respectively,
and both of them strictly contain K. Hence O ^ A T L C A T l L a n d O ^ P A r c p n A ' ,
so P P\ K and L D K are non-zero right and left ideals of K, respectively. Since
R/K is a prime ring and K is isomorphic to an ideal of that ring, K is a prime ring.
C o n s e q u e n t l y , 0 jL (Pr\K)(LDK) Q LDPHK. N o w f o r e v e r y O^t & LDPDK,

t Ft = 0. Hence F is not an insulator of K, a contradiction. •

4. The superprime radical

Clearly jV c a but we do not know whether Jfs c a. We also do not know
whether if R e J\f, then R[x] e a. This would improve the approximation of
Kothe's Problem. It is not hard to check that for every ring R the ring M(R) of
countable matrices over R which have only finitely many non-zero entries is in a, and
if R € J/s then also M{R) e Jfs. In particular, if R € Jf then M(R) 6 J/s. The
problem whether for every R e Jf also M(R) e JS is equivalent to Kothe's problem
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([6, 13]). It is clear that if R is locally nilpotent, then M{R) e jY. There also exist
not locally nilpotent rings R such that M{R) € J/. As it was noted in [7] and in [1,
Lemma 59] if R is Golod's example of [2] (recall that this is an example of a nil ring
which is not locally nilpotent), then R[x] e jV, which implies that M{R) e J/. An
example of a ring R for which M(R) is nil and R[x] is not nil was constructed in [12].
Note that for every ring R and every set X, M(R){X) ~ M(R(X)) e a. These show
that there are many nil rings R such that for every set X, R(X) e a. We shall show
that there are also nil rings for which it does not hold.

A ring R is called (right) strongly prime if every non-zero ideal of R contains
a finite subset F such that the right annihilator rR(F) of F in R is equal to zero.
Obviously every strongly prime ring is prime and every superprime ring is strongly
prime.

If R is a finitely generated non-nilpotent ring, then applying Zorn's lemma one can
find in R an ideal maximal with respect to the property that R" £ / for all n = 1 ,2 , . . .
(Zorn's lemma applies because all R" are finitely generated rings). Obviously R/I is
a prime ring. For every ideal J of R strictly containing / there is a natural number
n such that R" c J'. The ring R" is generated by a finite set, say, F. Clearly for
arbitrary x € R, Fx c / if and only if R"x C / . This easily implies that R/I is
strongly prime.

There are finitely generated non-nilpotent nil rings. Hence the foregoing remark
implies that there exist strongly prime nil rings.

Now we shall prove

THEOREM 4.1. If R is a strongly prime ring, then for every set X with \X\ > 2, the
ring R(X) is superprime.

PROOF. Let / be a non-zero ideal in R*(X) contained in R(X) and let m be a
monomial of least degree such that for some 0 ^ r e R, ru ... , rn e R and some
monomials mu ... , mn, rm + rxmi + • • • + rnmn e I. The set / consisting of all
coefficients of m in elements belonging to / is a non-zero ideal of R*. Since R is
strongly prime there are elements au ... , a, € J such that rR({au ..., a,}) = 0.
Suppose that they appear as coefficients of m in polynomials fx,... ,f, e I. Let x
and y be two distinct elements in X. Then / = f\xy'+f2x

2y'~i + - • •+f,x'y 6 / . We
claim that rR(X)(f) = 0. Indeed, if for some g e R(X),fg = 0, t h e n / g = 0, where/
and g are the least components of/ and g with respect to the gradation of R (X) given
by the degree. Suppose that f = b\px + • • • + btph where &, e R and p , are distinct

monomials and similarly | = cxq\-\ \-csqs. Note that {a i , . . . , a,} C {&,,... , bi).
Moreover ptqj = puqw if and only if/?, = pu and qj — qw. This shows that Z?,c, = 0
for all /,_/. Consequently, c, € rR({a\,... , a,}) = Oandg = 0, a contradiction. Now
it suffices to apply the Andrunakievich lemma to get that every non-zero ideal of R {X)
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contains an element / such that rRm (') = 0. This proves that R (X) is superprime. •

Olson, Re Roux and Heyman [9] defined a ring R to be (right) semi-superprime
if for every non-zero ideal I of R there exists i e / such that r,(i) = 0. They
proved that all semi-superprime rings are finite subdirect sums of superprime rings
and asked whether the converse holds. We shall show that it is indeed the case. Since
all superprime rings are semi-superprime it suffices to prove the following

THEOREM 4.2. Every ring which is a subdirect sum of two semi-superprime rings
is semi-superprime.

PROOF. It is clear that every semi-superprime ring R contains no infinite direct
sum of non-zero ideals. Note that ideals of R are precisely R <8> /^-submodules of
R. Hence the Goldie dimension of R as R ® fl^-module is finite. Thus a direct
sum Ri © •••©/?„ of uniform R <g> /J^-submodules of R is an essential R ® R^-
submodule of R. Since the class of semi-superprime rings is hereditary and consists
of semiprime rings, an ideal / of R is uniform as an R ® R* -module if and only if /
is a prime ring. Clearly prime semi-superprime rings are superprime. Consequently,
every semi-superprime ring R contains a direct sum /i © • • • © / „ of ideals /, which
are superprime rings and such that l\ © • • • 0 7n îs an essential ideal of R.

Suppose now that R is a subdirect sum of two semi-superprime rings, that is, R
contains ideals / , J such that / n J = 0 and R/I and R/J are semi-superprime
rings. Since / is isomorphic to an ideal in R/J and R/J is semi-superprime, /
contains an essential direct sum 1\ © • • • © / „ of ideals which are superprime rings.
Applying the Andrunakievich lemma it is not hard to show that all /, can be chosen
to be ideals of R. Note that if In+i,... , /, are non-zero ideals in R such that the sum
h + ••• + L + /„+! + ••• + /, is direct, then (/ + /n + 1)/7 + ••• + (/ + / , ) / / is a direct
sum of non-zero ideals of R/I. Thus t — n does not exceed the Goldie dimension
of the (R/I) <S> (R/I)op-module R/I. Consequently, we can assume that all /, are
superprime rings and / , © • • • © / , is an essential ideal of R. Note that if M is an
ideal of / , © • • • © / , , then M n /, ^ 0 if and only if 7r,(M) ^ 0, where 7r, is the
natural projection of 7] © • • • © / , onto /;. If T is a non-zero ideal in / , © • • • © / , , then
(T D11 )©•• •©( T n /,) is an essential ideal in T. Indeed, if M c T is a non-zero ideal
of 7i © • • • © / „ then 7r,(M) ^ 0 for some i, so 0 ^ M n /,- c r n /,. Take now any
non-zero ideal K in R and put T = ATPl (A © • • • © / , ) . Since Ix ffi • • • © / , is essential
in R and R is semiprime, T is essential in K. Note that since all /, are superprime,
for every / for which T n /,• ^ 0 there is an a{ € T D /, such that rh (a,-) = 0. Then for
a = J2 a,, rv(a) — 0, where U = (T n /j) © • • • © (T n / , ) . However U is essential
in T and T is essential in K, so t/ is essential in K. Now U C\rK (a) = ru(a) = 0, so
rK(a)U = 0. Hence, since U is semiprime and essential in K, rK(a) = 0. The result
follows. •
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