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We establish theoretical results about the low frequency contamination (i.e., long
memory effects) induced by general nonstationarity for estimates such as the sample
autocovariance and the periodogram, and deduce consequences for heteroskedastic-
ity and autocorrelation robust (HAR) inference. We present explicit expressions for
the asymptotic bias of these estimates. We show theoretically that nonparametric
smoothing over time is robust to low frequency contamination. Nonstationarity
can have consequences for both the size and power of HAR tests. Under the null
hypothesis there are larger size distortions than when data are stationary. Under the
alternative hypothesis, existing LRV estimators tend to be inflated and HAR tests can
exhibit dramatic power losses. Our theory indicates that long bandwidths or fixed-b
HAR tests suffer more from low frequency contamination relative to HAR tests based
on HAC estimators, whereas recently introduced double kernel HAC estimators do
not suffer from this problem. We present second-order Edgeworth expansions under
nonstationarity about the distribution of HAC and DK-HAC estimators and about the
corresponding t-test in the regression model. The results show that the distortions in
the rejection rates can be induced by time variation in the second moments even
when there is no break in the mean.
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2 ALESSANDRO CASINI ET AL.

1. INTRODUCTION

Many economic and financial time series have nonstationary characteristics that
need to be accounted for in inference [see, e.g., Perron (1989), Stock and Watson
(1996), Ng and Wright (2013), and Giacomini and Rossi (2015)]. We develop
theoretical results about the behavior of the sample autocovariance (�̂ (k), k ∈ Z)
and the periodogram (IT (ω), ω ∈ [−π, π ]) for a short memory nonstationary
process. This means processes that have non-constant moments and whose sum of
absolute autocovariances is finite. The latter rules out processes with unbounded
second moments (e.g., unit root). We show that time-variation in the mean induces
low frequency contamination, meaning that the sample autocovariance and the
periodogram share features that are similar to those of a long memory series. We
present explicit expressions for the asymptotic bias of these estimates, showing
that it is always positive and increases with the degree of heterogeneity in the data.

The low frequency contamination can be explained as follows. For a short
memory series, the autocorrelation function (ACF) displays exponential decay and
vanishes as the lag length k → ∞, and the periodogram is finite at the origin. Under
general forms of nonstationarity involving changes in the mean, we show theoreti-
cally that �̂ (k) = limT→∞�T (k)+d∗, where �T (k) = T−1∑T

t=k+1E(VtVt−k), k ≥
0 and d∗ > 0 is independent of k. Assuming positive dependence for simplicity (i.e.,
limT→∞�T (k) > 0), that means that each sample autocovariance overestimates
the true dependence in the data. The bias factor d∗ > 0 depends on the type of
nonstationarity and in general does not vanish as T → ∞. In addition, since short
memory implies �T (k) → 0 as k → ∞, it follows that d∗ generates long memory
effects since �̂ (k) ≈ d∗ > 0 as k → ∞. As for the periodogram, IT (ω), we show
that under nonstationarity E(IT (ω)) → ∞ as ω → 0, a feature also shared by long
memory processes.

Several HAR inference problems in applied work (besides the t- and F-test in
regression models) are characterized by nonstationary alternative hypotheses for
which d∗ > 0 even asymptotically. This class of tests is very large. Tests for forecast
evaluation [e.g., Casini (2018), Diebold and Mariano (1995), Giacomini and Rossi
(2009, 2010), Giacomini and White (2006), Perron and Yamamoto (2021) and
West (1996)], tests and inference for structural changes [e.g., Andrews (1993),
Bai and Perron (1998), Casini and Perron (2021, 2022a, 2022b), Elliott and Müller
(2007), and Qu and Perron (2007)], tests and inference in time-varying parameters
models [e.g., Cai (2007) and Chen and Hong (2012)], tests and inference for regime
switching models [e.g., Hamilton (1989) and Qu and Zhuo (2020)] and others are
part of this class.

Recently, Casini (2023) proposed a new HAC estimator that applies non-
parametric smoothing over time in order to account flexibly for nonstationarity.
We show theoretically that nonparametric smoothing over time is robust to low
frequency contamination and prove that the resulting sample local autocovariance
and the local periodogram do not exhibit long memory features. Nonparamet-
ric smoothing avoids mixing highly heterogeneous data coming from distinct
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nonstationary regimes as opposed to what the sample autocovariance and the
periodogram do.

Our work is different from the literature on spurious persistence caused by the
presence of level shifts or other deterministic trends. Perron (1990) showed that the
presence of breaks in mean often induces spurious non-rejection of the unit root
hypothesis, and that the presence of a level shift asymptotically biases the estimate
of the AR coefficient towards one. Bhattacharya et al. (1983) demonstrated that
certain deterministic trends can induce the spurious presence of long memory.
In other contexts, similar issues were discussed by Christensen and Varneskov
(2017), Diebold and Inoue (2001), Demetrescu and Salish (2024), Lamoureux and
Lastrapes (1990), Hillebrand (2005), Granger and Hyung (2004), McCloskey and
Hill (2017), Mikosch and Stărica (2004), Müller and Watson (2008) and Perron
and Qu (2010). Our results are different from theirs in that we consider a more
general problem and we allow for more general forms of nonstationarity using the
segmented locally stationary framework of Casini (2023). Importantly, we provide
a general solution to these problems and show theoretically its robustness to low
frequency contamination. Moreover, we discuss in detail the implications of our
theory for HAR inference.

HAR inference relies on estimation of the long-run variance (LRV). The latter,
from a time domain perspective, is equivalent to the sum of all autocovariances
while from a frequency domain perspective, is equal to 2π times an integrated
time-varying spectral density at the zero frequency. From a time domain perspec-
tive, estimation involves a weighted sum of the sample autocovariances, while
from a frequency domain perspective estimation is based on a weighted sum of
the periodogram ordinates near the zero frequency. Therefore, our results on low
frequency contamination for the sample autocovariances and the periodogram can
have important implications.

There are two main approaches in HAR inference, one based on traditional
asymptotics and the other based on fixed-smoothing asymptotics. The classical
approach relies on an LRV estimator using a small bandwidth [cf. the HAC
estimators of Newey and West (1987, 1994) and Andrews (1991)]. Inference is
standard because HAR test statistics follow asymptotically standard distributions.
It was shown early that HAC standard errors can result in oversized tests when there
is substantial temporal dependence. This stimulated a second approach based on
an LRV estimator that keeps the bandwidth at a fixed fraction of the sample size
and that converges weakly to a random variable [cf. Kiefer et al. (2000)]. Inference
is then based on a nonstandard reference distribution and it is shown that fixed-b
achieves high-order refinements [e.g., Sun et al. (2008)] and reduces the oversize
problem of HAR tests.1 However, unlike the classical approach, current fixed-b
HAR inference is only valid under stationarity [cf. Casini (2024)] as the fixed-b

1See Dou (2024), Hwang and Sun (2017), Ibragimov et al. (2021), Ibragimov and Müller (2010), Jansson (2004),
Kiefer and Vogelsang (2002, 2005), Lazarus et al. (2020), Lazarus et al. (2018) Müller (2007, 2014), Phillips (2005),
Politis (2011), Pötscher and Preinerstorfer (2016, 2018, 2019), Robinson (1998), Sun (2013, 2014a, 2014b) and Zhang
and Shao (2013).

https://doi.org/10.1017/S026646662400032X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662400032X


4 ALESSANDRO CASINI ET AL.

limiting distribution of the t/F statistic is non-pivotal under nonstationarity. More
recently, a variant of the fixed-b approach [see, e.g., Sun (2014b) and Lazarus et al.
(2018)] considered the use of small-b asymptotics in conjunction with fixed-b or
t/F critical values. These bandwidths are typically larger than the MSE-optimal
bandwidths used for the HAC estimators.

Recently, Casini (2023) questioned the performance of HAR inference under
nonstationarity from a theoretical standpoint. Simulation evidence of serious
(e.g., non-monotonic) power or related issues in specific HAR inference contexts
were documented by Altissimo and Corradi (2003), Casini (2018), Casini and
Perron (2019, 2021, 2022b), Chan (2022a, 2022b), Crainiceanu and Vogelsang
(2007), Deng and Perron (2006), Juhl and Xiao (2009), Kim and Perron (2009),
Martins and Perron (2016), Otto and Breitung (2023), Perron (1991), Perron and
Yamamoto (2021), Shao and Zhang (2010), Vogelsang (1999) and Zhang and
Lavitas (2018) among others]. Our theoretical results show that these issues occur
because the unaccounted nonstationarity alters the spectrum at low frequencies.
Each sample autocovariance is upward biased (d∗ > 0) and the resulting LRV
estimators tend to be inflated. When these estimators are used to normalize test
statistics, the latter lose power. Interestingly, d∗ is independent of k so that the
more lags are included the more severe is the problem. Further, by virtue of weak
dependence, we have that �T (k) → 0 as k → ∞ but d∗ > 0 across k. We show
formally that long bandwidths/fixed-b LRV estimators are expected to suffer most
from power losses because they use many/all lagged autocovariances.

To precisely analyze the theoretical properties of the HAR tests under the null
hypothesis, we present second-order Edgeworth expansions under nonstationarity
for the distribution of the HAC and DK-HAC estimator and for the distribution
of the corresponding t-test in the linear regression model. Under stationarity the
results concerning the HAC estimator were provided by Velasco and Robinson
(2001). We show that the order of the approximation error of the expansion is
the same as under stationarity from which it follows that the error in rejection
probability (ERP) is also the same. The ERP of the t-test based on the DK-HAC
estimator is slightly larger than that of the t-test based on the HAC estimator
due to the double smoothing. High-order asymptotic expansions for spectral and
other estimates were studied by Bhattacharya and Ghosh (1978), Bentkus and
Rudzkis (1982), Janas (1994), Phillips (1977, 1980) and Taniguchi and Puri
(1996). The asymptotic expansions of the fixed-b HAR tests under stationarity
were developed by Jansson (2004) and Sun et al. (2008). Casini (2024) showed
that under nonstationarity the ERP of the fixed-b HAR tests can be larger than that
of HAR tests based on HAC and DK-HAC estimators thereby controverting the
conclusion in the literature that the original fixed-b HAR tests have superior null
rejection rates relative to HAR tests based on traditional LRV estimators. Casini
(2024) also developed fixed-b methods that are valid under nonstationarity and in
fact provide better null rejection rates in finite-sample.

The Monte Carlo results suggest that under the null hypothesis nonstationarity
can generate larger size distortions than what one finds under stationarity. In
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particular, fixed-smoothing methods can exhibit under-rejections whereas HAC
and DK-HAC methods can exhibit over-rejections when there is strong persistence.
For the latter problem, our second-order Edgeworth expansions could be used
to construct corrections to the standard normal critical value. We relegate this
opportunity to future research.

The paper is organized as follows. Section 2 presents the statistical setting
and Section 3 establishes the theoretical results on low frequency contamination.
Section 4 presents the Edgeworth expansions of HAR tests based on the HAC and
DK-HAC estimators. The implications of our results for HAR inference are ana-
lyzed analytically and computationally through simulations in Section 5. Section 6
concludes. The supplemental materials contain some additional examples and all
mathematical proofs.

2. STATISTICAL FRAMEWORK FOR NONSTATIONARITY

Suppose {Vt,T}T
t=1 is defined on a probability space (�,F,P), where � is the

sample space, F is the σ -algebra and P is a probability measure. In order to
analyze time series models that have a time-varying spectrum, it is useful to
introduce an infill asymptotic setting whereby we rescale the original discrete
time horizon [1, T] by dividing each t by T . Letting u = t/T we define a new
time scale u ∈ [0, 1] on which as T → ∞ we observe more and more realizations
of Vt,T close to time t. As a notion of nonstationarity, we use the concept of
segmented local stationarity (SLS) introduced in Casini (2023). This extends the
locally stationary processes [cf. Dahlhaus (1997)] to allow for structural change
and regime switching-type models. SLS processes allow for a finite number of
discontinuities in the spectrum over time. We collect the break dates in the set T �{
T0

1, . . . , T0
m

}
. Let i �

√−1. A function G(·, ·) : [0, 1]×R → C is said to be left-
differentiable at u0 if ∂G(u0,ω)/∂−u � limu→u−

0
(G(u0, ω)−G(u, ω))/(u0 −u)

exists for any ω ∈ R. Let m0 ≥ 0 be a finite integer.

Definition 1. A sequence of stochastic processes {Vt,T}T
t=1 is called segmented

locally stationary (SLS) with m0 + 1 regimes, transfer function A0 and trend μ if
there exists a representation

Vt,T = μj (t/T)+
∫ π

−π

exp (iωt)A0
j,t,T (ω)dξ (ω),

(
t = T0

j−1 +1, . . . , T0
j

)
,

(1)

for j = 1, . . . , m0 + 1, where by convention T0
0 = 0 and T0

m0+1 = T. The following
technical conditions are also assumed to hold: (i) ξ (λ) is a process on [−π, π ]
with ξ (ω) = ξ (−ω) and

cum {dξ (ω1), . . . , dξ (ωr)} = ζ

⎛⎝ r∑
j=1

ωj

⎞⎠gr (ω1, . . . , ωr−1)dω1 . . . dωr,

https://doi.org/10.1017/S026646662400032X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662400032X


6 ALESSANDRO CASINI ET AL.

where cum {· · · } denotes the cumulant spectra of r-th order, g1 = 0, g2 (ω) = 1,
|gr (ω1, . . . , ωr−1)| ≤ Mr for all r with Mr < ∞ that may depend on r, and ζ (ω) =∑∞

j=−∞ δ (ω+2π j) is the period 2π extension of the Dirac delta function δ (·); (ii)
There exists a C <∞ and a piecewise continuous function A : [0, 1]×R→C such
that, for each j = 1, . . . , m0 +1, there exists a 2π -periodic function Aj : (λ0

j−1, λ
0
j ]×

R → C with Aj (u, −ω) = Aj (u, ω), λ0
j � T0

j /T and for all T,

A(u, ω) = Aj (u, ω) for λ0
j−1 < u ≤ λ0

j , (2)

sup
1≤j≤m0+1

sup
T0

j−1<t≤T0
j , ω

∣∣A0
j,t,T (ω)−Aj (t/T, ω)

∣∣≤ CT−1; (3)

(iii) μ· (·) is piecewise Lipschitz continuous.

Definition 1 states that Vt,T has a time-varying spectral representation where
both the mean μ· (·) and transfer function A0

·,·,T (ω) are piecewise continuous. Since
the transfer function depends on the parameters that enter the second moments of
Vt,T , the smoothness properties of μ· (·) and A guarantee that Vt,T has a piecewise
locally stationary behavior. We require additional smoothness properties for A and
an example is presented at the end of this section.

Assumption 1. (i)
{
Vt,T
}

is an SLS process with m0 + 1 regimes; (ii) A(u, ω)

is twice continuously differentiable in u at all u 	= λ0
j , j = 1, . . . , m0 + 1, with

bounded derivatives (∂/∂u)A(u, ·) and
(
∂2/∂u2

)
A(u, ·); (iii)

(
∂2/∂u2

)
A(u, ·) is

Lipschitz continuous at all u 	= λ0
j (j = 1, . . . , m0 + 1); (iv) A(u, ω) is twice

left-differentiable in u at u = λ0
j (j = 1, . . . , m0 + 1) with bounded derivatives

(∂/∂−u)A(u, ·) and
(
∂2/∂−u2

)
A(u, ·) and has piecewise Lipschitz continuous

derivative
(
∂2/∂−u2

)
A(u, ·); (v) A(u, ω) is Lipschitz continuous in ω.

We define the time-varying spectral density as fj (u, ω)� (2π)−1|Aj (u, ω) |2 for
T0

j−1/T < u = t/T ≤ T0
j /T . Then we can define the local covariance of Vt,T at the

rescaled time u with Tu /∈ T and lag k ∈ Z as c(u, k) �
∫ π

−π
eiωkf (u, ω)dω. The

same definition is also used when Tu ∈ T and k ≥ 0. For Tu ∈ T and k < 0 it is
defined as c(u, k)� limT→∞

∫ π

−π
eiωkA(u, ω)A(u− k/T, −ω)dω.

Next, we impose conditions on the temporal dependence (we omit the second
subscript T when it is clear from the context). Let

κ
(a1,a2,a3,a4)
V,t (u, v, w)

� κ(a1,a2,a3,a4) (t, t +u, t + v, t +w)−κ
(a1,a2,a3,a4)
N (t, t +u, t + v, t +w)

� E

(
V(a1)

t −EV(a1)
t

)(
V(a2)

t+u −EV(a2)
t+u

)(
V(a3)

t+v −EV(a3)
t+v

)(
V(a4)

t+w −EV(a4)
t+w

)
−E

(
V(a1)

N ,t −EV(a1)
N ,t

)(
V(a2)

N ,t+u −EV(a2)
N ,t+u

)
×
(

V(a3)
N ,t+v −EV(a3)

N ,t+v

)(
V(a4)

N ,t+w −EV(a4)
N ,t+w

)
,
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where
{
VN ,t

}
is a Gaussian sequence with the same mean and covariance

structure as {Vt}, κ
(a1,a2,a3,a4)
V,t (u, v, w) is the time-t fourth-order cumulant of

(V(a1)
t , V(a2)

t+u , V(a3)
t+v , V(a4)

t+w ) while κ
(a1,a2,a3,a4)
N (t, t + u, t + v, t + w) is the time-t

centered fourth moment of Vt if Vt were Gaussian.

Assumption 2. (i)
∑∞

k=−∞ supu∈[0, 1] ‖c(u, k)‖ < ∞ and
∑∞

k=−∞
∑∞

j=−∞∑∞
l=−∞ supu∈[0, 1] |κ(a1,a2,a3,a4)

V,�Tu� (k, j, l) | < ∞ for all a1,a2,a3,a4 ≤ p. (ii) For all
a1,a2,a3,a4 ≤ p there exists a function κ̃a1,a2,a3,a4 : [0, 1] ×Z×Z×Z → R such

that sup1≤j≤m0+1 supλ0
j−1<u≤λ0

j
|κ(a1,a2,a3,a4)

V,�Tu� (k, s, l)− κ̃a1,a2,a3,a4 (u, k, s, l) | ≤ LT−1

for some constant L; the function κ̃a1,a2,a3,a4 (u, k, s, l) is twice differentiable in u at
all u 	= λ0

j (j = 1, . . . , m0 +1) with bounded derivatives (∂/∂u) κ̃a1,a2,a3,a4 (u, ·, ·,·)
and

(
∂2/∂u2

)
κ̃a1,a2,a3,a4 (u, ·, ·,·), and twice left-differentiable in u with bounded

derivatives (∂/∂−u) κ̃a1,a2,a3,a4 (u, ·, ·,·) and
(
∂2/∂−u2

)
κ̃a1,a2,a3,a4 (u, ·, ·,·), and

piecewise Lipschitz continuous derivative
(
∂2/∂−u2

)
κ̃a1,a2,a3,a4 (u, ·, ·,·).

If {Vt} is stationary then the cumulant condition of Assumption 2-(i) reduces
to the standard one used in the time series literature [see Andrews (1991)]. Note
that α-mixing and some moment conditions imply that the cumulant condition of
Assumption 2 holds. Part (ii) extends the smoothness conditions on A(u, ω) in
Assumption 1 to the fourth-order cumulant. These smoothness conditions are not
particularly restrictive.

Consider the following time-varying AR(1) process with one break at mid-
sample λ0

1 = 0.5,

Vt,T = ρ (t/T)Vt−1,T +σ (t/T)ut, (4)

ρ (u) =
{
ρ1 (u), u ≤ 0.5

ρ2 (u), u > 0.5
,

where ρ1 (·) and ρ2 (·) are Lipschitz continuous, σ (·) is piecewise Lipschitz
continuous and {ut} are i.i.d. random variables with mean zero and unit variance.
Then, Vt,T is an SLS process with A(u, ω) = σ (u)(1+ρ (u)exp(iω)). If ρ (u)
and σ (u) satisfy the same smoothness conditions in u required for A(u, ω) in
Assumption 1, supu∈[0, 1] |ρ (u)| < 1 and supu∈[0, 1] σ (u) < ∞, then Vt,T fulfills
Assumptions 1–2.

3. THEORETICAL RESULTS ON LOW FREQUENCY CONTAMINATION

In this section, we establish theoretical results about the low frequency con-
tamination induced by nonstationarity, misspecification, and outliers. We first
consider the asymptotic proprieties of two key quantities for inference in time
series contexts, i.e., the sample autocovariance and the periodogram. These are
defined, respectively, by
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�̂ (k) = T−1
T∑

t=|k|+1

(
Vt −V

)(
Vt−|k| −V

)
, (5)

where V is the sample mean and

IT (ω) =
∣∣∣∣∣ 1√

T

T∑
t=1

exp (−iωt)Vt

∣∣∣∣∣
2

, ω ∈ [0, π ],

which is evaluated at the Fourier frequencies ωj = (2π j)/T ∈ [0, π ]. In the context
of autocorrelated data, hypotheses testing and construction of confidence intervals
require estimation of the so-called long-run variance. Traditional HAC estimators
are weighted sums of sample autocovariances while frequency domain estimators
are weighted sums of the periodograms. Casini (2023) considered an alternative
estimate for the sample autocovariance to be used in the DK-HAC estimators,
defined in Section 5.1, namely,

�̂DK (k)� nT

T

�T/nT �∑
r=1

ĉT (rnT/T, k),

where k ∈ Z,nT → ∞ satisfying the conditions given below, and

ĉT (rnT/T, k) = n−1
2,T

n2,T −1∑
s=0

(
VrnT +�|k/2|�−n2,T/2+s+1 −VrnT,T

)
× (VrnT −�|k/2|�−n2,T/2+s+1 −VrnT,T

)
, (6)

with VrnT,T = n−1
2,T

∑n2,T −1
s=0 VrnT −n2,T/2+s+1 and n2,T → ∞ such that n2,T/T → 0.

For notational simplicity, we assume that nT and n2,T are even. ĉT (rnT/T, k) is
an estimate of the autocovariance at time rnT and lag k, i.e., cov(VrnT , VrnT −k).
One could use a smoothed or tapered version; the estimate �̂DK (k) is an integrated
local sample autocovariance. It extends �̂ (k) to better account for nonstationarity.
Similarly, the DK-HAC estimator does not relate to the periodogram but to the
local periodogram defined by

IL,T (u, ω)�
∣∣∣∣∣ 1√

nT

nT −1∑
s=0

V�Tu�−nT/2+s+1,T exp (−iωs)

∣∣∣∣∣
2

,

where IL,T (u, ω) is the (untapered) periodogram over a segment of length nT with
midpoint �Tu�. We also consider the statistical properties of both �̂DK (k) and
IL,T (u, ω) under nonstationarity. Define rj = (λ0

j −λ0
j−1) for j = 1, . . . , m0 +1 with

λ0
0 = 0 and λ0

m0+1 = 1. Note that λ0
j =∑j

s=0 rs.
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The low frequency bias is generated by breaks in the mean function. For the
sample autocovariance, the bias factor is given by d∗ = 2−1∑

j1 	=j2
rj1rj2(μj2 −

μj1)
2 where

μj = r−1
j

∫ λ0
j

λ0
j−1

μj (u)du, for j = 1, . . . , m0 +1,

with μj (·) defined in (1) and we use
∑

j1 	=j2
as a shorthand for∑

{j1, j2=1,..., m0+1, j1 	=j2} . When the mean is constant in each regime μj (t/T) = μj.
Then, μj =μj and d∗ = 2−1∑

j1 	=j2
rj1 rj2(μj2 −μj1)

2. If the mean is constant across
regimes, then there is no low frequency bias and d∗ = 0.

In Section 3.1, we generalize the results in the literature on low frequency
contamination for the sample autocovariance and the periodogram. In Section 3.2,
we show that the local sample autocovariance and the local periodogram are in
general robust to low frequency contamination.

3.1. The Sample Autocovariance and the Periodogram Under
Nonstationarity

Mikosch and Stărica (2004) established some results on the low frequency bias
for the sample autocovariance and periodogram under the assumption that Vt is
stationary in each regime and that the regimes are independent. In Section S.A,
in the supplement we extend these results by allowing time-varying mean and
autocovariace function in each regime and weak dependence across regimes. Here
we present a brief summary of these results. Theorem S.1 shows that for

{
Vt,T
}

that satisfies Definition 1 and Assumptions 1–2, we have

�̂ (k) ≥
∫ 1

0
c(u, k)du+d∗ +oa.s. (1), (7)

and as k → ∞,�̂ (k) ≥ d∗ P-a.s. This suggests that �̂ (k) is asymptotically the
sum of two terms. The first is the autocovariance of {Vt} at lag k. The second, d∗,
is always positive and increases with the difference in the mean across regimes.
Thus, the time-varying mean induces a positive bias. The result that �̂ (k) ≥ d∗P-
a.s. as k → ∞ implies that unaccounted nonstationarity generates long memory
effects. The intuition is straightforward. A long memory SLS process satisfies∑∞

k=−∞ |�(u, k) | → ∞ for some u ∈ (0, 1), similar to a stationary long memory
process.2 The theorem shows that �̂ (k) exhibits a similar property and �̂ (k)
decays more slowly than for a short memory stationary process for small lags and
approaches a constant d∗ > 0 for large lags.

2In Section S.A.1 in the supplement we define long memory SLS processes that are characterized by the property∑∞
k=−∞ |ρV (u, k)| = ∞ for some u ∈ [0, 1] where ρV (u, k) � Corr(V�Tu�, V�Tu�+k) and ϑ (u) ∈ (0, 1/2) is the long

memory parameter at time u.
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Theorem S.2 in the supplement analyzes the properties of the periodogram
IT (ωl) as ω → 0 when the mean is time-varying. The result states that as ω →
0 E(IT (ω)) generally takes unbounded values except for some ω for which
E(IT (ω)) is bounded below by 2π

∫ 1
0 f (u, ω)du > 0. An SLS process with long

memory has an unbounded local spectral density f (u, ω) as ω → 0 for some
u ∈ [0, 1]. Since f (·, ·) cannot be negative, it follows that

∫ 1
0 f (u, ω)du is also

unbounded as ω → 0. Theorem S.2 suggests that nonstationarity consisting of
time-varying first moment results in a periodogram sharing features of a long
memory series.

This discussion suggests that certain deviations from stationarity can generate a
long memory component that leads to overestimation of the true autocovariance.
It follows that the LRV is also overestimated. Since the LRV is used to normalize
test statistics, this has important consequences for many HAR inference tests
characterized by deviations from stationarity under the alternative hypothesis.
These include tests for forecast evaluation, tests, and inference for structural
change models, time-varying parameters models, and regime-switching models.
In the linear regression model, Vt corresponds to the regressors multiplied by the
fitted residuals. Unaccounted nonlinearities and outliers can contaminate the mean
of Vt and therefore contribute to d∗.

3.2. The Sample Local Autocovariance and Local Periodogram Under
Nonstationarity

We now consider the behavior of ĉT (rnT/T, k) defined in (6) for fixed k as well
as for k → ∞. For notational simplicity we assume that k is even. For u ∈
(0, 1) define S

(
u, k, n2,T

) = {�Tu� + k/2 − n2,T/2 + 1, . . . , �Tu� + k/2 + n2,T/2},
nj,L
(
u, k, n2,T

)= (T0
j −(�Tu�+k/2−n2,T/2+1)), and nj,R

(
u, k, n2,T

)= ((�Tu�+
k/2+n2,T/2+1)−T0

j ). S
(
u, k, n2,T

)
denotes a window of length n2,T around �Tu�,

nj,L
(
u, k, n2,T

)
(resp. nj,R

(
u, k, n2,T

)
) denotes the distance between the left (resp.

right) end point of S
(
u, k, n2,T

)
and T0

j .

Theorem 1. Assume that
{
Vt,T
}

satisfies Definition 1, nT, n2,T → ∞ with
nT/T → 0, n2,T/T → 0 and nT/n2,T → 0. Under Assumptions 1- and 2,

(i) for u ∈ (0, 1) such that T0
j /∈ S

(
u, k, n2,T

)
for all j = 1, . . . , m0, ĉT (u, k) =

c(u, k)+oP (1);
(ii) for u ∈ (0, 1) such that T0

j ∈ S
(
u, k, n2,T

)
for some j = 1, . . . , m0, we have

two sub-cases: (a) if nj,L
(
u, k, n2,T

)
/n2,T → γ or nj,R

(
u, k, n2,T

)
/n2,T → γ with

γ ∈ (0, 1), then

ĉT (u, k) ≥ γ c
(
λ0

j , k
)+ (1−γ )c(u, k)+γ (1−γ )

(
μj
(
λ0

j

)−μj+1 (u)
)2 +oP (1) .

(b) if nj,L
(
u, k, n2,T

)
/n2,T → 0 or nj,R

(
u, k, n2,T

)
/n2,T → 0, then ĉT (u, k) =

c(u, k)+oP (1).
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Further, if there exists an r = 1, . . . , �T/nT� such that there exists a j = 1, . . . , m0

with T0
j ∈ S

(
rnT, k, n2,T

)
satisfying (ii-a), then, as k → ∞, �̂DK (k) ≥ d∗

T P-a.s.,

where d∗
T = (n2,T/T

)
γ (1−γ ) (μj(λ

0
j )−μj+1 (u))2 > 0 and d∗

T → 0 as T → ∞.

The theorem shows that the behavior of ĉT (u, k) depends on whether a change
in mean is present, and if so whether it is close enough to �Tu�. For a given u ∈
(0, 1) and k ∈ Z, if the condition of part (i) of the theorem holds, then ĉT (u, k)
is consistent for cov(V�Tu�V�Tu�−k) = c(u, k)+ O

(
T−1
)

[see Casini (2023)]. If a
change-point falls close to either boundary of the window S

(
u, k, n2,T

)
, as specified

in case (ii-b), then ĉT (u, k) remains consistent. The only case in which a non-
negligible bias arises is when the change-point falls in a neighborhood around
�Tu� sufficiently far from either boundary. This represents case (ii-a), for which a
biased estimate results. However, the bias vanishes asymptotically. Since �̂DK (k)
is an average of ĉT (rnT, k) over blocks r = 1, . . . , �T/nT�, if case (ii-a) holds then
�̂DK (k) ≥ d∗

T as k → ∞ but d∗
T → 0 as T → ∞. Thus, comparing this result with

the discussion above on �̂ (k) (see also Theorem S.1), in practice the long memory
effects are unlikely to occur when using �̂DK (k). Furthermore, one can reduce this
problem by appropriately choosing the blocks r = 1, . . . , �T/nT�. A procedure
was proposed in Casini (2023) using the methods developed in Casini and Perron
(2024a).

We now study the asymptotic properties of IL,T (u, ω) as ω → 0 for u ∈ [0, 1].
We consider the Fourier frequencies ωl = 2π l/nT ∈ (−π, π) for an integer l 	=
0 (mod nT ). We need the following high-level conditions. Part (i) corresponds
to Assumption S.14, part (ii) is satisfied if {Vt} is strong mixing with mixing
parameters of size −2ν/(ν −1/2) for some ν > 1 such that supt≥1E |Vt|4ν < ∞,

while part (iii) requires additional smoothness.

Assumption 3. (i) For each ωl and u ∈ [0, 1] with T0
j ∈ S(u, 0, nT) there exist

Bj ∈ R, j = 1, . . . , m0 with Bj1 	= Bj2 for j1 	= j2 such that

∣∣∣∣∣
nT −1∑
s=0

μ((�Tu�−nT/2+ s+1)/T)exp(−iωls)

∣∣∣∣∣
2

≥

∣∣∣∣∣∣∣Bj

T0
j −(�Tu�−nT/2+1)∑

s=0

exp(−iωls)+Bj+1

nT −1∑
s=T0

j −(�Tu�−nT/2)

exp(−iωls)

∣∣∣∣∣∣∣
2

.

(ii) |�(u, k)| = Cu,kk−m for all u ∈ [0, 1] and all k ≥ C3Tκ for some C3 <

∞, Cu,k < ∞ (which depends on u and k), 0 < κ < 1/2, and m > 2. (iii)
sup

u∈[0, 1], u	=λ
j
0, j=1,..., m0

(
∂2/∂u2

)
f (u, ω) is continuous in ω.

Theorem 2. Assume that
{
Vt,T
}

satisfies Definition 1 and that nT → ∞ with
nT/T → 0. Under Assumptions 1–3,
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(i) for any u ∈ (0, 1) such that T0
j /∈ S(u, 0, nT) for all j = 1, . . . , m0,

E
(
IL,T (u, ωl)

)≥ f (u, ωl) as ωl → 0;
(ii) for any u ∈ (0, 1) such that T0

j ∈ S(u, 0, nT) for some j = 1, . . . , m0 we have
two sub-cases: (a) if nj,L (u, 0, nT)/nT → γ or nj,R (u, 0, nT)/nT → γ with γ ∈
(0, 1), and nTω

2
l → 0 as T → ∞, then E

(
IL,T (u, ω)

)→ ∞ for many values in the
sequence {ωl} as ωl → 0; (b) if nj,L (u, 0, nT)/nT → 0 or nj,R (u, 0, nT)/nT → 0,
then E

(
IL,T (u, ωl)

)≥ f (u, ωl) as ωl → 0.

It is useful to compare Theorem 2 with the discussion above about the
periodogram (see also Theorem S.2). Unlike the periodogram, the asymptotic
behavior of the local periodogram as ωl → 0 depends on the vicinity of u to
λ0

j (j = 1, . . . , m0). Since IL,T (u, ωl) uses observations in the window S(u, 0, nT),
if no discontinuity in the mean occurs in this window then IL,T (u, ωl) is
asymptotically unbiased for the spectral density f (u, ωl). More complex is its
behavior if some T0

j falls in S(u, 0, nT). The theorem shows that if T0
j is close

to the boundary, as indicated in case (ii-b), then IL,T (u, ωl) is bounded below by
f (u, ωl), similarly to case (i). If instead T0

j falls sufficiently close to the mid-point
�Tu�, as indicated in case (ii-a), then E

(
IL,T (u, ω)

)→ ∞ for many values in the
sequence {ωl} as ωl → 0 provided it satisfies nTω

2
l → 0 as T → ∞. Hence, unless

Tλ0
j is close to �Tu�, the local periodogram IL,T (u, ωl) behaves very differently

from the periodogram IT (ωl). Accordingly, nonstationarity is unlikely to generate
long memory effects if one uses the local periodogram. As for ĉT (u, k), if one uses
preliminary inference procedures [cf. Casini and Perron (2024a)] for the detection
and estimation of the discontinuities in the spectrum and for the estimation of their
locations, then one can construct the window efficiently and avoid T0

j being too
close to �Tu� .

4. EDGEWORTH EXPANSIONS FOR HAR TESTS UNDER
NONSTATIONARITY

We now consider Edgeworth expansions for the distribution of the t-statistic in the
location model based on the HAC and DK-HAC estimator where {Vt} is assumed
to have zero-mean and time-varying second moments. This is useful for analyzing
the theoretical properties of the null rejection probabilities of the HAR tests under
nonstationarity. As in the literature, we make use of the Gaussianity assumption
for mathematical convenience.3 We relax the stationarity assumption used in
the literature [cf. Jansson (2004), Sun et al. (2008) and Velasco and Robinson
(2001)] which has important consequences for the nature of the results. The results
concerning the t-test based on the HAC estimator are presented in Section 4.1 while
those based on the DK-HAC estimator are presented in Section 4.2.

3This can be relaxed by considering distributions with Gram–Charlier representations at the expense of more complex
derivations.
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Let {Vt} be a zero-mean Gaussian SLS process satisfying Assumption 1-(i-iv).
Let

h1 �
√

T V√
JT

∼ N (0, 1), (8)

which is valid for all T such that JT > 0 where JT = T−1∑T
s=1

∑T
t=1E(VsVt).

4.1. HAC-based HAR Tests

The classical HAC estimator is defined as

ĴHAC,T �
T−1∑

k=−T+1

K1
(
b1,Tk

)
�̂ (k), �̂ (k) = T−1

T∑
t=|k|+1

VtVt−|k|,

where K1 (·) is a kernel and b1,T a bandwidth parameter. Under appropriate

conditions on b1,T, we have ĴHAC,T − JT
P→ 0 from which it follows that

ZT �
√

T V√̂
JHAC,T

d→ N (0, 1) .

Let V = (V1, . . . , VT)
′. Note that ĴHAC,T = V′Wb1 V/T where Wb1 has (r, s)th

element

W(r,s)
b1

= w
(
b1,T(r − s)

)=
∫
�

K̃b1 (ω)ei(r−s)ωdω, (9)

such that K̃b1 (ω) is a kernel with smoothing number b−1
1,T and � = (−π, π ]. For

an even function K that integrates to one, we define

K̃b1 (ω) = b−1
1,T

∞∑
j=−∞

K
(
b−1

1,T(ω+2π j)
)

.

Note that K̃b1 (ω) is periodic of period 2π , even and satisfies ∫π
−π K̃b1 (ω)dω = 1.

It follows that w(r) = ∫∞
−∞ eirxK (x)dx and ĴHAC,T = 2π

∫
�

K̃b1 (ω) IT (ω)dω.
K̃b1 (ω) is the so-called spectral window generator. We refer to Brillinger (1975)
for a review of these introductory concepts.

We now analyze the joint distribution of V and ĴHAC,T . Let BT = E(̂JHAC,T)/

JT − 1 and V2
T = Var(

√
Tb1,T ĴHAC,T/JT) denote the relative bias and variance,

respectively, of ĴHAC,T . It is convenient to work with standardized statistics with
zero mean and unit variance. Write

ZT = ZT (h) = h1

(
1+BT +VTh2

(
Tb1,T

)−1/2
)−1/2

,

h2 =√Tb1,T

(
ĴHAC,T −E

(̂
JHAC,T

)
JTVT

)
,
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where h = (h1, h2)
′. Note that h2 = V′QTV −E

(
V′QTV

)
is a centered quadratic

form in a Gaussian vector where QT = Wb1(
√

T/b1,TVTJT)
−1. The joint character-

istic function of h is

ψT (t) = ψT (t1, t2)

= |I −2it2�VQT |−1/2 exp
(−2−1t2

1ξ
′
T (I −2it2�VQT)

−1 �VξT − it2ϒT
)
,

where ϒT = E
(
V′QTV

) = Tr (�VQT), �V = E
(
VV′), and ξT = 1/

√
TJT with 1

being the T ×1 vector (1,1, . . . , 1)′. The cumulant generating function of h is

KT (t1, t2) = logψT (t1, t2) =
∞∑

r=0

∞∑
s=0

κT (r, s)
(it1)

r

r!

(it2)
r

s!
,

where κT (r, s) is the cumulant of h. Phillips (1980) considered the distribution of
linear and quadratic forms under Gaussianity. From his derivations, the nonzero
bivariate cumulants are

κT (0, s) = 2s−1 (s−1) !Tr ((�VQT)
s), s > 1,

κT (2, s) = 2ss!ξ ′
T (�VQT)

s �VξT, s > 0.

We introduce the following assumptions about {Vt} and f (u, 0).

Assumption 4. For all u ∈ [0, 1], 0 < f (u, 0) <∞ and f (u, ω) has df continuous
derivatives

(
df ≥ 2

)
f (df ) (u, ω) in a neighborhood of ω = 0 and the df th derivative

satisfies a Lipschitz condition of order � with � ∈ (0, 1].

Assumption 5. For all u, f (u, ω) ∈ Lp for some p > 1, i.e., ‖f (u,·)‖p
p =∫

�
f p (u, ω)dω < ∞.

Assumption 6. |K (x) | < ∞, K (x) = K (−x), K (x) = 0 for x /∈ � and∫
�

K (x)dx = 1.

Assumption 7. K (x) satisfies a uniform Lipschitz condition of order 1 in
[−π, π ].

Assumption 8. For j = 0, 1, . . . , df , df ≥ 2 and r = 1, 2, . . .

μj (K
r)�

∫
�

xj (K (x))r dx =
{

= 0, j < df , r = 1;
	= 0, j = df , r = 1.

Assumption 9. b1,T + (Tb1,T)
−1 → 0 as T → ∞.

Assumption 10. b1,T = CT−q where 0 < q < 1 and 0 < C < ∞.

Assumptions 6–10 about the kernel and bandwidth are the same as in Velasco
and Robinson (2001) in which a discussion can be found. They are satisfied
by most kernels used in practice. The bandwidth condition in Assumption 9 is
sufficient for the consistency of ĴHAC,T and is strengthened in Assumption 10, for
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some parts of the proofs, which is satisfied by popular MSE-optimal bandwidths
[cf. Andrews (1991), Casini (2022), Belotti et al. (2023) and Whilelm (2015)].

Assumptions 4 and 5 impose conditions on the smoothness and boundedness of
the spectral density. Assumption 4 is implied by

∑∞
k=−∞ |k|df +� supt |EVtVt−k| <

∞ but it is stronger than necessary because it extends the smoothness restriction
to all frequencies. Assumption 5 does impose some restrictions on f (u, ·) beyond
the origin, though it is not particularly restrictive since any p > 1 arbitrarily close
to 1 will suffice.

We now analyze the asymptotic distribution of ĴHAC,T . Under stationarity this
was discussed by Bentkus and Rudzkis (1982) and Velasco and Robinson (2001).
From Lemmas S.11–S.12 in the supplement we obtain

BT = c1b
df
1,T +O

(
b

df +�

1,T +T−1 logT
)
, where c1 = μdf (K)

∫ 1
0 f (df ) (u, 0)du

df !
∫ 1

0 f (u, 0)du
.

(10)

The order of the asymptotic bias b
df
1,T depends on the smoothness of the spectral

density at ω = 0 [cf. Assumption 4]. The constant c1 depends on the moment of
order df of the kernel K and on the smoothness of f (u, ω) at ω = 0. For example,
for the time-varying AR(1) in (4),

f (2) (u, 0) = − σ 2 (u)ρ (u)

π
(
1+ρ (u)2 −2ρ (u)

)2 . (11)

If there is positive dependence at time u, then ρ (u) > 0 and f (2) (u, 0) < 0. Suppose
K (x) ≥ 0 for all x so that μ2 (K) > 0. Then the sign of the bias is determined by
the sign of

∫ 1
0 f (2) (u, 0)du. A positive local AR(1) coefficient contributes negative

bias which corresponds to the well-known downward bias of the LRV estimator
when there is positive dependence. Conversely, with anti-persistence ρ (u) < 0 and
f (2) (u, 0) > 0. Since ρ (·) is time-varying, whether the bias is positive or negative
depends on the path of ρ (·). The smoother the spectral density is at frequency zero,
the smoother the kernel and the slower b1,T can be. The factor

∫ 1
0 f (u, 0)du in the

denominator follows by definition because BT is the relative bias.
We present a second-order Edgeworth expansion to approximate the distribution

of h, with error o((Tb1,T)
−1/2) and including terms up to order (Tb1,T)

−1/2

to correct the asymptotic normal distribution. This will imply the validity of
that expansion for the distribution of ĴHAC,T . For B ∈ B2, where B2 is any
class of Borel sets in R2, let Q

(2)
T (B) = ∫

B ϕ2 (h)q(2)
T (h)dh, where ϕ2 (h) =

(2π)−1 exp{−(1/2)‖h‖2} is the density of the bivariate standard normal distri-
bution,

q(2)
T (h) = 1+ (1/3!)

(
Tb1,T

)−1/2
(�0(0, 3)H3 (h2)+�0(2, 1)H2 (h1)H1 (h2)),

where Hj (·) are the univariate Hermite polynomials of order j, and �0 (0, 3) =
(4π)1/2 2!

∫
�

K3 (ω) dω‖K‖−3
2 and �0(2, 1) = (4π)1/2 K (0)‖K‖−1

2 (see
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Lemmas S.13 and S.14). Let (∂B)φdenote a neighborhood of radius φ of the
boundary of a set B. Let PT denote the probability measure of h.

Theorem 3. Let Assumptions 4, 5 (p > 1), 6–7 and 10 (0 < q < 1) hold. For
φT = (Tb1,T)

−� with 1/2 < � < 1, we have

sup
B∈B2

∣∣∣PT (B)−Q
(2)
T (B)

∣∣∣= o
((

Tb1,T
)−1/2

)
+ (4/3) sup

B∈B2
Q

(2)
T

(
(∂B)2φT

)
. (12)

Theorem 3 shows that Q(2)
T is a valid second-order Edgeworth expansion for the

measure PT . The method of proof is the same as in Velasco and Robinson (2001).
We first approximate the true characteristic function and then apply a smoothing
lemma [cf. Lemma S.2 in the supplement which is from Bhattacharya and Rao
(1975)]. The leading term of the approximation error is of order o((Tb1,T)

−1/2) as
the second term on the right hand side of (12) is negligible if B is convex because
φT decreases as a power of T. This is the same order obtained for the corresponding
leading term under stationarity. Since the higher-order correction terms in q(2)

T
depend only on K (·) but not on f (·, ·), they are equal to the one obtained under
stationarity.

Next, we focus on ZT , i.e., a t-statistic for the mean. Proceeding as in Velasco
and Robinson (2001), we first derive a linear stochastic approximation to ZT (h)
and show that its distribution is the same as that of ZT up to order o((Tb1,T)

−1/2).
Then, we show that the asymptotic approximation for the distribution of the linear
stochastic approximation is valid also for ZT with the same error o((Tb1,T)

−1/2).
Using Lemmas S.13 and S.14 in the supplement, we can substitute out BT and VT

in ZT and, by only focusing on the leading terms, we define the following linear
stochastic approximation,

Z̃T � h1

(
1−2−1c1b

df
1,T −2−1

√
4π ‖K2‖h2

(
Tb1,T

)−1/2
)

.

The next theorem presents a valid Edgeworth expansion for the distribution of Z̃T

from that of h.

Theorem 4. Let Assumptions 4, 5 (p > 1), 6–8, and 10 (q = 1/
(
1+2df

)
) hold.

For a convex Borel set C, we have, for r2 (x) = −c1
(
x2 −1

)
/2,

sup
C

∣∣∣∣P(ZT ∈ C)−
∫

C
ϕ (x)

(
1+ r2 (x)b

df
1,T

)
dx

∣∣∣∣= o
((

Tb1,T
)−1/2

)
. (13)

Theorem 4 shows the form of the correction term to the standard normal
distribution, i.e., b

df
1,T

∫
C ϕ (x)r2 (x)dx. The error of the approximation is of order

o((Tb1,T)
−1/2) which is the same as the one obtained under stationarity by Velasco

and Robinson (2001).
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Let �(·) denote the distribution function of the standard normal. Setting
C = (−∞, z], integrating and Taylor expanding �(·), we obtain, uniformly in z,

P(ZT ≤ z) = �(z)+ 1

2
c1zϕ (z)b

df
1,T +o

((
Tb1,T

)−1/2
)

(14)

= �

(
z

(
1+ 1

2
c1b

df
1,T

))
+o
((

Tb1,T
)−1/2

)
= �(z)+O

((
Tb1,T

)−1/2
)

.

This shows that under the conditions of Theorem 4, the standard normal approx-
imation is correct up to order O((Tb1,T)

−1/2). Eq (14) has an immediate interpre-
tation. Consider the time-varying AR(1) example in (4) and suppose K (x) ≥ 0 for
all x so that μ2 (K) ≥ 0. Given (11) we know that with local positive persistence
(i.e., ρ (u) > 0) f (u, ω) has a peak at ω = 0. If the pattern of ρ (u) is such
that

∫ 1
0 f (2) (u, 0)du < 0 so that the positive persistence dominates, then c1 < 0

and as is well-known the HAC estimator underestimates the true LRV and the
corresponding HAC-based test over-rejects. The approximation in (14) tends to
correct this problem as it follows that one uses �(z(1+γT)) where γT ≤ 0,
so for a given significance level the critical value z is larger in absolute value
than the corresponding standard normal critical value. Conversely, if there is
anti-persistence, then c1 > 0 and the implied critical value is smaller than the
corresponding standard normal critical value. For df > 2 the reasoning is the same
but one has to take into account the sign of μdf (K).

Consider the location model yt = β +Vt (t = 1, . . . , T) . For the null hypothesis
H0 : β = β0, consider the following t-test,

tHAC =
√

T
(
β̂ −β0

)√̂
JHAC,T

,

where β̂ is the least-squares estimator of β. Theorem 4 and (14) imply that

P(tHAC ≤ z) = �(z)+p(z)
(
Tb1,T

)−1/2 +o
((

Tb1,T
)−1/2

)
, (15)

for any z ∈ R, where p(z) is an odd function. When q = 1/
(
1+2df

)
, we have

p(z) = 2−1c1zϕ (z)Cdf +1/2 where C is defined in Assumption 10. Thus, the error
in rejection probability (ERP) of tHAC is of order O((Tb1,T)

−1/2). If {Vt} is second-
order stationary, the results in Velasco and Robinson (2001) imply that the ERP of
tHAC is also of order O((Tb1,T)

−1/2). Below we establish the corresponding ERP
when the t-statistic is instead normalized by ĴDK,T and also discuss the ERP of the
t-test under fixed-b asymptotics.

4.2. DK-HAC-based HAR Tests

We now consider the Edgeworth expansion for tests based on the DK-HAC estima-
tor. In order to simplify some parts of the proof here we consider an asymptotically
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equivalent version of the DK-HAC estimator discussed in Section 5. Let

Ĵ∗
DK,T =

T−1∑
k=−T+1

K1
(
b1,Tk

)
�̂∗

DK (k), �̂∗
DK (k)�

∫ 1

0
ĉDK,T (r, k)dr,

where b1,T is a bandwidth sequence and

ĉDK,T (r, k) = (Tb2,T
)−1

T∑
s=|k|+1

K2

(
(Tr − (s−|k|/2))/T

b2,T

)
VsVs−|k|,

with K2 a kernel and b2,T a bandwidth. Note that �̂DK (k) and �̂∗
DK (k) are asymp-

totically equivalent and ĉT is a special case of ĉDK,T with K2 being a rectangular
kernel and n2,T = Tb2,T .

Assumption 11. K2 (·) : R → [0,∞], K2 (x) = K2 (1− x),
∫ 1

0 K2 (x)dx = 1,
K2 (x) = 0 for x /∈ [0, 1] and K2 (·) is continuous. The bandwidth sequence {b2,T}
satisfies b2,T → 0, b2

2,T/bq2
1,T → b ∈ [0,∞) and 1/Tb1,Tb2,T → 0 where q2 is the

index of smoothness of K1 (·) at 0.

Under Assumptions 67, 9, and 11 it holds that Ĵ∗
DK,T −JT

P→ 0 [cf. Casini (2023)]
and

UT �
√

T V√̂
J∗

DK,T

d→ N (0, 1) . (16)

Note that Ĵ∗
DK,T = ∫ 1

0 Ṽ(r)′ Wb1 Ṽ(r)dr/(Tb2,T) where Ṽ(r) = (Ṽ1 (r), Ṽ2 (r), . . . ,

ṼT (r))′ with Ṽj (r) =
√

K2
(
(r − j)/Tb2,T

)
Vj and Wb1 defined in (9). Let

ĨT (r, ω) = 1

2πTb2,T

∣∣∣∣∣
T∑

t=1

exp (−iωt) Ṽt (r)

∣∣∣∣∣
2

.

ĨT (r, ω) is the local periodogram of {Ṽ(r)}. Then, Ĵ∗
DK,T = 2π

∫ 1
0

∫
�

K̃b1 (ω)

ĨT (r, ω)dωdr.
We begin by analyzing the joint distribution of V and Ĵ∗

DK,T . Let B2,T =
E(̂J∗

DK,T)/JT −1 and V2
2,T = Var(

√
Tb1,Tb2,T Ĵ∗

DK,T/JT) denote the relative bias and
variance of Ĵ∗

DK,T , respectively. It is convenient to work with standardized statistics
with zero mean and unit variance. Write

UT = UT (v) = v1

(
1+B2,T +V2,Tv2

(
Tb1,Tb2,T

)−1/2
)−1/2

,

v2 =√Tb1,Tb2,T

(
Ĵ∗

DK,T −E
(̂
J∗

DK,T

)
JTV2,T

)
,
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where v = (v1, v2)
′ with v1 = h1. Note that v2 = ∫ 1

0 (Ṽ(r)′ Q2,TṼ(r) −
E(Ṽ(r)′ Q2,TṼ(r)))dr is a centered quadratic form in a Gaussian vector where
Q2,T = Wb1(

√
Tb2,T/b1,TV2,TJT)

−1. The joint characteristic function of v is

ψ2,T (t1, t2) = ∣∣I −2it2�ṼQ2,T

∣∣−1/2

× exp
{
−2−1t2

1ξ
′
2,T

(
I −2it2�ṼQ2,T

)−1
�Ṽξ2,T − it2ϒ2,T

}
,

whereϒ2,T =E(
∫ 1

0 (Ṽ(r)′ Q2,TṼ(r))dr)= Tr(�ṼQ2,T), �Ṽ =E(
∫ 1

0 (Ṽ(r) Ṽ(r)′)dr)
and ξ2,T = 1/

√
Tb2,TJT . The cumulant generating function of v is

K2,T (t1, t2) = logψ2,T (t1, t2) =
∞∑

r=0

∞∑
s=0

κ2,T (r, s)
(it1)

r

r!

(it2)
r

s!
,

where κ2,T (r, s) is the cumulant of v. To obtain more precise bounds in some parts
of the proofs we use the following assumption on the cross-partial derivatives
of f (u, ω). Let C̃ denote the set of continuity points of f (u, ω) in u, i.e., C̃ =
{[0, 1]/{λ0

j , j = 1, . . . , m0}}. Define

�f (ω)

=
m0∑
j=1

∫ 1

0

(
∂

∂u−
f
(
λ0

j , ω
)∫ 1−s

0
xK2 (x)dx+ ∂

∂u+
f
(
λ0

j , ω
)∫ 1

1−s
xK2 (x)dx

)
ds,

where

∂

∂u−
f
(
λ0

j , ω
)= lim

h↑0

f
(
λ0

j +h, ω
)

− f
(
λ0

j , ω
)

h
,

∂

∂u+
f
(
λ0

j , ω
)= lim

h↓0

f
(
λ0

j +h, ω
)

− f
(
λ0

j , ω
)

h
.

Assumption 12. For u ∈ C̃,
(
∂2/∂u2

)
f (u, ω) has df continuous derivatives in

ω in a neighborhood of ω = 0, the df derivative satisfying a Lipschitz condition
of order �2 ∈ (0, 1]. For u /∈ C̃, (∂/∂u−) f (u, ω) and (∂/∂u+) f (u, ω) have df

continuous derivatives in ω in a neighborhood of ω = 0, the df derivative satisfying
a Lipschitz condition of order �2 ∈ (0, 1].

From Lemmas S.11 and S.17, the relative bias of Ĵ∗
DK,T is

B2,T = c1b
df
1,T + c2b2

2,T +O
(

b
df +�

1,T +T−1 logT + (Tb2,T
)−1
)

+o
(
b2

2,T

)
,

where

c1 = μdf (K)
∫ 1

0 f (df ) (u, 0)du

df !
∫ 1

0 f (u, 0)du
,
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c2 = 2−1
∫ 1

0 x2K2 (x)dx
∫

C̃
∂2

∂u2 f (u, 0)du+�f (0)∫ 1
0 f (u, 0)du

.

The factor c1 in the relative bias B2,T also enters BT and we already discussed
it. The second factor, c2, includes two elements. The first depends on the second
moment of the kernel K2 and on the smoothness over time of the spectral density
f (u, 0). The second element in c2 is �f (0) which depends on the right and left
first partial derivatives of f (u, 0) with respect to u at the discontinuity points. The
more nonstationary is the data the more complex is c2, and in fact the larger in
magnitude are ∂2f (u, 0)/∂u2 and �f (0). For the special case of stationary data,
c2 = 0. The more nonstationary is the data, the smaller b2,T should be chosen so
as to weight more the data locally. The smoothing over sample autocovariances
is needed to achieve consistency while the time-smoothing is introduced to more
flexibly account for the time-varying properties of the data. The disadvantage of
the time-smoothing is that it reduces the effective sample size thereby making
accounting for strong dependence more difficult.

We now present a second-order Edgeworth expansion to approximate the
distribution of v with error o((Tb1,Tb2,T)

−1/2). The expansion includes terms
up to order (Tb1,Tb2,T)

−1/2 to correct the asymptotic normal distribution. This
implies the validity of that expansion for the distribution of Ĵ∗

DK,T . For B ∈ B2,

let Q(2)
2,T(B) = ∫B ϕ2 (v)q(2)

2,T (v)dv, where

q(2)
2,T (v) = 1+ (1/3!)

(
Tb1,Tb2,T

)−1/2

×{�2,0(0, 3)H2,3 (v2)+�2,0(2, 1)H2,2 (v1)H2,1 (v1)
}
,

H2,j (·) are the univariate Hermite polynomials of order j and �2,0(0, 3) and
�2,0(2, 1) are bounded and depend on K, K2 and on f (u, 0) (see Lemmas S.5 and
S.6).

Theorem 5. Let Assumptions 4, 5 (p > 1), 6, 7, 10 (0 < q < 1), 11, 12 hold.
For φT = (Tb1,Tb2,T)

−� with 1/2 < � < 1, and every class B2 of Borel sets in
R2, we have

sup
B∈B2

∣∣∣PT (B)−Q
(2)
2,T (B)

∣∣∣= o
((

Tb1,Tb2,T
)−1/2

)
+ (4/3) sup

B∈B2
Q

(2)
2,T

(
(∂B)2φT

)
.

(17)

Theorem 5 shows that Q(2)
2,T is a valid second-order Edgeworth expansion for

the probability measure PT of v. The correction q(2)
2,T (v) differs from q(2)

T (h) in
Theorem 3. This difference depends on the smoothing over time, i.e., on b2,T

and K2 (·). The theorem also suggests that the leading term of the error of the
approximation is of order o((Tb1,Tb2,T)

−1/2).
Next, we focus on UT defined in (16), i.e., a t-statistic based on Ĵ∗

DK,T , and
present the Edgeworth expansion. We need the following assumption, replacing
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Assumptions 9 and 10, that controls the rate of smoothing over lagged autocovari-
ances and time implied by the bandwidths b1,T and b2,T , respectively. It requires
that the bias due to smoothing over frequency and over time is of the same order
as the correction term obtained in Q

(2)
2,T (B) or as the standard deviation of Ĵ∗

DK,T .
The assumption is satisfied by, for example, the MSE-optimal DK-HAC estimators
proposed by Belotti et al. (2023) and Casini (2023).

Assumption 13. The bandwidths b1,T → 0 and b2,T → 0 satisfy 0 <

b
df
1,T

(
Tb1,Tb2,T

)−1/2
< ∞ and 0 < b2

2,T

(
Tb1,Tb2,T

)−1/2
< ∞.

Theorem 6. Let Assumptions 4, 5 (p > 1), 6–8, and 11–13 hold. For convex
Borel sets C, we have, for r2 (x) = −c1

(
x2 −1

)
/2 and r3 (x) = −c2

(
x2 −1

)
/2,

sup
C

∣∣∣∣P(UT ∈ C)−
∫

C
ϕ (x)

(
1+ r2 (x)b

df
1,T + r3 (x)b2

2,T

)
dx

∣∣∣∣= o
((

Tb1,Tb2,T
)−1/2

)
.

(18)

Theorem 6 shows that the correction term to the standard normal distribution,
i.e.,

∫
C ϕ (x) (r2 (x)b

df
1,T +r3 (x)b2

2,T)dx, depends on both smoothing directions. The
error of the approximation is of order o((Tb1,Tb2,T)

−1/2) which can be larger than
that obtained in Theorem 4 for the HAC estimators. Similar to (14), we obtain
uniformly in z,

P(UT ≤ z) = �

(
z

(
1+ 1

2
c1b

df
1,T + 1

2
c2b2

2,T

))
+O

((
Tb1,Tb2,T

)−1/2
)
, (19)

where C = (−∞, z], which suggests that the standard normal approximation is
correct up to order O((Tb1,Tb2,T)

−1/2). Eq (19) has a similar interpretation to (14).
Consider the time-varying AR(1) example in (4) and suppose ρ (u) > 0 for all
u. Then, c1 < 0. However, the sign of c2 is not easily determined even for this
simple model. For the special case ρ (u) = sin(uπ/10), no break and σ 2 (u) =
σ 2 we have c2 < 0. Then, the implied critical value from the approximation is
larger than the standard normal critical value. In general, however, the correction
to strong persistence might be either attenuated or strengthened by the correction
to nonstationarity depending on the true data-generating process.

Returning to the location model, consider the t-statistic based on Ĵ∗
DK,T ,

tDK =
√

T
(
β̂ −β0

)√̂
J∗

DK,T

.

Theorem 6 and (19) imply that

P(tDK ≤ z) = �(z)+p2 (z)
(
Tb1,Tb2,T

)−1/2 +o
((

Tb1,Tb2,T
)−1/2

)
, (20)

for any z ∈R, where p2 (z) is an odd function. Under the conditions of Theorem 6,
p2 (z) = 2−1((Cdf +1/2c1 + C2c2)zϕ (z)), where C is defined in Assumption 10,
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C2 = (bCdf +1/2)1/2 and b is defined in Assumption 11. Thus, the ERP of tDK

can be larger than that of tHAC, though the margin is small. This follows from the
fact that Ĵ∗

DK,T applies smoothing over two directions. The smoothing over time is
useful to flexibly account for nonstationarity. Its benefits appear explicitly under
the alternative hypothesis as we show in Section 5 whereas the ERP refers to the
null hypothesis. One can show that the ERP of tDK and tHAC remain unchanged if
prewhitening is applied, though the proofs are omitted since they are similar.

We can further compare the ERP of tHAC and tDK to that of the corresponding
t-test under the fixed-b asymptotics. Casini (2024) showed that the limiting
distribution of the original fixed-b HAR test statistics under nonstationarity is
not pivotal as it depends on the true data-generating process of the errors and
regressors. This contrasts to the stationarity case for which the fixed-b limiting
distribution is pivotal and the ERP is of order O(T−1) [see Jansson (2004) and
Sun et al. (2008)]. Based on an ERP of smaller magnitude relative to that of
HAR tests based on HAC estimators [cf. O(T−1) < O((Tb1,T)

−1/2)], the literature
has long suggested that the original fixed-b HAR tests are superior to HAR tests
based on HAC estimators. However, this breaks down under nonstationarity as
shown by Casini (2024) who established that (i) the ERP of the original fixed-b
HAR tests does not converge to zero because under nonstationarity the fixed-b
limiting distribution is different; (ii) for fixed-b HAR tests that use the critical
values from the non-pivotal fixed-b limiting distribution the ERP increases by an
order of magnitude relative to the stationary case [i.e., from O(T−1) to O(T−η)

with η ∈ (0, 1/2)]. Therefore, fixed-b HAR tests can have an ERP larger than that
of tHAC and tDK. Overall, the results based on Edgeworth expansions show that
the distortions on the null rejection rates of the HAR tests can arise from time
variation in the second moments even when the mean is constant. Thus, these
results complement the asymptotic bias results induced by breaks in the mean
function.

5. CONSEQUENCES FOR HAR INFERENCE

In this section, we discuss the implications of the theoretical results from Section 3
and 4. In Section 5.1, we first present a review of HAR inference methods and their
connection to the estimates considered in Section 3. In Section 5.2, we present
evidence that the HAR inference tests can suffer from larger size distortions under
nonstationarity than under stationarity. In Section 5.3, we show the consequences
of low frequency contamination for the power of the HAR tests and we provide
the corresponding theoretical results in Section 5.4.

5.1. HAR Inference Methods

There are two main approaches for HAR inference. Classical HAC standard errors
[cf. Newey and West (1987, 1994) and Andrews (1991)] require estimation of
the LRV defined as J � limT→∞JT where JT is defined after (8). The form of
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{Vt} depends on the specific problem under study. For example, for a t-test on
a regression coefficient in the linear model yt = xtβ0 + et (t = 1, . . . , T) we have
Vt = xtet. Classical HAC estimators take the following form,

ĴHAC,T =
T−1∑

k=−T+1

K1
(
b1,Tk

)
�̂ (k),

where �̂ (k) is given in (5) with V̂t = xt̂et, where {̂et} are the least-squares residuals,
K1 (·) is a kernel and b1,T is bandwidth. One can use the the Bartlett kernel,
advocated by Newey and West (1987), the quadratic spectral kernel as suggested
by Andrews (1991), or any other kernel suggested in the literature, see, e.g.,
de Jong and Davidson (2000) and Ng and Perron (1996). Under b1,T → 0 at

an appropriate rate, we have ĴHAC,T
P→ J. Hence, equipped with ĴHAC,T , HAR

inference is standard and simple because HAR test statistics follow asymptotically
standard distributions.

HAC standard errors can result in oversized tests when there is substantial
temporal dependence [e.g., Andrews (1991)]. This stimulated a second approach
based on LRV estimators that keeps the bandwidth at some fixed fraction of
T [cf. Kiefer et al. (2000)], e.g., using all autocovariances, so that ĴKVB,T �
T−1∑T

t=1

∑T
s=1 (1−|t − s|/T) V̂tV̂s which is equivalent to the Newey–West esti-

mator with b1,T = T−1. Under fixed-b asymptotics the reference distribution of
HAR test statistics is nonstandard. The validity of fixed-b inference rests on
stationarity [cf. Casini (2024)]. Many authors have considered various versions of
ĴKVB,T . However, the one that leads to HAR inference tests that are least oversized
is the original ĴKVB,T [see Casini and Perron (2024b) for simulation results].
For comparison we also report the equally-weighted cosine (EWC) estimator of
Lazarus et al. (2020). It is an orthogonal series estimators that use long bandwidths,

ĴEWC,T � B−1
B∑

j=1

�2
j , where �j =

√
2

T

T∑
t=1

V̂t cos

(
π j

(
t −1/2

T

))

with B some fixed integer. Assuming B satisfies some conditions, under fixed-b
asymptotics a t-statistic normalized by ĴEWC,T follows a tB distribution where B is
the degree of freedom.

Recently, a new HAC estimator was proposed in Casini (2023). Motivated by
the power impact of low frequency contamination of existing LRV estimators, he
proposed a double kernel HAC (DK-HAC) estimator, defined by

ĴDK,T �
T−1∑

k=−T+1

K1
(
b1,Tk

)
�̂DK (k),
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where b1,T is a bandwidth sequence and �̂DK (k) defined in Section 3 with ĉT (·, k)
replaced by

ĉDK,T (rnT/T, k) = (Tb2,T
)−1

T∑
s=|k|+1

K2

(
(rnT − (s−|k|/2))/T

b2,T

)
V̂sV̂s−|k|,

with K2 a kernel and b2,T a bandwidth. Note that ĉDK,T and ĉT are asymptotically
equivalent and the results of Section 3 continue to hold for ĉDK,T . More precisely,
ĉT is a special case of ĉDK,T with K2 being a rectangular kernel and n2,T = Tb2,T .

This approach falls in the first category of standard inference ĴDK,T
P→ J and HAR

test statistics normalized by ĴDK,T follows standard distribution asymptotically.
The DK-HAC estimator involves two kernels: K1 smooths the lagged sample
autocovariances, akin to the classical HAC estimators, while K2 applies smoothing
over time. The latter feature is useful to avoid the low frequency contamina-
tion. Additionally, Casini and Perron (2024b) proposed prewhitened DK-HAC
(̂Jpw,DK,T) estimator that improves the size control of HAR tests and enjoys the
same asymptotic properties of ĴDK,T . Casini (2023) and Casini and Perron (2024b)
demonstrated via simulations that tests based on ĴDK,T and Ĵpw,DK,T have superior
power properties relative to tests based on the other estimators. In terms of size,
the simulation results showed that tests based on Ĵpw,DK,T perform better than those
based on ĴHAC,T and ĴDK,T , and is competitive with ĴKVB,T when the latter works
well. We include ĴDK,T and Ĵpw,DK,T in our simulations below. We report the results
only for the DK-HAC estimators that do not use the pre-test for discontinuities in
the spectrum [cf. Casini and Perron (2024a)] because we do not want the results
to be affected by such pre-test.

5.2. Null Rejection Rates and Power in Finite-Sample

In order to better understand the effect of nonstationarity on the null rejection
rates of HAR tests we first conduct a Monte Carlo analysis where we compare a
nonstationary model with a stationary one that has either the same spectral density
at frequency zero or the same average dependence. Consider the following four
AR(1) data-generating processes (DGPs). DGP 1 is given by

Vt = 0.26Vt−1 + et, t = 1, . . . , T,

where et ∼ N (0, 1) for all t. The LRV of DGP 1 is J = 1.826. DGP 2 is

Vt = 0.7817Vt−1 + et, t = 1, . . . , T,

where et ∼ N (0, 1) for all t. Its LRV is J = 20.988. We now introduce two
nonstationary DGPs. DGP 3 takes the following form

Vt =
{

0.9Vt−1 + et, 1 ≤ t ≤ 0.2T

0.1Vt−1 + et, 0.2T < t ≤ T,
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where et ∼ N (0, 1). Note that the spectral density at frequency zero of Vt is given
by the weighted average of the spectral densities of Vt in the two regimes:

f (0) =
∫ 1

0
f (u, 0)du

= 0.2
1

2π
(
1−2 ·0.9+0.92

) +0.8
1

2π
(
1−2 ·0.1+0.12

) = 3.342.

Thus, the LRV of Vt is J = 2π
∫ 1

0 f (u, 0)du = 20.988 which takes the same value
as the LRV of DGP 2. Further, DGP 3 has the same average dependence as DGP 1,
meaning that the AR(1) coefficient in DGP 1 is equal to the weighted average of the
AR(1) coefficients of DGP 3 in the two regimes, i.e., ρ = 0.2 ·0.9+0.8 ·0.1 = 0.26.
We also want to verify whether the location of the break in persistence in DGP 3
is important for the bias. Thus, we consider DGP 4:

Vt =

⎧⎪⎨⎪⎩
0.1Vt−1 + et, 1 ≤ t ≤ 0.5T

0.9Vt−1 + et, 0.5T < t ≤ 0.5T +0.2T

0.1Vt−1 + et, 0.5T +0.2T < t ≤ T,

where et ∼ N (0, 1) for all t. While in DGP 3 the regime with strong persistence
occurs in the first 20% of the sample, in DGP 4 it occurs between the 50% and
70% of the sample. The LRV of DGP 4 is the same as that of DGP 3.

For each DGP we consider three different initial conditions: (a) V0 = 0; (b)
V0 ∼ N (0, 1); (c) V0 ∼ N (0, 4). This is useful in order to verify whether the
initial condition has any effect on the bias generated by changes in the second-
order properties. DGP 3(a) should exhibit a smaller bias due to nonstationarity
than DGP 3(b,c) and 4. To see this, note that in DGP 3(a) the initial condition
is V0 = 0. Thus, the process starts from zero. Since there is strong persistence in
the first 20% of the sample, the process is more likely to stay close to zero in the
first regime than when the initial condition is V0 ∼ N (0, 1) or V0 ∼ N (0, 4).
In DGP 4 the different specifications of the initial condition should not lead to
any differences in the bias due to nonstationarity because the regime with strong
dependence occurs about mid-sample.

To summarize, we have four DGPs. DGP 1 and 2 are stationary while DGP 3
and 4 are nonstationary. Since DGP 2 has a LRV that takes the same value as that of
DGP 3 and 4, this allows us to better separate the effect of persistence from that of
nonstationarity in the second moments on the following quantities: ĴHAC, −̂c1b1,T

and �̂ (k) for k = 0,1, 5, 10. In the simulations below ĴHAC is the Newey–West
estimator based on a predetermined number of lagged sample autocovariances
following the rule 4(T/100)2/9 [cf. Lazarus et al. (2018)]. We compare �̂ (k) to
the theoretical value �T (k) corresponding to each DGP which can be computed
by hand given the simple form of the DGPs. In fact, for the nonstationary DGPs,
�T (k) is a weighed average of the theoretical autocovariances corresponding to
each regime. Here, ĉ1 is an estimate of c1 in (10) that enters the asymptotic bias
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of ĴHAC. In order to compute ĉ1, we recall that the asymptotic bias of the LRV
estimator based on the Bartlett kernel is given by

lim
T→∞b−1

1,TE
(̂
JHAC − JT

)= −2πKBT,1

∫ 1

0
f (1) (u, 0)du,

where

KBT,q = lim
x→0

1−KBT (x)

|x|q
denotes the index of smoothness of the kernel at zero and f (1) (u, 0) is the index
of smoothness of the local spectral density at time u and frequency zero. For the
Bartlett kernel KBT,q = 0 if q < 1, KBT,q = 1 if q = 1 and KBT,q = ∞ if q > 1. The
Parzen characteristic exponent is the largest q such that KBT,q is finite. Thus, the
relative bias is

lim
T→∞b−1

1,TE
(̂
JHAC/JT −1

)= −KBT,1

∫ 1
0 f (1) (u, 0)du∫ 1

0 f (u, 0)du
= −c1,

using KBT,1 = 1. The index of smoothness of f (u, ω) at ω = 0 is defined as

f (1) (u, 0) = 1

2π

∞∑
k=−∞

|k|�(u, k) .

For an AR(1) process with parameters ρ (u) and σ 2
e (u), we have �(u, k) =

σ 2
e (u)ρ (u)|k| /(1−ρ (u)2). It follows that

f (1) (u, 0) = − 1

2π

2ρ (u)σ 2
e (u)

(ρ (u)−1)3 (1+ρ (u))
.

Based on this result we can obtain c1 for each model. In particular, for model DGP
1, 2, 3, and 4 we have c1 = 0.55, 3.92, 9.04 and 9.05, respectively.

We estimate c1 as follows. For DGP 1, we obtain the OLS residuals V̂t and
estimate ρ and σ 2

e from the autoregression

V̂t = ρV̂t−1 + et, t = 1, . . . , T,

where σ 2
e is the variance of et. Let these estimates be denoted by ρ̂ and σ̂ 2

e ,
respectively. Then, the estimate of c1 is defined as

ĉ1 = − 2ρ̂σ̂ 2
e

ĴHAC (ρ̂ −1)3 (1+ ρ̂)
.

The same applies to DGP 2. For DGP 3, we obtain the estimate of the autore-
gressive coefficient of Vt and of the variance of the innovations by estimating the
autoregression in the two regimes separately. That is, we obtain

V̂t =
{
ρ̂1V̂t−1 + êt, 1 ≤ t ≤ 0.2T

ρ̂2V̂t−1 + êt, 0.2T < t ≤ T,
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where we also compute σ̂ 2
1,e and σ̂ 2

2,e which are the sample variances of the residuals
êt in the two regimes, respectively. Then, the estimate of c1 is defined as

ĉ1 = −0.2
2ρ̂1σ̂

2
1,e

ĴHAC (ρ̂1 −1)3 (1+ ρ̂1)
−0.8

2ρ̂2σ̂
2
2,e

ĴHAC (ρ̂2 −1)3 (1+ ρ̂2)
.

The same applies to DGP 4 with the difference that the autoregressive coefficient
and the variance of the innovations are estimated separately in each of the three
distinct regimes.

We consider the sample size T = 100, 200, and 1000, and 50,000 repetitions
were used for each DGP. The results are reported in Table 1. Let us first discuss
the finite-sample properties of ĴHAC. The results clearly suggest that ĴHAC deviates
substantially from J when the data are nonstationary. ĴHAC underestimates J for all
DGPs but it does so much more when the DGP is nonstationary. The difference
between the values of ĴHAC in DGP 2 and those in DGP 3-4 is about one half,
e.g., ĴHAC = 6.775 in DGP 2(a) and ĴHAC = 3.142 in DGP 3(a). As the sample size
increases the downward bias becomes smaller, though ĴHAC still underestimates J
for T = 1000. The downward bias continues to remain larger in DGP 3-4 than in
DGP 2 even when T = 1000. Thus, this evidence based on ĴHAC already points out
that basic forms of nonstationarity generate bias in the LRV estimator. This bias
adds to the well-known bias generated by strong persistence in stationary data
documented in the literature.

Let us discuss the relative bias −c1b1,T and its estimate −̂c1b1,T . First note
that −c1b1,T < 0 and −̂c1b1,T < 0 for all DGPs and sample sizes considered.
This confirms the downward bias of ĴHAC observed above. For a given model,
the asymptotic relative bias −c1b1,T and its estimate increase with the sample
size. The downward bias is much larger for the nonstationary DGP 3-4 than
for the stationary DGP 1-2. The estimates −̂c1b1,T of the relative bias −c1b1,T

significantly underestimate −c1b1,T in DGP 3-4 while in DGP 1-2 the deviations
are much smaller. The large deviations of −̂c1b1,T from −c1b1,T continue to hold
even for T = 1000.

We now move to discuss the finite-sample properties of �̂ (k). When the data
are stationary, �̂ (k) is close to �T (k) even when T = 100 and it approaches
�T (k) when T = 1000. For nonstationary data, �̂ (k) is much farther from �T (k).
For example, in DGP 2(a) �̂ (0) = 2.507 and �T (0) = 2.571 whereas in DGP
3(a) �̂ (0) = 1.589 and �T (0) = 1.861. Thus, �̂ (k) has larger bias (in general
downward) when the data are nonstationary. This result is present even when T =
200. As T increases, �̂ (k) approaches �T (k) for all DGPs, though the downward
bias remains larger in DGP 3-4 than in DGP 1-2.

We repeated this exercise for other DGPs and the conclusions were the same.
The results suggest that under nonstationarity the bias in the LRV estimator is
affected by multiple factors. In addition to the downward bias arising from strong
persistence which is also present under stationarity there is bias generated by
the time-varying properties of the process. Under the null hypothesis this time
variation occurs in the autocovariance structure of the process. For example, in
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Table 1. Average estimates of ĴHAC,̂c1 and �̂ (k), k = 0, 1, 5, 10.

T = 100

DGP J ĴHAC −c1b1,T −̂c1b1,T �T (0) �̂ (0) �T (1) �̂ (1) �T (5) �̂ (5) �T (10) �̂ (10)

1(a) 1.826 1.483 −0.138 −0.169 1.072 1.062 0.279 0.273 0.001 0.002 0.000 0.000

1(b) 1.826 1.499 −0.138 −0.165 1.072 1.072 0.279 0.276 0.001 0.001 0.000 0.000

1(c) 1.826 1.549 −0.138 −0.160 1.072 1.105 0.279 0.285 0.001 0.001 0.000 0.000

2(a) 20.988 6.755 −0.980 −2.685 2.571 2.507 2.009 1.940 0.751 0.696 0.219 0.195

2(b) 20.988 6.830 −0.980 −2.617 2.571 2.533 2.009 1.961 0.751 0.702 0.219 0.195

2(c) 20.988 7.038 −0.980 −2.622 2.571 2.609 2.009 2.019 0.751 0.725 0.219 0.206

3(a) 20.988 3.142 −2.260 −40.480 1.861 1.589 1.028 0.736 0.622 0.312 0.367 0.100

3(b) 20.988 3.301 −2.260 −38.312 1.861 1.635 1.028 0.781 0.622 0.338 0.367 0.113

3(c) 20.988 3.761 −2.260 −35.695 1.861 1.790 1.028 0.920 0.622 0.427 0.367 0.161

4(a) 20.988 3.437 −2.260 −37.756 1.861 1.670 1.028 0.829 0.622 0.373 0.367 0.133

4(b) 20.988 3.448 −2.260 −37.145 1.861 1.680 1.028 0.830 0.622 0.373 0.367 0.134

4(c) 20.988 3.472 −2.260 −35.472 1.861 1.711 1.028 0.834 0.622 0.373 0.367 0.134

T = 200

DGP J ĴHAC −c1b1,T −̂c1b1,T �T (0) �̂ (0) �T (1) �̂ (1) �T (5) �̂ (5) �T (10) �̂ (10)

1(a) 1.826 1.569 −0.110 −0.127 1.072 1.067 0.279 0.276 0.001 0.001 0.000 0.000

1(b) 1.826 1.577 −0.110 −0.128 1.072 1.071 0.279 0.277 0.001 0.001 0.000 0.000

1(c) 1.826 1.602 −0.110 −0.124 1.072 1.089 0.279 0.281 0.001 0.001 0.000 0.000

2(a) 20.988 8.388 −0.784 −1.862 2.571 2.539 2.009 1.975 0.751 0.722 0.219 0.207

2(b) 20.988 8.449 −0.784 −1.839 2.571 2.553 2.009 1.988 0.751 0.728 0.219 0.207

2(c) 20.988 8.555 −0.784 −1.821 2.571 2.588 2.009 2.013 0.751 0.737 0.219 0.211

3(a) 20.988 4.354 −1.808 −30.914 1.861 1.723 1.028 0.883 0.622 0.465 0.367 0.229

3(b) 20.988 4.459 −1.808 −30.284 1.861 1.749 1.028 0.903 0.622 0.479 0.367 0.237

3(c) 20.988 4.771 −1.808 −30.321 1.861 1.823 1.028 0.978 0.622 0.526 0.367 0.265

4(a) 20.988 4.548 −1.808 −28.901 1.861 1.766 1.028 0.929 0.622 0.496 0.367 0.247

4(b) 20.988 4.552 −1.808 −29.944 1.861 1.770 1.028 0.931 0.622 0.496 0.367 0.248

4(c) 20.988 4.569 −1.808 −29.132 1.861 1.786 1.028 0.932 0.622 0.499 0.367 0.248

T = 1000

DGP J ĴHAC −c1b1,T −̂c1b1,T �T (0) �̂ (0) �T (1) �̂ (1) �T (5) �̂ (5) �T (10) �̂ (10)

1(a) 1.826 1.667 −0.079 −0.088 1.072 1.071 0.279 0.278 0.001 0.001 0.000 0.000

1(b) 1.826 1.669 −0.079 −0.087 1.072 1.073 0.279 0.279 0.001 0.000 0.000 0.000

1(c) 1.826 1.673 −0.079 −0.087 1.072 1.076 0.279 0.279 0.001 0.002 0.000 0.000

2(a) 20.988 10.904 −0.560 −1.097 2.571 2.565 2.009 2.003 0.751 0.743 0.219 0.216

2(b) 20.988 10.934 −0.560 −1.084 2.571 2.571 2.009 2.008 0.751 0.749 0.219 0.219

2(c) 20.988 10.935 −0.560 −1.084 2.571 2.574 2.009 2.009 0.751 0.746 0.219 0.217

3(a) 20.988 6.510 −1.291 −20.845 1.861 1.834 1.028 1.001 0.622 0.592 0.367 0.339

3(b) 20.988 6.541 −1.291 −20.449 1.861 1.841 1.028 1.001 0.622 0.595 0.367 0.343

3(c) 20.988 6.629 −1.291 −20.475 1.861 1.857 1.028 1.021 0.622 0.605 0.367 0.349

4(a) 20.988 6.543 −1.291 −20.854 1.861 1.840 1.028 0.838 0.622 0.595 0.367 0.344

4(b) 20.988 6.555 −1.291 −20.361 1.861 1.843 1.028 1.009 0.622 0.598 0.367 0.347

4(c) 20.988 6.559 −1.291 −20.551 1.861 1.846 1.028 1.011 0.622 0.598 0.367 0.347
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DGP 3, one has 0.2T observations to estimate 2π
∫ 0.2

0 f (u, 0)du = 0.4π f (0) where
f (0) = 1/(2π

(
1−2ρ +ρ2

)
) with ρ = 0.9, and 0.8T observations to estimate

2π
∫ 1

0.2 f (u, 0)du = 1.6π f (0) where f (0) = 1/(2π
(
1−2ρ +ρ2

)
) with ρ = 0.1.

This is more difficult than estimating 2π f (0) = 1/(2π
(
1−2ρ +ρ2

)
) with ρ =

0.7817 using T observations, which applies to DGP 2. Even if the total sample
size is T in both DGP 2 and 3, nonstationarity reduces the effective sample
size making the estimation of the LRV in DGP 3 effectively based on a smaller
number of observations. For example, �̂ (k) involves an average on {V̂tV̂t−k} for
t = k +1, . . . , T . Some of these pairs {V̂tV̂t−k} are such that V̂t and V̂t−k belong to
two different regimes, and so contribute bias to the estimation of �T (k). Under
stationarity all the pairs {V̂tV̂t−k} are such that V̂t and V̂t−k belong to the same
regime leading to more precise estimates of �̂ (k) and LRV. In addition, changes
in persistence over short regimes share features similar to shifts in the mean,
at least graphically. While the former is consistent with the null hypothesis, the
latter is not. This is likely to generate some bias where changes in persistence are
confounded with shifts in the mean even when the unconditional mean of the series
has not changed. The downward bias due to strong persistence and the bias due to
time-varying second-order properties are likely to influence each other making the
estimation problem even harder.

We now investigate the consequence of nonstationarity for HAR inference.
We obtain the empirical size and power for a two-tailed t-test on the intercept
normalized by several LRV estimators for the model yt = δ+Vt with δ = 0 under
the null and δ > 0 under the alternative hypothesis. Model M1 involves an SLS
process: Vt = 0.9Vt−1 + ut, V0 ∼ N (0, 1), ut ∼ i.i.d.N (0, 1) for t = 1, . . . , T0

1
with T0

1 = Tλ0
1, and Vt = ρ (t/T)Vt−1 + ut, ρ (t/T) = 0.3(cos (1.5− cos (t/T))),

ut ∼ i.i.d.N (0, 0.5) for t = T0
1 +1, . . . , T . Note that ρ (·) varies between 0.172 and

0.263. We set λ0
1 = 0.1. In addition to M1, we consider other models: M2 involves

a time-varying AR(1) with a break in volatility Vt = ρ (t/T)Vt−1 + ut, ρ (t/T) =
0.7(cos (1.5t/T)), ut ∼ N

(
0, σ 2

t

)
, σ 2

t = 5 for t ≤ 4 and σ 2
t = 0.25 for t > 4,

V0 ∼ N (0, 5); M3 involves Vt = ρ (t/T)Vt−1 + ut, ρ (t/T) = 0.8(cos (1.5t/T)),
ut ∼ N (0, 0.25), V0 = 0 with outliers Vt ∼ Uniform

(
c, 5c

)
for t = T/2, 3T/4

where c = −1/(
√

2erfc−1 (3/2))med(|V −med(V)|) with erfc−1 the inverse com-
plementary error function, med (·) is the median and V = (Vt)

T
t=1;4 M4 involves a

time varying AR(1) with periods of strong persistence where Vt = ρ (t/T)Vt−1 +ut,
ρ (t/T) = 0.95(cos (1.5t/T)), ut ∼ i.i.d.N (0, 0.4) and V0 ∼ N (0, 4). ρ (·) varies
between 0.7 and 0.05 in M2, between 0.05 and 0.8 in M3 and between 0.95 and
0.07 in M4.

We consider the DK-HAC estimators with and without prewhitening (̂JDK,T ,
ĴDK,pw,SLS,T , ĴDK,pw,SLS,μ,T ) of Casini (2023) and Casini and Perron (2024b),
respectively; Andrews’ (1991) HAC estimator with and without the prewhiten-
ing procedure of Andrews and Monahan (1992); Newey and West’s (1987)

4In this literature, values smaller than c are not classified as outliers.
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HAC estimator with the popular rule to select the number of lags (i.e., b1,T =
(4(T/100)2/9)−1; Newey–West with the fixed-b method of Kiefer et al. (2000) with
b = 1 (labeled KVB); and the Equally-Weighted Cosine (EWC) of Lazarus et al.
(2018) with the bandwidth choice recommended by the authors. For the DK-HAC
estimators we use the data-dependent methods for the bandwidths, kernels and
choice of nT as proposed in Casini (2023) and Casini and Perron (2024b), which
are optimal under mean-squared error (MSE). Let V̂t denote the least-squares
residual based on δ̂ where the latter is the least-squares estimate of δ. We set

b̂1,T = 0.6828(φ̂ (2)Tb̂2,T)
−1/5 where

φ̂ (2) =
⎛⎜⎝18

⎛⎝nT

T

�T/n3,T�−1∑
j=0

(̂σ ((jnT +1)/T) â1 ((jnT +1)/T))2

(1− â1 ((jnT +1)/T))4

⎞⎠2
⎞⎟⎠/

⎛⎝nT

T

�T/n3,T�−1∑
j=0

(̂σ ((jnT +1)/T))2

(1− â1 ((jnT +1)/T))2

⎞⎠2

,

with

â1 (u) =
∑t

j=t−nT +1 V̂jV̂j−1∑t
j=t−nT +1(V̂j−1)2

, and σ̂ (u) = (

t∑
j=t−nT +1

(V̂j − â1 (u) V̂j−1)
2)1/2,

and b̂2,T = (nT/T)
∑�T/nT �−1

r=1 b̂2,T (rnT/T), b̂2,T (u) = 1.6786(D̂1 (u))−1/5

(D̂2 (u))1/5T−1/5 where D̂2 (u)� 2
∑⌊

T4/25
⌋

l=−�T4/25� ĉDK,T (u, l)2 and

D̂1 (u)� ([Sω]−1
∑
s∈Sω

[3π−1(1+0.8(cos1.5+ cos4πu)

× exp(−iωs))
−4(0.8(−4π sin(4πu)))exp(−iωs)

−π−1 |1+0.8(cos1.5+ cos4πu)exp(−iωs)|−3 (0.8(−16π2 cos(4πu)))

× exp(−iωs)])
2,

with [Sω] being the cardinality of Sω and ωs+1 > ωs, ω1 = −π, ω[Sω] = π . We
set nT = T0.6, Sω = {−π, − 3, − 2, − 1, 0, 1, 2, 3, π}. K1 (·) is the QS kernel
and K2 (x) = 6x (1− x) for x ∈ [0, 1] . Table 2 reports the results using 5,000
replications. The t-test based on Newey and West’s (1987) and Andrews’ (1991)
prewhitened HAC estimators are excessively oversized. Andrews’ (1991) HAC-
based test is slightly undersized while the KVB’s fixed-b and EWC-based tests are
severely undersized. The fact that the KVB’s fixed-b and EWC-based tests have
larger size distortions than other tests is consistent with the results in Section 4
which suggest that they have a larger ERP. For the t-test on the intercept, ĴDK,T

can lead to tests that are oversized when there is strong dependence. However,
the prewhitened DK-HAC estimators ĴDK,pw,SLS,T and ĴDK,pw,SLS,μ,T lead to tests
having more accurate rejection rates. Nonstationarity affects the power of the tests
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Table 2. Empirical small-sample null rejection rates and power of t-test for
model M1-M4.

M1

α = 0.05, T = 200 δ = 0 (null rejection) δ = 0.05 δ = 0.1 δ = 0.25 δ = 1.5

ĴDK,T 0.068 0.189 0.286 0.661 1.000

ĴDK,pw,SLS,T 0.045 0.085 0.199 0.612 1.000

ĴDK,pw,SLS,μ,T 0.046 0.090 0.202 0.613 1.000

Andrews (1991) 0.039 0.095 0.185 0.623 0.999

Andrews (1991), prewhite 0.115 0.168 0.304 0.650 0.999

Newey-West (1987) 0.209 0.272 0.398 0.689 1.000

KVB fixed-b 0.004 0.018 0.063 0.301 0.969

EWC 0.011 0.038 0.137 0.539 0.999

M2

α = 0.05, T = 200 δ = 0 (null rejection) δ = 0.05 δ = 0.1 δ = 0.3 δ = 1

ĴDK,T 0.080 0.132 0.257 0.842 1.000

ĴDK,pw,SLS,T 0.059 0.098 0.190 0.736 1.000

ĴDK,pw,SLS,μ,T 0.055 0.088 0.187 0.735 1.000

Andrews (1991) 0.081 0.133 0.266 0.838 1.000

Andrews (1991), prewhite 0.094 0.141 0.268 0.842 1.000

Newey-West (1987) 0.137 0.190 0.336 0.881 1.000

KVB fixed-b 0.014 0.036 0.078 0.561 0.990

EWC 0.032 0.064 0.157 0.712 1.000

M3

α = 0.05, T = 200 δ = 0 (null rejection) δ = 0.1 δ = 0.15 δ = 0.3 δ = 1

ĴDK,T 0.117 0.363 0.537 0.928 1.000

ĴDK,pw,SLS,T 0.049 0.227 0.384 0.865 1.000

ĴDK,pw,SLS,μ,T 0.052 0.223 0.374 0.855 1.000

Andrews (1991) 0.106 0.334 0.515 0.917 1.000

Andrews (1991), prewhite 0.122 0.351 0.524 0.928 1.000

Newey-West (1987) 0.169 0.412 0.596 0.948 1.000

KVB fixed-b 0.024 0.165 0.309 0.712 0.999

EWC 0.058 0.245 0.400 0.858 1.000

M4

α = 0.05, T = 200 δ = 0 (null rejection) δ = 0.1 δ = 0.3 δ = 0.5 δ = 3

ĴDK,T 0.154 0.146 0.496 0.706 1.000

ĴDK,pw,SLS,T 0.037 0.050 0.168 0.459 1.000

ĴDK,pw,SLS,μ,T 0.041 0.079 0.198 0.477 1.000

Andrews (1991) 0.127 0.162 0.398 0.623 0.999

Andrews (1991), prewhite 0.197 0.226 0.439 0.653 1.000

Newey-West (1987) 0.397 0.423 0.584 0.758 1.000

KVB fixed-b 0.005 0.012 0.135 0.339 0.964

EWC 0.115 0.147 0.367 0.681 0.999
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based on LRV estimators that rely on �̂ (k) or equivalently on IT (ω) (e.g., the
EWC). The KVB’s fixed-b and EWC-based tests suffer from relatively large power
losses. The power of tests normalized by Newey and West’s (1987) and Andrews’
(1991) prewhitened HAC are not comparable because they are significantly
oversized. The DK-HAC-based tests have the best power, the second best being
Andrews’ (1991) HAC-based test.

Turning to M2, Table 2 shows some size distortions and power losses for KVB’s
fixed-b and EWC-based tests. The prewhitened DK-HAC-based tests display
accurate size control and good power. Newey and West’s (1987) and Andrews’
(1991) prewhitened HAC-based tests are again excessively oversized. Andrews’
(1991) HAC-based test and the DK-HAC-based test show a similar performance.
For model M3-M4, Table 2 shows that all methods lead to oversized tests except
prewhitened DK-HAC and KVB’s fixed-b. However, the KVB’s fixed-b-based
tests show substantial unde-rejection that has consequences for power whereas
the prewhitened DK-HAC-based-tests show accurate null rejection rates and good
power. Finally, the simulations show that the null rejection rates of HAC- and DK-
HAC-based tests are not very far from each other, thereby confirming that their
respective ERP are close as shown in Section 4.

5.3. General Low Frequency Contamination

We now discuss HAR inference tests for which the low frequency contamination
results of Section 3 hold asymptotically. This means that d∗ > 0 for all T and
as T → ∞. This comprises the class of HAR tests that admit a nonstationary
alternative hypothesis. This class is very large and includes most HAR tests as
discussed in the Introduction. Here we consider the Diebold–Mariano test for the
sake of illustration and remark that similar issues apply to other HAR tests.

The Diebold–Mariano test statistic is defined as tDM � T1/2
n dL/

√̂
JdL,T , where

dL is the average of the loss differentials between two competing forecast models,
ĴdL,T is an estimate of the LRV of the loss differential series and Tn is the number
of observations in the out-of-sample. We use the quadratic loss. We consider an
out-of-sample forecasting exercise with a fixed forecasting scheme where, given
a sample of T observations, 0.5T observations are used for the in-sample and the
remaining half is used for prediction [see Perron and Yamamoto (2021) for recom-
mendations on using a fixed scheme in the presence of breaks]. The DGP under
the null hypothesis is given by yt = 1 +β0x(0)

t−1 + et where x(0)
t−1 ∼ i.i.d.N (1, 1),

et = 0.3et−1 +ut with ut ∼ i.i.d.N (0, 1), and we set β0 = 1 and T = 400. The two
competing models both involve an intercept but differ with respect to the predictor
used in place of x(0)

t . The first forecast model uses x(1)
t while the second uses x(2)

t

where x(1)
t and x(2)

t are independent i.i.d.N (1, 1) sequences, both independent
from x(0)

t . Each forecast model generates a sequence of τ (= 1)-step ahead out-
of-sample losses L(j)

t (j = 1, 2) for t = T/2 + 1, . . . , T − τ . Then dt � L(2)
t − L(1)

t

denotes the loss differential at time t. The Diebold–Mariano test rejects the null
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hypothesis of equal predictive ability when dL is sufficiently far from zero. Under
the alternative hypothesis, the two competing forecast models are as follows: the
first uses x(1)

t = x(0)
t + uX1,t where uX1,t ∼ i.i.d.N (0, 1) while the second uses

x(2)
t = x(0)

t + 0.2zt + 2uX2,t for t ∈ [1, . . . , 3T/4−1, 3T/4+21, . . .T] and x(2)
t =

δ (t/T)+ 0.2zt + 2uX2,t for t = 3T/4, . . . , 3T/4 + 20 with uX2,t ∼ i.i.d.N (0, 1),
where zt has the same distribution as x(0)

t .
We consider four specifications for δ (·) . In the first x(2)

t is subject to an
abrupt break in the mean δ (t/T) = δ > 0; in the second x(2)

t is locally stationary
with time-varying mean δ (t/T) = δ (sin(t/T −3/4)); in the third specification
x(2)

t = x(0)
t + 0.2zt + 2uX2,t for t ∈ [1, . . . , T/2 − 30, T/2 + 21, . . .T] and x(2)

t =
δ (t/T)+0.2zt +2uX2,t for t = T/2−30, . . . , T/2+20 with δ (t/T) = δ(sin(t/T −
1/2 −30/T)); in the fourth x(2)

t is the same as in the second with in addi-
tion two outliers x(2)

t ∼ Uniform
(∣∣c∣∣, 5

∣∣c∣∣) for t = 6T/10, 8T/10 where c =
−1/(

√
2erfc−1 (3/2))med(|x(2)−med (x(2))|) where x(2) = (x(2)

t )T
t=1. That is, in the

second model x(2)
t is locally stationary only in the out-of-sample, in the third it is

locally stationary in both the in-sample and out-of sample and in the fourth model
x(2)

t has two outliers in the out-of-sample. The location of the outliers is irrelevant
for the results; they can also occur in the in-sample.

Table 3 reports the null rejection rate and the power of the various tests for all
models. We begin with the case δ (t/T) = δ > 0 (top panel). The null rejection rate
of the test using the DK-HAC estimators is accurate while the tests using other LRV
estimators are oversized with the exception of the KVB’s fixed-b method for which
the rejection rate is equal to zero. The HAR tests using existing LRV estimators
have lower power relative to that obtained with the DK-HAC estimators for small
values of δ. When δ increases the tests standardized by the HAC estimators of
Andrews (1991) and Newey and West (1987), and by the KVB’s fixed-b and EWC
LRV estimators display non-monotonic power gradually converging to zero as
the alternative gets further away from the null value. In contrast, when using the
DK-HAC estimators the test has monotonic power that reaches and maintains unit
power. The results for the other models are even stronger. In general, except when
using the DK-HAC estimators, all tests display serious power problems. Thus,
either form of nonstationarity or outliers leads to similar implications, consistent
with our theoretical results.

In order to further assess the theoretical results from Section 3, Figure 1 (top
panel) reports the plots of dt, its sample autocovariances and its periodogram, for
δ = 1. Figures S.1 and S.2 (top panels) in the supplement report the corresponding
plots for δ = 2, 5, respectively. We only consider the case δt = δ > 0. The other
cases lead to the same conclusions. For δ = 1, Figure 1 (top panel) shows that
�̂ (k) decays slowly. As δ increases, from Figures S.1 and S.2 (top panels), �̂ (k)
decays even more slowly at a rate far from the typical exponential decay of short
memory processes. This suggests evidence of long memory. However, the data are
short memory with small temporal dependence. What is generating the spurious
long memory effect is the nonstationarity present under the alternative hypothesis.
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Table 3. Empirical small-sample null rejection rates and power of the DM (1995)
test.

(1) δ > 0

α = 0.05, T = 200 (null rejection) δ = 0.2 δ = 0.5 δ = 2 δ = 5 δ = 10

ĴDK,T 0.033 0.312 0.551 0.997 1.000 1.000

ĴDK,pw,SLS,T 0.042 0.322 0.563 0.999 1.000 1.000

ĴDK,pw,SLS,μ,T 0.046 0.348 0.573 0.998 1.000 1.000

Andrews (1991) 0.085 0.254 0.305 0.114 0.000 0.000

Andrews (1991), prewhite 0.085 0.246 0.293 0.401 0.045 0.000

Newey-West (1987) 0.083 0.246 0.299 0.612 0.817 0.782

KVB fixed-b 0.002 0.212 0.185 0.000 0.000 0.000

EWC 0.083 0.252 0.268 0.045 0.000 0.000

(2) δ (t/T) locally stationary

α = 0.05, T = 200 δ = 0.2 δ = 0.5 δ = 2 δ = 5 δ = 10

ĴDK,T 0.278 0.297 0.592 0.889 1.000

ĴDK,pw,SLS,T 0.301 0.363 0.634 0969 1.000

ĴDK,pw,SLS,μ,T 0.327 0.368 0.642 0.969 1.000

Andrews (1991) 0.255 0.259 0.255 0.110 0.005

Andrews (1991), prewhite 0.249 0.243 0.268 0.188 0.031

Newey-West (1987) 0.281 0.282 0.313 0.268 0.078

KVB fixed-b 0.203 0.202 0.178 0.025 0.000

EWC 0.244 0.252 0.219 0.045 0.000

(3) δ (t/T) segmented locally stationary

α = 0.05, T = 200 δ = 0.2 δ = 1 δ = 2 δ = 5 δ = 10

ĴDK,T 0.540 0.862 0.992 1.000 1.000

ĴDK,pw,SLS,T 0.396 0.664 0.988 1.000 1.000

ĴDK,pw,SLS,μ,T 0.412 0.724 0.987 1.000 1.000

Andrews (1991) 0.328 0.234 0.235 0.241 0.777

Andrews (1991), prewhite 0.342 0.315 0.512 0.296 0.882

Newey-West (1987) 0.381 0.384 0.720 0.972 0.999

KVB fixed-b 0.100 0.032 0.000 0.002 0.040

EWC 0.312 0.152 0.142 0.296 0.852

(4) case (2) with outliers

α = 0.05, T = 400 δ = 0.5 δ = 1 δ = 2 δ = 5 δ = 10

ĴDK,T 0.694 0.733 0.822 0.981 1.000

ĴDK,pw,SLS,T 0.724 0.777 0.846 0.982 1.000

ĴDK,pw,SLS,μ,T 0.727 0.771 0.847 0.981 1.000

Andrews (1991) 0.192 0.242 0.245 0.203 0.022

Andrews (1991), prewhite 0.182 0.233 0.243 0.288 0.114

Newey-West (1987) 0.222 0.271 0.245 0.345 0.225

KVB fixed-b 0.203 0.222 0.212 0.075 0.000

EWC 0.186 0.221 0.174 0.062 0.000
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Figure 1. Plots of loss differentials dt , sample autocovariance �̂ (k), periodogram I (ω), sample local
autocovariance ĉ(u, k) and local periodogram IL(u, ω). In all panels δ = 1.

This is visible in the top panels which present plots of dt for the first specification.
The shift in the mean of dt for t = 3T/4, . . . , 3T/4+20 is responsible for the long
memory effect. This corresponds to the second term of S.7 in Theorem S.1. The
overall behavior of the sample autocovariance is as predicted by Theorem S.1.
For small lags, �̂ (k) shows a power-like decay and it is positive. As k increases
to medium lags, the autocovariances turn negative because the sum of all sample
autocovariances has to be equal to zero [cf. Percival (1992)]. Next, we move to the
bottom panels which plot the periodogram of {dt}. It is unbounded at frequencies
close to ω = 0 as predicted by Theorem S.2 and as would occur if long memory
was present. It also explains why the Diebold–Mariano test normalized by Newey–
West’s, Andrews’, KVB’s fixed-b and EWC’s LRV estimators have serious power
problems. These LRV estimators are inflated and consequently the tests lose power.
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The figures show that as we raise δ the more severe these issues and the power
losses so that the power eventually reaches zero. This is consistent with our theory
since d∗ is increasing in δ (cf. d∗ ≈ 0.1 ·0.9δ2).

We now verify the results about the local sample autocovariance ĉT (u, k) and
the local periodogram from Theorems 1–2. We set n2,T = T0.6 = 36 following the
MSE criterion of Casini (2023). We consider (i) u = 236/T , (ii-a) u = T0

1/T = 3/4
and (ii-b) u = 264/T . Note that cases (i)–(ii-b) correspond to parts (i)–(ii-b) in
Theorems 1 and 2. We consider δ = 1, 2 and 5. According to Theorems 1 and 2, we
should expect long memory features only for case (ii-a). Figures 1 and S.1–S.2 in
the supplement confirm this. The results pertaining to case (ii-a) are plotted in the
middle panels. They show that the local autocovariance displays slow decay similar
to the pattern discussed above for �̂ (k) and that this problem becomes more severe
as δ increases. Such long memory features also appear for IL (3/4, ω). The bottom
panels in Figures 1 and S.1–S.2 show that the local periodogram at u = 3/4 and at
a frequency close to ω = 0 are extremely large. The latter result is consistent with
Theorem 2-(ii-a) which suggests that IL,T (3/4, ω)→ ∞ as ω → 0. For case (i) and
(ii-b) both figures show that the local autocovariance and the local periodogram do
not display long memory features. Indeed, they have forms similar to those of a
short memory process, a result consistent with Theorems 1 and 2 also for cases (i)
and (ii-b).

It is noteworthy to explain why HAR inference based on the DK-HAC estimators
does not suffer from the low frequency contamination even for case (ii-a). The DK-
HAC estimator computes an average of the local spectral density over time blocks.
If one of these blocks contains a discontinuity in the spectrum, then as in case
(ii-a) some bias would arise for the local spectral density estimate corresponding
to that block. However, by virtue of the time-averaging over blocks that bias
becomes negligible. Hence, nonparametric smoothing over time asymptotically
cancels the bias, so that inference based on the DK-HAC estimators is robust to
nonstationarity.

5.4. Theoretical Results About the Power

We present theoretical results about the power of tDM for the case of general
low frequency contamination discussed in Section 5.3. In particular, we focus on
specification (1) (i.e., δ > 0). The same intuition and qualitative theoretical results
apply to the other specifications of δ (·).

Let tDM,i = T1/2
n dL/

√̂
JdL,i,T denote the DM test statistic where i = DK,

pwDK, KVB, EWC, A91, pwA91, NW87 and pwNW87 with ĴA91,T and ĴNW87,T

being ĴHAC,T using the quadratic spectral and Bartlett kernel, respectively. Define
the power of tDM,i as Pδ(|tDM,i| > z1−α/2) where z1−α/2 is the 1 − α/2 quantile
of the standard normal for a two-sided test with significance level α ∈ (0, 1). To
avoid repetitions we present the results only for i = DK, KVB, and NW87. The
results concerning the prewhitening DK-HAC estimator are the same as those
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corresponding to the DK-HAC estimator while the results concerning the EWC
estimator are similar to those corresponding to the KVB’s fixed-b estimator, though
for the latter the non-monotonic power is more pronounced. The results pertaining
to Andrews’ (1991) HAC estimator (with and without prewhitening) are the same
as those corresponding to Newey and West’s (1987) estimator. Let nδ = T −Tb −2
denote the length of the regime in which x(2)

t exhibits a shift δ in the mean. The
deviation from the null hypothesis depends on the shift magnitude δ and on nδ .

Theorem 7. Let {dt −E(dt)}Tn
t=1 be an SLS process satisfying Assumptions 1-(i-

iv) and 2. Let Assumptions 6–7 hold and nδ = O(T1/2+ζ
n ) where ζ ∈ (0, 1/2) such

that Tζ
n b1/2

1,T → 0 and Tζ
n (̂b1,T)

1/2 → 0. Then, we have:
(i) Under Assumption 9,Pδ(|tDM,NW87|> zα)→ 0. If Assumption 9 is replaced by

Assumption 10 with q = 1/3, then |tDM,NW87| = OP(T
ζ−1/6
n ) and Pδ(|tDM,NW87| >

zα) → 0.
(ii) If b1,T = T−1, then |tDM,KVB| = OP(T

ζ−1/2
n ) and Pδ(|tDM,KVB| > zα) → 0.

(iii) Under Assumption 11, |tDM,DK| = δ2OP(Tζ
n ) and Pδ(|tDM,DK| > zα) → 1.

Note that Assumption 10 with q = 1/3 refers to the MSE-optimal bandwidth
for the Newey and West’s (1987) estimator. The conditions Tζ

n b1/2
1,T → 0 and

Tζ
n (̂b1,T)

1/2 → 0 mean that the length of the regime in which x(2)
t exhibits a shift δ in

the mean increases to infinity at a slower rate than T. Theorem 7 shows that when
the HAC estimators or the fixed-b LRV estimators are used, the DM test is not
consistent and its power approaches zero. The theorem also implies that the power
functions corresponding to tests based on HAC estimators lie above the power
functions corresponding to those based on fixed-b/EWC LRV estimators. This
follows from |tDM,KVB| � |tDM,NW87|. Another interesting feature is that |tDM,NW87|
and |tDM,KVB| do not increase in magnitude with δ because δ appears in both the
numerator and denominator (δ enters the denominator through the low frequency
contamination term d∗ that accounts for the bias in the HAC and fixed-b estimators
(cf. Theorem S.8). Part (iii) of the theorem suggests that these issues do not occur
when the DK-HAC estimator is used since the test is consistent and its power
increases with δ and with the sample size as it should be. These results match the
empirical results in Table 3 discussed above, thereby confirming the relevance of
Theorem 7.

6. CONCLUSIONS

Economic time series often display nonstationary features that are usefully
addressed in testing by allowing for some misspecification in standard model
formulations. If nonstationarity is not accounted for properly, parameter estimates
and, in particular, asymptotic LRV estimates can be largely biased. We establish
results on the low frequency contamination induced by nonstationarity and
misspecification for the sample autocovariance and the periodogram under general
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conditions. These estimates can exhibit features akin to long memory when the
data are nonstationary short memory. We show, using theoretical arguments, that
nonparametric smoothing is robust. Since the autocovariances and the periodogram
are basic elements for HAR inference, our results allow a better understanding
of LRV estimation. Under the null hypothesis there are larger size distortions
than when the data are stationary. Under the alternative hypothesis, existing
LRV estimators tend to be inflated and HAR tests can exhibit dramatic power
losses. Long bandwidths/fixed-b HAR tests suffer more from low frequency
contamination relative to HAR tests based on HAC estimators, whereas the
DK-HAC estimators do not suffer from this problem.

Supplemental Materials

Casini, A., T. Deng and P. Perron (2024): Supplement to “Theory of low frequency
contamination from nonstationarity and misspecification: consequences for HAR
inference”, Econometric Theory Supplementary Material. To view, please visit:
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