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A method is given to rapidly compute quasisymmetric stellarator magnetic fields for
plasma confinement, without the need to call a three-dimensional magnetohydrody-
namic equilibrium code inside an optimization iteration. The method is based
on direct solution of the equations of magnetohydrodynamic equilibrium and
quasisymmetry using Garren & Boozer’s expansion about the magnetic axis (Phys
Fluids B, vol. 3, 1991, p. 2805), and it is several orders of magnitude faster than the
conventional optimization approach. The work here extends the method of Landreman
et al. (J. Plasma Phys., vol. 85, 2019, 905850103), which was limited to flux surfaces
with elliptical cross-section, to higher order in the aspect-ratio expansion. As a result,
configurations can be generated with strong shaping that achieve quasisymmetry to
high accuracy. Using this construction, we give the first numerical demonstrations of
Garren and Boozer’s ideal scaling of quasisymmetry breaking with the cube of the
inverse aspect ratio. We also demonstrate a strongly non-axisymmetric configuration
(vacuum rotational transform ι > 0.4) in which symmetry-breaking mode amplitudes
throughout a finite volume are <2 × 10−7, the smallest ever reported. To generate
boundary shapes of finite-minor-radius configurations, a careful analysis is given
of the effect of substituting a finite minor radius into the near-axis expansion. The
approach here can provide analytic insight into the space of possible quasisymmetric
stellarator configurations, and it can be used to generate good initial conditions for
conventional stellarator optimization.
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1. Introduction
Quasisymmetry is a type of continuous symmetry in the strength of a toroidal

magnetic field B = |B| that does not require continuous symmetry of the magnetic
field vector B (Boozer 1983; Nührenberg & Zille 1988; Boozer 1995; Helander 2014).
As a consequence of the conservation laws associated with quasisymmetry or full
axisymmetry of B, both symmetries enable confinement of charged particles and
plasma. However, confinement with axisymmetric B requires a large electric current
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in the confinement region that is prone to instabilities and hard to sustain, while
quasisymmetric confinement does not. Hence, non-axisymmetric toroidal magnetic
fields (‘stellarators’) with quasisymmetry offer the promise of stable and efficient
confinement of high-temperature plasma for fusion energy. Quasisymmetric stellarators
would also enable magnetic confinement of plasmas with density that is too low to
support a substantial electric current, such as electron–positron plasmas for basic
physics studies (Pedersen et al. 2012).

Several quasisymmetric magnetic field configurations have been found numerically,
mostly by using optimization over the space of boundary magnetic surface shapes
to minimize symmetry-breaking Fourier modes of B (Nührenberg & Zille 1988;
Anderson et al. 1995; Garabedian 1996; Zarnstorff et al. 2001; Ku & Boozer 2011;
Drevlak et al. 2013; Henneberg et al. 2019). While this optimization approach is
effective, it does not provide much insight into the size and character of the solution
space, and it requires good initial guesses for the numerical iteration. Hence, one can
never be sure that all the interesting regions of parameter space have been found,
for perhaps a different initial guess would yield a new solution. The optimization
approach requires significant computation time, and so it is expensive to generate
parameterized families of solutions.

An alternative to the optimization approach is to construct quasisymmetric
configurations directly using an analytic expansion, in the smallness of either the
departure from axisymmetry of B (Plunk & Helander 2018) or in the distance
from the magnetic axis (equivalent to an expansion in large aspect ratio). Near-axis
expansions have been explored by several authors (Mercier 1964; Solov’ev &
Shafranov 1970; Lortz & Nührenberg 1976), with the particular case of quasisymmetry
examined by Garren & Boozer (1991a,b). The near-axis expansion, although it is an
approximation, is always accurate in the core of any stellarator, even stellarators for
which the aspect ratio of the outermost surface is not large. In a recent series of
papers (Landreman & Sengupta 2018; Landreman, Sengupta & Plunk 2019; Plunk,
Landreman & Helander 2019), the near-axis expansion was developed into practical
procedures for constructing fields with quasisymmetry, or the more general condition
of omnigenity. It was also shown that, close to the axis, quasisymmetric configurations
obtained by conventional optimization closely match configurations generated by the
construction (Landreman 2019). The configurations presented to date from this
near-axis construction have been quasisymmetric to first order in r/R, where r is
the typical distance from the axis and R denotes a scale length of the magnetic axis
(such as a typical radius of curvature). At this order, due to regularity conditions
at the magnetic axis, the magnetic surfaces must have an elliptical cross-section.
It was found that the space of quasisymmetric configurations to this order can be
parameterized by the shape of the axis together with three other numbers.

In the present paper, we extend the construction to next order in r/R. The equations
describing quasisymmetry to O((r/R)2) were derived in the appendix of Garren &
Boozer (1991a), but no solutions were presented before now. At this order, several
important effects appear for the first time, including triangularity and Shafranov shift.
By extending the construction to O((r/R)2), more complicated and realistic stellarator
shapes will be generated, and quasisymmetry will be achieved to higher accuracy. The
extension of the model to O((r/R)2) only slightly increases the computational cost of
solving the equations, which remains on the level of milliseconds on one CPU. This
time is far faster than a traditional three-dimensional (3-D) equilibrium calculation,
which typically requires of the order of 10 seconds or more.
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Constructing stellarators with quasisymmetry to high order 3

In Garren and Boozer’s original work, it was argued quasisymmetry can be
achieved (in the absence of axisymmetry) to O((r/R)2) but not to O((r/R)3), so
departures from quasisymmetry should scale as the cube of the inverse aspect ratio.
However, despite various numerical calculations of quasisymmetric configurations
using optimization since 1991, there does not appear to have been a numerical
demonstration of this predicted scaling. Using the construction here we are able
to numerically demonstrate this predicted ideal scaling for the first time (figure 8).
An implication of this scaling is that quasisymmetry can be achieved to arbitrary
precision, in the following sense. Given any desired small level of symmetry-breaking
Fourier modes in B, and given any desired axis shape (constrained only by the
requirement that its curvature cannot vanish), there is some aspect ratio above which
quasisymmetry can be achieved to the desired precision. To emphasize this point, we
will present examples of non-axisymmetric configurations in which quasisymmetry
is realized to unprecedented precision, with the symmetry-breaking mode amplitudes
orders of magnitude smaller than in previously reported configurations.

A primary application of the work here is to generate input data for stellarator
equilibrium codes such as VMEC (Hirshman & Whitson 1983) or optimization codes
such as STELLOPT (Spong et al. 1998; Reiman et al. 1999) or ROSE (Drevlak et al.
2019). For these applications, the input we must generate is the shape (or initial
shape) of a boundary magnetic surface. In the O(r/R) construction (Landreman et al.
2019; Plunk et al. 2019), it was possible to plug a finite value of r into the near-axis
expansion to obtain the boundary surface. In turns out that, at O((r/R)2), this
substitution requires some care. We will show that, in fact, a part of the O((r/R)3)
shape must be retained in order to generate a boundary surface that is consistent with
the desired field strength to O((r/R)2). Once this step is taken, we will construct
boundary surfaces, then use the VMEC code to generate 3-D equilibria inside the
boundaries, and show that quasisymmetry-breaking modes of B in these equilibria are
small and scale with the aspect ratio, as expected.

In the following section, notation will be introduced and the near-axis expansion
will be outlined. Section 3 describes the analysis of generating a finite-aspect-ratio
boundary surface from the near-axis expansion, and the need for including some
O((r/R)3) terms. The numerical method for solving the equations is detailed in § 4,
and several examples of constructed quasi-axisymmetric and quasi-helically symmetric
configurations are presented in § 5. We discuss the results and conclude in § 6. Several
detailed analytic calculations can be found in the appendices. Appendix A gives the
equations for O((r/R)2) quasisymmetry, derived using a new method that reduces
the algebra required. Appendix B gives a detailed proof of results presented in § 3.
Finally, one method for converting the constructed boundary shapes to cylindrical
coordinates is presented in appendix C.

2. Near-axis expansion

Our goal is to relate the three-dimensional shapes of flux surfaces to the magnetic
field strength in Boozer coordinates (θ, ϕ). In this section, we introduce the
main features of the expansion, and many of the explicit expressions are given
in appendix A. While the expansion here is equivalent to the one in Garren &
Boozer (1991a,b), our approach in appendix A provides a streamlined method to
derive the equations at each order. Throughout the analysis, we assume that good
nested flux surfaces exist in the region of interest near the axis.
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In Boozer coordinates, the magnetic field has the forms

B = ∇ψ ×∇θ + ι∇ϕ ×∇ψ,
= β∇ψ + I∇θ +G∇ϕ, (2.1)

where 2πψ is the toroidal flux, ι(ψ) is the rotational transform, θ and ϕ are the
poloidal and toroidal Boozer angles and I and G are constant on ψ surfaces. To
consider quasi-helical symmetry later in the analysis, it is convenient to introduce a
helical angle ϑ = θ −Nϕ, where N is a constant integer. Then

B = ∇ψ ×∇ϑ + ιN∇ϕ ×∇ψ, (2.2)
= β∇ψ + I∇ϑ + (G+NI)∇ϕ, (2.3)

where ιN = ι−N.
The position vector r at a general point in a neighbourhood of the axis can be

described by

r(r, ϑ, ϕ)= r0(ϕ)+ X(r, ϑ, ϕ)n(ϕ)+ Y(r, ϑ, ϕ)b(ϕ)+ Z(r, ϑ, ϕ)t(ϕ), (2.4)

where r is the flux surface label defined by 2πψ =πr2B̄, with B̄ a constant reference
field strength, and r0(ϕ) is the position vector along the magnetic axis. Here, the
orthonormal vectors (t, n, b) give the Frenet–Serret frame of the magnetic axis. These
vectors satisfy

dϕ
d`

dr0

dϕ
= t,

dϕ
d`

dt
dϕ
= κn,

dϕ
d`

dn
dϕ
=−κt+ τb,

dϕ
d`

db
dϕ
=−τn, (2.5a−d)

and t × n = b, where ` is the arclength along the axis, κ(ϕ) is the axis curvature
and τ(ϕ) is the axis torsion. (Garren and Boozer use the opposite sign convention for
torsion.) Using the dual relations,

∇ϕ =
1
√

g
∂r
∂r
×
∂r
∂ϑ

and cyclic permutations, (2.6)

where
√

g = (∂r/∂r) · (∂r/∂ϑ) × (∂r/∂ϕ) is the Jacobian, then (2.2)–(2.3) can be
expressed in terms of the (t, n, b) vectors and derivatives of (X, Y, Z). Equating
(2.2)–(2.3) then gives three scalar equations, (A 2)–(A 4). The field strength can be
expressed in terms of derivatives of (X, Y, Z) using the square of either (2.2) or (2.3).
The former turns out to be more useful, and is given in (A 19).

These equations are supplemented by the equilibrium condition [∇× (2.3)] ×
(2.2)= µ0∇p, where p(r) is the pressure. The average of this condition over ϑ and
ϕ gives

dG
dr
+ ι

dI
dr
=−

µ0

(2π)2
(G+ ιI)

dp
dr

∫ 2π

0
dϑ
∫ 2π

0
dϕ

1
B2
, (2.7)

while the ϑ and ϕ dependence of the equilibrium condition implies

∂β

∂ϕ
+ ιN

∂β

∂ϑ
=
µ0

rB̄
dp
dr
(G+ ιI)

[
1
B2
−

1
(2π)2

∫ 2π

0
dϑ
∫ 2π

0
dϕ

1
B2

]
. (2.8)

The near-axis expansion is then introduced by writing

X(r, ϑ, ϕ)= rX1(ϑ, ϕ)+ r2X2(ϑ, ϕ)+ r3X3(ϑ, ϕ)+ · · · , (2.9)
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with analogous expressions for Y and Z. Other than r, all scale lengths in the system
are ordered as R, so (2.9) represents an expansion in r/R. The field strength is
expanded similarly but with an O((r/R)0) term,

B(r, ϑ, ϕ)= B0(ϕ)+ rB1(ϑ, ϕ)+ r2B2(ϑ, ϕ)+ r3B3(ϑ, ϕ)+ · · · , (2.10)

and β(r, ϑ, ϕ) is expanded in the same way. The profile functions G(r), I(r), p(r)
and ιN(r) are analytic functions of ψ , so their expansions contain only even powers
of r,

G(r)=G0 + r2G2 + r4G4 + · · · . (2.11)

Since I(r) is proportional to the toroidal current inside the surface r, then I0= 0. From
analyticity considerations near the axis (see appendix A of Landreman & Sengupta
(2018)), the expansion coefficients have the form

X1(ϑ, ϕ) = X1s(ϕ) sin(ϑ)+ X1c(ϕ) cos(ϑ),
X2(ϑ, ϕ) = X20(ϕ)+ X2s(ϕ) sin(2ϑ)+ X2c(ϕ) cos(2ϑ),
X3(ϑ, ϕ) = X3s3(ϕ) sin(3ϑ)+ X3s1(ϕ) sin(ϑ)+ X3c3(ϕ) cos(3ϑ)+ X3c1(ϕ) cos(ϑ).


(2.12)

The expansions of Y , Z, B and β have the same form. The expansions (2.9)–(2.12)
are then substituted into (A 2)–(A 4), (A 19) and (2.7)–(2.8), and terms at each order
in r/R are collected. We can thereby relate the surface shape coefficients (X, Y, Z) to
the field strength through a desired order in r/R. Explicit results through O((r/R)2)
are given in (A 20)–(A 52).

Quasisymmetry is achieved through order O((r/R)j) when ∂Bk/∂ϕ= 0 for k6 j. At
O((r/R)1), the analysis in appendix A shows quasisymmetric fields are described by

r(r, ϑ, ϕ)= r0(ϕ)+
rη̄
κ(ϕ)

cosϑn(ϕ)+
rsψsGκ(ϕ)

η̄
[sin ϑ + σ(ϕ) cos ϑ] b(ϕ)+O(r2/R),

(2.13)
where sψ = sign(ψ), sG = sign(G0), η̄ is a constant and σ(ϕ) is a solution of

dσ
dϕ
+ (ι0 −N)

[
η̄4

κ4
+ 1+ σ 2

]
−

2G0η̄
2

B0κ2

[
I2

B0
− sψτ

]
= 0. (2.14)

Here, the constant I2 is the leading term in the coefficient I(r) of (2.1), and is
proportional to the on-axis toroidal current density, which is typically zero. The
constant η̄= B1c/B0 (introduced by Garren & Boozer (1991b)) reflects the magnitude
by which B varies on surfaces,

B≈ B0[1+ rη̄ cos ϑ +O((r/R)2)]. (2.15)

The surface shapes corresponding to (2.13) are ellipses in the plane perpendicular to
the axis (the n–b plane). The ellipses are centred on the magnetic axis, so there is no
Shafranov shift to this order.

It can be proved (Landreman et al. 2019) that quasisymmetric fields to O(r/R)
can be parameterized by the shape of the axis – which can be any curve for which
κ never vanishes – along with three real numbers: I2, η̄ and σ(0). Varying η̄ has
the effect of varying the average elongation. The parameter σ(0) is the value of
σ(ϕ) at ϕ = 0, and it reflects the angle by which the major and minor axes of the

https://doi.org/10.1017/S0022377819000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000783


6 M. Landreman and W. Sengupta

elliptical flux surfaces are oriented with respect to n at ϕ = 0. Stellarators typically
possess ‘stellarator symmetry’ (unrelated to quasisymmetry) which implies σ(0) = 0.
The pressure profile does not appear in the model to this order.

Proceeding to O((r/R)2), nine new functions of ϕ arise in the surface shapes: X20,
X2s, X2c, Y20, Y2s, Y2c, Z20, Z2s and Z2c. The corresponding surface shapes can now
possess triangularity, and X20 and Y20 enable the centre of the surfaces at any given
(r, ϕ) to be shifted in the n–b plane with respect to the axis (Shafranov shift). These
nine functions are constrained by 10 new ϕ-dependent equations: (A 27)–(A 29),
(A 32)–(A 36) and (A 41)–(A 42) (with X1s = β0 = β1c = 0 as explained in A.3).
Therefore, as noted by Garren & Boozer (1991b,a), there is a net loss of one
ϕ-dependent degree of freedom, and so most axis shapes are not consistent with
quasisymmetry through this order, in contrast to the O(r/R) case.

Also, four new scalar parameters appear at O((r/R)2) that are independent of ϕ.
One is p2, providing the first information about the pressure profile. Also appearing
are the numbers B20, B2s and B2c, describing the variation of B with ϑ . The
global magnetic shear does not yet enter the system of equations; it first appears
at O((r/R)3).

3. Generating a finite-minor-radius boundary

Our goal is ultimately to construct the shape of a boundary magnetic surface such
that the magnetic field in the interior is quasisymmetric to a good approximation. The
interest in constructing boundary surfaces comes from the fact that magnetohydrody-
namic (MHD) equilibrium codes such as VMEC naturally take the shape of a
boundary magnetic surface as an input. Conventional stellarator optimization codes
such as STELLOPT and ROSE are built upon VMEC, so if we can construct a
boundary surface for a quasisymmetric configuration, then we can construct a good
initial condition for optimization.

Given a solution of the equations of the near-axis expansion through some order,
how can a boundary surface be generated? A natural approach is to plug a small
but finite value a of the expansion parameter r into the series for (X, Y, Z), which
yields a toroidal surface with average minor radius a. This approach was applied
successfully to the O((r/R)1) equations in Landreman et al. (2019) and Plunk et al.
(2019). However, this approach of setting r→a turns out to require modification when
applied to the O((r/R)2) equations. It can be seen that some care is required when
setting r to a finite value, as follows. When the expansion is truncated at a finite order
in r/R, a finite value of r chosen and MHD equilibrium computed within the resulting
surface, a configuration results that has a slightly different axis shape and (X, Y, Z)
coefficients than the ones assumed in the original expansion. The difference turns
out to be unimportant for the O((r/R)1) construction but critical for the O((r/R)2)
construction. The fact that plugging in a finite value of r to obtain a boundary results
in a slight change to the equilibrium can be seen in figures 3, 8 and 10 of Landreman
et al. (2019). These figures, showing the B spectrum when a finite r is substituted into
the O((r/R)1) Garren–Boozer expansion and the equilibrium is computed inside the
resulting boundary, show that there is a small but finite mirror mode on the magnetic
axis, even though the on-axis mirror mode amplitude is precisely zero in the original
expansion.

In this section, we introduce a systematic method to examine the effect of setting
the expansion parameter r equal to a finite number a. Technical details of the
calculation are given in appendix B. Here, and in the appendix, we consider a more
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general problem of trying to construct a configuration with any desired field strength
B(r, ϑ, ϕ), which may or may not be quasisymmetric; therefore, the analysis also
applies to more general optimizations such as omnigenity. The basic approach is to
introduce a second Garren–Boozer-type expansion, denoted with tildes, that describes
the configuration which results from computing an MHD equilibrium inside the
boundary constructed from the original Garren–Boozer expansion. In contrast to the
original expansion, the ‘tilde’ expansion is not truncated, since it describes MHD
equilibrium in a finite volume. The axis shapes and (X, Y, Z) coefficients for the
tilde and non-tilde expansions are similar but not identical. Their differences diminish
as a → 0. The non-tilde expansion represents a single idealized configuration we
would like to achieve, whereas the tilde expansion represents a family of different
‘real’ configurations, (real in the sense that they are what is computed by solving for
MHD equilibrium without a near-axis expansion), parameterized by the finite value
a used to construct their boundaries. From the fact that the (truncated) non-tilde
expansion and (non-truncated) tilde expansions describe the same surface at r = a,
and exploiting an expansion in r/R � 1 with the ordering a ∼ r, we can derive
the magnetic field strength that results for the constructed configurations. We will
thereby rigorously show that substituting r→ a in an O(r/R) Garren–Boozer solution
yields a configuration that has the desired B to O(r/R), but substituting r→ a in an
O((r/R)2) Garren–Boozer solution yields a configuration that only has the desired B
through O(r/R), not O((r/R)2). However, the achieved B can be made to match the
desired one at O((r/R)2) by a small modification of the construction, in which X3
and Y3 terms are included.

Beginning the formal analysis, we consider a family of equilibria parameterized by
a, in which the position vector is

r= r̃0(a, ϕ̃)+ X̃(a, r, ϑ̃, ϕ̃)ñ(a, ϕ̃)+ Ỹ(a, r, ϑ̃, ϕ̃)b̃(a, ϕ̃)+ Z̃(a, r, ϑ̃, ϕ̃)t̃(a, ϕ̃), (3.1)

analogous to (2.4). The Boozer angles (ϑ̃, ϕ̃) for the real configuration generally
differ somewhat from the angles (ϑ, ϕ) of the ideal configuration, with the differences
denoted by single-valued functions t and f ,

ϑ̃(a, ϑ, ϕ)= ϑ + t(a, ϑ, ϕ), ϕ̃(a, ϑ, ϕ)= ϕ + f (a, ϑ, ϕ). (3.2a,b)

Analogous to (2.9), we have

X̃(a, r, ϑ̃, ϕ̃)=
∞∑

j=1

r jX̃j(a, ϑ̃, ϕ̃), (3.3)

with similar expansions for Ỹ and Z̃, and analogous to (2.9), the field strength in the
real configurations is

B̃(a, r, ϑ̃, ϕ̃)=
∞∑

j=0

r jB̃j(a, ϑ̃, ϕ̃), (3.4)

with a similar expansion for β̃. All quantities in the tilde configurations are assumed
to have a-dependence in the form of a Taylor series, with coefficients denoted by
superscripts in parentheses,

r̃0(a, ϕ̃)=
∞∑

k=0

akr̃(k)0 (ϕ̃), (3.5)
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with analogous expansions for ñ, b̃ and t̃, and

X̃j(a, ϑ̃, ϕ̃)=
∞∑

k=0

akX̃(k)
j (ϑ̃, ϕ̃), (3.6)

with analogous expansions for Ỹj, Z̃j, B̃j and β̃j. We similarly assume

t(a, ϑ, ϕ)=
∞∑

k=0

akt(k)(ϑ, ϕ), f (a, ϑ, ϕ)=
∞∑

k=0

akf (k)(ϑ, ϕ). (3.7a,b)

To reiterate, subscripts refer to an expansion in distance from the axis in a fixed
configuration, whereas superscripts in parentheses indicate a distinct expansion in the
finite value of minor radius substituted into the original near-axis expansion.

The boundary of a tilde configuration, i.e. its r = a surface, by definition is the
surface obtained by setting r= a in the non-tilde expansion. The equation representing
this fact is

r0(ϕ)+ X(a, ϑ, ϕ)n(ϕ)+ Y(a, ϑ, ϕ)b(ϕ)+ Z(a, ϑ, ϕ)t(ϕ)
= r̃0(a, ϕ̃)+ X̃(a, a, ϑ̃, ϕ̃)ñ(a, ϕ̃)+ Ỹ(a, a, ϑ̃, ϕ̃)b̃(a, ϕ̃)
+ Z̃(a, a, ϑ̃, ϕ̃)t̃(a, ϕ̃), (3.8)

and it plays a central role in the analysis.
To the order of interest, the field strength in the real configurations is

B̃(a, r, ϑ̃, ϕ̃) = B̃(0)0 (ϕ̃)+ rB̃(0)1 (ϑ̃, ϕ̃)+ aB̃(1)0 (ϕ̃)

+ r2B̃(0)2 (ϑ̃, ϕ̃)+ raB̃(1)1 (ϑ̃, ϕ̃)+ a2B̃(2)0 (ϕ̃)+O((r/R)3). (3.9)

The quantities in this expression are computed in terms of the non-tilde expansion in
appendix B, by systematically examining (3.8) at each order in a/R ∼ r/R. There,
assuming only that the construction is carried out through (X1, Y1, Z1) or higher, it is
found that B̃(0)0 (ϕ) = B0(ϕ), B̃(0)1 (ϑ, ϕ) = B1(ϑ, ϕ) and B̃(1)0 (ϕ) = 0. Hence, if a finite
value a is substituted into r in a O((r/R)1) Garren–Boozer solution to construct a
boundary surface, the real configuration inside this boundary will have the desired
magnetic field strength in Boozer coordinates through O((r/R)1). This finding is
consistent with the results in Landreman et al. (2019). However, the results at next
order are more complicated. Assuming now that the construction is carried out
through (X2, Y2, Z2) or higher, it is found in appendix B that B̃(0)2 (ϑ, ϕ) = B2(ϑ, ϕ),
B̃(1)1 (ϑ, ϕ)= 0, and

B̃(2)0 (ϕ)= B̂B0 − f (2)B′0, (3.10)

where
B̂(ϕ)= (X3s1Y1c − X3c1Y1s + X1sY3c1 − X1cY3s1 −Q)

sGB0

B̄
, (3.11)

Q(ϕ) =
(G2 + I2N)B̄`′

2G2
0

+ 2(X2cY2s − X2sY2c)+
B̄

2G0
(`′X20κ − Z′20)

+
I2

4G0
(−`′τV1 + Y1cX′1c − X1cY ′1c + Y1sX′1s − X1sY ′1s)

+
β0B̄
4G0

(X1sY ′1c + Y1cX′1s − X1cY ′1s − Y1sX′1c), (3.12)
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primes denote d/dϕ, and

f (2)(ϕ)=
(∫ ϕ

0
dϕ̄ B̂(ϕ̄)

)
+

(
1
2
−
ϕ

2π

)(∫ 2π

0
dϕ̄ B̂(ϕ̄)

)
−

1
2π

∫ 2π

0
d ¯̄ϕ
∫ ¯̄ϕ

0
dϕ̄ B̂(ϕ̄).

(3.13)
Thus, if the Garren–Boozer solution is carried out through (X2, Y2, Z2) but then
truncated so (X3, Y3, Z3) are all set to zero when constructing the boundary, (3.11)
will be non-zero. The a2B̃(2)0 term in (3.9) will then be non-zero and will cause
a difference between the desired and achieved field strengths that is comparable
to the desired r2B2 term. Generally (3.10) will depend on ϕ and so it will break
quasisymmetry.

Fortunately, a workaround can be achieved that does not require a full solution of
the Garren–Boozer equations for (X3, Y3, Z3). It can be preferable to avoid a full
solution through O((r/R)3) because the equations are extremely complicated, because
one then has to choose additional parameters for the construction and because the
presence of squareness that grows with r at this order can limit the minimum aspect
ratio. In the workaround, we take (X3,Y3) to be (X1,Y1) scaled by some function λ(ϕ),

X3c1 = λX1c, X3s1 = λX1s, X3c3 = X3sc = 0, (3.14a−c)

with analogous expressions for Y and Z3 = 0. In other words, we introduce a small
correction to the O(r/R) elliptical flux surface shape. Setting (3.11) = 0, substituting
(3.14) and using (A 21), we find

λ(ϕ)=−QB0/(2sGB̄). (3.15)

Adding these (X3, Y3) terms to the constructed boundary surface therefore results in
B̃(2)0 = 0, so the real configurations have the same Boozer spectrum as the ideal target
configuration through O((r/R)2).

Some physical intuition for this result can be given. The leading-order field strength
B0 is approximately the toroidal flux divided by the cross-sectional area of the flux
surfaces. Indeed, this interpretation of (A 21) is shown precisely in Landreman &
Sengupta (2018). The area of the surfaces is primarily determined by the sin ϑ and
cos ϑ modes of X and Y , which generate ellipses, and not by sin 2ϑ , cos 2ϑ , and
independent-of-ϑ modes, which distort and shift the ellipses but do not expand or
contract them. The sin ϑ and cos ϑ modes of X and Y that affect the cross-sectional
area arise at orders O(r/R) and O((r/R)3) but not at O((r/R)2), due to analyticity.
Thus, if the Garren–Boozer solution is truncated by setting X3 = Y3 = Z3 = 0, there
is an O((r/R)2) error in the cross-sectional area of the surfaces, which (since
B ∼ flux/area) implies an O((r/R)2) error in B0. This error can vary toroidally,
spoiling quasisymmetry or whatever other pattern of B is desired. To solve the
problem, we note (A 49) is a correction to (A 21) (they both derive from (A 4)),
relating the cross-sectional area and B to flux. Thus, (A 49) indicates how much the
surfaces should be expanded or contracted to give the correct B0 through O((r/R)2).
Indeed, the same result (3.15) can be obtained by setting 2πψ =

∫
d2 a · B at

O((r/R)2r2B), where
∫

d2 a is an integral over a constant-ϕ cross-section, using (2.3)
and (3.14).

Note that by a modified choice of λ, B̃(2)0 can be made to cancel the toroidal
dependence of B̃(0)20 at a non-zero value r0 of r. In the case of quasisymmetry,
such a choice has the effect of introducing an O((r/R)2) mirror mode on the axis,
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with the mirror mode amplitude vanishing at radius r0. There may be advantages
in this approach, for as found in a recent numerical study (Henneberg et al. 2019),
fast particle confinement in a quasi-axisymmetric configuration was best when the
quasisymmetry was optimized off axis rather than on axis.

4. Numerical formulation
4.1. Inputs and outputs

We now describe a practical numerical implementation of the equations derived in the
preceding sections and associated appendices. The parameters of the algorithm here
are a superset of the inputs to the O((r/R)1) construction detailed in Landreman et al.
(2019). The latter are the shape of the magnetic axis, which must have non-vanishing
curvature everywhere, and the numbers η̄, I2 and σ(0). The parameter η̄ effectively
controls the elongation; I2 indicates the on-axis toroidal current and is typically
zero for stellarators; σ(0) controls the angle of elongation at ϕ = 0 and is zero
for stellarator-symmetric configurations. In the O((r/R)2) construction, three new
constant input parameters are needed: p2, B2c and B2s. We will not take B20 as an
input parameter for reasons explained shortly. The parameter p2 defines the pressure
profile to this order. The parameters B2c and B2s set the desired cos 2ϑ and sin 2ϑ
modes in the field strength. These two parameters have the effect of controlling
the stellarator-symmetric and stellarator-asymmetric parts of the triangularity. For
stellarator-symmetric configurations, B2s = 0.

The outputs of the calculation include the shapes of the magnetic surfaces and
the rotational transform on axis, ι0. As noted by Garren & Boozer (1991a,b) and
discussed above, the number of scalar ϕ-dependent unknowns exceeds the number of
ϕ-dependent equations by only one if quasisymmetry is imposed through O((r/R)2),
whereas an axis shape represents two ϕ-dependent quantities (e.g. κ and τ , or
R(φ) and z(φ), where (R, φ, z) are cylindrical coordinates.) Therefore, to achieve
quasisymmetry through O((r/R)2), one needs to solve for part of the axis shape. We
proceed by temporarily relaxing the requirement that B20 must be independent of ϕ.
By reducing the number of equations by one in this way, any axis shape becomes
allowed. One can still make B2s and B2c independent of ϕ, achieving quasisymmetry
partially through O((r/R)2). Then B20(ϕ) is an output of the calculation, and it
generally has some toroidal variation. We can then numerically optimize the input
parameters (including not only the axis shape but also {η̄, σ (0), B2c, B2s}) such
that the toroidal variation of B20 is minimal. While we have not proved rigorously
that solutions exist in which B20 is exactly constant, experience with the numerical
solutions described in the next section suggests B′20 can be made arbitrarily small as
the number of degrees of freedom in the axis shape is increased.

As explained in detail in § 5.2 of Landreman & Sengupta (2018), quasi-axisymmetry
versus quasi-helical symmetry is determined by the choice of axis shape. In particular,
the integer N is the number of times the axis normal vector rotates poloidally around
the axis as the axis is traversed toroidally.

4.2. Numerical solution of the equations
Given the input parameters described in the previous subsection, the O(r/R) equations
are solved as described in § 3 of Landreman et al. (2019). As a result, X1 and Y1 are
computed on a uniform grid in the standard toroidal angle φ covering one field period
with Nφ points, and ι0 is obtained. Then, Z2 is computed from (A 27)–(A 29), X2s is
computed from (A 35) and X2c is computed from (A 36).
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Next, a (2Nφ)× (2Nφ) linear system is solved. The unknowns for this system are
the values of X20 and Y20 on the Nφ grid points. The rows of the linear system
represent (A 41) and (A 42) imposed at the Nφ grid points. In these equations,
d/dϕ derivatives are discretized using the same pseudospectral differentiation matrix
described in Landreman et al. (2019). In this system, Y2s and Y2c are eliminated using
(A 32)–(A 33). The dense linear system is solved with direct factorization (LAPACK).
With X20 and Y20 thereby determined, Y2s and Y2c are computed from (A 32)–(A 33),
and then (A 34) gives B20. Finally, (3.14)–(3.15) give X3 and Y3.

Note that although the O((r/R)1) equations are nonlinear in the unknowns, a
unique solution always exists, as proved in Landreman et al. (2019), so the solution
by Newton’s method is extremely robust. Furthermore, once the O((r/R)1) solution
is determined, the equations of § A.2 are linear in the higher-order unknowns, so
the O((r/R)2) construction is equally robust. At a typical resolution (Nφ ∼ 30),
solution of the equations for the O((r/R)2) construction takes <2 ms on one core
of a modern laptop, many orders of magnitude lower computational cost than a
general 3-D equilibrium calculation used in each iteration of traditional stellarator
optimization.

4.3. Optimization of input parameters
For many sets of input parameters, the model results in configurations that are not
of practical interest because they are limited to extremely high aspect ratio. This
limitation arises because for any solution of the model equations, beyond a certain
value of r, the constant-r surfaces will begin to self-intersect. If X2, Y2, X3 or Y3 is
large, this critical r will be small. From another perspective, the near-axis expansion
is only accurate at values of r sufficiently small that the terms of successive orders
in r in the expansion are decaying. If X2, Y2, X3 or Y3 is large, the accuracy of the
expansion is then limited to smaller values of r.

Therefore, for some of the examples below, we use optimization – either numerical
or by hand – to find solutions with small X2, Y2, X3 or Y3. We also minimize
the toroidal derivatives of these quantities, anticipating that large derivatives would
drive large symmetry-breaking terms at next order. All the quantities targeted for
minimization are squared, averaged over φ and combined in a weighted sum to form
a single objective function. For some examples, to improve quasisymmetry, we also
include in the sum a term minimizing the toroidal variation of B20. While doing these
optimizations, it may be necessary to penalize parameters for which ι0 becomes too
small. Note that when optimization is applied to the O((r/R)2) quasisymmetry model,
the objective function can be evaluated in milliseconds, approximately four orders
of magnitude or more faster than the objective function evaluations in conventional
stellarator optimization. Also, in principle, analytic derivatives are available for the
O((r/R)2) model, although we will not exploit them here to accelerate optimization.
For the examples below, we use Matlab’s derivative-free algorithm ‘fminsearch’, a
variant of the Nelder–Mead simplex algorithm by Lagarias et al. (1998).

4.4. Conversion to cylindrical coordinates
A principal aim of the construction is to generate boundary shapes that can be
provided as input to an MHD equilibrium code such as VMEC. VMEC requires
as input the boundary surface shape defined by its cylindrical coordinates (R, z)
expressed as a double Fourier series in the toroidal angle φ and any poloidal angle.
As discussed in § 4 of Landreman et al. (2019), there are several ways this boundary
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description can be obtained from our representation (2.4). One approach is to derive
the transformation between the two representations order by order in a. This approach
was developed in § 4.1 of Landreman & Sengupta (2018) to O(r/R). In appendix C,
the transformation is extended to O((r/R)3). The advantage of this approach is that it
results in explicit expressions for R(θ, φ) and z(θ, φ) that can be evaluated extremely
rapidly.

A second approach to transforming from the Frenet representation to the representa-
tion required by VMEC is described in § 4.2 of Landreman et al. (2019). In this
approach, nonlinear root finding is applied to (2.4). At a grid of points in θ and φ, one
solves for the value of ϕ such that the position vector has a standard toroidal angle
φ. The nonlinear root finding requires additional computation time. This approach
tends to result in slightly lower magnitude of symmetry breaking, so we use it for
the numerical examples that follow.

5. Numerical results
Several examples of constructed quasi-axisymmetric and quasi-helically symmetric

configurations will now be presented. The examples are all generated ‘from scratch’,
in that no fitting was done to previously optimized equilibria. All the examples
are scaled such that the zero-frequency component of the axis major radius
R00 = (2π)−1

∫ 2π

0 dφ R0 is 1 metre, and the on-axis field strength B0 is 1 Tesla. In
each VMEC calculation shown, the pressure profile specified was p(r)= (1− r2/a2)p2
for the same constant p2 used in the construction. Also, the current profile for VMEC
calculations was specified as I(s) = 2πsa2I2/µ0, where I(s) is the toroidal current
inside the surface with normalized toroidal flux s= (r/a)2, and I2 is the constant used
in the construction.

We will describe the configurations using two different measures of effective aspect
ratio. The measure that is most convenient for the construction is A = R00/a, where
again πa2 is the toroidal flux. We will also quote the effective aspect ratio Avmec used
in the VMEC code, since this measure is often reported in the literature. Its definition
is Avmec = (Aminor_p)/(Rmajor_p), where the effective minor radius Aminor_p is
defined by π(Aminor_p)2 = S̄, with S̄ = (2π)−1

∫ 2π

0 dφ S(φ) the toroidal average of
the area S(φ) of the outer surface’s cross-section in the R–z plane, and the effective
major radius Rmajor_p is defined by [2π(Rmajor_p)][π(Aminor_p)2]=V with V the
volume of the outer surface.

5.1. Quasi-axisymmetry partially through O((r/R)2)
The first set of input parameters we consider includes the axis shape

R0(φ) (m)= 1+ 0.155 cos(2φ)+ 0.0102 cos(4φ),
z0(φ) (m)= 0.154 sin(2φ)+ 0.0111 sin(4φ),

}
(5.1)

corresponding to two field periods. We also choose η̄ = 0.640 m−1 and B2c =

−0.00322 T m−2. These values and axis shape were obtained by minimizing
X2, Y2, X3 and Y3, as described in § 4.3, subject to a lower bound ι0 > 0.42.
The parameters σ(0) and B2s were set to zero so the configuration is stellarator
symmetric. We also choose I2 = 0 and p2 = 0 so the configuration is a vacuum
field. For this first configuration, no attempt was made to make B20 independent
of ϕ, so the configuration is only partially quasisymmetric at O((r/R)2). The
resulting configuration has ι0 = 0.420 as desired, and the boundary shape for A= 10
is shown in figure 1. VMEC is then run to compute the equilibrium inside the
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(a)

(b)

FIGURE 1. The partially quasi-axisymmetric example of § 5.1, for aspect ratio A = 10,
Avmec=9.75. The 3-D surface shape in (a), shown from three angles, and the cross-sections
in (b), are generated by the construction. In (a), magnetic field lines are shown as black
lines, and colour indicates the field strength computed by VMEC.

finite-thickness boundary without making any near-axis approximation, and then the
BOOZ_XFORM code (Sanchez et al. 2000) is run to transform the VMEC result to
Boozer coordinates. Figure 2 shows the resulting Fourier coefficients Bm,n(r) defined
by B(r, θ, ϕ) =

∑
m,n Bm,n(r) cos(mθ − nϕ). It can be seen that the dominant Bm,n

mode is the quasi-axisymmetric term B1,0 as desired. The magnitude of this mode
predicted by the construction, B1,0 = rη̄B0, is displayed for comparison, and it is
nearly identical to the VMEC result.

Keeping all input parameters fixed except for the boundary aspect ratio, we then
construct boundary surfaces at a sequence of increasing aspect ratios, and repeat the
VMEC and BOOZ_XFORM calculations for each case. In figure 3, the quantity
[Bm=0(ϕ, r = a) − B(ϕ, r = 0)]/a2 is displayed for this sequence of numerical
calculations. According to the construction, this quantity should be B20(ϕ). Indeed, it
can be seen that the VMEC/BOOZ_XFORM results converge to the Garren–Boozer
prediction. Thus, in the limit A� 1, the full 3-D equilibrium calculations achieve the
expected field strength in Boozer coordinates.

As another verification of the construction, figure 4 displays three symmetry-
breaking measures

Sr=a
m>0 =

1
B0,0

√ ∑
m>0,n 6=Nm

B2
m,n(r= a), Sr=a

m=0 =
1

B0,0

√∑
n6=0

B2
0,n(r= a),

Sr=0
m=0 =

1
B0,0

√∑
n 6=0

B2
0,n(r= 0),

 (5.2)
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FIGURE 2. The spectrum of B for the partially quasi-axisymmetric example of § 5.1,
computed by running the VMEC and BOOZ_XFORM codes inside the constructed
boundary surface for aspect ratio A= 10, Avmec = 9.75.

computed from the VMEC and BOOZ_XFORM results for the aspect ratio scan.
(‘Config 1’ in the figure refers to the present section, while ‘Config 2’ will be
described in § 5.2.) It can be seen that Sr=a

m>0 scales as 1/A3, consistent with the
fact that the corresponding modes were constructed to be zero through O((r/R)2),
so symmetry breaking generally arises at next order. The on-axis mirror modes,
measured by Sr=0

m=0, are found to have an even stronger scaling, ∝1/A4. This scaling
arises because the m = 0 modes were constructed to be zero through O((r/R)2),
and they are automatically zero at O((r/R)3) (only m = 1 and m = 3 modes exist
at this order), so the first non-vanishing contribution occurs at O((r/R)4). Finally,
Sr=a

m=0 shows an asymptotic scaling ∝ 1/A2, associated with the fact that B20 is not
independent of ϕ. Thus, all three symmetry-breaking measures scale as predicted by
the construction.

5.2. Quasi-axisymmetry fully through O((r/R)2)
We next consider a configuration that is similar to the one of § 5.1, but with slightly
different parameters such that B20 has significantly reduced toroidal variation, resulting
in improved quasi-axisymmetry. We again consider a two-field-period device, with axis
shape

R0(φ) (m)= 1+ 0.173 cos(2φ)+ 0.0168 cos(4φ)+ 0.00101 cos(6φ),
z0(φ) (m)= 0.159 sin(2φ)+ 0.0165 sin(4φ)+ 0.000985 sin(6φ).

}
(5.3)

The other non-zero input parameters are η̄ = 0.632 m−1 and B2c = −0.158 T m−2.
These values and axis shape were obtained by the optimization procedure of § 4.3,
again minimizing X2, Y2, X3 and Y3, but now also minimizing the toroidal variation
of B20. The parameters σ(0) and B2s were again set to zero so the configuration
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FIGURE 3. As the aspect ratio A increases, the B20(ϕ) component of the field strength of
the numerical VMEC configurations converges to the function predicted by the Garren–
Boozer construction. Data here are for the partially quasi-axisymmetric configuration of
§ 5.1.

FIGURE 4. The measures of quasisymmetry breaking (5.2), computed by running the
VMEC and BOOZ_XFORM codes inside the constructed boundary surfaces, scale as the
expected power of aspect ratio. Data here are for the partially quasi-axisymmetric and
optimized quasi-axisymmetric examples of §§ 5.1 (‘Config 1’) and 5.2 (‘Config 2’).

is stellarator symmetric, and I2 and p2 were set to zero so the configuration is a
vacuum field. The resulting configuration has ι0 = 0.424. The function B20(ϕ) for
these parameters is shown as the black dotted curve in figure 7, and it can be
seen that the toroidal variation is greatly reduced compared to figure 3. The small
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(a)

(b)

FIGURE 5. The quasi-axisymmetric example of § 5.2, for aspect ratio A= 10, Avmec= 9.71.
The 3-D surface shape in (a), shown from three angles, and the cross-sections in (b), are
generated by the construction. In (a), magnetic field lines are shown as black lines, and
colour indicates the field strength computed by VMEC.

remaining toroidal variation of B20 could presumably be further reduced if additional
Fourier modes were included in the axis shape. The constructed boundary shape
for A = 10 is shown in figure 5, and it is only slightly different from the previous
example (figure 1.) Running VMEC and BOOZ_XFORM inside this boundary results
in the magnetic spectrum of figure 6. Again, the desired mode B1,0 dominates,
and its magnitude is nearly identical to the prediction. Figure 7 shows that
[Bm=0(ϕ, r= a)− B(ϕ, r= 0)]/a2 again converges to the predicted function, B20(ϕ).

The three symmetry-breaking measures for this second configuration are displayed
in figure 4, labelled as ‘Config 2’. It can be seen that Sr=a

m>0 and Sr=0
m=0 are not much

changed from the first configuration, scaling as 1/A3 and 1/A4, as before. However,
Sr=a

m=0 is significantly changed, still scaling as 1/A2 for sufficiently large A, but with the
leading constant reduced by over an order of magnitude. This reduction reflects the
reduced variation of B20. For A< 40, Sr=a

m=0 now scales as 1/A4 since it is dominated
by the on-axis variation of B measured by Sr=0

m=0. Thus, B20 is constant enough that it
is not the dominant source of symmetry breaking for the entire range of aspect ratios
shown, A ∈ [5, 320]. This point is apparent also in figure 8, in which the quantity
plotted

Stot =
1

B0,0

√ ∑
m,n 6=Nm

B2
m,n(r= a) (5.4)

includes all quasisymmetry-breaking modes. This figure more clearly shows the
scaling predicted by Garren & Boozer (1991a) that the total deviation from
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FIGURE 6. The spectrum of B for the quasi-axisymmetric example of § 5.2, computed by
running the VMEC and BOOZ_XFORM codes inside the constructed boundary surface
for aspect ratio A= 10, Avmec = 9.71.

FIGURE 7. As the aspect ratio A increases, the B20(ϕ) component of the field strength of
the numerical VMEC configurations converges to the function predicted by the Garren–
Boozer construction. Data here are for the quasi-axisymmetric configuration of § 5.2.

quasisymmetry can be made to scale as ∝1/A3. The quasisymmetry of this quasi-
axisymmetric configuration is sufficiently good that, for A > 60, the deviation from
quasisymmetry StotB0 is smaller than the Earth’s magnetic field of ∼0.5 Gauss. At the
right-most point (A= 320), Stot is <4× 10−7, and the largest single symmetry-breaking
Fourier mode has an amplitude <2× 10−7 T.
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FIGURE 8. A numerical demonstration of the prediction by Garren & Boozer (1991a)
that deviations from quasisymmetry can be made to scale as 1/A3. Here, the deviations
are measured by (5.4) for the configurations of §§ 5.2 and 5.4.

5.3. Tokamak–stellarator hybrid
To verify the construction for a case in which the plasma pressure and on-axis
current are non-zero, we next consider a tokamak–stellarator hybrid configuration, in
which both non-axisymmetric shaping and toroidal current contribute to the rotational
transform. We again consider a two-field-period geometry, with axis shape

R0(φ) (m)= 1+ 0.09 cos(2φ),
z0(φ) (m)=−0.09 sin(2φ).

}
(5.5)

The parameters σ(0) and B2s were again set to zero so the configuration is stellarator
symmetric. The other input parameters were η̄ = 0.95 m−1, I2 = 0.9 T m−1, p2 =

−6× 105 Pa m−2 and B2c =−0.7 T m−2. For this value of p2, the volume-averaged
β (plasma pressure/magnetic pressure) for the configuration at A = 5 is 2.9 %.
The resulting configuration has ι0 = 0.960. For comparison, a vacuum field inside
the constructed A = 5 boundary has an on-axis transform ι0 = 0.214. This level
of vacuum transform might be sufficient to provide stellarator-like stability. The
boundary shape for A = 5 is shown in figure 9. Figure 10 shows the Boozer
spectrum of the finite-β finite-current configuration inside this boundary. While
the desired mode B1,0 dominates, and it has a magnitude close to that predicted by
the construction, the departures from quasisymmetry are larger than in the previous
examples, associated with the smaller value of A here. Figure 11 shows that as
A is increased, [Bm=0(ϕ, r = a) − B(ϕ, r = 0)]/a2 again converges to the predicted
function, B20(ϕ). The scaling of the three symmetry-breaking measures with A is
plotted in figure 12, and again, they scale as the expected power of A. Together,
figures 11–12 verify the O((r/R)2) construction behaves correctly when I2 and p2

terms are included.
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(a)

(b)

FIGURE 9. The tokamak–stellarator hybrid example of § 5.3, for aspect ratio A = 5,
Avmec=4.87. The 3-D surface shape in (a), shown from three angles, and the cross-sections
in (b), are generated by the construction. In (a), magnetic field lines are shown as black
lines, and colour indicates the field strength computed by VMEC.

5.4. Quasi-helical symmetry
We next consider a quasi-helically symmetric configuration. The axis shape is taken
to be

R0(φ) (m)= 1+ 0.1700 cos(4φ)+ 0.01804 cos(8φ)+ 0.001409 cos(12φ)
+ 0.00005877 cos(16φ),

z0(φ) (m)= 0.1583 sin(4φ)+ 0.01820 sin(8φ)+ 0.001548 sin(12φ)
+ 0.00007772 sin(16φ),

 (5.6)

with η̄ = 1.569 m−1 and B2c = 0.1348 T m−2. These values were obtained using
the optimization procedure of § 4.3 to minimize X2, Y2, X3 and Y3. For this axis
shape, the normal vector rotates around the axis poloidally four times as the axis
is traversed toroidally, so the construction yields quasi-helical symmetry rather than
quasi-axisymmetry. The parameters σ(0) and B2s were set to zero so the configuration
is stellarator symmetric. The other input parameters were I2 = 0 and p2 = 0. The
resulting configuration has ι0 = 1.14. The constructed boundary shape for A = 8 is
shown in figure 13.

Compared to the case of quasi-axisymmetry, for quasi-helical symmetry it seems
relatively hard to find sets of input parameters for which X2, Y2, X3 and Y3 are
acceptably small. If these quantities are not small, the boundary aspect ratio must
be large, or else the symmetry-breaking errors tend to be large and the boundary
surface may self-intersect. This challenge for finding good quasi-helically symmetric
configurations likely arises from the fact that they require significant helical excursion
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FIGURE 10. The spectrum of B for the tokamak–stellarator hybrid example of § 5.3,
computed by running the VMEC and BOOZ_XFORM codes inside the constructed
boundary surface for aspect ratio A= 5, Avmec = 4.87.

FIGURE 11. As the aspect ratio A increases, the B20(ϕ) component of the field strength
of the numerical VMEC configurations converges to the function predicted by the
Garren–Boozer construction. Data here are for the tokamak–stellarator hybrid configuration
of § 5.3.

of the axis, implying larger τ and κ compared to quasi-axisymmetric configurations,
which act to drive larger X2 and Y2. The configuration in this section manages to
have small values of {X2, Y2, X3, Y3} due to some delicate balances in the equations
of appendix A. For instance, merely rounding the coefficients in the axis shape (5.6)
to 3 digits of precision rather than 4 causes significant increases in X3 and Y3 that
result in visible changes to the boundary shape.
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FIGURE 12. The measures of quasisymmetry breaking (5.2), computed by running the
VMEC and BOOZ_XFORM codes inside the constructed boundary surfaces, scale as the
expected power of aspect ratio. Data here are for the tokamak-stellarator hybrid example
of § 5.3.

As with the earlier configurations, VMEC and BOOZ_XFORM calculations for
this quasi-helically symmetric configuration confirm that the desired field strength is
produced. One aspect of this verification is shown in figure 14, which displays the
Boozer spectrum inside the constructed A= 8 boundary. This time the dominant mode
is B1,4, and the magnitude of this mode matches the prediction rη̄B0. Figure 15 shows
that as A→∞, [Bm=0(ϕ, r = a) − B(ϕ, r = 0)]/a2 again converges to the predicted
function, B20(ϕ). Figure 16 shows that Sr=a

m>0, Sr=a
m=0 and Sr=0

m=0 scale approximately as
expected (1/A3, 1/A4 transitioning to 1/A2 at large A, and 1/A4), as for the previous
configurations. The total deviation from quasisymmetry Stot is also displayed in
figure 8, demonstrating again Garren and Boozer’s predicted scaling. (The range of
aspect ratios plotted differs from that for the quasi-axisymmetric configuration since
at the highest A, it is difficult to obtain converged values from VMEC for the very
small symmetry-breaking modes.)

5.5. Testing all terms
For a final example, we present an example in which all the parameters of the near-
axis model are non-zero. This example is limited to quite a large aspect ratio due to
the large X2 and Y2 terms, and so is not interesting as an experimental design, but it
is useful here as a challenging verification test. We choose the axis shape

R0(φ) (m)= 1+ 0.3 cos(5φ),
z0(φ) (m)= 0.3 sin(5φ),

}
(5.7)

which yields quasi-helical symmetry with N = 5. The other input parameters are
chosen to be η̄ = 2.5 m−1, σ(0) = 0.3, I2 = 1.6 T m−1, p2 = −5 × 106 Pa m−2,
B2c = 1 T m−2 and B2s = 3 T m−2. Note that stellarator symmetry is broken both by
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(a)

(b)

FIGURE 13. The quasi-helically symmetric example of § 5.4, for aspect ratio A = 8,
Avmec=7.14. The 3-D surface shape in (a), shown from three angles, and the cross-sections
in (b), are generated by the construction. In (a), magnetic field lines are shown as black
lines, and colour indicates the field strength computed by VMEC.

FIGURE 14. The spectrum of B for the quasi-helically symmetric example of § 5.4,
computed by running the VMEC and BOOZ_XFORM codes inside the constructed
boundary surface for aspect ratio A= 8, Avmec = 7.14.
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FIGURE 15. As the aspect ratio A increases, the B20(ϕ) component of the field strength
of the numerical VMEC configurations converges to the function predicted by the Garren–
Boozer construction. Data here are for the quasi-helically symmetric configuration of § 5.4.

FIGURE 16. The measures of quasisymmetry breaking (5.2), computed by running the
VMEC and BOOZ_XFORM codes inside the constructed boundary surfaces, scale as the
expected power of aspect ratio. Data here are for the quasi-helically symmetric example
of § 5.4.

the non-zero value of σ(0) and of B2s. This resulting configuration has ι0= 0.829. The
constructed boundary shape is shown in figure 17 for A= 40 (Avmec= 28.5), and it can
be seen that the surface cross-sections are not stellarator symmetric. The amplitudes of
the cos(mθ − nϕ) and sin(mθ − nϕ) modes of B inside this boundary, as computed by
VMEC and BOOZ_XFORM, are shown in figure 18. The cos(θ − 5ϕ) term dominates,
as desired, and its amplitude agrees with the prediction of the near-axis equations.
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(a)

(b)

FIGURE 17. The non-stellarator-symmetric quasi-helically symmetric example of § 5.5, for
aspect ratio A= 40, Avmec= 28.5. The 3-D surface shape in (a), shown from three angles,
and the cross-sections in (b), are generated by the construction. In (a), magnetic field lines
are shown as black lines, and colour indicates the field strength computed by VMEC.

FIGURE 18. The spectrum of B (including both ∝ cos(mθ − nϕ) and ∝ sin(mθ −
nϕ) modes) for the non-stellarator-symmetric quasi-helically symmetric example of § 5.5,
computed by running the VMEC and BOOZ_XFORM codes inside the constructed
boundary surface for aspect ratio A= 40, Avmec = 28.5.
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FIGURE 19. As the aspect ratio A increases, the B20(ϕ) component of the field strength
of the numerical VMEC configurations converges to the function predicted by the
Garren–Boozer construction. Data here are for the non-stellarator-symmetric quasi-helically
symmetric configuration of § 5.5.

FIGURE 20. The measures of quasisymmetry breaking (5.2), computed by running the
VMEC and BOOZ_XFORM codes inside the constructed boundary surfaces, scale as
the expected power of aspect ratio. Data here are for the non-stellarator-symmetric
quasi-helically symmetric example of § 5.5.

Repeating the VMEC and BOOZ_XFORM computations for this solution of the
near-axis equations for a range of aspect ratios, [Bm=0(ϕ, r = a) − B(ϕ, r = 0)]/a2

again converges to the predicted function B20(ϕ), as shown in figure 19. Figure 20
shows that the symmetry-breaking modes scale as 1/A3 or better, as desired, except
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for the expected 1/A2 scaling of Sr=a
m=0 associated with the toroidal variation of B20.

(The right-most blue points are missing since it did not seem possible to obtain
values that were converged with respect to VMEC resolution parameters.) Thus,
finite-aspect-ratio VMEC calculations successfully match the near-axis solution even
when all parameters of the latter are non-zero.

6. Discussion and conclusions

In this work, we have developed a new and fast method to generate quasisymmetric
magnetic fields with sophisticated shaping. In contrast to the traditional approach
based on numerical optimization, the approach here uses a reduced set of equations
relating the field strength in Boozer coordinates B(r, θ, ϕ) to the three-dimensional
shapes of the magnetic surfaces. The shapes that are describable by the O((r/R)2)
near-axis model here are sufficiently general that they can be quite reminiscent of
stellarators that have been designed previously using numerical optimization. For
instance, the configuration of § 5.2 (figure 5) resembles CFQS (Liu et al. 2018;
Shimizu et al. 2018) and the configuration of Henneberg et al. (2019). Also the
configuration of § 5.4 (figure 13) resembles the HSX experiment (Anderson et al.
1995). Despite these similarities, the examples here were generated independently of
any previously known configurations. Since these shapes computed by our model are
described analytically, they can be parameterized, evaluated rapidly and differentiated.
As analytic expressions for the position vector in terms of both Boozer coordinates
and cylindrical coordinates (appendix C) are available, one can evaluate virtually any
quantity of interest, such as the geometric quantities appearing in the gyrokinetic
model of turbulence. Since the system of equations involves only one independent
variable (ϕ), compared to three for general MHD equilibrium, the equations here are
orders of magnitude faster to solve.

Through the examples in § 5, we have demonstrated that the approach here
is a practical way to generate and parameterize both quasi-axisymmetric and
quasi-helically symmetric configurations. For each of the examples, we showed
that the departures from quasisymmetry computed by conventional codes scale with
the aspect ratio as expected. In particular, we have demonstrated that quasisymmetry
can be achieved (without axisymmetry) to any desired precision, at sufficiently high
aspect ratio. Due to the high-order accuracy of the equations in our model, the quality
of quasisymmetry can be extremely good. For example, the symmetry-breaking
measures (5.2) are smaller than 4 × 10−7 for the rightmost ‘Config 1’ point in
figure 4. While at A= 320 this configuration is not of great experimental interest, it
does represent the most accurate realization of quasisymmetry in a 3-D equilibrium
ever reported. While arbitrarily small departures from quasisymmetry can also be
obtained with the O((r/R)1) construction, as demonstrated in figure 4 of Landreman
et al. (2019), higher aspect ratios would be required to obtain quasisymmetry to the
same precision, due to the weaker scaling of symmetry breaking with 1/A2 in that
case. As an additional demonstration of the high accuracy to which quasisymmetry
can be achieved by the O((r/R)2) construction, figure 21 shows the contours of B
on the boundary surfaces of the configurations of §§ 5.2 and 5.4 with aspect ratios
chosen by the following criterion: at a reactor-relevant mean field B0,0 = 5 T, the
largest quasisymmetry-breaking Fourier mode amplitudes are only 0.5 Gauss, the
approximate magnitude of Earth’s magnetic field. This condition results in aspect
ratios Avmec ∼ 80. There may be other configurations for which this condition can be
met at lower aspect ratio; our goal here is merely to demonstrate that the condition can
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FIGURE 21. Contours of B(θ, ζ ) at the boundaries of the configurations of §§ 5.2
and 5.4, scaled to a mean field of 5 Tesla, at the aspect ratio for which the largest
symmetry-breaking Fourier modes have amplitude 0.5 Gauss, the magnitude of Earth’s
magnetic field. Departures from quasisymmetry are nearly imperceptible on the scale of
the plots, demonstrating that quasisymmetry can be realized in strongly non-axisymmetric
equilibria to very high accuracy, at least at high A.

indeed be achieved. The deviation from symmetry is nearly invisible in figure 21, and
the B contours are far more quasisymmetric than in other nominally quasisymmetric
configurations reported previously, e.g. figures 5–7 of Beidler et al. (2011).

Most of the solutions exhibited in this paper have a relatively high aspect ratio,
which is not surprising since the method is based on an expansion in aspect ratio.
Several methods are likely to enable configurations of lower aspect ratio to be
generated. First, by including more Fourier modes in the axis shape, X2 and Y2
could perhaps be further reduced, resulting in configurations for which the O((r/R)3)
symmetry-breaking terms have a smaller leading constant. Second, the method of
§ 4.4 of Landreman et al. (2019) could be used to extrapolate outward from a high-A
configuration while preserving good quasisymmetry in the core. Third, a large value
of a could be used in the present approach, resulting in moderate deviations from
quasisymmetry, which could then be reduced by conventional optimization. Lastly, a
configuration with smaller a and good quasisymmetry generated by the construction
here could be used to initialize conventional optimization, in which the aspect ratio
is included in the objective function for minimization.

The work here suggests many avenues for future study, some of which are
enumerated here. (i) It was shown previously that practical quasisymmetric configura-
tions obtained by optimization closely match the O(r/R) near-axis construction
(Landreman 2019), and the comparison should be repeated for the O((r/R)2) model.
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(ii) An efficient procedure should be found to solve for model parameters such that
B20 is independent of ϕ. (iii) While a precise understanding exists of the solution
space for O(r/R) quasisymmetry (Landreman et al. 2019), the same insight has yet
to be developed for the O((r/R)2) model. It would be valuable to understand the
space of solutions to the O((r/R)2) model to be sure all the interesting regions of
parameter space have been identified. (iv) It was seen here that some toroidal variation
of B20 could be allowed without B20 becoming the dominant quasisymmetry-breaking
mode, so the effect of allowing small toroidal variation of B2c or B2s should be
examined. (v) It should be investigated whether quasisymmetry could be optimized
off-axis, by introducing small toroidal variation in B0 that is cancelled by B20 at a
certain radius. (vi) The space of configurations that are omnigenous to O(r/R) was
recently examined (Plunk et al. 2019), and the analysis could possibly be extended
to O((r/R)2) omnigenity using results derived here.

Finally, extensions of the quasisymmetry model here to even higher order in r could
be pursued. One motivation for such an extension is that global magnetic shear first
appears at O((r/R)3). Although quasisymmetry cannot generally be achieved through
O((r/R)3) (Garren & Boozer 1991a), the size of the O((r/R)3) terms informs how
rapidly quasisymmetry degrades with r, so solutions could be sought in which these
terms were minimized.
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Appendix A. Derivation of the equations at each order
In this section we elaborate on § 2, showing a streamlined method to derive the

required equations at each order in r/R. It is possible to obtain the same final
equations without the manipulations of § A.1, but at the cost of substantial additional
algebra. In particular, to derive the equations for {Xj, Yj, Zj} at a given order j
without these manipulations, it would be necessary to first derive equations involving
Zj+1, and then form linear combinations to eliminate this higher-order quantity. The
method of § A.1 enables the equations for {Xj, Yj, Zj} to be obtained directly without
introducing Zj+1.

A.1. Fundamental equations
To begin, note the product of (2.2) and (2.3) gives the inverse Jacobian

∇ψ · ∇ϑ ×∇ϕ =
1
√

g
=

B2

G+ ιI
. (A 1)

Then, from (2.2) and (2.3), applying (2.5)–(2.6) and using ∂/∂ψ = (rB̄)−1∂/∂r, we
obtain the following three scalar equations:

{Y, Z} = TX, (A 2)
{Z, X} = TY, (A 3)
{X, Y} = TZ, (A 4)
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where {. . . , . . .} denotes a Poisson bracket in the (r, ϑ) coordinates,

{X, Y} =
∂X
∂r
∂Y
∂ϑ
−
∂X
∂ϑ

∂Y
∂r
. (A 5)

The right-hand sides of (A 2)–(A 4) are

TX =
1

G+NI

[
rB̄
(
Ξ + ιN

∂X
∂ϑ

)
− I
(
Υ
∂Z
∂r
−Λ

∂Y
∂r

)
− βrB̄

(
Λ
∂Y
∂ϑ
−Υ

∂Z
∂ϑ

)]
,

(A 6)

TY =
1

G+NI

[
rB̄
(
Υ + ιN

∂Y
∂ϑ

)
− I
(
Λ
∂X
∂r
−Ξ

∂Z
∂r

)
− βrB̄

(
Ξ
∂Z
∂ϑ
−Λ

∂X
∂ϑ

)]
,

(A 7)

and

TZ =
1

G+NI

[
rB̄
(
Λ+ ιN

∂Z
∂ϑ

)
− I
(
Ξ
∂Y
∂r
−Υ

∂X
∂r

)
− βrB̄

(
Υ
∂X
∂ϑ
−Ξ

∂Y
∂ϑ

)]
,

(A 8)
where

Λ=
∂Z
∂ϕ
+ (1− Xκ)`′, (A 9)

Ξ =
∂X
∂ϕ
+ (−Yτ + Zκ)`′, (A 10)

Υ =
∂Y
∂ϕ
+ Xτ`′, (A 11)

and `′ =
√
(dr0/dϕ)2.

As alluded to above, it turns out to be inconvenient to solve (A 2) and (A 3) as
written, since these equations involve Z to one higher order than X or Y . The reason
is that X1 and Y1 are non-zero while Z1 turns out to vanish (shown in the next
subsection), so the left-hand sides at O((r/R)jr) include terms {rY1, rj+1Zj+1} and
{rj+1Zj+1, rX1}, while the highest orders of X and Y appear through {r jYj, r2Z2} and
{r2Z2, r jXj}. Therefore it turns out to be convenient to form two combinations of (A 2)
and (A 3), one in which Z is given explicitly in terms of lower-order quantities, and
the other in which the higher-order Z terms are eliminated to give a constraint on
the lower-order quantities. To form the first desired combination, we start by writing
(A 2)–(A 3) as (

−∂Y/∂ϑ ∂Y/∂r
∂X/∂ϑ −∂X/∂r

)(
∂Z/∂r
∂Z/∂ϑ

)
=

(
TX
TY

)
. (A 12)

This linear system can be solved to give(
∂Z/∂r
∂Z/∂ϑ

)
=−

[
∂X
∂r
∂Y
∂ϑ
−
∂X
∂ϑ

∂Y
∂r

]−1 (
∂X/∂r ∂Y/∂r
∂X/∂ϑ ∂Y/∂ϑ

)(
TX
TY

)
, (A 13)

where the determinant can be recognized from (A 4) as TZ . The top row of (A 13) then
gives an equation that will tell us Z at each order in terms of lower-order quantities,

∂Z
∂r
=−

1
TZ

(
∂X
∂r

TX +
∂Y
∂r

TY

)
. (A 14)
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The equality of mixed partial derivatives ∂2Z/∂r∂ϑ = ∂2Z/∂ϑ∂r can be used with
(A 13) to obtain

{X, TX/TZ} + {Y, TY/TZ} = 0. (A 15)

This latter equation is the second desired combination of (A 2) and (A 3), giving a
constraint on X and Y at each order without introducing Z at the next order.

We can also derive a different combination of (A 2) and (A 3) with the same
property, as an equivalent alternative to (A 15), which more closely corresponds to
the equations of Garren and Boozer at O((r/R)2). This second approach begins with
the observation that the problematic terms that introduce Z at higher order than X
and Y are {rY1, rj+1Zj+1} and {rj+1Zj+1, rX1}. To separate out these terms, we introduce
X>1 = X − rX1 and Y>1 = Y − rY1, so (A 2)–(A 3) give

TX − {rY1, Z} − {Y>1, Z} = 0, TY − {Z, rX1} − {Z, X>1} = 0. (A 16a,b)

We look for a combination of these equations in which the problematic terms {rY1,Z}
and {Z, rX1} are annihilated. To this end, it can be verified that

{rX1, {rY1, Z}/r} + {rY1, {Z, rX1}/r} = 0. (A 17)

Forming the analogous combination of (A 16) then gives the desired relation, in which
Z appears at no higher order than X or Y ,{

rX1,
TX − {Y>1, Z}

r

}
+

{
rY1,

TY − {Z, X>1}

r

}
= 0. (A 18)

Finally, we obtain an expression for the magnetic field strength by squaring (2.2),
and using (A 1),

(G+ ιI)2

B2
=

(
Λ+ ιN

∂Z
∂ϑ

)2

+

(
Ξ + ιN

∂X
∂ϑ

)2

+

(
Υ + ιN

∂Y
∂ϑ

)2

. (A 19)

Equations (A 4), (A 14), (A 18) and (A 19) are the four equations we will solve at each
order for the corresponding unknowns X, Y , Z and B.

A.2. Equations through O((r/R)2)
We now evaluate the first few orders of the r/R expansion, without assuming
quasisymmetry. At O((r/R)0), (A 19) gives

G0 = sGB0`
′, (A 20)

where sG =±1= sign(G0), and (A 14) gives Z1 = 0. Equations (A 4) and (A 18) have
no terms of this order. At O((r/R)1), (A 4) gives

X1cY1s − X1sY1c =
sGB̄
B0
, (A 21)

the sin ϑ and cos ϑ modes of (A 19) give

B1s = κX1sB0, B1c = κX1cB0, (A 22a,b)
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and (A 18) gives

ιN0V1 = X1cX′1s − X1sX′1c + Y1cY ′1s − Y1sY ′1c + 2
(

I2

B̄
− τ

)
G0B̄
B2

0
, (A 23)

where primes denote d/dϕ and

V1 = X2
1s + X2

1c + Y2
1s + Y2

1c. (A 24)

It is convenient to introduce σ(ϕ)= (B1sY1s + B1cY1c)/(sGB̄κ), in which case (A 21)–
(A 22) imply

Y1s =
(B1c + B1sσ)sGB̄κ

B2
1s + B2

1c
, Y1c =

(−B1s + B1cσ)sGB̄κ
B2

1s + B2
1c

, (A 25a,b)

and (A 23)–(A 24) can be written

σ ′ +

[
(B2

1s + B2
1c)

2

B2
0B̄2κ4

+ 1+ σ 2

] [
ιN0 +

B1sB′1c − B1cB′1s

B2
1s + B2

1c

]
− 2

(
I2

B̄
− τ

)
G0
(
B2

1s + B2
1c

)
B̄B2

0κ
2

= 0. (A 26)

Next, the ϑ-independent, sin 2ϑ and cos 2ϑ modes of (A 14) give

Z20 =
β0B̄`′

2G0
−

V ′1
8`′
, (A 27)

Z2s =−
1

8`′
(V ′2 − 2ιN0V3), (A 28)

Z2c =−
1

8`′
(V ′3 + 2ιN0V2), (A 29)

where

V2 = 2[X1sX1c + Y1sY1c], (A 30)
V3 = X2

1c − X2
1s + Y2

1c − Y2
1s. (A 31)

At O((r/R)2), the sin ϑ and cos ϑ terms of (A 4) are

−
sGB̄
2B0

X1sκ =−X1sY2s − X1cY2c + X1cY20 + X2sY1s + X2cY1c − X20Y1c, (A 32)

−
sGB̄
2B0

X1cκ =−X1sY2c + X1cY2s − X1sY20 + X2cY1s − X2sY1c + X20Y1s. (A 33)

The ϑ-independent, sin 2ϑ and cos 2ϑ modes of (A 19) at O((r/R)2) give

X20 =
1
κ`′

{
Z′20 −

1
`′

[
−

G2
0B20

B3
0
+

3G2
0(B

2
1c + B2

1s)

4B4
0

+
G0(G2 + ι0I2)

B2
0

−
X2

1c + X2
1s

4
(κ`′)2 −

q2
c + q2

s + r2
c + r2

s

4

]}
, (A 34)
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X2s =
1
κ`′

{
Z′2s − 2ιN0Z2c −

1
`′

[
−

G2
0B2s

B3
0
+

3G2
0B1cB1s

2B4
0

−
X1cX1s

2
(κ`′)2 −

qcqs + rcrs

2

]}
, (A 35)

X2c =
1
κ`′

{
Z′2c + 2ιN0Z2s −

1
`′

[
−

G2
0B2c

B3
0
+

3G2
0(B

2
1c − B2

1s)

4B4
0

−
X2

1c − X2
1s

4
(κ`′)2 −

q2
c − q2

s + r2
c − r2

s

4

]}
, (A 36)

where

qs = X′1s − ιN0X1c − Y1sτ`
′, (A 37)

qc = X′1c + ιN0X1s − Y1cτ`
′, (A 38)

rs = Y ′1s − ιN0Y1c + X1sτ`
′, (A 39)

rc = Y ′1c + ιN0Y1s + X1cτ`
′. (A 40)

The cos ϑ and sin ϑ terms of (A 18) at O((r/R)2) are

−X1s fX0 + X1c fXs − X1s fXc − Y1s fY0 + Y1c fYs − Y1s fYc = 0 (A 41)

and
−X1c fX0 + X1s fXs + X1c fXc − Y1c fY0 + Y1s fYs + Y1c fYc = 0, (A 42)

where

fX0 = X′20 − τ`
′Y20 + κ`

′Z20 −
4G0

B̄
(Y2cZ2s − Y2sZ2c)

−
I2

B̄

(κ
2
[X1sY1s + X1cY1c] − 2Y20

)
`′ −

β0κ

2
`′(X1sY1c − X1cY1s)

−
1
2
`′(β1cY1s − β1sY1c), (A 43)

fXs = X′2s − 2ιN0X2c − τ`
′Y2s + κ`

′Z2s −
4G0

B̄
(−Y20Z2c + Y2cZ20)

−
I2

B̄

(κ
2
[X1sY1c + X1cY1s] − 2Y2s

)
`′ − β0`

′

(
−2Y2c +

κ

2
[X1cY1c − X1sY1s]

)
−

1
2
`′(β1sY1s − β1cY1c), (A 44)

fXc = X′2c + 2ιN0X2s − τ`
′Y2c + κ`

′Z2c −
4G0

B̄
(Y20Z2s − Y2sZ20)

−
I2

B̄

(κ
2
[X1cY1c − X1sY1s] − 2Y2c

)
`′ − β0`

′

(
2Y2s −

κ

2
[X1cY1s + X1sY1c]

)
−

1
2
`′(β1cY1s + β1sY1c), (A 45)

fY0 = Y ′20 + τ`
′X20 −

4G0

B̄
(X2sZ2c − X2cZ2s)

−
I2

B̄

(
−
κ

2
[X2

1s + X2
1c] + 2X20

)
`′ −

1
2
`′(β1sX1c − β1cX1s), (A 46)
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fYs = Y ′2s − 2ιN0Y2c + τ`
′X2s −

4G0

B̄
(X20Z2c − X2cZ20)

−
I2

B̄
(−κX1sX1c + 2X2s)`

′
− β0`

′

(
2X2c +

κ

2
[X2

1s − X2
1c]

)
−

1
2
`′(β1cX1c − β1sX1s), (A 47)

fYc = Y ′2c + 2ιN0Y2s + τ`
′X2c −

4G0

B̄
(X2sZ20 − X20Z2s)

−
I2

B̄

(κ
2
[X2

1s − X2
1c] + 2X2c

)
`′ − β0`

′(−2X2s + κX1sX1c)

+
1
2
`′(β1cX1s + β1sX1c). (A 48)

We will not need the O((r/R)2) terms of (A 14), which give Z3.
Finally, for the analysis in § 3, we need the independent-of-ϑ mode of (A 4) at

O((r/R)3), which gives

X3s1Y1c − X3c1Y1s + X1sY3c1 − X1cY3s1 =Q, (A 49)

with Q given by (3.12).
The averaged equilibrium condition (2.7) gives

G2 + ι0I2 =−
µ0p2G0

2π

∫ 2π

0

dϕ
B2

0
. (A 50)

The remaining equilibrium condition (2.8) gives

β ′0 =
2µ0p2G0

B̄

[
1
B2

0
−

1
2π

∫ 2π

0

dϕ
B2

0

]
(A 51)

at O((r/R)0), and
∂β1

∂ϕ
+ ιN0

∂β1

∂ϑ
=−

4µ0p2G0B1

B̄B3
0

(A 52)

at O((r/R)1).

A.3. Reduction for quasisymmetry
The equations of the previous section simplify slightly in the case of quasi-
axisymmetric or quasi-helical symmetry. (We will not consider quasi-poloidal
symmetry since it cannot exist at O((r/R)1).) Since B0(ϕ) must be constant, it
is convenient to take B̄ = sψB0 where sψ = sign(ψ). That is, we take the reference
magnetic field used to define an effective minor-radius equal in magnitude to the
on-axis field. Also, the averaged equilibrium condition (A 50) simplifies to

G2 =−ι0I2 −µ0p2G0/B2
0, (A 53)

and (A 51) gives β ′0 = 0. Without loss of generality we can then take β0 = 0, since a
shift to the origin of ϕ shifts β by a flux function.
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The origin of the ϑ coordinate can be chosen such that B1s = 0, hence X1s = 0
from (A 22). Introducing the constant η̄= B1c/B0, equation (2.13) follows, and (A 26)
reduces to (2.14). Examining the sinϑ and cosϑ components of (A 52), we find β1c=

β
(c)
1c cos(ιN0ϕ)+β

(s)
1c sin(ιN0ϕ) for some constants β(c)1c and β(s)1c . To avoid large magnetic

islands near the axis, we assume ιN0 is not an integer, in which case the only periodic
solution for β1c is β1c = 0. Then (A 52) gives

β1s =−
4sψµ0p2G0η̄

ιN0B3
0

. (A 54)

Then, noting β0=β1c=X1s= 0, (A 20)–(A 54) are equivalent to the equations in the
appendix of Garren & Boozer (1991a), up to the following differences. The sign of
τ is everywhere flipped due to the opposite sign convention. Terms ∝ I2 are omitted
in (A29)–(A34) of Garren & Boozer (1991a). Several expressions differ by factors of
√

2 or 2 since our expansion parameter r/R differs from the one in Garren & Boozer
(1991a) by

√
2. A + sign is missing in (A10) of Garren & Boozer (1991a). A factor

of 2 is missing in each of the terms ∝ (ι0 −N) in (A30)–(A31) and (A33)–(A34) of
Garren & Boozer (1991a), and the left-hand side of (A34) should read fy,2c(ϕ).

Finally, Q in (3.12) and (A 49) simplifies to

Q(ϕ) = −
sψB0

2G2
0
`′
(
ιN0I2 +

µ0p2G0

B2
0

)
+ 2(X2cY2s − X2sY2c)

+
sψB0

2G0
(`′X20κ − Z′20)+

I2

4G0
(−`′τV1 + Y1cX′1c − X1cY ′1c). (A 55)

Appendix B. Effect of a finite value of the expansion parameter
B.1. Preliminaries

In this section, a detailed derivation is given of (3.9)–(3.11). Quasisymmetry is not
assumed, so the analysis here applies equally well if the Garren–Boozer equations are
used to construct a geometry possessing omnigenity or some other desired pattern of
field strength.

We first complete the formulation of the problem. The profile functions I(r) and
p(r) are assumed to be identical in the tilde and non-tilde configurations, since
these profiles are typically inputs to an MHD equilibrium calculation, so in a
finite-minor-radius calculation they can be matched exactly to the ideal (non-tilde)
profiles. However, we should allow the profiles G(r) and ι(r) to differ in the tilde
configurations, writing

G̃(a, r)=
∞∑

j=0

r2jG̃2j(a), ι̃(a, r)=
∞∑

j=0

r2j ι̃2j(a), (B 1a,b)

where

G̃j(a)=
∞∑

k=0

akG̃(k)
j , ι̃j(a)=

∞∑
k=0

ak ι̃
(a)
j . (B 2a,b)

Finally, we are free to add a constant to the angles (ϑ̃, ϕ̃), and it is convenient to
eliminate this degeneracy by requiring that the angle differences vanish on average,∫ 2π

0
dϑ
∫ 2π

0
dϕ t(a, ϑ, ϕ)= 0,

∫ 2π

0
dϑ
∫ 2π

0
dϕ p(a, ϑ, ϕ)= 0. (B 3a,b)

https://doi.org/10.1017/S0022377819000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000783


Constructing stellarators with quasisymmetry to high order 35

B.2. The O(r/R) construction

We begin with the O((r/R)0) terms of (3.8),

r0(ϕ)= r̃(0)0 (ϕ + f (0)(ϑ, ϕ)), (B 4)

which implies f (0)(ϑ, ϕ) = f (0)(ϕ). Applying d/dϕ to (B 4) and applying it to the
O((r/R)0) Frenet relations of the tilde configuration, one finds t̃(0), ñ(0), b̃

(0)
, κ (0)

and τ (0) match the corresponding non-tilde quantities, e.g. n(ϕ)= ñ(0)(ϕ̄) where ϕ̄ =
ϕ + f (0)(ϕ).

Proceeding to the O(r/R) terms of (3.8),

[X1s(ϕ) sin ϑ + X1c(ϕ) cos ϑ]n(ϕ)+ [Y1s(ϕ) sin ϑ + Y1c(ϕ) cos ϑ]b(ϕ)
= r̃(1)0 (ϕ̄)+ f (1)(ϑ, ϕ)[1+ f (0)′(ϕ)]−1 t(ϕ)[r′0(ϕ) · r

′

0(ϕ)]
1/2

+ [X̃(0)
1s (ϕ̄) sin(ϑ + t(0)(ϑ, ϕ))+ X̃(0)

1c (ϕ̄) cos(ϑ + t(0)(ϑ, ϕ))]n(ϕ)
+ [Ỹ (0)1s (ϕ̄) sin(ϑ + t(0)(ϑ, ϕ))+ Ỹ (0)1c (ϕ̄) cos(ϑ + t(0)(ϑ, ϕ))]b(ϕ). (B 5)

It can be shown from either the n or b component that t(0)(ϑ, ϕ) = t(0)(ϕ). This
can be done by applying ∂/∂ϑ to the n component, squaring the result, adding
the square of the n component and eliminating t(0) where it is not differentiated.
Evaluating the result at ϑ = atan(X1s/X1c) and adding or subtracting the result at
ϑ =π+ atan(X1s/X1c), one finds ∂t(0)(ϑ, ϕ)/∂ϑ = 0.

Next, the t component of (B 5) implies f (1)(ϑ, ϕ) = f (1)(ϕ). The average of (B 5)
over ϑ then gives

r̃(1)0 (ϕ̄)+ f (1)(ϕ)[1+ f (0)′(ϕ)]−1t(ϕ)[r′0(ϕ) · r
′

0(ϕ)]
1/2
= 0. (B 6)

The n component of (B 5) gives(
X̃(0)

1s (ϕ̄)

X̃(0)
1c (ϕ̄)

)
=

(
cos(t(0)(ϕ)) sin(t(0)(ϕ))
−sin(t(0)(ϕ)) cos(t(0)(ϕ))

)(
X1s(ϕ)
X1c(ϕ)

)
, (B 7)

and the b component of (B 5) gives the same result but with X→ Y . Plugging these
results into the O((r/R)0) terms in the tilde version of (A 21),

X̃(0)
1c (ϕ̄)Ỹ

(0)
1s (ϕ̄)− X̃(0)

1s (ϕ̄)Ỹ
(0)
1c (ϕ̄)=

sGB̄

B̃(0)0 (ϕ̄)
, (B 8)

and comparing to the non-tilde version of (A 21), we conclude B̃(0)0 (ϕ̄) = B0(ϕ).
Applying this result and the derivative of (B 4) in the O((r/R)0) tilde version of
(A 20),

G̃(0)
0 = sGB̃(0)0 (ϕ̄)[r̃

(0)′
0 (ϕ̄) · r̃(0)′0 (ϕ̄)]1/2, (B 9)

we obtain G̃(0)
0 =G0/[1+ f (0)′(ϕ)], which implies f (0)′(ϕ)= 0. From (B 3), then f (0)= 0,

so G̃(0)
0 =G0. Since ϕ̄=ϕ, we can simplify notation in the remainder of this appendix:

functions of a single argument can be assumed to have argument ϕ.
Next, t(0) can be constrained using the O((r/R)0) terms in the tilde version of

(A 23),

(ι̃
(0)
0 −N)[X̃(0)2

1s + X̃(0)2
1c + Ỹ (0)21s + Ỹ (0)21c ]

= X̃(0)
1c X̃(0)′

1s − X̃(0)
1s X̃(0)′

1c + Ỹ (0)1c Ỹ (0)′1s − Ỹ (0)1s Ỹ (0)′1c + 2
(

I2

B̄
− τ̃ (0)

)
G0B̄
B2

0
. (B 10)
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Substituting (B 7) (and its X→ Y equivalent) and subtracting the non-tilde version of
(A 23), one finds ι̃(0)0 − ι0= t(0)′(ϕ), which implies ι̃(0)0 = ι0 and t(0)′(ϕ)= 0. From (B 3),
then t(0) = 0. Then (B 7) gives

X̃(0)
1s = X1s, X̃(0)

1c = X1c, Ỹ (0)1s = Y1s, Ỹ (0)1c = Y1c. (B 11a−d)

The O((r/R)0) terms in the tilde version of (A 22) then give B̃(0)1 (ϕ)= B1(ϕ).
We proceed to the O((r/R)2) terms in (3.8),

X2(ϑ, ϕ)n+ Y2(ϑ, ϕ)b+ Z2(ϑ, ϕ)t

= r̃(2)0 + f (1)r̃(1)′0 + f (2)(ϑ, ϕ)r′0 +
1
2

f (1)2r′′0

+ X̃(0)
2 (ϑ, ϕ)n+ X̃(1)

1 (ϑ, ϕ)n+ X1(ϑ, ϕ)ñ(1) + f (1)X1(ϑ, ϕ)n′

+ t(1)(ϑ, ϕ)n∂1X1(ϑ, ϕ)+ f (1)n∂2X1(ϑ, ϕ)

+ Ỹ (0)2 (ϑ, ϕ)b+ Ỹ (1)1 (ϑ, ϕ)b+ Y1(ϑ, ϕ)b̃
(1)
+ f (1)Y1(ϑ, ϕ)b′

+ t(1)(ϑ, ϕ)b∂1Y1(ϑ, ϕ)+ f (1)b∂2Y1(ϑ, ϕ)+ Z̃(0)2 (ϑ, ϕ)t, (B 12)

where ∂1 and ∂2 indicate partial derivatives with respect to the first or second
argument. (If the construction is done only through O((r/R)1), the left-hand side
is zero.) Applying π−1

∫ 2π

0 dϑ(sin ϑ)(· · ·) and π−1
∫ 2π

0 dϑ(cos ϑ)(· · ·) to the n
component,

X̃(1)
1s =−X1st(1)sc + X1ct(1)ss − f (1)X′1s − Y1sn · b̃

(1)
− f (1)Y1sn · b′, (B 13)

X̃(1)
1c =−X1st(1)cc + X1ct(1)sc − f (1)X′1c − Y1cn · b̃

(1)
− f (1)Y1cn · b′, (B 14)

where

t(1)ss (ϕ)=π−1
∫ 2π

0
dϑ t(1)(ϑ, ϕ) sin2 ϑ, (B 15)

t(1)sc (ϕ)=π−1
∫ 2π

0
dϑ t(1)(ϑ, ϕ) sin ϑ cos ϑ, (B 16)

t(1)cc (ϕ)=π−1
∫ 2π

0
dϑ t(1)(ϑ, ϕ) cos2 ϑ. (B 17)

We have used n · ñ(1)= 0 since this is the O(r/R) term in |ñ| = 1. Similarly, from the
b component of (B 12),

Ỹ (1)1s =−Y1st(1)sc + Y1ct(1)ss − f (1)Y ′1s − X1sb · ñ(1) − f (1)X1sb · n′, (B 18)

Ỹ (1)1c =−Y1st(1)cc + Y1ct(1)sc − f (1)Y ′1c − X1cb · ñ(1) − f (1)X1cb · n′. (B 19)

Equations (B 13)–(B 19) are substituted into the O(r/R) terms in the tilde version of
(A 21),

X1cỸ
(1)
1s + X̃(1)

1c Y1s − X1sỸ
(1)
1c − X̃(1)

1s Y1c =−
sGB̄B̃(1)0

B2
0

, (B 20)

which after many cancellations gives

sGB̄B̃(1)0 /B
2
0 = f (1)[X1cY1s − X1sY1c]

′. (B 21)
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From (A 21),
B̃(1)0 =−f (1)B′0. (B 22)

To determine f (1), this result and (B 6) are substituted into the O((r/R)1) terms of the
tilde version of (A 20):

G̃(1)
0 = sGB̃(1)0 `

′
+

sGB0

`′
r′0 · r̃

(1)′
0 . (B 23)

As a result we find G̃(1)
0 = −f (1)′(ϕ)G0. Since f (1)(ϕ) is single-valued, G̃(1)

0 = 0 and
f (1)′(ϕ)= 0. Then by (B 3), f (1) = 0. Then (B 22) gives B̃(1)0 (ϕ)= 0.

At this point, we have proved the first set of assertions following (3.9): when a finite
r= a is plugged into a solution of the O((r/R)1) Garren–Boozer equations, the real
finite-minor-radius MHD equilibrium inside the constructed boundary has the desired
magnetic field as a function of Boozer coordinates through O(r/R).

B.3. The O((r/R)2) construction

We now proceed to evaluate B̃(a, r, ϑ̃, ϕ̃) through O((r/R)2). First, f (1)= 0 and (B 6)
imply r̃(1)0 = 0. The O(r/R) terms in the Frenet relations for the tilde configuration

then imply t̃(1) = ñ(1) = b̃
(1)
= κ (1) = τ (1) = 0.

At this point, we assume the construction is done through at least O((r/R)2). Since
Z2 is given by a unique function of X1 and Y1 by (A 27)–(A 29), then Z̃(0)2 (ϑ, ϕ) =
Z2(ϑ, ϕ). Then the t component of (B 12) implies f (2)(ϑ, ϕ)= f (2)(ϕ).

The terms remaining in the n component of (B 12) are

X2(ϑ, ϕ)= n · r̃(2)0 + X̃(0)
2 (ϑ, ϕ)+ X̃(1)

1 (ϑ, ϕ)+ t(1)(ϑ, ϕ)[X1s cos ϑ − X1c sin ϑ]. (B 24)

We are free to define

t̄(ϑ, ϕ) = t(1)(ϑ, ϕ)−
2

X2
1s + X2

1c
[(X2s − X̃(0)

2s )X1s + (X2c − X̃(0)
2c )X1c] sin ϑ

−
2

X2
1s + X2

1c
[(X2c − X̃(0)

2c )X1s − (X2s − X̃(0)
2s )X1c] cos ϑ. (B 25)

Then (B 24) can be written

0=C(ϕ)+ X̃(1)
1s sin ϑ + X̃(1)

1c cos ϑ + t̄(ϑ, ϕ)[X1s cos ϑ − X1c sin ϑ] (B 26)

for a ϑ-independent function C(ϕ). Evaluating (B 26) at ϑ = atan(X1s/X1c), and adding
or subtracting (B 26) at ϑ =π+ atan(X1s/X1c), we find C= 0 and X̃(1)

1s X1s+ Ỹ (1)1c Y1c= 0.
Then (B 26) implies X̃(1)

1s − t̄(ϑ, ϕ)X1c = 0, so t̄(ϑ, ϕ)= t̄(ϕ).
Repeating the analysis from (B 24) with the b component of (B 12), we find (B 25)

with X→ Y . Comparing the sinϑ and cosϑ modes of this result with those of (B 25),
then

ξsX1s + ξcX1c

X2
1s + X2

1c
=
γsY1s + γcY1c

Y2
1s + Y2

1c
, (B 27)

ξcX1s − ξsX1c

X2
1s + X2

1c
=
γcY1s − γsY1c

Y2
1s + Y2

1c
, (B 28)
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where ξs = X2s − X̃(0)
2s , ξc = X2c − X̃(0)

2c , γs = Y2s − Ỹ (0)2s and γc = Y2c − Ỹ (0)2c . We obtain
four other linear homogeneous equations relating {ξs, ξc, γs, γc} by taking the non-
tilde versions of (A 41)–(A 42) and (A 32)–(A 33) and subtracting the O((r/R)0) tilde
versions. These four equations also involve ξ0=X20− X̃(0)

20 and γ0=Y20− Ỹ (0)20 . We thus
have six linear homogeneous equations relating the six unknowns {ξ0, ξs, ξc, γ0, γs, γc}.
A valid solution is the one in which all six quantities vanish. The six equations are
generally linearly independent, and so this is the unique solution. Hence, X̃(0)

2 (ϑ, ϕ)=

X2(ϑ, ϕ) and Ỹ (0)2 (ϑ, ϕ)= Y2(ϑ, ϕ). Comparing the non-tilde and the O((r/R)0) tilde
versions of (A 34)–(A 36), we conclude B̃(0)2 (ϑ, ϕ) = B2(ϑ, ϕ). This completes the
evaluation of one more term in (3.9).

Knowing now that t(1)(ϑ, ϕ)= t(1)(ϕ), f (1) = 0, ñ(1) = 0, and b̃
(1)
= 0, we return to

(B 13)–(B 19), which become

X̃(1)
1s = t(1)X1c, X̃(1)

1c =−t(1)X1s,

Ỹ (1)1s = t(1)Y1c, Ỹ (1)1c =−t(1)Y1s.

}
(B 29)

These expressions are substituted into the O(r/R) terms in the tilde version of (A 23),

ι̃
(1)
0 [X

2
1s + X2

1c + Y2
1s + Y2

1c] + 2ι0[X1sX̃
(1)
1s + X1cX̃

(1)
1c + Y1sỸ

(1)
1s + Y1cỸ

(1)
1c ]

= X1cX̃
(1)′
1s − X1sX̃

(1)′
1c + Y1cỸ

(1)′
1s − Y1sỸ

(1)′
1c

+ X̃(1)
1c X′1s − X̃(1)

1s X′1c + Ỹ (1)1c Y ′1s − Ỹ (1)1s Y ′1c. (B 30)

The result is ι̃(1)0 = t(1)′(ϕ), implying ι̃(1)0 = 0 and t(1)(ϕ)= const. From (B 3), then, t(1)=
0, so X̃(1)

1s = X̃(1)
1c = Ỹ (1)1s = Ỹ (1)1c = 0. The O(r/R) terms in (A 22) can now be evaluated

to give one more term we need in (3.9): B̃(1)1 (ϑ, ϕ)= 0. The only remaining terms in
(B 12) give

r̃(2)0 =−f (2)r′0. (B 31)

We proceed to the O((r/R)3) terms in (3.8),

X3(ϑ, ϕ)n+ Y3(ϑ, ϕ)b+ Z3(ϑ, ϕ)t= r̃(3)0 + f (3)(ϑ, ϕ)r′0 + tZ̃(0)3 (ϑ, ϕ)+ tZ̃(1)2 (ϑ, ϕ)

+nX̃(0)
3 (ϑ, ϕ)+ ñ(2)X1(ϑ, ϕ)+ nX̃(2)

1 (ϑ, ϕ)+ nX̃(1)
2 (ϑ, ϕ)

+ bỸ (0)3 (ϑ, ϕ)+ b̃
(2)

Y1(ϑ, ϕ)+ bỸ (2)1 (ϑ, ϕ)+ bỸ (1)2 (ϑ, ϕ)

+ f (2)Y1(ϑ, ϕ)b′ + f (2)X1(ϑ, ϕ)n′ + nf (2)∂2X1(ϑ, ϕ)+ bf (2)∂2Y1(ϑ, ϕ)

+ t(2)(ϑ, ϕ)n∂1X1(ϑ, ϕ)+ t(2)(ϑ, ϕ)b∂1Y1(ϑ, ϕ). (B 32)

We take the n component, noting n · n′ = 0 and n · ñ(2) = 0, since the latter is the
O((r/R)2) term in |ñ|2 = 1. The sin ϑ and cos ϑ modes of the result are

X̃(2)
1s = X3s1 − X̃(0)

3s1 − n · b̃
(2)

Y1s − f (2)Y1sn · b′ − f (2)X′1s − X1st(2)sc + X1ct(2)ss ,

X̃(2)
1c = X3c1 − X̃(0)

3c1 − n · b̃
(2)

Y1c − f (2)Y1cn · b′ − f (2)X′1c − X1st(2)cc + X1ct(2)sc ,

}
(B 33)

where t(2)ss (ϕ), t(2)sc (ϕ) and t(2)cc (ϕ) are defined exactly as in (B 15)–(B 17) but with t(1)→
t(2). Similarly, the sin ϑ and cos ϑ modes of the b component of (B 32) are

Ỹ (2)1s = Y3s1 − Ỹ (0)3s1 − b · ñ(2)X1s − f (2)X1sb · n′ − f (2)Y ′1s − Y1st(2)sc + Y1ct(2)ss ,

Ỹ (2)1c = Y3c1 − Ỹ (0)3c1 − b · ñ(2)X1c − f (2)X1cb · n′ − f (2)Y ′1c − Y1st(2)cc + Y1ct(2)sc .

}
(B 34)
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Note that even if the expansion for the construction is truncated such that X3 = Y3 =

0, generally X̃3 and Ỹ3 will be non-zero since the tilde expansion always includes
all orders in r/R. Equations (B 33)–(B 34) are substituted into the O((r/R)2) terms
of (A 21) ((B 20) with (1)

→
(2)), using the fact that (A 49) is satisfied in the tilde

configuration. The result is (3.10)–(3.12). Then, we consider the O((r/R)2) terms of
the tilde version of (A 20), which give (B 23) with (1)

→
(2). Applying (B 31), we find

G̃(2)
0 =G0B̂− f (2)′G0. Averaging over ϕ gives G̃(2)

0 , which in turn gives (3.13).

Appendix C. Conversion to cylindrical coordinates

In this appendix, we derive a method by which a magnetic surface described
by (2.4) can be converted to a representation in cylindrical coordinates, as needed
to specify input to some equilibrium codes such as VMEC. The method here is
based on relating ϕ to the standard toroidal angle φ to the requisite accuracy
in the r/R expansion. Compared to direct evaluation of (2.4), which requires
solution of a nonlinear root-finding problem at each point on the surface to find
ϕ(φ, ϑ), the method here requires only application of linear operations to a solution
{X1, Y1, X2, Y2, Z2, X3, Y3}.

In cylindrical coordinates (R, φ, z) we can write the position vector r as

r= R(r, ϑ, φ)eR(φ)+ z(r, ϑ, φ)ez. (C 1)

We are free to continue to use the helical Boozer angle ϑ to parameterize the surfaces.
Then R(r, ϑ, φ) and z(r, ϑ, φ) are expanded in the same way as B and β, except with
ϕ→ φ,

R(r, ϑ, φ)= R0(φ)+ rR1(ϑ, φ)+ r2R2(ϑ, φ)+ r3R3(ϑ, φ)+ · · · , (C 2)

where

R1(ϑ, φ) = R1s(φ) sin ϑ + R1c(φ) cos ϑ,
R2(ϑ, φ) = R20(φ)+ R2s(φ) sin 2ϑ + R2c(φ) cos 2ϑ,
R3(ϑ, φ) = R3s3(φ) sin 3ϑ + R3s1(φ) sin ϑ + R3c3(φ) cos 3ϑ + R3c1(φ) cos ϑ.

 (C 3)

The same representation with R→ z is also used. We also define ν(r, ϑ, φ) to be
the difference between the Boozer and cylindrical toroidal angle: ϕ = φ + ν, and ν

is expanded in the same way as R in (C 2)–(C 3). We define ϕ0(φ) = φ + ν0(φ). To
relate the Frenet–Serret and cylindrical representations of the position vector, each
quantity in the former that depends on ϕ is Taylor expanded about ϕ0. For instance,
the position vector along the magnetic axis is written

r0(ϕ)= r0(ϕ0)+ (ϕ − ϕ0)r′0 +
(ϕ − ϕ0)

2

2
r′′0 +

(ϕ − ϕ0)
3

6
r′′′0 + · · · , (C 4)

where the derivatives dn r0/dϕn denoted with primes are all evaluated at ϕ0. These
derivatives of r0 are then written in terms of the Frenet–Serret vectors, e.g.

r′′0 = (`
′t)′ = (`′)2κn+ `′′t, (C 5)

where `′′ = 0 for quasisymmetry.
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We next equate the representation (C 1) of the position vector in cylindrical
coordinates to the representation (2.4) of the position vector in the Frenet–Serret
frame, identifying terms at each order in r/R. At O((r/R)0),

R0(φ)eR(φ)+ z0(φ)ez = r0(ϕ0). (C 6)

At O((r/R)1),

R1(ϑ, φ)eR(φ)+ z1(ϑ, φ)ez= `
′t(ϕ0)ν1(ϑ, φ)+X1(ϑ, ϕ0)n(ϕ0)+ Y1(ϑ, ϕ0)b(ϕ0). (C 7)

The n(ϕ0) and b(ϕ0) components of this equation give the linear system(
nR nz
bR bz

)(
R1
z1

)
=

(
X1
Y1

)
, (C 8)

where nR= n(ϕ0) · eR(φ), bz= b(ϕ0) · ez, etc., and quantities are understood to depend
on φ or ϕ0. As explained preceding (4.5) of Landreman & Sengupta (2018), the
matrix in (C 8) has determinant −R0/(d`/dφ) where d`/dφ = [(dR0/dφ)2 + R2

0 +

(dz0/dφ)2]1/2, so (C 8) can be inverted to give(
R1
z1

)
=

d`/dφ
R0

(
−bz nz
bR −nR

)(
X1
Y1

)
. (C 9)

Furthermore, the t(ϕ0) component of (C 7) gives

ν1 =

(
d`
dφ
`′
)−1 (

R1
dR0

dφ
+ z1

dz0

dφ

)
. (C 10)

Both (C 9) and (C 10) have sinϑ and cosϑ components that are satisfied independently.
Thus, (C 9)–(C 10) give R1s, R1c, z1s, z1c, ν1s, and ν1c in terms of X1s, X1c, Y1s and Y1c.

Next, the O((r/R)2) terms arising when (C 1) and (2.4) are equated give

R2eR + z2ez = ν2`
′t+

ν2
1

2
(`′)2κn+ X2n+

∂X1

∂ϕ
ν1n+ X1n′ν1

+Y2b+
∂Y1

∂ϕ
ν1b+ Y1b′ν1 + Z2t. (C 11)

Here, we have set `′′ = 0 due to quasisymmetry. The n and b components of (C 11)
give (

nR nz
bR bz

)(
R2
z2

)
=

(
S2n
S2b

)
, (C 12)

where

S2n = X2 +
ν2

1κ

2
(`′)2 + ν1

∂X1

∂ϕ
− ν1τ`

′Y1,

S2b = Y2 + ν1
∂Y1

∂ϕ
+ ν1τ`

′X1.

 (C 13)

The matrix in (C 12) is the same one that arose in (C 8), so it may be inverted as
before to give (

R2
z2

)
=

d`/dφ
R0

(
−bz nz
bR −nR

)(
S2n
S2b

)
. (C 14)
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We will also need the t component of (C 11),

ν2 =

(
d`
dφ
`′
)−1 (

R2
dR0

dφ
+ z2

dz0

dφ

)
−

Z2

`′
+ κν1X1. (C 15)

Both (C 14) and (C 15) have components with ϑ dependence ∝ sin 2ϑ , ∝ cos 2ϑ and
∝1. To evaluate these components, we can note that for any quantities P1=P1s sinϑ +
P1c cos ϑ and Q1 =Q1s sin ϑ +Q1c cos ϑ ,

P1Q1 =
P1cQ1c + P1sQ1s

2
+

P1cQ1s + P1sQ1c

2
sin 2ϑ +

P1cQ1c − P1sQ1s

2
cos 2ϑ. (C 16)

Thus, (C 14) and (C 15) give the Fourier modes of R2, z2 and ν2 in terms of the Fourier
modes of X2, Y2 and Z2.

Finally, we identify the O((r/R)3) terms arising when (C 1) and (2.4) are equated.
The n(ϕ0) and b(ϕ0) components have the same form as (C 12) but with R2 → R3,
z2→ z3, S2n→ S3n and S2b→ S3b where

S3n = ν1ν2(`
′)2κ +

ν3
1

6
(`′)2κ ′ + ν2

∂X1

∂ϕ
+
ν2

1

2
∂2X1

∂ϕ2
+ ν1

∂X2

∂ϕ
+ X3

−
ν2

1

2
(`′)2(κ2

+ τ 2)X1 − ν
2
1τ`

′
∂Y1

∂ϕ
− ν1τ`

′Y2 − ν2τ`
′Y1

−
ν2

1

2
`′τ ′Y1 + ν1κ`

′Z2, (C 17)

S3b =
ν3

1

6
κτ(`′)3 + ν2

1τ`
′
∂X1

∂ϕ
+ ν1τ`

′X2 + ν2τ`
′X1

+
ν2

1

2
τ ′`′X1 + ν2

∂Y1

∂ϕ
+
ν2

1

2
∂2Y1

∂ϕ2
+ ν1

∂Y2

∂ϕ
+ Y3 −

ν2
1

2
τ 2(`′)2Y1. (C 18)

The system can be solved as in the previous orders to give(
R3
z3

)
=

d`/dφ
R0

(
−bz nz
bR −nR

)(
S3n
S3b

)
. (C 19)

In (C 19) the Fourier components ∝ sin ϑ , ∝ sin 3ϑ , ∝ cos ϑ , and ∝ cos 3ϑ are each
satisfied independently.
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