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Abstract

We study the geometric properties of a base manifold whose unit tangent sphere bundle, equipped with
the standard contact metric structure, is H-contact. We prove that a necessary and sufficient condition
for the unit tangent sphere bundle of a four-dimensional Riemannian manifold to be H-contact is that the
base manifold is 2-stein.
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1. Introduction

The relationship between the geometric structures of Riemannian manifolds and their
respective unit tangent sphere bundles is one of the interesting topics in Riemannian
geometry. In this paper, we give a characterization of a 2-stein manifold in terms of
the standard contact metric structure of the unit tangent sphere bundle.

A unit vector field V on M determines a map between (M, g) and (T1M, ḡ). If the
Riemannian manifold (M, g) is compact and orientable, then the energy of V is defined
as the energy of the corresponding map:

E(V) =
1
2

∫
M
|dV |2 dvg =

m
2

vol(M, g) +
1
2

∫
M
|∇V |2 dvg

where m = dim M (see [10]).
The vector field V is said to be a harmonic vector field if it is a critical point for the

energy functional E in the set of all unit vector fields of M (see [10]). Following [9],
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a contact metric manifold whose characteristic vector field ξ is a harmonic vector field
is called an H-contact manifold.

Perrone [9] proved that a contact metric manifold is an H-contact manifold if and
only if the characteristic vector field ξ is an eigenvector of the Ricci operator. Boeckx
and Vanhecke [2] proved that the unit tangent sphere bundle of a two-dimensional or
three-dimensional Riemannian manifold is H-contact if and only if the base manifold
has constant sectional curvature. Calvaruso and Perrone [4] obtained the same result
in the case of an n-dimensional conformally flat manifold when n ≥ 4. The authors [7]
proved that the unit tangent sphere bundle T1M of an n-dimensional Einstein manifold
is H-contact if and only if the base manifold is 2-stein when n ≥ 3. The result was
further extended by Calvaruso and Perrone [5] in the setting of Riemannian g-natural
contact metric structures defined by Kaluza–Klein type metrics.

An η-Einstein manifold is a special case of an H-contact manifold. The authors [8]
have also worked on the problem of determining the base space when the unit tangent
bundle of a Riemannian manifold is η-Einstein. In [7] we raised the question: ‘If the
unit tangent sphere bundle T1M equipped with the standard contact metric structure
on n-dimensional Riemannian manifold is H-contact, where n ≥ 3, then is the base
Riemannian manifold M Einstein?’ In this paper we answer this question when n = 4
by proving the following theorem.

T 1.1. Let M = (M, g) be a four-dimensional Riemannian manifold. Then the
unit tangent sphere bundle T1M equipped with the standard contact metric structure
(ḡ, φ, ξ, η) is H-contact if and only if the base manifold M is 2-stein.

2. Standard contact metric structure on a unit tangent sphere bundle

All manifolds in this paper are assumed to be of class C∞. We begin with some
preliminaries on contact metric manifolds. We refer the interested reader to [1] for
more details.

A differentiable (2n − 1)-dimensional manifold M̄ is said to be a contact manifold
if it admits a global 1-form η such that η ∧ (dη)n−1 , 0 everywhere on M̄. Here the
exponent denotes the (n − 1)th exterior power. We call such an η a contact form of
M̄. It is well known that, given a contact form η, there exists a unique vector field ξ,
which is called the characteristic vector field, satisfying η(ξ) = 1 and dη(ξ, X̄) = 0 for
any vector field X̄ on M̄.

A Riemannian metric ḡ on M̄ is a metric associated to a contact form η if there
exists a (1, 1)-tensor field φ satisfying

η(X̄) = ḡ(X̄, ξ), dη(X̄, Ȳ) = ḡ(X̄, φȲ), φ2X̄ = −X̄ + η(X̄)ξ (2.1)

where X̄ and Ȳ are vector fields on M̄. A Riemannian manifold M̄ equipped with
structure tensors (ḡ, φ, ξ, η) satisfying (2.1) is said to be a contact metric manifold.

Let (M, g) be an n-dimensional Riemannian manifold and let ∇ be the associated
Levi-Civita connection. The Riemann curvature tensor R of (M, g) is defined by

R(X, Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z
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for all vector fields X, Y and Z on M. The tangent bundle of (M, g), denoted by TM,
consists of pairs (p, u) where p is a point in M and u is a tangent vector to M at p. The
mapping π : TM→ M given by π(p, u) = p is the natural projection from TM onto M.

For a vector field X on M, the vertical lift Xv on TM is the vector field defined by
Xvω = ω(X) ◦ π where ω is a 1-form on M. For a Levi-Civita connection ∇ on M, the
horizontal lift Xh of X is defined by Xhω = ∇Xω.

The tangent bundle TM can be endowed in a natural way with a Riemannian metric
g̃ which is the so-called Sasaki metric. This metric depends only on the Riemannian
metric g on M. It is determined by

g̃(Xh, Yh) = g̃(Xv, Yv) = g(X, Y) ◦ π, g̃(Xh, Yv) = 0

for all vector fields X and Y on M. The tangent bundle TM also admits an almost
complex structure tensor J defined by JXh = Xv and JXv = −Xh. The metric g̃ is a
Hermitian metric for the almost complex structure J.

The unit tangent sphere bundle π̄ : T1M→ M is a hypersurface of TM given by
gp(u, u) = 1. Note that π̄ = π ◦ i where i is the immersion. A unit normal vector field
N = uv to T1M is given by the vertical lift of u for (p, u). The horizontal lift of a vector
is tangent to T1M, but the vertical lift of vector is not tangent to T1M in general and
so we define the tangential lift of X to (p, u) ∈ T1M by

Xt
(p,u) = (X − g(X, u)u)v.

Clearly the tangent space T(p,u)T1M is spanned by vectors of the form Xh and Xt where
X ∈ TpM.

We now define the standard contact metric structure on the unit tangent sphere
bundle T1M of a Riemannian manifold (M, g). The metric g′ on T1M is induced
from the Sasaki metric g̃ on TM. Using the almost complex structure J on TM,
we can define a unit vector field ξ′, a 1-form η′ and a (1, 1)-tensor field φ′ on
T1M by

ξ′ = −JN, φ′ = J − η′ ⊗ N.

Since
g′(X̄, φ′Ȳ) = 2 dη′(X̄, Ȳ),

the quadruple (g′, φ′, ξ′, η′) is not a contact metric structure. If we rescale:

ξ = 2ξ′, η = 1
2η
′, φ = φ′, ḡ = 1

4 g′,

then we get the standard contact metric structure (ḡ, φ, ξ, η). From now on we endow
T1M = (T1M, ḡ, φ, ξ, η) with the standard contact metric structure.

Let e1, . . . , en = u be an orthonormal basis of TpM. Then

2et
1, . . . , 2et

n−1, 2eh
1, . . . , 2eh

n = ξ
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is an orthonormal basis for T(p,u)T1M. The Ricci tensor ρ̄ of T1M is given by

ρ̄(Xt, Y t) = (n − 2)(g(X, Y) − g(X, u)g(Y, u))

+
1
4

n∑
i=1

g(R(u, X)ei, R(u, Y)ei),

ρ̄(Xt, Yh) =
1
2

((∇uρ)(X, Y) − (∇Xρ)(u, Y)),

ρ̄(Xh, Yh) = ρ(X, Y) −
1
2

n∑
i=1

g(R(u, ei)X, R(u, ei)Y)

where ρ denotes the Ricci curvature tensor of M (see [3, 8]).
We now recall the definition of the 2-stein manifold. An n-dimensional Einstein

manifold M = (M, g) is said to be 2-stein if

n∑
i, j=1

(Ruiu j)2 = µ(p)|u|4

for all u ∈ TpM and p ∈ M where µ is a real-valued function on M (see [6, p. 47]).

3. H-contact unit tangent sphere bundles

Let M = (M, g) be an n-dimensional Riemannian manifold where n ≥ 3, and let
{ei}

n
i=1 be a local orthonormal frame field around an arbitrary point p ∈ M. We assume

that T1M is H-contact with respect to the standard contact metric structure (ḡ, φ, ξ, η).
Then the base manifold M satisfies the following conditions (see [4]):

∇iρ jk − ∇ jρik = 0, (3.1)

2ρab =

n∑
i, j=1

Raib jRaia j (3.2)

where a , b. From (3.1) we may easily see that the scalar curvature τ of M is
constant.

We now deduce several easy consequences of formula (3.2) for later use.
We set u = cos θea + sin θeb,

x = −sin θea + cos θeb
(3.3)

where a , b. Substituting (3.3) into the left-hand side of (3.2) and using some standard
trigonometric identities, we obtain

2ρ(cos θea + sin θeb, − sin θea + cos θeb) = 2ρab cos(2θ) + (ρbb − ρaa) sin(2θ). (3.4)
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Similarly, substituting (3.3) into the right-hand side of (3.2), we get
n∑

i, j=1

R(cos θea + sin θeb, ei, −sin θea + cos θeb, e j)

× R(cos θea + sin θeb, ei, cos θea + sin θeb, e j)

= 2ρab cos(2θ) +
1
4

{ n∑
i, j=1

(Rbib j)2 −

n∑
i, j=1

(Raia j)2
}

sin(2θ)

+
1
4

{ n∑
i, j=1

(Raib j)2 +

n∑
i, j=1

Raib jRbia j +

n∑
i, j=1

Raia jRbib j

−
1
2

n∑
i, j=1

(Raia j)2 −
1
2

n∑
i, j=1

(Rbib j)2
}

sin(4θ).

(3.5)

Then, comparing the finite Fourier series in (3.4) and (3.5), we obtain the two
equations:

4(ρaa − ρbb) =

n∑
i, j=1

(Raia j)2 −

n∑
i, j=1

(Rbib j)2,

2
{ n∑

i, j=1

(Raib j)2 +

n∑
i, j=1

Raib jRbia j +

n∑
i, j=1

Raia jRbib j

}
=

n∑
i, j=1

(Raia j)2 +

n∑
i, j=1

(Rbib j)2. (3.6)

Next we set
u = cos θea + sin θeb, x = ec, (3.7)

where a , b , c , a. Substituting (3.7) into the left-hand side of (3.2), we get

2ρ(cos θea + sin θeb, ec) = 2(ρac cos θ + ρbc sin θ). (3.8)

Similarly, substituting (3.7) into the right-hand side of (3.2), we get
n∑

i, j=1

R(cos θea + sin θeb, ei, ec, e j)

× R(cos θea + sin θeb, ei, cos θea + sin θeb, e j)

=

n∑
i, j=1

{Raic j cos θ + Rbic j sin θ}

× {Raia j cos2 θ + Rbib j sin2 θ + (Raib j + Rbia j) sin θ cos θ}

= 2ρac cos3 θ + 2ρbc sin3 θ

+

{∑
i, j

Raic j(Raib j + Rbia j) +
∑
i, j

Rbic jRaia j

}
cos2 θ sin θ

+

{∑
i, j

Raic jRbib j +
∑
i, j

Rbic j(Raib j + Rbia j)
}

cos θ sin2 θ.

(3.9)
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Since

2(ρac cos θ + ρbc sin θ) − 2ρac cos3 θ − 2ρbc sin3 θ = 2(ρac sin θ + ρbc cos θ) sin θ cos θ,

applying (3.8) and (3.9) enables us to deduce that

2(ρac sin θ + ρbc cos θ) =

{∑
i, j

Raic j(Raib j + Rbia j) +
∑
i, j

Rbic jRaia j

}
cos θ

+

{∑
i, j

Raic jRbib j +
∑
i, j

Rbic j(Raib j + Rbia j)
}

sin θ

for all θ, and hence

2ρac =
∑
i, j

Raic jRbib j +
∑
i, j

Rbic j(Raib j + Rbia j). (3.10)

4. Proof of the main theorem

We begin by recalling some elementary facts from planar geometry. Let R2 be the
Euclidean two-plane equipped with the canonical inner product 〈 , 〉.

For any x = (x1, x2) ∈ R2, we set

x′ = (x1, −x2), x⊥ = (−x2, x1), |x| =
√
〈x, x〉.

Then the following identities hold:

(x′)′ = x, (x⊥)⊥ = −x, |x| = |x′| = |x⊥| ∀x ∈ R2.

Also, we see that if x ⊥ y (that is, 〈x, y〉 = 0), then x′ ⊥ y′ and x⊥ ⊥ y⊥.
Suppose now that M is a four-dimensional Riemannian manifold and let {ei}

4
i=1 be

an orthonormal basis of eigenvectors of the Ricci operator Qp at a point p ∈ M, that is,

Qei = λiei.

Then the Ricci tensor of type (0, 2) is given by a diagonal matrix. Substituting the
equalities

R4142 = −R1323, . . . , R2324 = −R1314

into (3.2), we obtain, after explicit computations, the information in Table 1.
Performing direct calculation on the information in Table 1, we obtain

(R2
1213 − R2

1224)(R1212 + R3434 − R1313 − R2424) = 0,

(R2
1213 − R2

1224)(R1234 + R1324) = 0,

(R2
1214 − R2

1223)(R1212 + R3434 − R1414 − R2323) = 0,

(R2
1214 − R2

1223)(R1234 − R1423) = 0,

(R2
1314 − R2

1323)(R1313 + R2424 − R1414 − R2323) = 0,

(R2
1314 − R2

1323)(R1324 + R1423) = 0.

(4.1)

We now apply (3.6) to obtain Table 2. We now obtain Table 3 from (3.10).
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T 1. Calculations of (3.2).

a b 2ρab =
∑4

i, j=1 Raib jRaia j

1 2 R1323(R1313 − R1414) + R1314(R1324 + R1423) + R1213R1223 + R1214R1224 = 0
2 1 R1323(R2323 − R2424) − R1314(R1324 + R1423) + R1213R1223 + R1214R1224 = 0
1 3 R1223(R1414 − R1212) + R1214(R1234 + R1432) − R1213R1323 − R1224R1314 = 0
3 1 R1223(R3434 − R2323) − R1214(R1234 + R1432) − R1213R1323 − R1224R1314 = 0
1 4 R1224(R1313 − R1212) + R1213(R1342 − R1234) − R1223R1314 + R1323R1214 = 0
4 1 R1224(R3434 − R2424) − R1213(R1342 − R1234) − R1223R1314 + R1323R1214 = 0
2 3 R1213(R1212 − R2424) + R1224(R1234 + R1324) + R1223R1323 − R1214R1314 = 0
3 2 R1213(R1313 − R3434) − R1224(R1234 + R1324) + R1223R1323 − R1214R1314 = 0
2 4 R1214(R1212 − R2323) + R1223(R1423 − R1234) − R1224R1323 − R1213R1314 = 0
4 2 R1214(R1414 − R3434) − R1223(R1423 − R1234) − R1224R1323 − R1213R1314 = 0
3 4 R1314(R1313 − R2323) + R1323(R1324 + R1423) − R1223R1224 − R1213R1214 = 0
4 3 R1314(R1414 − R2424) − R1323(R1324 + R1423) − R1223R1224 − R1213R1214 = 0

T 2. Calculations of (3.6).

a b 2{
∑4

i, j=1(Raib j)2 +
∑4

i, j=1 Raib jRbia j +
∑4

i, j=1 Raia jRbib j}

=
∑4

i, j=1(Raia j)2 +
∑4

i, j=1(Rbib j)2

1 2 8(R2
1323 − R2

1314) + 2(R1423 + R1324)2 = (R1313 − R2323)2 + (R1414 − R2424)2

3 4 8(R2
1314 − R2

1323) + 2(R1324 + R1423)2 = (R1313 − R1414)2 + (R2323 − R2424)2

1 3 8(R2
1223 − R2

1214) + 2(R1234 − R1423)2 = (R1212 − R2323)2 + (R1414 − R3434)2

2 4 8(R2
1214 − R2

1223) + 2(R1234 − R1423)2 = (R1212 − R1414)2 + (R2323 − R3434)2

1 4 8(R2
1224 − R2

1213) + 2(R1234 + R1324)2 = (R1212 − R2424)2 + (R1313 − R3434)2

2 3 8(R2
1213 − R2

1224) + 2(R1234 + R1324)2 = (R1212 − R1313)2 + (R2424 − R3434)2

From the first and second equations in Table 1 we obtain

R1323(R1313 − R1414 + R2323 − R2424) + 2R1213R1223 + 2R1214R1224 = 0. (4.2)

From the fifth and sixth equations in Table 3 we get

R1323(R1313 − R1414 + R2323 − R2424) − 6R1213R1223 − 6R1214R1224 = 0. (4.3)

Thus from (4.2) and (4.3) we may deduce that

R1323(R1313 − R1414 + R2323 − R2424) = 0,

R1213R1223 + R1214R1224 = 0.
(4.4)
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T 3. Calculations of (3.10).

a b c 2ρac =
∑4

i, j Raic jRbib j +
∑4

i, j Rbic j(Raib j + Rbia j)

1 2 3 R1223(R1313 + R2424 − R1212 − R2323) + 3R1213R1323 + 3R1224R1314

+ 3R1214R1324 = 0
1 4 3 R1223(R1414 + R3434 − R1313 − R2424) + 3R1213R1323 + 3R1224R1314

− 3R1214R1324 = 0
1 2 4 R1224(R2323 + R1414 − R1212 − R2424) + 3R1223R1314 − 3R1214R1323

+ 3R1213R1423 = 0
1 3 4 R1224(R1313 + R3434 − R1414 − R2323) − 3R1214R1323 + 3R1223R1314

− 3R1213R1423 = 0
1 3 2 R1323(R1313 + R2323 − R1212 − R3434) − 3R1214R1224 − 3R1213R1223

+ 3R1314R1234 = 0
1 4 2 R1323(R1212 + R3434 − R1414 − R2424) − 3R1213R1223 − 3R1214R1224

− 3R1314R1234 = 0
2 1 3 R1213(R1212 + R1313 − R1414 − R2323) + 3R1214R1314 − 3R1223R1323

− 3R1224R1423 = 0
2 4 3 R1213(R1414 + R2323 − R2424 − R3434) − 3R1223R1323 + 3R1214R1314

+ 3R1224R1423 = 0
2 1 4 R1214(R1212 + R1414 − R1313 − R2424) + 3R1213R1314 + 3R1224R1323

− 3R1223R1324 = 0
2 3 4 R1214(R1313 + R2424 − R2323 − R3434) + 3R1224R1323 + 3R1213R1314

+ 3R1223R1324 = 0
3 1 4 R1314(R1313 + R1414 − R1212 − R3434) + 3R1213R1214 + 3R1223R1224

+ 3R1323R1234 = 0
3 2 4 R1314(R1212 + R3434 − R2323 − R2424) + 3R1223R1224 + 3R1213R1214

− 3R1323R1234 = 0

Similarly,

R1223(R1414 − R1212 + R3434 − R2323) = 0,

R1213R1323 + R1224R1314 = 0,
(4.5)

R1314(R1313 − R2323 + R1414 − R2424) = 0,

R1213R1214 + R1223R1224 = 0,
(4.6)

R1224(R1313 − R1212 + R3434 − R2424) = 0,

R1214R1323 − R1223R1314 = 0,
(4.7)

R1214(R1212 − R2323 + R1414 − R3434) = 0,

R1213R1314 + R1224R1323 = 0
(4.8)
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and
R1213(R1313 − R2424 + R1212 − R3434) = 0,

R1223R1323 − R1214R1314 = 0.
(4.9)

From the seventh and eighth equations in Table 3 and (4.9), we get

R1213(R1212 + R1313 − R1414 − R2323) − 3R1224R1423 = 0,

R1213(R1414 + R2323 − R2424 − R3434) + 3R1224R1423 = 0.
(4.10)

Similarly,
R1224(R1414 + R2323 − R1212 − R2424) + 3R1213R1423 = 0,

R1224(R1313 + R3434 − R1414 − R2323) − 3R1213R1423 = 0.
(4.11)

In addition,

R1214(R1212 + R1414 − R1313 − R2424) − 3R1223R1324 = 0,

R1214(R1313 + R2424 − R2323 − R3434) + 3R1223R1324 = 0

as well as
R1223(R1313 + R2424 − R1212 − R2323) + 3R1214R1324 = 0,

R1223(R1414 + R3434 − R1313 − R2424) − 3R1214R1324 = 0.

We also obtain similarly

R1314(R1313 + R1414 − R1212 − R3434) + 3R1323R1234 = 0,

R1314(R1212 + R3434 − R2323 − R2424) − 3R1323R1234 = 0

and
R1323(R1313 + R2323 − R1212 − R3434) + 3R1314R1234 = 0,

R1323(R1212 + R1313 − R1414 − R2323) − 3R1314R1234 = 0.

Now we set

a = (R1213, R1224), b = (R1214, −R1223), c = (R1314, −R1323).

Then, from the second equations of (4.4)–(4.9), we obtain

〈a, b⊥〉 = 0 =⇒ 〈a⊥, b〉 = 0,

〈a, c⊥〉 = 0 =⇒ 〈a⊥, c〉 = 0,

〈a, b′〉 = 0 =⇒ 〈a′, b〉 = 0,

〈b, c⊥〉 = 0 =⇒ 〈b⊥, c〉 = 0,

〈a, c′〉 = 0 =⇒ 〈a′, c〉 = 0,

〈b, c′〉 = 0 =⇒ 〈b, c〉 = 0.

(4.12)

The following is the key lemma required for our proof of Theorem 1.1.

L 4.1. At each point of M one of the following conditions is satisfied:
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(1) λ1 = λ2 = λ3 = λ4;
(2) λ1 = λ2 , λ3 = λ4;
(3) λ1 = λ3 , λ2 = λ4;
(4) λ1 = λ4 , λ2 = λ3.

P. To prove Lemma 4.1, we proceed case by case.

Case I. Suppose that a , 0, b , 0, c , 0. Then b⊥∥b′, from the first and third
equations of (4.12). Since |b⊥| = |b′|, either b⊥ = b′ or b⊥ = −b′. Therefore

R2
1223 − R2

1214 = 0. (4.13)

Next, c⊥ = c′ or c⊥ = −c′, from the second and fifth equations of (4.12). Hence

R2
1314 − R2

1323 = 0. (4.14)

Similarly, a⊥ = a′ or a⊥ = −a′, that is,

R2
1213 − R2

1224 = 0. (4.15)

From Table 2 and (4.13)–(4.15), the following equations hold:

2(R1423 + R1324)2 = (R1313 − R2323)2 + (R1414 − R2424)2,

2(R1423 + R1324)2 = (R1313 − R1414)2 + (R2323 − R2424)2,

2(R1234 − R1423)2 = (R1212 − R2323)2 + (R1414 − R3434)2,

2(R1234 − R1423)2 = (R1212 − R1414)2 + (R2323 − R3434)2,

2(R1234 + R1324)2 = (R1212 − R2424)2 + (R1313 − R3434)2,

2(R1234 + R1324)2 = (R1212 − R1313)2 + (R2424 − R3434)2.

(4.16)

Now from the first and second equations of (4.16), we may deduce that

(R1313 − R2424)(R1414 − R2323) = 0. (4.17)

Similarly, from the third and fourth equations of (4.16), we deduce that

(R1212 − R3434)(R1414 − R2323) = 0. (4.18)

From the fifth and sixth equations of (4.16), we obtain that

(R1212 − R3434)(R1313 − R2424) = 0. (4.19)

Subcase I(i). We assume that R1212 − R3434 , 0. We deduce from (4.18) and (4.19) that

R1414 − R2323 = 0,

R1313 − R2424 = 0.

Since R1214 , 0 and R1213 , 0, it follows from (4.8) and (4.9) that R1212 − R3434 = 0.
But this is a contradiction.
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Subcase I(ii). We assume that R1212 − R3434 = 0. Then, from (4.8) and (4.9),

R1414 − R2323 = 0,

R1313 − R2424 = 0.

Thus, in this case,

λ1 = R2112 + R3113 + R4114

= R1221 + R4224 + R3223 (=λ2)

= R4334 + R1331 + R2332 (=λ3)

= R3443 + R2442 + R1441 (=λ4)

and hence we see that condition (1) of Lemma 4.1 holds at p.

Case II. Suppose that a , 0, b , 0, c = 0. From the first and third equations of (4.16),
we see that b⊥ ∥ b′, and hence b⊥ = ±b′. Therefore

R2
1223 − R2

1214 = 0.

Similarly,
R2

1213 − R2
1224 = 0.

Based on our assumption, it also follows that

R2
1314 = R2

1323 = 0.

Thus, by similar arguments to those for case I, we also see that condition (1) of
Lemma 4.1 holds at p.

By applying similar arguments in case III (a , 0, b = 0, c , 0) and case IV (a = 0,
b , 0, c , 0), we see that condition (1) of Lemma 4.1 holds at p.

Case V. Suppose that a , 0, b = 0, c = 0. Then

R2
1214 = R2

1223 = 0, R2
1314 = R2

1323 = 0. (4.20)

From the first four equations of Table 2 and (4.20),

2(R1423 + R1324)2 = (R1313 − R2323)2 + (R1414 − R2424)2,

2(R1234 − R1423)2 = (R1212 − R2323)2 + (R1414 − R3434)2,

2(R1234 − R1423)2 = (R1212 − R1414)2 + (R2323 − R3434)2,

2(R1324 + R1423)2 = (R1313 − R1414)2 + (R2323 − R2424)2.

(4.21)

Thus, from (4.21),
(R1313 − R2424)(R1414 − R2323) = 0,

(R1212 − R3434)(R1414 − R2323) = 0.
(4.22)
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From (4.10) and (4.11), since a = (R1213, R1224) , 0, we may deduce that

R1423(R1313 − R2424 + R1212 − R3434) = 0,

R1423(R1313 + R3434 − R1212 − R2424) = 0.
(4.23)

Subcase V(i). We assume that R2
1213 − R2

1224 , 0. Then, from the first and second
equations of (4.1), we get

R1212 − R1313 − R2424 + R3434 = 0,

R1234 + R1324 = 0.
(4.24)

Further, we suppose that R1414 − R2323 , 0. Then, from (4.22),

R1212 = R3434 and R1313 = R2424. (4.25)

Also, applying (4.25), in this case we see that

λ1 = R2112 + R3113 + R4114 = R3443 + R4224 + R1441 = λ4,

λ2 = R1221 + R3223 + R4224 = R4334 + R2332 + R1331 = λ3.

Since R1414 , R2323 we see that condition (4) of Lemma 4.1 holds at p.
We now suppose that R1414 − R2323 = 0. First, we further suppose that R1423 , 0.

Then, from (4.23),
R1212 = R3434 and R1313 = R2424.

In this case, we see that condition (1) of Lemma 4.1 holds at p. Next, we further
suppose that R1423 = 0. Then, from the second equation of (4.24),

0 = R1234 − R1342 = −2R1342 − R1423 = −2R1342,

and hence
R1342 = 0 =⇒ R1234 = 0.

Thus, from the first to fourth equations of Table 2, we may deduce that

R1313 − R1414 = 0, R1414 − R2424 = 0,

R1212 − R1414 = 0, R1414 − R3434 = 0

and hence
R1212 = R3434, R1313 = R2424.

Thus, in this case, condition (1) of Lemma 4.1 holds at p.

Subcase V(ii). We assume that R2
1213 − R2

1224 = 0. Then, from Table 2, we see that this
case reduces to case I. More precisely, the equalities (4.17)–(4.19) hold. Therefore
condition (1) of Lemma 4.1 holds at p.

We can similarly show that Lemma 4.1 is valid in case VI (a = 0, b , 0, c = 0) and
case VII (a = 0, b = 0, c , 0).
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Case VIII. Suppose that a = 0, b = 0, c = 0. Then

R2
1213 = R2

1224 = 0, R2
1214 = R2

1223 = 0, R2
1314 = R2

1323 = 0.

By similar arguments to those for case I we obtain the following equations from
Table 2:

(R1313 − R2424)(R1414 − R2323) = 0,

(R1212 − R3434)(R1414 − R2323) = 0,

(R1212 − R3434)(R1313 − R2424) = 0.

(4.26)

Subcase VIII(i). We assume that R1414 − R2323 , 0. Then, from the first and second
equations of (4.26),

R1212 = R3434, R1313 = R2424.

By similar arguments to those for case V(i) we see that condition (4) of Lemma 4.1
holds at p.

Subcase VIII(ii). We assume that R1414 − R2323 = 0. Then, from the third equation
of (4.26), we see that R1212 = R3434 or R1313 = R2424. By similar arguments to those
for case V(i) we see that either of conditions (3) or (2) of Lemma 4.1 holds at p,
respectively. �

P  T 1.1. We now complete the proof of Theorem 1.1. We define M1 to
be the set of all points p in M such that condition (1) of Lemma 4.1 holds at p. We also
define M2 to be the set of all points p in M such that any of conditions (2), (3) or (4) of
Lemma 4.1 holds at p. Then we certainly have M = M1 ∪ M2 by Lemma 4.1. Further,
by continuity arguments on the Ricci eigenvalues λ1, λ2, λ3 and λ4, we see that M2 is
an open subspace of M.

We now assume that M2 , φ. Without loss of generality we may assume that
condition (2) of Lemma 4.1 holds at some point p0 ∈ M. We let M0

2 denote the
connected component of p0 and set λ = λ1 = λ2 and µ = λ3 = λ4. Then we may easily
check that λ and µ are smooth functions on M0

2 . We denote by Dλ and Dµ the
distributions on M2 corresponding the eigenvalues λ and µ, respectively.

Let {ei} = {e1, e2, e3, e4} be a local orthonormal frame field on M2 such that {e1, e2}

and {e3, e4} are local bases for Dµ and Dµ, respectively. We set

∇ei e j =
∑

k

Γi jkek (4.27)

where i, j = 1, 2, 3, 4. Then
Γi jk = −Γik j. (4.28)

From the equality (3.1) and (4.27) and (4.28), we deduce that λ and µ are constant on
M0

2 . Thus
Γab3 = Γab4 = 0,

Γcd1 = Γcd2 = 0,
(4.29)

where 1 ≤ a, b ≤ 2 and 3 ≤ c, d ≤ 4.
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Now, since λ and µ are constant on M0
2(p0), we see that M0

2(p0) = M by the
continuity of M. Further, from (4.29), we see that the distributions Dλ and Dµ are
both parallel on M. Therefore we see that M is locally a product of two-dimensional
Riemannian manifolds Mλ and Mµ where Mλ and Mµ are the integral manifolds of the
distributions Dλ and Dµ, respectively.

Since R1234 = R1423 = 0 it follows from the third equation in Table 2 that R1212 =

R3434. But this is a contradiction in the case where λ = µ. Since this contradiction
came from the assumption M2 , φ, it follows necessarily that M = M1. Therefore M
is Einstein and hence 2-stein by the main result of [7].

The converse is evident and was already proved in [7] in any dimension. This
completes the proof of Theorem 1.1. �
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