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ABSTRACT. Models are proposed for channelized and distributed flow of meltwater at the base of an ice
sheet. The volumes of both channel and distributed systems evolve according to a competition between
processes that open drainage space (e.g. sliding over bedrock, melting of the ice) and processes that close
it (e.g. viscous creep of the ice due to a positive effective pressure). Channels are generally predicted
to have lower water pressure and therefore capture water from the surrounding regions of distributed
flow. There is a natural length scale associated with the distributed system that determines the width of
the bed from which water can be drawn into a channel. It is suggested that this determines the spacing
between major channels and that this may be reflected in the spacing of eskers. A more permeable
distributed system results in more widely spaced, and therefore larger, channels. Calculations of the
flow into the head of a channel reveal that there is a critical discharge necessary for it to form, and
provide a criterion for where channels can exist.

INTRODUCTION
The nature of subglacial drainage networks is important
because of its effect on the basal boundary condition for ice
flow (Clarke, 2005; Rignot and Kanagaratnam, 2006). It is
well established that the water pressure in a drainage system
plays a crucial role in determining how fast the ice can slide
(Alley and others, 1986; Iken and Bindschadler, 1986). The
water pressure depends on how much meltwater is being
produced and how effective the drainage system is at routing
it from beneath the ice (Röthlisberger, 1972; Weertman,
1972). In this paper, we model the interaction between
efficient channelized and less-efficient distributed flows,
aiming for a better understanding of when and how many
channels should exist. These are important considerations
for any attempt to model meltwater drainage, which must
commonly distinguish between channelized and distributed
flow (Flowers and others, 2004; Kessler, 2004).
Our aims are somewhat similar to the work of Boulton and

others (2007a,b, 2009), who examine the coupling between
groundwater flow and low-pressure subglacial channels.
They suggest that channels space themselves in order to
ensure the water pressure between adjacent channels is
less than the overburden ice pressure, on the assumption
that if the pressure at the drainage divide between the
channels reaches overburden, local uplift of the ice occurs
and initiates a new channel. Channelized drainage therefore
begins when the down-glacier discharge becomes too large
for the groundwater system to transport without becoming
over-pressurized.
The modelling also bears some similarity to the work

of Rempel (2009), who considers seepage flows into and
out of a channel in response to changing conditions
of melting and freezing. Again, that work considers the
flow around the channel to be through sediments, but
the focus is on the possibility of ice infiltrating the pore
space to form a ‘frozen fringe’. This can limit the trans-
missivity of the till layer and result in a maximum possible
channel spacing before the pressure at the drainage divide
exceeds overburden.

Here we model a more general distributed system as an
effective porous medium, comprising cavities and patchy
sheets at the ice/bed interface, and give alternative criteria
for where the channels should exist and what the spacing
between them should be. This is based on the idea that
channels form through the runaway effects of dissipative
heating by the water flow (Walder 1982, 1986; Kamb, 1987).
We therefore envisage that channels that form initially close
to the margin of the ice can ‘erode’ their way headward
up the glacier. Such growth of a channel has been widely
observed during the melt season on alpine glaciers (Hubbard
and Nienow, 1997). It can continue until there is no longer
sufficient water being drawn into the channel to melt the
walls and keep it open; it does not necessarily require the ice
pressure to reach overburden. The spacing between channels
is governed by a balance between potential gradients driving
water flow down-glacier and transversely into the channel.

DRAINAGE MODELS
We consider the water flow at the base of an ice sheet
flowing in the x-direction, with y the horizontal coordinate
perpendicular to the ice flow (Fig. 1). For purposes of
illustration the ice shape will depend only on x, with surface
at zs(x) and bed at zb(x). Any water flow at the bed is driven
by gradients in the hydraulic potential,

ρwgzb + pw, (1)

where ρw is the density of water, g the gravitational
acceleration and pw the water pressure. Since the water
pressure closely follows the ice overburden pressure, pi, we
instead work in terms of the effective pressure, N = pi−pw.
The potential gradient can then be written

Ψ +∇N, (2)

where

Ψ = −∇pi − ρwg∇zb ≈ −ρig∇zs − (ρw − ρi) g∇zb, (3)
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Fig. 1. The drainage system configuration. Water produced from
basal melting and from surface runoff moves through a distributed
system (the light-grey section of the bed). As discharge increases
further down-glacier, a low-pressure channel may form, and water
from the surrounding distributed system is drawn into it.

and the approximation follows from the fact that the ice
pressure is approximately cryostatic: pi ≈ ρigH, with ρi the
density of the ice and H = zs − zb its depth (deviatoric
stresses in the ice are ignored here). Ψ is the component
of the potential gradient that depends only on the geometry
of the bed and ice, while N depends on the nature of the
water flow.
Typical sizes for the potential gradient may be in the

range Ψ0 ∼ 10 − 1000 Pa m−1, the smaller values being
appropriate for a large ice sheet. In all cases, Ψ is typically
larger than ∇N, and is sometimes described as the ‘driving
potential gradient’.
We will primarily look for steady-state flow configurations,

assuming that the meltwater supply does not vary too much
in time. It is doubtful that this is ever the case beneath alpine
glaciers when there is a strong seasonal and diurnal signal, so
our attention will mostly focus on ice sheets. The model itself
could apply to alpine glaciers too, but with a largely varying
melt supply the behaviour may be qualitatively different to
that described here.

Channelized flow
Much of the subglacial water transport occurs in channels
incised into the ice, which are governed by a balance
between viscous creep closure of the ice roof and melt-
ing due to turbulent heating. These are often termed
‘Röthlisberger channels’ and the equations governing them
are well developed (Röthlisberger, 1972; Nye, 1976). The
most important point about such channels is that they are
very efficient at transporting water and operate at low water
pressures; they naturally tend to draw in surrounding water
and therefore form branching arterial networks, aligned
predominantly in the down-glacier direction. A simple
model for a channel aligned with the ice flow comprises:
conservation of water mass; a turbulent flow law (here
chosen to be Manning’s law); a kinematic condition for the
channel walls (here with a linear ice rheology) and an energy
balance which determines the melting rate:

∂S
∂t
+

∂Q
∂x

=
M
ρw

+ Ω, (4)

FQ2 = S8/3
(
Ψ +

∂Nc
∂x

)
, (5)

∂S
∂t
=
M
ρi
− SNc

ηi
, (6)

ML = Q
(
Ψ+

∂Nc
∂x

)
. (7)

Here S is the cross-sectional area, Q is the volume flux, M
(kgm−1 s−1) is the melting rate of the walls, Ω (m2 s−1) is the
influx from the surrounding bed, Nc is the effective pressure
in the channel, Ψ is the potential gradient in the x-direction,

F = ρwgn′2
[
2(π + 2)2/π

]2/3
is a constant related to the

cross-section shape and the Manning friction coefficient, n′,
ηi is the ice viscosity and L is the latent heat. For the sake
of clarity we have ignored the pressure dependence of the
melting temperature and heat transport along the channel,
so Equation (7) assumes instantaneous local energy transfer
from dissipation to melting the walls.

Distributed flow
Many other types of water flow could be described as
‘distributed’, in the sense that water remains spread over
a large part of the bed rather than being localized into
narrow channels. Water can flow through a system of linked
cavities which are opened by ice flow over bumps in the
bed (Lliboutry, 1968; Walder, 1986; Kamb, 1987), through
a system of canals eroded into underlying sediment (Walder
and Fowler, 1994), through thin patchy films (Alley, 1989)
or it could flow through porous till or an underlying aquifer
(Alley and others, 1986; Boulton and others, 2007b).
Models for these types of drainage are less standard

because they tend to depend upon the precise nature of
the drainage elements considered. The approach we take
here is to avoid the specifics and describe such systems
in a generalized sense; the obvious way to do this is
as an effective porous medium, with a permeability that
characterizes how easily the water can move. The drainage
system is envisaged as a porous ‘sheet’, characterized by an
effective depth, h, which is defined as the average depth
of water over a sufficiently large representative area of the
bed; this can be thought of as comprising patchy films, Nye
channels, canals and linked cavities. Such an approach is not
new; for instance Flowers and Clarke (2002) and Flowers
and others (2004) describe a ‘macroporous’ sheet in a
similar vein.
We attempt to avoid too much empiricism and suggest a

model based, at least phenomenologically, on the physical
processes that are thought to be important. This means
we should construct the model, as for the channel in
Equations (4–7), to include: (1) mass conservation; (2) a
parameterization of water flow; (3) an equation to describe
how drainage space opens and closes; and (4) energy
conservation. By describing the flow in this way, some of the
finer detail is inevitably lost or approximated, but since there
is often little knowledge of such details, this is not necessarily
a bad thing.
It is worth noting that the ‘pores’ in this system are

of a different scale to those within subglacial sediments,
as modelled by Boulton and others (2009) and Rempel
(2009). Although certain aspects of the model apply for
water transport within the sediment, we envisage a situation
in which the majority of meltwater is contained in linked
cavities and patchy films at the ice/bed interface. We do
not consider the effects of ice infiltrating the sediments. The
sheets considered by Creyts and Schoof (2009) could be
considered as forming part of our distributed system, and
the model below is essentially very similar to theirs.
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If the sheet transmits an areal discharge, q = (qx ,qy ), the
conservation-of-mass equation equivalent to Equation (4) is

∂h
∂t
+∇ · q = m

ρw
+ ω, (8)

where m (kgm−2 s−1) is the local melt rate and ω (m s−1) is
the englacial source (i.e. the water reaching the bed through
the ice, most likely from the surface). A Darcy-style flux
law is

q =
k0h3

ηw
(Ψ+∇N) , (9)

where the term k0h3 is the transmissivity, ηw is the water
viscosity andN is the effective pressure in the porous system.
The exponent 3 in the transmissivity is chosen by analogy
with laminar flow in a uniform sheet of depth h; one could
argue a case for other exponents, hα, but provided α > 1
(which is physically reasonable) this makes little qualitative
difference. The constant, k0, represents the permeability of
the porous system and will differ for different types of bed
(bedrock, till, etc.). It essentially parameterizes the particular
local drainage system geometry, and a value could be derived
theoretically by assuming, for example, a regular array of
step cavities with connecting orifices (Kamb, 1987). More
practically, it might be estimated for a particular setting
using measurements of water speed and discharge (e.g. by
dye tracing) or by inference from borehole measurements of
water pressure.
The evolution equation for h must be of the form

∂h
∂t

=WO −WC, (10)

whereWO is the rate of opening of the drainage system and
WC is the rate of closure. This is very general (cf. Equation (6))
and the nature of the drainage system is really determined
by which processes we include inWO andWC. The physical
processes that might contribute to WO include

meltback of the ice,

sliding of the ice over bedrock bumps or large till clasts,

erosion of sediments,

dilating of till,

uplift due to over-pressurization,

whilstWC might include

viscous creep of the ice,

viscous creep of sediments,

deposition of sediments,

compaction of till.

Any of these effects could potentially be parameterized and
included in Equation (10); for the purposes of this paper we
allow for melting and creep of the ice (as for the channel,
above), and for cavity formation via sliding over bumps.
These are described by

WO =
m
ρi
+ R|ub|, WC =

hN
ηi

. (11)

Here ub is the sliding velocity and R is a dimensionless
parameter describing the roughness of the bed (R ≈ hr/λr,
where hr and λr are typical heights and wavelengths of bed
roughness). The viscous creep rate is chosen by analogy

with Equation (6), and is motivated further in the Appendix.
In theory the model allows for N to be negative (WC is
then negative, corresponding to creep opening rather than
closure), but it is likely that other processes (e.g. elastic uplift
of the ice) become dominant in that case. Here we only
consider cases in which N remains positive everywhere. It is
worth noting, however, that rapid variations in melt supply
almost inevitably lead to N becoming negative, so including
those additional processes may often be important.
The local melt rate, m, follows from an energy balance; in

addition to the dissipation (that is dominant in Equation (7)),
heat is also provided by the geothermal heat flux, G, and by
frictional heating as a result of the ice flow, ub, and shear
stress, τ b:

mL = G + ub · τ b + q · (Ψ +∇N) . (12)

G should be taken as the net of geothermal heating less
conduction into the ice; for our purposes it is taken to be
constant and uniform. We also choose to treat ub and τ b
as constant, thus decoupling the drainage system from the
glacier dynamics. This is typically not the case in reality, of
course; the fact that the water pressure is related to the basal
shear stress and sliding velocity (typically through a sliding
law of the form τ b = f (ub,N)) is largely the motivation
for studying the drainage system at all. For the purposes of
examining the drainage system structure, however, ignoring
the coupling provides a significant simplification, and at least
avoids having to include additional debatable assumptions
concerning the sliding law. Future work should examine the
effects on this model of including the variations in sliding
velocity.
Combining the evolution equation, (10), with the conti-

nuity equation, (8), shows how the effective pressure (in the
closure term) is related to the divergence of the discharge.
This is analogous to poroelastic models of soil mechanics,
when the effective stress is related to the dilation of the soil
(Biot, 1941) and more directly comparable with compaction
models for partially molten rock (McKenzie, 1984). In fact
our model bears many similarities to such models used to
describe the movement of magma within the mantle (e.g.
Hewitt, 2009); the closure term, WC, can be described as
compaction of the ice in the same way that partially molten
rocks are said to compact in order to allow melt extraction.
There is a natural length scale associated with this, termed the
‘compaction length’, and, as described below, it is this length
which determines the spacing between adjacent channels.

Scaling
As an illustration of the difference between distributed and
channel flow, Figure 2 shows steady-state profiles, for which
the same uniform supply of water is assumed either to be
spread across a 10km width of the bed in a distributed
system, or fed directly into one large channel. The effective
pressure is larger for a channel, and the cross-sectional area
is much smaller, meaning a higher average velocity.
In order to elucidate the dominant physical processes in

each system, it is useful to scale the variables with typical
values, denoted by subscript ‘0’. We do this in terms of a
typical discharge, q0 (m2 s−1) in the distributed system
and Q0 (m3 s−1) in a channel. q0 depends on the amount
of meltwater present at the bed from basal and surface
melting (i.e. it is determined by the size of the right-hand
side of Equation (8)) andQ0 depends upon these same factors
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Fig. 2. Discharge, Q , cross-sectional area, S, and effective pressure,
Nc, N, for channel flow (dashed curve) and distributed flow (solid
curve) down a constant potential gradient, Ψ = 9Pam−1. The same
uniform source of water (from surface and basal melting) is either
assumed to feed straight into one large channel, or to be spread
out across 10 km of the bed; the area of the distributed system
is the total cross-sectional area over these 10 km. These are the
steady solutions to Equations (4–7) and (8–12), respectively, with
the effective pressure prescribed to be zero at the ice-sheet margin,
x = 1000 km. The ∗ marks where the distributed system discharge
reaches q∗ in Equation (31).

together with the size of the channel catchment area; this is
discussed further below.
We assume that a typical length scale is l and that a typical

potential gradient is Ψ0, and therefore choose the following
scales to balance the largest terms in the channel equations
(4–7):

Ω0 =
Q0
l
, M0 =

Q0Ψ0
L

, S0 =
F3/8

Ψ3/80

Q3/4
0 ,

Nc0 =
ηiΨ

11/8
0

ρiLF3/8
Q1/4
0 , tc0 =

ηi
Nc0

. (13)

Subscript ‘c’ is used for the dimensionless time variable here
since it is scaled differently to time in the distributed system
(see below). Three dimensionless parameters are defined:

r =
ρw
ρi
, ε =

Ψ0l
ρwL

, δc =
Nc0
Ψ0l

, (14)

which represent the density ratio, the ratio of potential energy
to latent heat and the ratio of channel effective pressure
gradient to hydraulic potential gradient. The scaled equations
for a channel then take the form

rε
∂S
∂tc

+
∂Q
∂x

= εM + Ω, (15)

Q2 = S8/3
(
Ψ+ δc

∂Nc
∂x

)
, (16)

Table 1. Values used for the model constants. The ice viscosity is
chosen based on a stress of 0.1MPa using Glen’s flow law with
A = 5 × 10−24 Pa−3 s−1 at 0◦C. For different stress conditions
the effective viscosity could be somewhat different from this value,
perhaps in the range ηi ∼ 1012–1015 Pa s. The value for F uses a
Manning roughness coefficient, n′ = 0.1m−1/3 s. The value for G
is the global average geothermal heat flux. The roughness, R, and
the permeability constant, k0, are likely to depend strongly on the
structure of the bed, with typical ranges perhaps R ∼ 10−3–10−1
and k0 ∼ 10−6–10−1. The sliding velocity will usually be in the
range ub0 ∼ 0–10−5 m s−1

Parameter Value Parameter Value

ρw 1000 kgm−3 ηi 1013 Pa s
ρi 900 kgm−3 G 0.06Wm−2
g 10ms−2 L 3× 105 J kg−1
F 650kgm−8/3 ub0 10−7 m s−1
R 2× 10−3 k0 10−4
ηw 10−3 Pa s

∂S
∂tc

= M − SNc, (17)

M = Q
(
Ψ+ δc

∂Nc
∂x

)
. (18)

For the distributed system, the geothermal heat flux is
assumed known and constant, and typical values for the
sliding velocity, ub0, and shear stress, τ0, are also assumed
known (in fact ub is taken to be uniform throughout the
rest of this paper, but is maintained in the dimensionless
equations so that the dependence on it is clear). The scale
for the melting rate in Equation (12) is chosen based on
the geothermal heating, the scale for the opening rate in
Equation (11) is chosen from the melting term, and the other
scales are chosen to balance the dominant terms:

m0 =
G
L
, WO0 =

m0
ρi
, ω0 =

q0
l
, h0 =

(
ηw
k0Ψ0

)
1/3q1/30 ,

N0 = ηiWO0

(
k0Ψ0
ηw

)1/3
q−1/30 , t0 =

ηi
N0

. (19)

Four more dimensionless parameters are defined:

ν =
ub0τ0
G

, λ =
Rub0
WO0

, β =
m0l
ρwq0

, δ =
N0
Ψ0l

, (20)

which represent the ratio of frictional to geothermal heating,
the ratio of opening rates due to sliding and to ice melting, the
ratio of water derived from basal melting to total discharge
and the ratio of effective pressure gradient to the driving
potential gradient, respectively.
The scaled equations for the distributed system are then

rβ
∂h
∂t
+∇ · q = βm + ω, (21)

q = h3 (Ψ + δ∇N) , (22)

∂h
∂t
= m + λ|ub| − hN, (23)

m = 1 + νub · τ b + ε

β
q · (Ψ + δ∇N) . (24)

Some typical values for the parameters are given in Table 1,
and the resulting values for the scaled variables and the
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Fig. 3. Typical values of effective pressure as a function of discharge
for a steady-state drainage system consisting of either a channel (N,
dashed curve) or a distributed system (Nc, solid curve) across a basin
of width 10 km with potential gradient, Ψ = 9Pam−1.

dimensionless parameters are shown in Tables 2 and 3. Two
particular situations are considered: first, for a large ice sheet
we take Ψ0 = 10Pam−1 and l = 1000 km; second, because
much of the interest in subglacial drainage is focused on the
region near the ice-sheet margin, we take typical values for
a marginal area of Ψ0 = 100Pam−1 and l = 100 km.
It is useful to note from the scales in Equations (13) and

(19) how the typical pressure depends on the discharge,
and this is illustrated in Figure 3. A channel typically has
a larger effective pressure (lower water pressure) for a larger
discharge, whereas the porous flow has a smaller effective
pressure. For large enough discharges this results in the
channel drawing in water from the surrounding bed, and
the amount that can feed into the channel is limited only by
how large an area of the bed it is able to draw water from,
which depends upon the efficiency of the distributed system
at redirecting the water supply.
If a channel is aligned with the ice flow, along y = 0

say, the distance over which the reduced pressure is felt
can be seen immediately from the scaled equations: it is

Table 2. Values of model scales for either a whole ice sheet or the
marginal region. The first four values are prescribed and the others
then follow from Equations (13), (19) and (26) and the values in
Table 1. Values for Ψ0 = ρigH0/l and τ0 = ρigH20/l are based
on an ice depth H0 ∼ 1000m. The representative value for q0 is
chosen as that which would balance the melting term in Equation (8)

Variable Unit Ice-sheet scale Marginal scale

l km 1000 100
Ψ0 Pam−1 10 100
τ0 Pa 104 105

q0 m2 s−1 2× 10−4 2× 10−4

m0 kgm−2 s−1 2× 10−7 2× 10−7
WO0 m s−1 2× 10−10 2× 10−10
h0 m 0.13 0.03
N0 Pa 0.2× 105 1× 105

t0 s 5× 108 9× 107

Q0 m3 s−1 8 2
M0 kgm−1 s−1 3× 10−4 7× 10−4
S0 m2 24 3.3
Nc0 Pa 1.3× 105 2× 106

tc0 s 6× 107 5× 106

Table 3. Typical dimensionless parameter values corresponding to
the scales shown in Table 2

Parameter Ice-sheet scale Marginal scale

r 1.1 1.1
ε 0.03 0.03
δc 0.013 0.2
δ 0.002 0.01
β 1 0.1
ν 0.017 0.17
λ 1 1

the length scale over which the transverse and downstream
divergence of water flow balance in Equation (21). From
Equation (22) the former is of size δN/y2, whereas the latter
is of size Ψ/x, so in order to balance their importance, the
y-coordinate must be scaled by δ1/2 (the dimensionless N,
Ψ and x being∼1). The dimensional distance over which the
channel influences the surrounding porous flow is therefore
of order

δ1/2l =
(
ηiWO0l

)1/2( k0
ηwΨ20q0

)1/6
. (25)

This is the length commonly referred to as the compaction
length in analogous models for partially molten rock. For the
values given above, it is ∼40km in the case of the channel
extending over the whole ice sheet or 10 km for just the
marginal region. Since discharge generally increases from
the interior towards the margins of the ice sheet (e.g. in
Greenland the bed is thought to be frozen over much of
the interior so there is no water there), there is probably only
enough meltwater for channels to exist in marginal regions
of ice sheets. This last value therefore gives an estimate for
the predicted spacing of the channels.
If we know the spacing, δ1/2l, and the discharge in the

distributed system, q0, a sensible size to choose for the
channel discharge is

Q0 = δ1/2lq0. (26)

Instability of distributed flow
An important thing to note from the scaled equations is
that the heating due to the water flow in Equation (24) is
unimportant compared with the ‘background’ melting due
to the first two terms and with the additional opening due
to sliding in Equation (23). Indeed, this is the fundamental
distinction between distributed and channel drainage: in
the former, the opening of the drainage space is essentially
‘passive’ – it does not depend on the flow rate; whereas for
the latter the opening rate is ‘active’ – it is proportional to
the flow rate.
By including the small viscous dissipation term in

Equation (24), however, the model allows for the possibility
that the distributed flow can become unstable. Combining
the evolution equation (23) with Equations (22) and (24) gives

∂h
∂t

= c1 + c2h
3 − c3h, (27)

where the coefficients, c1 = 1 + νub · τ b + λ|ub|, c2 =
ε|Ψ + δ∇N|2/β and c3 = N, do not depend upon sheet
depth, h. Linear stability analysis shows that the steady depth,
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h, is therefore unstable to small perturbations if 3c2h
2
> c3

or, equivalently, if the steady discharge, q, is larger than
c1Ψ/2c2. In other words, a steady distributed flow will
be unstable to perturbations in the sheet thickness if the
discharge, q, becomes large enough that the dissipation
term in Equation (23) is comparable with the other (passive)
opening terms. Ignoring the small effective pressure gradient,
the critical discharge is written dimensionally as

qc =
G + ub · τ b + ρiLR|ub|

2Ψ
. (28)

This instability is similar to that for a laminar sheet (Walder,
1982), except that the presence of the passive opening terms
and the closure due to a positive effective pressure allow
for the possibility of a stable state at low enough discharge
(see also Creyts and Schoof, 2009). This suggests that as the
discharge increases down-glacier, steady flow in a sheet will
be viable until the critical discharge, qc, is exceeded.
Once this is the case, a small transverse perturbation to

the depth will start to grow; the behaviour of the sheet then
becomes effectively channel-like; the regions with larger
h have a larger effective pressure, and therefore draw in
water from the surrounding regions of smaller h. This has a
runaway effect, however, and the equations exhibit a blow-
up that is common to many such nonlinear reactive/diffusive
systems. In numerical calculations of Equations (21–24),
the depth of the sheet keeps growing and growing in a
narrow band (the ‘channel’) of ever-decreasing thickness.
This is indicative of an ill-posed mathematical model for
which the fastest-growing instability occurs at the shortest
wavelengths. At some stage in the channel’s growth, the
porous model becomes an inadequate description of the
dynamics, and it is necessary to switch to the channel model
(Equations (15–18)). Since it is very thin compared to the
scale of the distributed flow, the channel can then effectively
be treated as a line sink, as is done for the calculations in the
next section.
The critical discharge given by Equation (28) may be

misleading however. It considers the case when the average
dissipative heating across the distributed system becomes
large enough to dominate the passive opening due to sliding
and geothermal melting. In fact, a channel is likely to
form when dissipative heating dominates over other opening
mechanisms within an individual drainage component of the
distributed system (Kamb, 1987). These may not necessarily
be the same thing.
A second misleading feature of the linear stability criterion

is that once a channel has formed it will tend to draw
in the surrounding water, and in particular the water that
approaches it from upstream. As shown in the Appendix,
this inflow is effectively diffusive, and gives rise to a locally
infinite (though integrable) flow into the head of the channel.
The dissipative heating that results from this means the
channel will melt (or ‘erode’) its way up the glacier, much like
the headward erosion of a gully in overland flow. Numerical
calculations of Equations (21–24) show the channel growing
in this way, but they are hampered somewhat by the need
for very high resolution near the head of the channel (the
dissipative heating term in Equation (24) is small), and the
fact that an arbitrary switch must be made between the
porous model and the channel model at some sheet depth.
We cannot therefore calculate the rate of channel growth
in this manner with any accuracy, although it is hoped that
future work might study this in more detail.

Fig. 4. Idealized geometry of a catchment basin considered for
numerical solutions. Ice flow and the potential gradient are in the
x-direction with x = l the ice margin, at which the effective pressure
is prescribed. Boundary conditions in the y-direction are reflective,
to represent the effect of a drainage divide between adjacent
channels. A channel is treated as a line sink to the distributed flow,
aligned along y = 0 for x > xc. The value of the effective pressure
in the distributed system there must match with that in the channel.

In the rest of this paper we consider steady-state configu-
rations for which a channel of fixed length is surrounded on
either side by porous flow, and we calculate how the water
moves into the channel. We do not concern ourselves with
the dynamics of channel growth, and will therefore ignore
the dissipative heating in the distributed system, since this
only becomes important when it transitions to a channel
(in the scaled Equations (21–24) this corresponds to taking
ε = 0).

Boundary conditions
The geometries considered are shown in Figure 4. It is natural
to prescribe zero water flux, q = 0, at the upstream end of
a catchment basin, x = 0, and to prescribe atmospheric
pressure at the margin, x = l. If the ice depth goes to
zero at the margin, however, this requires the effective
pressure to be zero there, leading to unbounded growth of
the drainage systems according to Equations (6) and (10).
Several assumptions of the present model, in particular that
the system is water-filled all the way to the margin, are
invalid in this case (Evatt and others, 2006). It is therefore
more appropriate to treat the ‘margin’ as a position slightly
upstream of where the ice depth reduces to zero, and to apply
the condition N = Nm at x = l, where Nm is a constant that
represents the ice pressure at that point.
In the next section a channel is assumed to lie along the

line y = 0, starting at position x = xc, and it therefore
requires boundary conditionsQ = 0 at x = xc andNc = Nm
at x = l. The channel is treated as a line sink to the
porous flow, so the pressure in the channel is prescribed as
a boundary condition on the distributed model there, in the
dimensionless variables:

N =
δc
δ
Nc, on y = 0, x > xc. (29)

(Note δc/δ is the ratio of scales for the effective pressure
in the channel and distributed system.) The dimensionless
influx, Ω, to the channel can then be calculated (assuming
symmetry between each side of the channel) as

Ω = −2δ1/2h3 ∂N
∂y

∣∣∣
y=0

. (30)

Note that we ignore the effects of any ‘bridging stress’
(Lappegard and others, 2006); in the vicinity of a low-
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using the scales in Table 2 appropriate for the marginal region of an
ice sheet. The driving potential gradient is constant, Ψ = 1 in the
dimensionless variables, and there is a uniform source, ω = 1, from
surface melting. No water is assumed to arrive from upstream of
this region, so q = 0 at x = 0. A channel is prescribed to lie along
y = 0, x > xc = 20 km, and the pressure within this (Equation (29)),
is calculated from the rate of inflow (Equation (30)), using the steady-
state channel equations (15–18) with r = 1.1, ε = 0, δc = 0.2. The
boundaries in the y-direction are taken to be far enough away from
the channel that the solution tends to one-dimensional flow through
the distributed system there. The white arrows show the direction of
water flow. The corresponding behaviour of the channel is shown
in Figure 6 and a cross section along the dashed line in Figure 7.
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x = 65km marked in Figure 4. The dotted line shows what the
value would be for one-dimensional distributed flow.

pressure channel the average overburden must be spread
over the surrounding area in contact with the bed, so that the
local normal stress of the ice on the bed is large at the edges
of a channel (Weertman, 1972). This effect could potentially
be included by locally increasing the effective pressure in
the closure term, Equation (11).

RESULTS
Coupled channel and distributed flow
Figures 4 and 6 show an example of the coupled channel and
distributed flow. We concentrate here on a marginal region,
assuming the bed upstream of this is frozen, so that q = 0 at
x = 0. The driving potential gradient is taken to be constant,
Ψ = 1 non-dimensionally, and the predominant water
source is from surface melting, ω = 1 non-dimensionally.
This example is supposed to be representative, rather than
to correspond to any particular geographic location, but
it might be appropriate for the Greenland ice sheet, or
for the margins of the former Laurentide ice sheet. The
influx, Ω, from the surrounding porous flow is calculated
from Equation (30) by solving Equations (21–24), using the
channel pressure, Equation (29), as a boundary condition;
the channel pressure itself is calculated from the channel
dynamics in Equations (15–18). A cross-sectional profile for
the same solution is shown in Figure 7.
We see that the large effective pressure in the channel

influences the surrounding porous system and that the length
over which it does this is of the order δ1/2l ≈ 10km. Water
is drawn inwards, but the compacting nature of the porous
system means that close to the channel its depth decreases;
it is squeezed nearly closed by the large effective pressures.
Despite the transmissivity (∝ h3) reducing in this way, the
large pressure gradients are sufficient to draw the water
through, and the channel captures almost all the water from
the surrounding region. We anticipate that adjacent channels
would therefore be spaced at a distance ∼δ1/2l, or perhaps
slightly less.

Channel extent
As discussed previously, if dissipative heating in the dis-
tributed system is included in the model a channel can be
expected to extend up the glacier due to melting at its head.
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The question then arises whether this process can continue
indefinitely, so that a steady-state channel extends all the
way to the ice divide, or whether it is limited at some stage
by the supply of water from the surroundings. Intuition and
field evidence from alpine glaciers suggest that channels
should not be expected to extend indefinitely (though, as
noted above, the varying melt input to alpine glaciers may
be quite different from the steady input considered here). This
is also evident from the model. Near the head of a channel its
discharge is low, and the effective pressure is consequently
low (Fig. 3). Thus, if the discharge in the channel were so
small that the effective pressure were lower than it would
be in the surrounding distributed system, it would flow back
out to the surroundings and the channel would no longer
exist there. There must therefore be a critical position for
the channel head where the effective pressure is sufficiently
elevated above the surrounding distributed flow to draw in
just enough water to sustain the channel at that pressure. This
position will depend upon the available water (the discharge,
q) in the distributed system, and how efficiently it can be
drawn into the channel.
One approach to find this position is to include the

dissipation term in Equation (24) in numerical calculations
for the porous flow around a channel and to allow the
channel to lengthen as the sheet depth, h, grows near its
head, continuing until a steady state is reached. The question
of when to transition from sheet to channel model makes
this approach difficult, however, and the results could only
be given in terms of numerical solutions to a quite complex
system of partial differential equations. A more satisfying and
useful approach, which determines an explicit criterion for
how far a channel can extend, is to use analytical methods
to approximate steady flow into the channel, and use this to
determine whether such a channel is viable. This is described
in the Appendix; the analytical approximations are also
shown in Figure 6. The approach is to solve approximately
for what the flow, Ω, into the channel would be given its
position, xc, and pressure, Nc; then to solve for what the
pressure, Nc, should be given that influx, Ω, and thus to
find the value of xc which makes these two calculations
consistent.
The result is that the channel head should extend up-

glacier as far as the discharge in the distributed system, q
(i.e. the one-dimensional solution that would occur in the
absence of a channel), exceeds a critical value, q∗, given in
dimensional variables by

q∗ = C
ρ2i L

2F3/4k1/20 W 3/2
O

η
1/2
i η

1/2
w Ψ7/4

. (31)

Here C = 1.89 · · · is a constant, and WO is the opening
due to passive mechanisms in Equation (11) (i.e. WO =
(G + ub · τ b)/ρiL + R|ub|). This is an algebraically messy
criterion, but it essentially says that the available discharge
must be sufficient to provide just enough dissipative heating
to keep a channel open against viscous closure. Note that
q∗ depends upon various parameters, but also potentially on
position, through Ψ; the critical discharge is smaller where
the potential gradient is larger. For a given discharge, q(x),
(which is determined by the meltwater supply), the position
at which channels can begin, xc, can be calculated from
where q(x) ≥ q∗(x) in Equation (31), and this determines the
channel’s length, lc (from xc to the margin).

The condition given by Equation (31) represents one of our
main conclusions. It suggests that the following factors tend
to make channel transport more favourable:

the potential gradient is larger,

the rate of opening of the distributed system is slower,

the permeability of the distributed system is smaller,

the discharge is larger.

Any of these factors allow a channel to start further up-
glacier.

Channel spacing
If the channel does not extend close to the full length of
the catchment basin, l, it is possible to improve the estimate
for the channel spacing (Equation (25)) by incorporating the
length, lc, in the scaling argument. This is perhaps best
explained by going back to the dimensional equations (8)
and (9), where a balance of terms in the divergence of the
discharge (which is essentially what determines the channel
spacing, yc) requires

Ψ
lc
∼ N
y2c

. (32)

Here N is the effective pressure in the distributed system
(N = ηiWO/h = ηiWOk

1/3
0 Ψ1/3/η1/3w q1/3) and yc is the

channel spacing. Rearranging gives

yc =
(
ηiWOlc

)1/2( k0
ηwΨ2q

)1/6
(33)

in terms of dimensional variables. Since q and Ψ will
typically vary over the length of the channel (q will be
increasing and Ψ may also typically increase) this spacing
also varies. In order to estimate the width of the channel’s
catchment basin, we therefore take the average of this
spacing over the length of the channel. The fact that
Equation (33) decreases as both Ψ and q increase suggests
that channels will be more closely spaced near the margin,
and therefore that new channels may initiate near the divide
between two existing channels from further up-glacier. This
makes some intuitive sense, and is in agreement with the
observations and results of Boulton and others (2009).
The spacing in Equation (33) represents the most important

result of this paper, and it follows simply from scaling
arguments applied to the model equations. It shows that the
spacing between adjacent channels of a given length will be
larger if

the potential gradient is smaller,

the rate of opening of the distributed system is faster,

the permeability of the distributed system is larger,

the discharge is lower.

Thus, the properties that make channelized drainage start
further up-glacier also make the channels more closely
spaced; both are associated with inefficiency of the distrib-
uted system.
As an example, Figure 8 shows how the spacing

between channels according to Equation (33) varies with the
permeability constant, k0, for an ice sheet of given shape
and melt input. Varying k0 can be thought of as a measure of
how efficient the distributed system is at transmitting water.
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Fig. 8. Extent of channels, lc, and channel spacing, yc, for varying
permeability constant, k0, as determined from Equations (31) and
(33). This is for an ice sheet of length l = 1000 km from ice divide
to margin, depth H0 = 1 km, with surface zs = H0(1 − x/l )1/2

and other parameters as given in Table 1. The solid curve shows
the predicted channel length and spacing if discharge is assumed
to increase linearly with distance from the ice divide up to q0 =
2 × 10−4 m2 s−1 at the margin and the dashed curves show the
predicted length and spacing if melting does not start until the
200 km nearest the margin.

The length, lc, is first chosen according to Equation (31), and
decreasing the permeability therefore has two competing
effects on the channel spacing: first it allows for longer
channels, which generally have a larger catchment basin
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The discharge and effective pressure in the channel are shown in
Figure 10.
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Fig. 10. (a) Total discharge (across the width of the catchment basin)
carried by distributed system (solid curve) and channel (dashed
curve), for the steady-state solution shown in Figure 9. The dotted
curve shows the total discharge, which would be the distributed
system’s discharge if there were no channel. The cross-sectional area
of the channel near the margin is ∼12m2. (b) Effective pressure in
the channel (dashed curve), and averaged across the width of the
catchment basin (solid curve). The dotted curve shows what the
effective pressure would be if there were no channel.

(yc increases with lc), but, second, it limits the distance
over which water can be collected, and therefore decreases
the size of the catchment basin. The latter effect can be
easily understood as due to the fact that a less permeable
system requires larger effective pressure gradients to drive
water through it, and the effective pressure maximum at the
channel is therefore confined to a narrower region. As seen
in Figure 8, the first effect is dominant when k0 is larger and
the second is dominant when k0 is smaller.

Ice-sheet drainage
Based on the previous discussion we now consider how
the drainage system might look for an ice sheet with a
more realistic shape, H = H0(1 − x/l)1/2, giving rise to
the potential gradient Ψ = Ψ0/2(1 − x/l)1/2. We first use
Equation (31) to determine the length of channels, lc, and
then use Equation (33) to determine the catchment basin
width around each channel. We then calculate steady-state
numerical solutions for the coupled flow in the distributed
system and the channel, using reflective boundary conditions
at the sides of the catchment basin, y = ±yc/2, to represent
the divide between adjacent channels. Melting in the interior
of the ice sheet is assumed to occur at a constant rate due
to geothermal heating (see Tables 1 and 2 for the parameters
used). The large discharge resulting from this melting gives
rise to a wider channel spacing (∼32 km) than the typical
10 km quoted above. In reality one should, of course, have
a non-uniform melting rate (with no melting over frozen
parts of the bed); this example is again intended more as an
illustration of the model than as pertaining to any particular
real location.
Figures 9 and 10 show the results. The overall behaviour is

most easily seen in Figure 10: the discharge over the whole
width of the catchment basin is initially all contained in the
porous system, until xc is reached when a large part of it
moves into the channel.
Although the effective pressure in the channel is much

larger than in the porous flow (Fig. 10b), it drops off quite
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Fig. 11. (a) Total discharge carried by distributed system (solid curve)
and channel (dashed curve), for a steady state similar to that shown
in Figure 10, except that an additional supply of water from surface
melting, ω = 10−9 m s−1 (ω = 5 in the scaled variables), is
included over the last 200 km near the margin. (b) Effective pressure
in the channel (dashed curve) and averaged across the width of the
catchment basin (solid curve).

quickly to either side so that the increase in the average
effective pressure due to the presence of the channel is not
perhaps as large as one might expect. One caveat, however,
is that the size of the catchment area (over which this average
is taken) has been chosen to be yc from Equation (25) based
on scaling arguments. It is not clear that the catchment area
should be exactly this size; it may be somewhat smaller
(perhaps half the size) in which case the average pressure
would be more influenced by the channel.
To illustrate the effect of surface melting, Figure 11 shows

the steady-state solution for the same situation but with an
additional supply of meltwater, ω = 10−9 m s−1, near the
margin. When this extra water input reaches the bed, at
x = 800km, it begins to recharge the distributed system
and only some of the additional supply (that closest to the
channel) can be drawn into the channel. It is possible that
another shorter channel might be viable at the drainage
divide near the margin in this case, but this is not predicted
in the solution since the dissipative heating term in the
distributed system has been ignored.

Secondary instabilities
The critical condition on the discharge for channels to form
(Equation (31)), can be generalized for water flow in the
direction of a general potential gradient, Ψ + ∇N. That
is, if the discharge through the distributed system, |q|, is
larger than q∗ (based on the local potential gradient) then
a channel is possible. Close to a major channel, for instance,
the potential gradient is aligned towards the channel, and the
resulting inflow of water will usually be sufficient to satisfy
the critical condition. This suggests a secondary instability
in which the flow into a main channel also evolves into
channels, whose spacing will be given by a local equivalent
of the compaction length (Equation (33)). The flow into these
channels may also be subject to instability, so the resulting
drainage pattern will be a branching network, similar to that
shown in Figure 12.
The presence of tributaries will allow for more efficient

transfer of water into the main channels than has been
calculated above. It also means that the larger effective

Fig. 12. Possible structure of a channel network, with progressively
smaller branches breaking off a main artery, formed by secondary
and tertiary instabilities of flow into the main channel. Near the
margin, larger quantities of meltwater and a steeper potential
gradient reduce the size of the catchment basins (Equation (33))
so that smaller channels open up in between.

pressures in the channel will be felt further out over the bed,
so the average pressure is more influenced by the channel
than is suggested in Figure 10b.

Eskers
Eskers are long sinuous ridges of sediment that are common
in deglaciated regions of North America and northern Europe
(Flint, 1930; Prest and others, 1968). They are widely
thought to be the casts of major subglacial channels, where
sediment is deposited on the channel floor and gradually
builds up over time (Shreve, 1985; Clark and Walder, 1994;
Brennand, 2000). Although there is a suggestion that some
eskers could form almost instantaneously during large floods
(Shaw, 1994), most are thought to have formed in a time-
transgressive fashion, beneath slowly retreating marginal
regions. This view requires esker-forming channels to be
stable over many years (perhaps centuries) of ice retreat and
suggests that only the largest dominant arteries in a drainage
network will produce them. It also seems unlikely that
channels misaligned with the ice flow could have produced
significant eskers, because as the ice slides it alters the course
of such channels and erodes most sediment deposits.
These considerations suggest that only the major channels

aligned in the direction of the ice flow are likely to produce
eskers (the solid lines in Fig. 12) and that the spacing between
them should follow from Equation (33). This is in rough
agreement with the observed 8–25 km spacing (Boulton
and others, 2009). These implications are similar to those
noted by Boulton and others (2007a,b, 2009). Although they
consider groundwater flow in the regions between channels,
the main difference between our work and theirs is the
criterion for where channels should form. In Boulton and
others’ model a channel forms where the effective pressure
reaches zero, whereas we require that the discharge reaches
a critical level, q∗, at which the heat generated by water flow
is sufficient to keep a channel open against the creep closure
of the ice.

CONCLUSIONS
We have presented simple model equations for channelized
and distributed drainage systems, with the flow in a
channel coupled to the surrounding distributed system. The
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distributed system is treated as a deforming porous medium,
with ‘pore’ space being created through basal melting and
sliding to form cavities, and being closed down by viscous
compaction of the ice.
The pressure perturbation around a channel is felt over a

width of the distributed flow termed the compaction length
(Equation (33)), which gives a rough approximation for the
predicted spacing between adjacent channels of ∼10 km.
This spacing of major channels may be identified with the
typical spacing of eskers. It is larger when the distributed
system is more permeable and when the driving hydraulic
gradient is smaller.
Once formed, channels can extend by headward melting,

and will reach a steady state where the background discharge
in the distributed system first reaches a critical level, given
approximately by Equation (31); this suggests channel flow
is more favourable when the hydraulic gradient is larger and
when the distributed system is less permeable.
Drainage models that attempt to distinguish between

channelized and distributed flow are typically forced to
address the questions of when a transition occurs between
the two, what the spacing of supposed channels is and how
efficiently water is able to transfer into them. Although there
are, of course, other factors that can affect the location of
channels, such as bed topography or englacial conduits of
surface melt reaching the bed, the ideas presented here give
some insights into these questions.
It should be noted that this work has only considered

a steady-state drainage system and ignored the potentially
large variations that occur during summer melting. For that
reason, the focus has been on ice sheets rather than alpine
glaciers. The model posed here could be used to examine
non-steady states, and therefore apply also to alpine glaciers,
but the natural timescales for evolution are on the order of
weeks to years. Any more sudden changes of water input
may result in elastic uplift of the ice, which could be added
to WO in Equation (10).
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Röthlisberger, H. 1972. Water pressure in intra- and subglacial
channels. J. Glaciol., 11(62), 177–203.

Shaw, J. 1994. A qualitative view of sub-ice-sheet landscape
evolution. Progr. Phys. Geogr., 18(2), 159–184.

Shreve, R.L. 1985. Esker characteristics in terms of glacier physics,
Katahdin esker system, Maine. Geol. Soc. Am. Bull., 96(5),
639–646.

Walder, J.S. 1982. Stability of sheet flow of water beneath temperate
glaciers and implications for glacier surging. J. Glaciol., 28(99),
273–293.

Walder, J.S. 1986. Hydraulics of subglacial cavities. J. Glaciol.,
32(112), 439–445.

https://doi.org/10.3189/002214311796405951 Published online by Cambridge University Press

https://doi.org/10.3189/002214311796405951


Hewitt: Subglacial channel spacing 313

Walder, J.S. and A. Fowler. 1994. Channelized subglacial drainage
over a deformable bed. J. Glaciol., 40(134), 3–15.

Weertman, J. 1972. General theory of water flow at the base of a
glacier or ice sheet. Rev. Geophys. Space Phys., 10(1), 287–333.

APPENDIX
Creep closure relationships
Here we describe the physical basis for the closure rates used
in Equations (6) and (11). If a cylindrical cavity with radius R
containing (inviscid) water at pressure pw is surrounded by
viscous ice with far-field pressure pi, force and mass balance
require the radial stress, σrr = −p + 2ηi∂ur/∂r , and radial
velocity, ur, to satisfy

∂σrr
∂r

+
4ηi
r

∂ur
∂r

= 0, ur =
RṘ
r

. (A1)

Integrating from r = R to r =∞ gives

N ≡ pi − pw = −2ηiṘR = −ηiṠ
S
, (A2)

where S is the cross-sectional area. This gives the closure
rate, Ṡ, included in Equation (6).
If the porous system is considered to comprise small

cylindrical tubes with cross-sectional areas Sk , the total area
over a representative width of bed, W , would be Wh =∑
Sk , and would close down at an overall rate

Wḣ =
∑
k

Ṡk = −
∑
k

SkN
ηi

= −WhN
ηi

. (A3)

This motivates the choice of closure rate in Equation (11).
If the pores are instead considered to be spherical in shape,
the equivalent of Equation (A1) in spherical polar coordinates
would be

∂σrr
∂r

+
6ηi
r

∂ur
∂r

= 0, ur =
R2Ṙ
r2
, (A4)

and integrating the force balance gives the closure rate for
the volume, Vk , as

V̇k = −34
VkN
ηi

. (A5)

Summing over many such volumes gives the same result for
ḣ as in Equation (A3) up to a factor of 3/4. In fact, any self-
similar pore shapes would give rise to a similar closure rate
with a ∼1 multiplicative factor. The argument relies in part
on the elements that make up the drainage system being
sufficiently well separated that pi represents an appropriate
far-field pressure. It should also be noted that the effective
viscosity of the ice, ηi, may be different over a channel and a
distributed system (due to different strain rates); an alternative
to the parameterization used in Equation (11) might be to
include a multiplicative factor, μ ≤ 1, so that

WC = μ
hN
ηi

. (A6)

If the porous medium is made of sheets that have a much
smaller depth, hk , compared with horizontal extent, lk , they
may close down at rate ḣk ∼ lkN/ηi. The overall closure rate
in this case may have amore complicated dependence on the
sheet depth than the linear relationship used in Equation (11)
(e.g. Creyts and Schoof, 2009), and would require further
details of the small-scale geometry to be determined.

In any case, the closure rate is expected to be an increasing
function of both effective pressure and sheet depth and
Equation (11) is the simplest parameterization with those
properties.

Approximation for flow into a channel
Here we use Equations (21–24) together with Equation (29)
to approximate the steady inflow (Equation (30)), to the head
of a channel at x = xc. The channel pressure, Nc, is initially
treated as known; once the influx has been calculated we
can use the channel equations (15–18) to determine what
that pressure really is. Dissipative heating in the distributed
system is ignored (by taking ε = 0), and the analysis is based
upon the smallness of the parameters δ and δc (see Hewitt,
2009 for further details).
In the steady state, with Ψ = (Ψ, 0), Equations (21–24) can

be written as

∂

∂x

(
h3Ψ + δh3

∂N
∂x

)
+ δ

∂

∂y

(
h3

∂N
∂y

)
=

∂q
∂x
, (A7)

N =
WO

h
, (A8)

where

q =
∫ x

0
β
(
1 + νub · τ b

)
+ ωdx (A9)

is what the discharge would be in the distributed system in
the absence of a channel (i.e. the one-dimensional solution)
andWO = 1+νub ·τ b+λ|ub| is the opening rate (constant).
The relationship (Equation (A8)) between N and h means
Equation (A7) is a nonlinear diffusion equation for h (or N).
We rescale the transverse coordinate to the width of the
catchment area,

y = δ1/2Y , (A10)

and then take only the leading-order terms in δ. The resulting
equation is most easily written in terms of q ≡ h3Ψ, the
discharge in the x-direction:

∂q
∂x

=
WO

2Ψ2/3
∂2

∂Y 2

(
q2/3

)
+

∂q
∂x

. (A11)

The channel pressure condition, Equation (29), becomes

q =
δ3W 3

OΨ
δ3cN3c

on Y = 0, x > xc, (A12)

whilst the solution in the far field, as Y → ∞, should tend
towards the one-dimensional solution, q. Equation (A11) can
be solved approximately by writing the left-hand side as

∂q
∂x

=
3
2
q1/3

∂

∂x

(
q2/3

)
≈ 3
2
q1/3

∂

∂x

(
q2/3

)
(A13)

and defining a distorted length variable

ξ =
∫ x

0

WO

3q1/3Ψ2/3
dx, (A14)

in place of x. Writing q2/3 = q2/3 + ψ(ξ,Y ), the problem
then reduces to

∂ψ

∂ξ
=

∂2ψ

∂Y 2
, (A15)

with ψ = 0 on ξ = 0, ψ → 0 as Y →∞, and

ψ = ψc ≡ δ2W 2
OΨ

2/3

δ2cN2c
− q2/3 on Y = 0, ξ > ξc, (A16)
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where ξc is the position of the channel head. This is a
straightforward diffusion problem and the solution gives Ω
(Equation (30)) as

Ω = −2δ1/2h3 ∂N
∂y

∣∣∣
y=0

=
WO

Ψ2/3
∂ψ

∂Y

∣∣∣
Y=0

(A17)

= − WO

Ψ2/3
1√
π

[
ψc(ξc)

(ξ − ξc)1/2
+
∫ ξ−ξc

0

1

ξ̂1/2
∂ψc
∂ξ

(ξ − ξ̂) dξ̂

]
.

Note that ψc defined in Equation (A16) depends upon both
the far-field discharge in the distributed system, q, and the
channel pressure, Nc. This analytical approximation for the
influx to the channel can be used in the channel equations
(15–18) to calculate Q , S and Nc, and these approximations
are compared with the numerical solution in Figure 6.
Near the head of the channel, where x is close to xc (ξ is

close to ξc), the dominant term in Equation (A17) is the first
term, and gives rise to a channel discharge

Q =
∫ x

xc
Ω dx ∼ A(x − xc)1/2, (A18)

where the constant A is given by

A(xc) =

√
12
π

(
WOq

1/3

Ψ2/3

)
1/2

[
q2/3− δ2W 2

OΨ
2/3

δ2c

1
Nc(xc)2

]
,

(A19)
in which all the variables (q, Ψ, Nc) are evaluated at x = xc.
Now this discharge (which, remember, depends upon the
unknown pressure Nc(xc)) can be used in Equations (15–18)
to calculate the resulting channel pressure. In a steady state
those equations reduce to

Q2
(
Ψ + δc

∂Nc
∂x

)11
= N8c (A20)

and we treat δc as a small parameter. If Q takes the form in
Equation (A18) near xc then the behaviour of Nc there can
be found by rescaling

x = xc + δ
8/7
c Ψ3/7A2/7x̃, Nc = δ

1/7
c Ψ10/7A2/7Ñc (A21)

and solving the resulting equation for Ñc,

x̃
(
1 +

∂Ñc
∂x̃

)11
= Ñ8c , with Ñc ∼ x̃1/8 as x̃ →∞.

(A22)
There is a unique initial value of Ñc at x̃ = 0 that matches
this behaviour at infinity and this is found numerically to be
B = 0.962 · · · . Thus the effective pressure at the head of the
channel is

Nc(xc) = δ
1/7
c Ψ10/7BA(xc)

2/7. (A23)

This gives an expression for the channel effective pressure,
Nc(xc), in terms of the influx, A(xc), whilst Equation (A19)
gives an expression for the influx dependent on that effective
pressure; the two expressions must therefore be satisfied
simultaneously. Whether a given location, xc, is a viable
position for the head of the channel is indicated by whether
or not they can be solved. Considering the graphs ofA against
Nc defined by Equations (A19) and (A23) and calculating
when they intersect, a little algebra yields that they have a
solution if the dimensionless discharge, q, satisfies

q ≥ C δ7/4W 3/2
O

δ2cΨ7/4
, (A24)

where the constant C is

C =
(
8
7

) 7
8
(
11
8

) 11
8 (

π

3

) 1
4 1
B7/4

= 1.89 · · · . (A25)

When converted back into dimensional variables this defines
the critical discharge, q∗, given in Equation (31).
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