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avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France

(loubeau@univ-brest.fr)
2Dipartimento di Matematica e Informatica, Università di Cagliari,
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Abstract We study biminimal immersions: that is, immersions which are critical points of the bienergy
for normal variations with fixed energy. We give a geometrical description of the Euler–Lagrange equa-
tion associated with biminimal immersions for both biminimal curves in a Riemannian manifold, with
particular attention given to the case of curves in a space form, and isometric immersions of codimen-
sion 1 in a Riemannian manifold, in particular for surfaces of a three-dimensional manifold. We describe
two methods of constructing families of biminimal surfaces using both Riemannian and horizontally
homothetic submersions.
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1. Introduction

Many stimulating problems in mathematics owe their existence to variational formula-
tions of physical phenomena. In differential geometry, harmonic maps, candidate mini-
mizers of the Dirichlet energy, can be described as constraining a rubber sheet to fit on
a marble manifold in a position of elastic equilibrium, i.e. without tension [6]. However,
when this scheme falls through, and it can, as corroborated by the case of the 2-torus and
the 2-sphere [7], a best map will minimize this failure, measured by the total tension,
called bienergy. In the more geometrically meaningful context of immersions, the fact
that the tension field is normal to the image submanifold suggests that the most effective
deformations must be sought in the normal direction.

Two approaches to this optimization are available. The first (the free state) consists in
finding (normal) extrema of the bienergy, with complete disregard for the behaviour of
the energy. In the second, in order to avoid paying too great a price for a smaller tension,
a constancy condition is imposed on the energy level.

421

https://doi.org/10.1017/S0013091506000393 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000393


422 E. Loubeau and S. Montaldo

In more intuitive terms, and even though we never consider the associated flows, these
points of view correspond, at least in the more favourable situations, to reducing the
overall tension of a surface, with or without controlling the mean curvature.

However different they appear to be, both approaches are unified into a single mathe-
matical description, amounting to a Lagrange multiplier interpretation. This considera-
tion leads to the following definitions.

Definition 1.1. A map φ : (M, g) → (N, h) between Riemannian manifolds is called
biharmonic if it is a critical point, for all variations, of the bienergy functional

E2(φ) = 1
2

∫
M

|τ(φ)|2vg,

where τ(φ) = tr∇dφ is the tension field, vanishing for critical points of the Dirichlet
energy (i.e. harmonic maps),

E(φ) = 1
2

∫
M

|dφ|2vg.

In the case of non-compact domains, integration is understood as for all compact subsets.

The Euler–Lagrange operator attached to biharmonicity, called the bitension field and
computed by Jiang [9], is

τ2(φ) = −(∆φτ(φ) − trRN (dφ, τ(φ)) dφ),

and vanishes if and only if the map φ is biharmonic. We are now ready to define the
main object of this paper.

Definition 1.2. An immersion φ : (Mm, g) → (Nn, h), m � n, between Riemannian
manifolds, or its image, is called biminimal if it is a critical point of the bienergy functional
E2 for variations normal to the image φ(M) ⊂ N , with fixed energy. Equivalently, there
exists a constant λ ∈ R such that φ is a critical point of the λ-bienergy

E2,λ(φ) = E2(φ) + λE(φ)

for any smooth variation of the map φt : ]−ε, +ε[ , φ0 = φ, such that V = dφt/dt|t=0 is
normal to φ(M).

Remark 1.3. The functional E2,λ has been on the mathematical scene since the
early 1970s (see [8], where its critical points, for all possible variations, are studied).
In particular, it is shown to satisfy Condition (C) of Palais–Smale when the domain
has dimension 2 or 3 and the target is non-positively curved, ensuring the existence of
minimizers in each homotopy class. However, Lemaire [11] constructed counterexamples
when no condition is imposed on the curvature.

Using the Euler–Lagrange equations for harmonic and biharmonic maps, we see that
an immersion is biminimal if

[τ2,λ]⊥ = [τ2]⊥ − λ[τ ]⊥ = 0,
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for some value of λ ∈ R, where [·]⊥ denotes the normal component of [·]. We call an
immersion free biminimal if it is biminimal for λ = 0. In the instance of an isometric
immersion φ : M → N , the biminimal condition is

[∆φH − trRN (dφ,H) dφ]⊥ + λH = 0. (1.1)

Note that this variational principle is close to the Willmore problem, the disparity being
that we do not vary through isometric immersions. While it is obvious that biharmonic
immersions are biminimal, we will see in the following sections that the two notions are
distinct. For example, we construct families of biminimal surfaces in three-dimensional
space forms of non-positive constant sectional curvature where biharmonic surfaces do
not exist [3,4]. In the same vein, we construct families of biminimal surfaces in almost
all three-dimensional Thurston geometries.

1.1. Notation

We shall work in the C∞ category, i.e. manifolds, metrics, connections and maps will
be assumed to be smooth. By (Mm, g) we shall mean a connected manifold, of dimension
m, without boundary, endowed with a Riemannian metric g. We shall denote by ∇ the
Levi-Civita connection on (M, g). For vector fields X, Y , Z on M we define the Riemann
curvature operator by R(X, Y )Z = ∇[X,Y ]Z − [∇X , ∇Y ]Z. For the Laplacian we shall
use ∆(f) = div grad f for functions f ∈ C∞(M) and ∆φW = − tr(∇φ)2W for sections
along a map φ : M → N .

2. Biminimal curves

Our quest for examples of biminimal immersions starts with curves. Let γ : I ⊂ R →
(Mm, g) be a curve parametrized by arc length in a Riemannian manifold (Mm, g),
i.e. γ is an isometric immersion. Before computing the bitension field of γ, we recall the
definition of Frenet frames.

Definition 2.1 (see, for example, [10]). The Frenet frame {Bi}i=1,...,m associated
with a curve γ : I ⊂ R → (Mm, g) is the orthonormalization of the (m + 1)-tuple{

∇(k)
∂/∂t dγ

(
∂

∂t

)}
k=0,...,m

described by

B1 = dγ

(
∂

∂t

)
,

∇γ
∂/∂tB1 = k1B2,

∇γ
∂/∂tBi = −ki−1Bi−1 + kiBi+1 ∀i = 2, . . . , m − 1,

∇γ
∂/∂tBm = −km−1Bm−1,

https://doi.org/10.1017/S0013091506000393 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000393


424 E. Loubeau and S. Montaldo

where the functions {k1 = k > 0, k2 = τ, k3, . . . , km−1} are called the curvatures of γ.
Note that B1 = T = γ′ is the unit tangent vector field to the curve.

In the instance of a curve γ on a surface (m = 2), the Frenet frame reduces to the
couple {T, N}, with T being the unit tangent vector field along γ and N a normal vector
field along γ such that {T, N} is a positive basis, while k1 = k is the signed curvature
of γ.

Biminimal curves in a Riemannian manifold are characterized as follows.

Proposition 2.2. Let γ : I ⊂ R → (Mm, g), m � 2, be an isometric curve from an
open interval of R into a Riemannian manifold (M, g). Then γ is biminimal if and only
if there exists a real number λ such that

k′′
1 − k3

1 − k1k
2
2 + k1g(R(B1, B2)B1, B2) − λk1 = 0,

(k2
1k2)′ + k2

1g(R(B1, B2)B1, B3) = 0,

k1k3 + k1g(R(B1, B2)B1, B4) = 0,

k1g(R(B1, B2)B1, Bj) = 0, j = 5, . . . , m,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(2.1)

where R is the curvature tensor of (M, g) and {Bi}i=1,...,m is the Frenet frame of γ.

Proof. With respect to its Frenet frame, the tension field of γ is

τ(γ) = tr∇dγ = ∇γ
∂/∂t

(
dγ

(
∂

∂t

))
− dγ

(
∇∂/∂t

∂

∂t

)
= ∇γ

∂/∂tB1 = k1B2

and its bitension field is

−τ2(γ) = −∇γ
∂/∂t∇

γ
∂/∂t(τ(γ)) + ∇γ

∇∂/∂t(∂/∂t)(τ(γ)) − R

(
dγ

(
∂

∂t

)
, τ(γ)

)
dγ

(
∂

∂t

)
= −∇γ

∂/∂t∇
γ
∂/∂t(k1B2) − R(B1, k1B2)B1

= −∇γ
∂/∂t(k

′
1B2 − k2

1B1 + k1k2B3) − k1R(B1, B2)B1

= −(k′′
1 − k3

1 − k1k
2
2)B2 + 3k1k

′
1B1 − (k′

1k2 + (k1k2)′)B3

− k1k3B4 − k1R(B1, B2)B1.

The vanishing of the normal components yields the system (2.1). �

Remark 2.3. For a free biminimal curve γ to be biharmonic, we require the supple-
mentary condition [τ2(γ)]B1 = 0, which is equivalent to k1k

′
1 = 0: that is, either k1 is

constant or γ is a geodesic (k1 = 0).

If the target manifold is a surface or a three-dimensional Riemannian manifold with
constant sectional curvature, equations (2.1) are more manageable as shown in the fol-
lowing corollary.
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Corollary 2.4.

(i) An isometric curve γ on a surface of Gaussian curvature G is biminimal if and only
if its signed curvature k satisfies the ordinary differential equation

k′′ − k3 + kG − λk = 0 (2.2)

for some λ ∈ R.

(ii) An isometric curve γ on a Riemannian 3-manifold of constant sectional curvature
c is biminimal if and only if its curvature k and torsion τ satisfy the system

k′′ − k3 − kτ2 + kc − λk = 0,

k2τ = const.,

}
(2.3)

for some λ ∈ R.

Proof. (i) The two-dimensional Frenet frame of γ consists only of T and N , and the
curve is biminimal, with respect to λ, if and only if

k′′ − k3 + kg(R(T, N)T, N) − λk = 0,

but since g(R(T, N)T, N) = G we obtain (2.2).

(ii) In dimension 3, the Frenet frame of γ is {T, N = B2, B = B3}, and the conditions
of Proposition 2.2 become

k′′ − k3 − kτ2 + kg(R(T, N)T, N) − λk = 0,

(k2τ)′ + k2g(R(T, N)T, B) = 0.

The constant sectional curvature of the target means that g(R(T, N)T, N) = c and
g(R(T, N)T, B) = 0. �

From Corollary 2.4, if γ is an isometric curve in a Riemannian manifold Mn of constant
sectional curvature c and dimension 2 or 3, then the curvature of γ (the signed curvature
when n = 2) satisfies the equation

k′′ − k3 − α2

k3 + kβ = 0, (2.4)

where α = k2τ and β = c − λ. Multiplying (2.4) by 2k′ and integrating, we obtain

(k′)2 − 1
2k4 +

α2

k2 + βk2 = A, A ∈ R,

and setting u = k2 yields

(u′)2 − 2u3 + 4α2 + 4βu2 = 4Au.
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Figure 1. Free biminimal curve in R
2 of logarithmic type.

Since this equation is of the form (u′)2 = P (u), where P is a polynomial of degree 3, it can
be solved using standard techniques in terms of elliptic functions (see, for example [5]).
In a future paper we shall give an accurate description of the solutions of equation (2.4).
Here we merely point out that if M is the flat R

2, then equation (2.4), for free biminimal
curves, reduces to

k′′ − k3 = 0,

a solution of which can be expressed in terms of elementary functions: that is, k(s) =√
2/s, where s is the arc length. Now, using the standard formula to integrate a curve of

known signed curvature, we find that, up to isometries of R
2, this free biminimal curve

is given by

γ(s) =
s

3(cos(
√

2 log s) +
√

2 sin(
√

2 log s), −
√

2 cos(
√

2 log s) + sin(
√

2 log s))
.

This is the standard parametrization by arc length of the logarithmic spiral plotted in
Figure 1.

2.1. Biminimal curves via conformal changes of the metric

On a Riemannian manifold (M, g), any representative of the conformal class [g] can
be expressed as ḡ = e2fg, f ∈ C∞(M), and the Levi-Civita connections are related, for
X, Y ∈ C(TM), by (cf. [2])

∇̄XY = ∇XY + X(f)Y + Y (f)X − g(X, Y ) grad f. (2.5)

Observe that a geodesic γ on (M, g) will not remain geodesic after a conformal change
of metric, unless the conformal factor is constant since

∇̄γ̇ γ̇ = ∇γ̇ γ̇ + 2γ̇(f)γ̇ − |γ̇|2 grad f.

The following theorem gives a tool with which to construct free biminimal curves.

Theorem 2.5. Let (Mm, g) be a Riemannian manifold. Fix a point p ∈ Mm and
choose a function f depending only on the geodesic distance from p. Then any geodesic
on (M, g) going through p will be a free biminimal curve on (Mm, ḡ = e2fg).
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Proof. Let γ be a geodesic of (Mm, g) and let {Bi}i=1,...,m be the associated Frenet
frame (cf. Definition 2.1). Since the function f depends only on the geodesic distance
from p, i.e. the B1-direction, Bif = 0, for all i = 2, . . . , m. Since γ is a geodesic on (M, g),
we have

∇γ
∂/∂tB1 = 0,

and the tension field of γ with respect to the metric ḡ = e2fg is

τ̄(γ) = ∇̄γ
∂/∂tdγ

(
∂

∂t

)
= ∇̄γ

∂/∂tB1 = ∇γ
∂/∂tB1 + 2B1(f)B1 − grad f,

where in the above equality we have used (2.5). In addition,

grad f = B1(f)B1 +
m∑

i=2

Bi(f)Bi = B1(f)B1;

thus τ̄(γ) = B1(f)B1.
Still working with respect to ḡ, the bitension field of γ is

τ̄2(γ) = −∆γ τ̄(γ) + tr R̄(dγ, τ̄(γ)) dγ

= ∇̄γ
∂/∂t∇̄

γ
∂/∂t(B1(f)B1) − ∇̄γ

(∇∂/∂t)(∂/∂t)(B1(f)B1) + R̄(B1, B1(f)B1)B1

= ∇̄γ
∂/∂t∇̄

γ
∂/∂t(B1(f)B1)

= ∇̄γ
∂/∂t(B1B1(f)B1 + B1(f)2B1)

= (B1B1B1(f))B1 + B1B1(f)B1(f)B1 + 2B1B1(f)B1(f)B1 + (B1(f))3B1

= [B1B1B1(f) + 3B1B1(f)B1(f) + (B1(f))3]B1.

So τ̄2(γ) has no normal component and γ is free biminimal on (Mm, ḡ = e2fg). �

Corollary 2.6. Let r be the geodesic distance from a point p ∈ (M, g) and let f(r) =
ln(ar2 + br + c), a, b, c ∈ R. Then a geodesic on (M, g) through p becomes a biharmonic
map on (M, ḡ = e2fg).

Proof. From the proof of Theorem 2.5, a geodesic on (M, g) through p becomes a
biharmonic map on (M, ḡ) if f is a solution of the ordinary differential equation

f ′′′(r) + 3f ′′(r)f ′(r) + f ′(r)3 = 0.

To solve this equation we set y = f ′ to obtain

y′′ + 3y′y + y3 = 0. (2.6)

Then, using the transformation y = x′/x, Equation (2.6) becomes x′′′/x = 0, which has
the solution x(r) = ār2 + b̄r + c̄, ā, b̄, c̄ ∈ R. Finally, from f(r) = ln(d x(r)), d ∈ R, we
find the desired f . �

As an example, one can take (M, g) = (R2, g = dx2 + dy2), and f(r) = ln(r2 + 1),
where r =

√
x2 + y2 is the distance from the origin. Thus, any straight line on the flat R

2

turns into a biharmonic curve on (R2, ḡ = (r2 + 1)2(dx2 + dy2)), which is the metric, in
local isothermal coordinates, of the Enneper minimal surface. Figure 2 is a plot of the
Enneper surface in polar coordinates, so the radial curves on the plot are biharmonic.
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Figure 2. The radial curves from the origin of the Enneper surface are biharmonic.

3. Codimension-1 biminimal submanifolds

Let φ : Mn → Nn+1 be an isometric immersion of codimension 1. We denote by B the
second fundamental form of φ, by N a unit normal vector field to φ(M) ⊂ N and by
H = HN the mean curvature vector field of φ (H the mean curvature function). Then
we have the following result.

Proposition 3.1. Let φ : Mn → Nn+1 be an isometric immersion of codimension 1
and H = HN its mean curvature vector. Then φ is biminimal if and only if

∆H = (|B|2 − Ricci(N) + λ)H (3.1)

for some value of λ in R.

Proof. In a local orthonormal frame {ei}i=1,...,n on M , the tension field of φ is τ(φ) =
nHN and its bitension field is

−τ2(φ) = −
n∑

i=1

[∇φ
ei

∇φ
ei

(nHN) + ∇φ
∇ei

ei
(nHN) − RNn+1

(dφ(ei), nHN) dφ(ei)]

= n

n∑
i=1

[−∇φ
ei

(ei(H)N + H∇φ
ei

N) + (∇eiei)(H)N + H∇φ
∇ei

ei
N

− HRNn+1
(dφ(ei),N) dφ(ei)]

= n

n∑
i=1

[−eiei(H)N − 2ei(H)∇φ
ei

N − H∇φ
ei

∇φ
ei

N

+ (∇eiei)(H)N + H∇φ
∇ei

ei
N ] − nH

n∑
i=1

RNn+1
(dφ(ei),N) dφ(ei)

= n(∆H)N − 2n

n∑
i=1

ei(H)∇φ
ei

N + nH∆φN

− nH

n∑
i=1

RNn+1
(dφ(ei),N) dφ(ei).
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But

(i) 〈∇φ
ei

N ,N〉 = 1
2ei〈N ,N〉 = 0,

(ii) 〈
∑n

i=1 RNn+1
(dφ(ei),N) dφ(ei),N〉 = Ricci(N).

For 〈∆φN ,N〉, first we have

〈∆φN ,N〉 =
n∑

i=1

〈−∇φ
ei

∇φ
ei

N + ∇φ
∇ei

ei
N ,N〉 =

n∑
i=1

〈∇φ
ei

N , ∇φ
ei

N〉.

Then, if B is the second fundamental form of φ, which, in an orthonormal frame
{e1, . . . , en,N}, is defined by

B = (〈∇ei
ej ,N〉)i,j=1,...,n = −(〈∇ei

N , ej〉)i,j=1,...,n,

we have

|∇φ
ei

N |2 = 〈∇φ
ei

N , ∇φ
ei

N〉 =
n∑

j=1

〈∇φ
ei

N , ej〉2 ∀i = 1, . . . , n,

which implies that
n∑

i=1

〈∇φ
ei

N , ∇φ
ei

N〉 = |B|2.

In conclusion, we obtain

−〈τ2,λ(φ),N〉 = n(−∆H + H|B|2 − H Ricci(N) + λH).

�

Corollary 3.2. An isometric immersion φ : Mn → Nn+1(c) into a space form of
constant curvature c is biminimal if and only if there exists a real number λ such that

∆H − H(n2H2 − s + n(n − 2)c + λ) = 0,

where H is the mean curvature and s the scalar curvature of Mn. Moreover, an isometric
immersion φ : M2 → N3(c) from a surface to a three-dimensional space form is biminimal
if and only if

∆H − 2H(2H2 − G + 1
2λ) = 0 (3.2)

for some λ in R.

Proof. Let {e1, . . . , en} be an orthonormal frame of Mn corresponding to the principal
curvatures {k1, . . . , kn} and let B be its second fundamental form. Then

|B|2 = k2
1 + · · · + k2

n

= n2H2 − 2
n∑

i,j=1, i<j

kikj

= n2H2 − 2
n∑

i,j=1, i<j

(K(ei, ej) − c)
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= n2H2 −
n∑

i,j=1

K(ei, ej) + n(n − 1)c

= n2H2 − s + n(n − 1)c,

where K(ei, ej) is the sectional curvature on Mn of the plane spanned by ei and ej , and
s =

∑n
i,j=1 K(ei, ej) is the scalar curvature of Mn. Since Ricci(N) = nc, the map φ is

biminimal if and only if

∆H = (n2H2 − s + n(n − 2)c + λ)H,

for some λ in R. �

Remark 3.3. Condition (3.2), for free biminimal immersions, is very similar to the
equation of the Willmore problem (∆H + 2H(H2 − K) = 0) but the minus sign in (3.2)
rules out the existence of compact solutions when c � 0.

We shall now describe some constructions with which to produce examples of biminimal
immersions. Recall that a submersion φ : (M, g) → (N, h) between two Riemannian
manifolds is horizontally homothetic if there exists a function Λ : M → R, the dilation,
such that

(i) at each point p ∈ M the differential dφp : Hp → Tφ(p)N is a conformal map with
factor Λ(p), i.e. Λ2(p)g(X, Y )(p) = h(dφp(X), dφp(Y ))(φ(p)) for all X, Y ∈ Hp =
kerp(dφ)⊥,

(ii) X(Λ2) = 0 for all horizontal vector fields.

Lemma 3.4. Let φ : (Mn, g) → (N2, h) be a horizontally homothetic submersion with
Λ and minimal fibres and let γ : I ⊂ R → N2 be a curve parametrized by arc length,
of signed curvature kγ . Then the codimension-1 submanifold S = φ−1(γ(I)) ⊂ M has
mean curvature HS = Λkγ/(n − 1).

Proof. Let {T, N} be the Frenet frame of γ, i.e. ∇γ
∂/∂tT = kγN . Choose a local orthog-

onal frame {e1, e2, e3, . . . , en} on Mn such that dφ(e1) = T ◦ φ, dφ(e2) = N ◦ φ and
dφ(ei) = 0, for i = 3, . . . , n. Since φ is a horizontally homothetic submersion, we have
|e1|2 = |e2|2 = 1/Λ2 and we can choose {e3, . . . , en} of unit length. The restriction to
S = φ−1(γ(I)) ⊂ M of the vector fields e1 and {e3, . . . , en} gives a local frame of vector
fields tangent to the submanifold S = φ−1(γ(I)), while the restriction of Λe2 gives a unit
vector field normal to S. Therefore, the mean curvature of S is

HS =
1

n − 1
Λ3〈∇e1e1, e2〉 +

1
n − 1

Λ
n∑

i=3

〈∇eiei, e2〉 =
1

n − 1
Λ3〈∇e1e1, e2〉 +

n − 2
n − 1

Λ(Hf),

where Hf is the mean curvature of the fibres. The fibres being minimal (Hf = 0), we have

HS =
1

n − 1
Λ3〈∇e1e1, e2〉. (3.3)
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Moreover,

Λ2〈∇e1e1, e2〉 = 〈dφ(∇e1e1), dφ(e2)〉 = 〈dφ(∇e1e1), N ◦ φ〉
= 〈∇φ

e1
dφ(e1), N ◦ φ〉 = 〈∇φ

e1
(T ◦ φ), N ◦ φ〉,

since (∇dφ)(e1, e1) = 0 for a horizontally homothetic submersion (cf. [1]).
Finally,

∇φ
e1

(T ◦ φ) = (∇dφ(e1)T ) ◦ φ = (∇T T ) ◦ φ = kγN ◦ φ,

and, taking into account (3.3), (n − 1)HS = Λkγ . �

Theorem 3.5. Let φ : M3(c) → (N2, h) be a horizontally homothetic submersion with
dilation Λ, minimal fibres and integrable horizontal distribution, from a space form of
constant sectional curvature c to a surface. Let γ : I ⊂ R → N2 be a curve parametrized
by arc length such that the surface S = φ−1(γ(I)) ⊂ M3 has constant Gaussian curva-
ture c. Then S = φ−1(γ(I)) ⊂ M3 is a biminimal surface (with respect to 2c) if and only
if γ is a free biminimal curve.

Proof. Let {T, N} be the Frenet frame of γ, i.e. ∇T T = kγN . Let γ̃ : I → M3 be a
horizontal lift of γ, so that γ̃′ is horizontal and dφ(γ̃′) = T ◦ φ. Let ψ(t, s) = ηs(γ̃(t))
be a local parametrization of the surface S = φ−1(γ(I)) ⊂ M3, where, for a fixed t0 ∈ I,
ηs(γ̃(t0)) is a parametrization by arc length of the fibre of φ through γ̃(t0). Then ψ

induces on the surface S the metric

gS =
1
Λ2 dt2 + ds2,

where Λ is the dilation of φ which, when restricted to the surface S, depends only on s.
The Laplacian on S is then given by

∆ = Λ2 ∂2

∂t2
+

∂2

∂s2 − grad(log Λ)
∂

∂s
, (3.4)

while the Gaussian curvature of S reduces to

GS =
∆Λ

Λ
− (grad(log Λ))2. (3.5)

Now, assuming that S has constant Gaussian curvature GS = c, from (3.2) we see that
S is biminimal (with respect to 2c) in M3(c) if and only if

∆H − 2H(2H2 − c + c) = ∆H − 4H3 = 0.

By Lemma 3.4, 2H = Λkγ ; thus,

2(∆H − 4H3) = ∆(Λkγ) − (Λkγ)3

= Λ3
[
k′′

γ − k3
γ +

kγ

Λ2 (GS + (grad(log Λ))2)
]

= Λ3
[
k′′

γ − k3
γ +

kγ

Λ2 (c + (grad(log Λ))2)
]
. (3.6)
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Finally, from the generalized O’Neill formula [12] relating the sectional curvatures of
the domain and target manifolds for a given horizontally homothetic submersion with
integrable horizontal distribution (see, for example [1, Corollary 11.2.3]) we get

1
Λ2 (c + (grad(log Λ))2) = GN ,

which, together with (3.6), gives

2(∆H − 4H3) = Λ3(k′′
γ − k3

γ + kγGN ).

Then the theorem follows from Corollary 2.4. �

When the horizontal space is not integrable, we can reformulate Theorem 3.5 for Rie-
mannian submersions.

Theorem 3.6. Let φ : M3(c) → N2(c̄) be a Riemannian submersion with minimal
fibres from a space of constant sectional curvature c to a surface of constant Gaussian
curvature c̄. Let γ : I ⊂ R → N2 be a curve parametrized by arc length. Then S =
φ−1(γ(I)) ⊂ M3 is a biminimal surface (with respect to λ) if and only if γ is a biminimal
curve (with respect to λ + c̄).

Proof. First, from (3.4) and (3.5), since Λ = 1, we have

GS = 0, ∆ =
∂2

∂t2
+

∂2

∂s2 .

Thus, taking into account Lemma 3.4, S is biminimal if and only if

∆(2H) − (2H)3 − 2Hλ = k′′
γ − k3

γ − kλ = 0.

From Corollary 2.4, the latter equation is clearly biminimal (with respect to λ + c̄) for a
curve γ : I → N2(c̄). �

4. Examples of biminimal surfaces in three-dimensional space forms

4.1. Examples of biminimal surfaces in R
3

We apply Theorem 3.5 to construct examples of biminimal surfaces in R
3 with the flat

metric.
(i) First we consider the orthogonal projection π : R

3 → R
2, given by π(x, y, z) =

(x, y). The projection π is clearly a Riemannian submersion with minimal fibres (vertical
straight lines in R

3) and integrable horizontal distribution. Thus, from Theorem 3.5, a
vertical cylinder with generatrix a free biminimal curve of R

2 is a free biminimal surface.
For example, one can consider the cylinder on the logarithmic spiral.
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(ii) The space R
3\{0} can be described as the warped product R

3\{0} = R
+×t2S

2 with
the warped metric g = dt2+t2 dθ2, dθ2 being the canonical metric on S

2. Then projection
onto the second factor π2 : R

+ ×t2 S
2 → S

2 is a horizontally homothetic submersion with
dilation 1/t, integrable horizontal distribution and minimal fibres. Geometrically, π2 is
the radial projection p 
→ p/|p|, p ∈ R

3 \ {0}. Again applying Theorem 3.5, we see that
the cone on a free biminimal curve on S

2 is a free biminimal surface of R
3. For example,

if we take the parallel on S
2 of latitude 1

4π, which is a biharmonic curve, and thus free
biminimal, we get the standard cone of revolution in R

3.

(iii) The following example does not seem to enter the picture of Theorem 3.5. Let
α : I ⊂ R → R

3 be a space curve with curvature k equal to its torsion τ and with
{T, N, B} its Frenet frame. It is easy to see that the envelope S of γ, parametrized by
X(u, s) = α(s) + u(B + T ), has mean curvature H = k. Thus, S is free biminimal if and
only if

∆H − 4H3 = k′′ − 4k3 = 0. (4.1)

Geometrically, the curve γ is a curve with constant slope, i.e. there exists a vector u ∈ R
3

such that 〈T, u〉 is constant. Then γ can be described as a helix of the cylinder on a plane
curve β (the orthogonal projection of γ onto a plane orthogonal to u) whose geodesic
curvature is a solution of (4.1). For example, we can take β to be the logarithmic spiral
of the natural equation kβ = 1/(

√
2s).

4.2. Examples of biminimal surfaces in H
3

(i) Let H
3 = {(x, y, z) ∈ R

3 : z > 0} be the half-space model for the hyperbolic space
endowed with the metric of constant sectional curvature −1 given by g = (dx2 + dy2 +
dz2)/z2. Then the projection onto the plane at infinity defines a horizontally homothetic
submersion π : H

3 → R
2 with dilation Λ = z, integrable horizontal distribution and

minimal fibres (vertical lines in H
3). Then, from Theorem 3.5, a vertical cylinder with

generatrix a free biminimal curve of R
2 is a biminimal surface (with respect to −2) in the

hyperbolic space. For example, the cylinder on the logarithmic spiral is free biminimal
in R

3, while it is biminimal (with respect to −2) in H
3.

(ii) Let π : H
3 → H

2 be defined by π(x, y, z) = (x, 0,
√

y2 + z2). The fibre of π over
(x, 0, r) is the semicircle with centre (x, 0, r) and radius r, and it is parallel to the coordi-
nate yz-plane. Thus, the map π has minimal fibres. Geometrically, this map is a projec-
tion along the geodesics of H

3 which are orthogonal to H
2. This is again a horizontally

homothetic submersion with dilation, along the fibres, Λ(s) = 1/ cosh(s), with s being
the arc length parameter of the fibre. An easy computation shows that for any curve
γ parametrized by arc length in H

2 the surface S = π−1(γ(I)) is of constant Gaus-
sian curvature −1. Then, applying Theorem 3.5, for any free biminimal curve of H

2,
S = π−1(γ(I)) is a biminimal surface (with respect to −2) in the hyperbolic space.

4.3. Examples of biminimal surfaces in S
3

(i) Let p, q ∈ S
3 be two antipodal points. Then the space S

3 \ {p, q} can be described
as the warped product S

3 \ {p, q} = (0, π) ×sin2(t) S
2 with the warped metric g = dt2 +
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sin2(t) dθ2, dθ2 being the canonical metric on S
2. Then the projection to the second factor

π2 : R
+ ×t2 S

2 → S
2 is a horizontally homothetic submersion with dilation 1/ sin(t),

integrable horizontal distribution and minimal fibres. Geometrically, π2 is the projection
along the longitudes onto the equatorial sphere. Theorem 3.5 gives a correspondence
between free biminimal curves on S

2 and biminimal surfaces (with respect to 2) of S
3

given by S = π−1
2 (γ(I)).

(ii) This is the only example for which we use Theorem 3.6. Let H : S
3 → S

2( 1
2 ) be

the Hopf map defined by H(z, w) = (2zw̄, |z|2 − |w|2), where we have identified

S
3 = {(z, w) ∈ C

2 : |z|2 + |w|2 = 1} and S
2( 1

2 ) = {(z, t) ∈ C × R : |z|2 + t2 = 1
4}.

The Hopf map is a Riemannian submersion with minimal fibres (great circles in S
3).

Thus, from Theorem 3.6, we see that a Hopf cylinder H−1(γ(I)) is a biminimal surface
(with respect to λ) of S

3 if and only if the curve γ is a biminimal curve (with respect to
λ + 4) of S

2( 1
2 ).

5. Examples of biminimal surfaces in Thurston’s three-dimensional
geometries

Of Thurston’s eight geometries (cf. [1, § 10.2]), three have constant sectional curvature
(R3, S

3 and H
3) and contain biminimal surfaces as described in the previous section, two

are Riemannian products (S2 × R and H
2 × R), and will be our first class of examples,

two are line bundles, over R
2 for H3 and over R

2
+ for (SL2(R))̃, and one, Sol, does not

allow Riemannian submersion or horizontally homothetic maps with minimal fibres to a
surface, even locally, and therefore does not fit our framework.

5.1. Biminimal surfaces of S
2 × R and H

2 × R

In both cases, consider the Riemannian submersion with totally geodesic fibres, given
by the projection onto the first factor, π : N2 × R → N2. Given a curve γ : I ⊂ R → N2

parametrized by arc length, take its Frenet frame {T, N} and consider {e1, e2} ∈ T (N2 ×
R) its horizontal lift. The unit vertical vector e3 completes {e1, e2} into an orthonormal
frame of T (N2 × R), such that {e1, e3} is a basis of TS, for S = π−1(γ(I)), with e2 the
normal to the surface. Then, from Lemma 3.4, the mean curvature of S is H = 1

2k, where
k is the signed curvature of γ and, from Proposition 3.1, S is biminimal (with respect to
λ) in N2 × R if

∆H = (|B|2 − Ricci(e2) + λ)H.

With respect to the frame {e1, e3} the matrix associated with the second fundamental
form of S is

B =

(
k 0
0 0

)
.

In addition,

RicciN
2×R(e2) = RicciN

2
(e2) =

{
+1 if N2 = S

2,

−1 if N2 = H
2.
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In both cases, using (3.4), ∆H = ∆( 1
2k) = 1

2k′′, so S is biminimal in N2 × R if

k′′ =

{
k3 − k + λk if N2 = S

2,

k3 + k + λk if N2 = H
2.

Now comparing these results with (2.2), we have the following proposition.

Proposition 5.1. The cylinder S = π−1(γ(I)) is a biminimal surface (with respect to
λ) in N2 × R if and only if γ is a biminimal curve (with respect to λ) on N2 (S2 or H

2).

5.2. Biminimal surfaces of the Heisenberg space

The three-dimensional Heisenberg space H3 is the two-step nilpotent Lie group stan-
dardly represented in GL3(R) by ⎡⎢⎣1 x z

0 1 y

0 0 1

⎤⎥⎦
with x, y, z ∈ R. Endowed with the left-invariant metric

g = dx2 + dy2 + (dz − xdy)2, (5.1)

(H3, g) has a rich geometric structure, reflected by the fact that its group of isometries is
of dimension 4, the maximal possible dimension for a metric of non-constant curvature
on a 3-manifold. Also, from the algebraic point of view, this is a two-step nilpotent Lie
group, i.e. ‘almost Abelian’. An orthonormal basis of left-invariant vector fields is given,
with respect to the coordinates vector fields, by

E1 =
∂

∂x
, E2 =

∂

∂y
+ x

∂

∂z
, E3 =

∂

∂z
. (5.2)

Now let π : H3 → R
2 be the projection (x, y, z) 
→ (x, y). At a point p = (x, y, z) ∈ H3 the

vertical space of the submersion π is Vp = ker(dπp) = span(E3) and the horizontal space
is Hp = span(E1, E2). An easy computation shows that π is a Riemannian submersion
with minimal fibres. Take a curve γ(t) = (x(t), y(t)) in R

2, parametrized by arc length,
with signed curvature k, and consider the flat cylinder S = π−1(γ(I)) in H3. Since the
left-invariant vector fields are orthonormal, the vector fields

e1 = x′E1 + y′E2 and e2 = E3

give an orthonormal frame tangent to S and

N = −y′E1 + x′E2

is a unit normal vector field of S in H3. The second fundamental form of S is

B =

(
k − 1

2

− 1
2 0

)
.
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Clearly, H = tr 1
2 (B) = 1

2k, |B|2 = k2 + 1
2 and a direct computation shows that

Ricci(N) = − 1
2 . Thus, from (3.1), S is biminimal with respect to λ if and only if

∆H = (|B|2 − Ricci(N) + λ)H

or, equivalently,
k′′ = (k2 + 1

2 + 1
2 + λ)k = k3 + k(1 + λ).

Finally, taking (2.2) into account, we propose the following.

Proposition 5.2. The flat cylinder S = π−1(γ(I)) ⊂ H3 is a biminimal surface (with
respect to λ) of H3 if and only if γ is a biminimal curve (with respect to λ + 1) of R

2.

5.3. Biminimal surfaces of (SL2(R))̃

Following [1, p. 301] we identify (SL2(R))̃ with

R
3
+ = {(x, y, z) ∈ R

3 : z > 0}

endowed with the metric

ds2 =
(

dx +
dy

z

)2

+
dy2 + dz2

z2 . (5.3)

Then the projection π : (SL2(R))̃ → R
2
+ defined by (x, y, z) 
→ (y, z) is a submersion, and

if we denote, as usual, by H
2 the space R

2
+ with the hyperbolic metric (dy2+dz2)/z2, the

submersion π : (SL2(R))̃ → H
2 becomes a Riemannian submersion with minimal fibres.

The vertical space at a point p = (x, y, z) ∈ (SL2(R))̃ is Vp = ker(dπp) = span(E1) and
the horizontal space at p is Hp = span(E2, E3), where

E1 =
∂

∂x
, E2 = z

∂

∂y
− ∂

∂x
and E3 = z

∂

∂z
(5.4)

give an orthonormal frame on (SL2(R))̃ with respect to the metric (5.3). Now, given
a curve γ(t) = (y(t), z(t)) on H

2, parametrized by arc length, and the flat cylinder
S = π−1(γ(I)) in SL2(R)̃, as E1, E2 and E3 are orthonormal, the vector fields

e1 =
y′

z
E2 +

z′

z
E3 and e2 = E1 (5.5)

give an orthonormal frame tangent to S and

N = −z′

z
E2 +

y′

z
E3

is a unit normal vector field of S in (SL2(R))̃. With calculations similar to those of the
previous example, we find that, with respect to the orthonormal frame (5.5),

B =

(
k 1

2
1
2 0

)
, Ricci(N) = − 3

2 .

Thus, the following proposition holds.
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Proposition 5.3. The flat cylinder S = π−1(γ(I)) ⊂ (SL2(R))̃ is a biminimal surface
(with respect to λ) of (SL2(R))̃ if and only if γ is a biminimal curve (with respect to
λ + 1) of H

2.

Remark 5.4. These links between biminimal cylinders and biminimal curves are very
similar to those described by Pinkall [13] between Willmore Hopf tori of S

3 and elastic
curves on S

2.
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