
J. Fluid Mech. (2025), vol. 1023, A31, doi:10.1017/jfm.2025.10845

Nonlinear regime of radially spreading
extensional flows. Part 1. Newtonian fluids

Lielle Stern
1

, Hilmar Gudmundsson
2
and Roiy Sayag

1,3,4

1Department of Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University
of the Negev, Sde Boker 8499000, Israel
2Department of Geography and Environmental Sciences, Northumbria University, Newcastle NE1 8ST,
UK
3Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
4Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
Corresponding author: Lielle Stern, liellea4@gmail.com

(Received 5 March 2025; revised 10 July 2025; accepted 13 October 2025)

Ice shelves that spread into the ocean can develop rifts that can trigger iceberg calving
and enhance ocean-induced melting. Fluid mechanically, this system is analogous to
an extensionally dominated radial spreading of a non-Newtonian fluid into a relatively
inviscid and denser ambient fluid. Laboratory experiments have shown that rift patterns
can emerge when the spreading fluid is shear thinning. Linear stability analysis supports
these findings, predicting that while the instability mechanism is active in Newtonian
fluids, it is suppressed by stabilising secondary-flow cellular vortices. Here, we explore
the fully nonlinear evolution of a radially spreading Newtonian fluid, assessing whether
large-amplitude perturbations could drive an instability. We use a quasi-three-dimensional
numerical simulation that solves the full nonlinear shallow-shelf approximation, tracing
the evolving fluid front, and validate it with known axisymmetric solutions and predictions
from linear-stability theory. We find that large-amplitude perturbations induce nonlinear
effects that give rise to non-axisymmetric patterns, including cusp-like patterns along
the fluid front and complex secondary-flow eddies, which have neither been predicted
theoretically nor observed experimentally. However, despite these nonlinear effects, large-
amplitude perturbations alone are insufficient to induce rift-like patterns in Newtonian
fluids. Strain-rate peaks at the troughs of the fluid front suggest that shear-thinning fluids
may become more mobile in these regions, potentially leading to rift formation. This
coincides with the likely weakening of stabilising forces as the fluid becomes more shear-
thinning. These findings elucidate the critical role of nonlinear viscosity on the formation
of rift-like patterns, which is the focus of Part 2 of this study.
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1. Introduction
A wide range of flow phenomena involves a moving interface, where one fluid displaces
another in quasi-two-dimensional geometries. Such interfaces can become unstable to
small fluctuations, leading to the development of complex patterns. Shear-dominated
flows, such as those occurring in Hele-Shaw cells or porous media, can undergo viscous
fingering or Saffman–Taylor instabilities in which characteristic fingering patterns emerge
(Saffman & Taylor 1958; Paterson 1981). By contrast, extensionally dominated flows,
where interfacial traction is weak or absent, can give rise to tearing patterns (Sayag &
Worster 2019a,b; Sayag 2019; Ball & Balmforth 2021). These tearing patterns arise in
various natural or industrial phenomena. For example, a paste extruded axisymmetrically
between parallel disks can develop tearing patterns at the unconfined edge (e.g. Mascia
et al. 2006). On a geophysical scale, unconfined ice shelves spreading into the ocean can
form tearing patterns (Hughes 1983; Fricker et al. 2005; Rignot et al. 2013; Wearing,
Kingslake & Worster 2020) that evolve into ice rifts, which enhance ice ablation and sea-
level rise through calving and melting (Rignot et al. 2013; Walker et al. 2013; Borstad,
McGrath & Pope 2017; Lipovsky 2018).

Numerical studies of extensional flows are typically focused on modelling the large-
scale dynamics of spreading ice shelves and ice streams in Greenland or Antarctica. These
include, for example, simulating the flow of an ice stream into a shelf (MacAyeal 1989),
the evolution of an ice shelf over millennia (Wolff et al. 2025), predictions of whether a
confined ice shelf can recover following a breakup (Akesson et al. 2022) and how strongly
glaciers are buttressed by ice shelves (Greene et al. 2022; Gudmundsson et al. 2023).
While these models provide valuable insights into the evolution of specific ice shelves,
the complex geometry and multiple interacting processes that they simulate make their
results difficult to validate with laboratory experiments or theoretical analyses, which
limits the development of physical insights. Furthermore, these numerical simulations
are not designed to accurately resolve front propagation, hindering the exploration of
rift formation and evolution. Resolving rift formation may be improved through recent
advancements in numerical techniques that incorporate mechanical weaknesses in ice (e.g.
Clayton et al. 2022; Kachuck et al. 2022).

Radially symmetric flows provide more idealised configurations that are more amenable
to theoretical and experimental methods. The patterns formed in such flows vary
significantly depending on the mechanical properties of the spreading fluid. For Newtonian
fluids, experiments have shown that the advancing front remains axisymmetric (Pegler &
Worster 2012; Sayag, Pegler & Worster 2012; Pegler & Worster 2013). In these studies,
Newtonian fluids were discharged axisymmetrically into a denser, relatively inviscid
ambient fluid, resulting in a flow with two distinct regions: an inner, shear-dominated
circular region and an outer, extensionally dominated annular region. Both boundaries of
the annular region acted as free contact lines, evolving continuously while maintaining
axisymmetry. The inner contact line (grounding line) propagated along the base of the
tank, while the outer contact line (front) floated. A thin-film model of this flow predicts
similarity solutions, where the outer front advances as t1/2 at early times and transitions
to linear growth at later times (Pegler & Worster 2012).

In contrast to Newtonian fluids, strain-rate softening polymeric solutions in similar
settings develop complex tearing patterns at the spreading front (Sayag et al. 2012;
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Sayag & Worster 2019a; Ball & Balmforth 2021). When the grounding line is pinned,
these patterns consist of rectangular floating tongues separated by rifts, exhibiting k-fold
rotational symmetries, where the integer wavenumber k decreases over time (Sayag &
Worster 2019a). A linear stability analysis reveals that extensional flows of uniform
thickness become unstable for sufficiently strain-rate softening power-law fluids, while
Newtonian and other less softening fluids remain stable (Sayag & Worster 2019b). The
instability arises when a circular fluid front under azimuthal extension is perturbed
geometrically, causing localised flow convergence and outward radial pressure gradients
for positive perturbations, and divergence with inward pressure gradients for negative
perturbations. These radial forces amplify the initial perturbation amplitudes, thereby
driving the instability (Sayag & Worster 2019b; Sayag 2019). Similar tear-like patterns
emerge also in viscoplastic fluids under extensional flow in similar settings (Ball &
Balmforth 2021). Specifically, considering a Herschel–Bulkley fluid and accounting
for radial thinning during spreading, non-axisymmetric patterns can develop if the
fluid is sufficiently strain-rate softening or has a yield stress. Within a linear stability
framework, yield stress stabilises the flow at early times but amplifies the instability at
later stages.

While the process that drives the instability is independent of the nature of the fluid, to
linear order, the magnitude of the stabilising processes varies with the fluid’s rheology.
Specifically, stabilising secondary flow vortices become increasingly weaker as the fluid
becomes more strain-rate softening, resulting in the rise of instability when a certain
fluid exponent is reached (Sayag & Worster 2019b). However, it is not known whether
the nonlinearity of the flow could contribute to the breakup of symmetry and the rise of
instability in linearly stable flows, and particularly, Newtonian flows. Our aim in this work
is to examine the nonlinear regime of Newtonian extensional flows. More specifically,
we explore whether instabilities, which are suppressed in the linear stability theory for
Newtonian fluids, could be driven by large-amplitude perturbations in the nonlinear
regime and give rise to patterns reminiscent of rifts. Resolving the evolution in the
nonlinear regime and the impact of large-amplitude perturbations requires solving the full
nonlinear model numerically in two horizontal dimensions. For this, we use a quasi-three-
dimensional (quasi-3-D) numerical simulation for radially spreading extensional flows in
circular geometry, which solves the full nonlinear model for a fluid layer with non-uniform
thickness and an evolving front.

We begin by introducing the theoretical model (§ 2). Then, we describe the numerical
simulation and verify its consistency with known axisymmetric solutions (§ 3). Next, we
examine the evolution of the front and stability of the flow due to small geometrical
perturbations, which we contrast with linear stability theory, and due to large-amplitude
perturbations to explore the nonlinear regime (§ 4). Finally, we analyse the stabilising and
destabilising forces, and the potential impact of a shear-thinning rheology in the nonlinear
regime (§ 5).

2. Theoretical model
We consider a buoyancy-driven viscous flow of an annular layer of a Newtonian fluid
in the Stokes regime, where inertia is negligible (low Reynolds number). The fluid of
density ρi is released axisymmetrically and at constant flux Q from the inner boundary of
constant radius rg , and spreads under gravity into the surrounding immiscible fluid layer of
density ρw > ρi . Consequently, a fluid–fluid interface is formed whose front at radius rN
can vary with the position azimuth θ and with time t (figure 1). We assume zero friction
(free slip) along the entire fluid–fluid interface, implying that the flow of the intruding
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Plan view
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Figure 1. Diagram of the flow geometry, showing the viscous fluid (green patch) spreading into an ambient
inviscid fluid (grey patch) in plan view (an r−θ cross-section) and side view (an r−z cross-section). Gravity is
in the −z direction.

fluid is extensional. In the lubrication limit, we use the shallow-shelf approximation (SSA)
to model the stress balance in the fluid layer with negligible basal friction, as in modelling
of spreading ice shelves (Morland 1987; MacAyeal 1989; Weis, Greve & Hutter 1999).
Within the SSA, vertical shear stresses are negligible compared with horizontal shear and
normal stresses. Therefore, depth integration of Stokes momentum balance, of the fluid
layer with free top and bottom surfaces, leads to

∇(2μH∇ · u) + ∇ · (2μHE) = ρi g
′H∇H, (2.1)

where H is the fluid thickness field, u is the fluid horizontal velocity field, μ is the constant
dynamic viscosity, ∇ is the horizontal (planar) gradient operator, g′ ≡ g (1 − ρi/ρw) is the
reduced gravity with g the acceleration due to gravity and E is the symmetric strain-rate
tensor, whose components in cylindrical coordinates are

Err = ∂ur

∂r
, Erθ = 1

2

(
1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

)
, Eθθ = 1

r

(
∂uθ

∂θ
+ ur

)
, (2.2)

where ur , uθ are the radial and azimuthal velocity components, respectively. The evolution
equation for the fluid thickness, obtained by depth integration of the mass conservation
equation, is

∂ H

∂t
+ ∇ · (H u) = 0. (2.3)

We impose Dirichlet boundary conditions for the velocity and thickness at the inner
boundary

u = Q

2πrg H0
r̂, H = H0 on r = rg, (2.4)
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where H0 is constant. Along the interface between the advancing and ambient fluids,
the relatively inviscid ambient fluid applies zero tangential stress on the more viscous
advancing front, while the normal stress along the front is set by the ambient fluid
hydrostatic pressure. Therefore,

σ · n̂ = −ρwgz n̂ on rN (θ, t), (2.5)

where σ = −p I + 2μE is the full stress tensor of the viscous fluid, I is the unit tensor
and

n̂ = r̂ − r ′
N

rN
θ̂√

1 +
(

r ′
N

rN

)2
(2.6)

is the local normal to the instantaneous fluid–fluid interface, where prime represents a
partial derivative with respect to θ . The pressure distribution is obtained by integration of
the vertical component of the momentum balance, which in the SSA has the form

∂σzz

∂z
= ρi g (2.7)

between z and the top free surface s, together with the normal stress boundary condition
along the viscous fluid free surface σzz(s) = 0. This leads to

p(z) = −(τrr + τθθ ) + ρi g(s − z), (2.8)

where we used the fluid incompressibility to replace Ezz = −(Err + Eθθ ), and where
τrr, τθθ are the deviatoric stress τ = 2μE normal components in the r̂ r̂ and θ̂ θ̂ directions,
respectively, with the latter also familiar as the hoop stress (e.g. Pegler & Worster 2012).
Substituting (2.8) into (2.5) and integrating over the whole fluid thickness results in

(τrr + τθθ )n̂ + 2μE · n̂ = 1
2
ρi g

′H n̂ on rN (θ, t). (2.9)

In the numerical simulation for the above-mentioned model, the propagation of the front
rN (θ, t) is implicit. That is, the bulk flow equations are solved in the entire numerical
domain, which is larger than the domain containing the discharged volume, and the front
emerges and evolves naturally. Therefore, we do not specify any particular condition to
evolve the front (e.g. ṙ N · n̂ = u(rN ) · n̂). The dynamic condition (2.9) is imposed along
the fixed edge of the numerical domain, yet it is always satisfied to good accuracy along
the curve rN (θ) that we identify as the front. We elaborate on these numerical aspects in
§ 3.1 and in Appendix A.

3. Quasi-three-dimensional numerical simulation
We solve the SSA model described by (2.1), (2.3), (2.4), (2.9) numerically using Úa, a
finite-element flow model (Gudmundsson 2020). This computational framework includes
two horizontal spatial dimensions and a variable thickness field, and we use a linear
triangular unstructured mesh. The variational form of the governing equations is solved
using a streamline-upwind Petrov–Galerkin approach, where the weak form of the SSA
equations is integrated over each element, and the resulting system of equations is
solved for the nodal values of the velocity and pressure. The mesh can be refined using
adaptive mesh refinement strategies that increase resolution in areas of interest, such as
regions with complex stress patterns, grounding lines or regions undergoing significant
deformation. The time evolution of the fluid thickness and velocity is computed using
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Figure 2. (a) Snapshot of a part of the numerical domain, showing the inner boundary rg near the origin
(black), the outer boundary rd (black), the front of the fluid layer (blue) and the mesh configuration (grey),
with high element density in the vicinity of the front. (b) Radial distribution of the mesh spatial resolution
(inverse area of elements) at t = 6, 15, 24 (solid) and the corresponding positions of the fluid fronts (dash).
(c) Radial distribution of the normalised fluid thickness at t = 4, 22 (solid turquoise, left axis) and the
simultaneous time derivative of the thickness (solid grey, right axis) used to identify the instantaneous position
of the fluid front (dashed, light blue).

an implicit time-stepping scheme. This approach ensures numerical stability, especially
when solving nonlinear systems. The implicit scheme solves for the velocity and thickness
at the next time step simultaneously, ensuring a consistent coupling between the two fields.
Specifically, the time-stepping is based on a Crank–Nicholson method. At each time step,
a nonlinear system of equations is formed due to the dependence of viscosity on the strain
rate. This system is solved iteratively using a Newton–Raphson method, with convergence
criteria based on the equation residual. The computational domain we use (figure 2) is
in the range rg � r � rd and 0 � θ � 2π , where rg = 1.5 cm and rd = 30 cm. We set the
depth of the ambient fluid to 100 cm uniformly throughout the domain, which is deep
enough to ensure flotation of the viscous fluid over the ambient fluid with free bottom
and top surfaces. The ambient fluid is essentially inviscid, having kinematic viscosity of
10−4ν, where ν � 500 cm2 s−1 is the kinematic viscosity of the viscous fluid, which results
in an extensionally dominated flow. Each simulation is initiated with a specified fluid–fluid
interface at rg < rN (t = 0, θ) � rd , where the initial thickness distribution of the viscous
fluid

H(t = 0, r, θ) =
{

H0, rg � r � rN ,

10−4 H0, rN < r � rd ,
(3.1)

fills the entire domain. Assuming that H �= 0 everywhere at any time, we solve the
equations on the entire domain without explicitly treating the front as a fluid interface.
On the inner boundary, we specify constant thickness and flux of the viscous fluid, (2.4).
The dynamic boundary conditions (2.9) are satisfied by construction of the numerical
scheme on the outer boundary of the numerical domain, rd . This implies that no boundary
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conditions are explicitly imposed on the fluid–fluid interface rN , which evolves in the
interior of the computational domain. This inconsistency is merely apparent because the
space between the actual fluid front and the computational boundaries contains a film of
fluid that is 104 times thinner, (3.1). Consequently, the impact of the dynamic boundary
conditions imposed on the computational boundaries is communicated through the thin
film with negligible modification. We verify this by finding no significant difference
between simulations with identical initial conditions, but with various numerical domain
geometries and sizes, as well as variable thin-film thicknesses. Moreover, we evaluate the
explicit stress field at the moving fluid front and find that it satisfies the dynamic conditions
(2.9) with negligible discrepancy (Appendix A).

We use an adaptive mesh that can be spatially non-uniform, keeping high resolution
at the vicinity of the moving front (figure 2a,b). The mesh is generated with linear
triangulation, based on the Mesh2D, with the Delfront structure (Engwirda 2014). A
typical simulation consists of ∼104 nodes and elements initially, and grows up to ∼106

elements.

3.1. Resolving the evolving fluid front
Exploring the evolution of the fluid front, and particularly its potential to become unstable
and develop complex patterns, requires an ability to trace it accurately. We accomplish this
by defining the fluid front at each instant as the curve where the fluid thickness exhibits
the largest rate of growth (figure 2c). This definition coincides with the curve where the
instantaneous magnitude of the horizontal flux divergence ∇ · (H u) is maximal, (2.3). We
expect that this maximum coincides with the front position, since both the fluid thickness
and the flow normal to the front are finite, yet vary abruptly at the front, implying that both
u · ∇H and H∇ · u become very large at the front. The capacity to accurately capture
the position of the fluid front depends crucially on the spatial resolution. Particularly, low
spatial resolution can lead to substantial smearing of the fluid front, thereby introducing
greater discrepancy in the instantaneous position of the interface and consequently in its
future evolution. To determine the necessary mesh resolution needed to accurately resolve
the front, we increased the spatial resolution gradually until the front shape and position
became insensitive to the mesh resolution. We chose to use a non-uniform mesh, consisting
of lower spatial resolution away from the front and 3–4 orders of magnitude higher spatial
resolution in the vicinity of the front (figure 2b), to optimise the use of our computational
resource. Maintaining such a mesh distribution requires a continuous tracing of the fluid
front and simultaneous re-meshing of the domain such that the front remains at the centre
of the high-resolution mesh regime (figure 2b).

3.2. Validation with axisymmetric solutions
To validate our quasi-3-D numerical scheme and evaluate its accuracy, we examine its
performance with respect to known axisymmetric solutions. In particular, we consider a
Newtonian fluid layer that spreads axisymetrically from a vertical line source at the origin
(rg → 0) over a denser, inviscid fluid. This system is described by the axisymmetric form
of (2.1), (2.3), which have the dimensionless form

∂

∂r

[
H

(
2
∂u

∂r
+ u

r

)]
+ H

∂

∂r

(u

r

)
= H

2
∂ H

∂r
, (3.2)

∂ H

∂t
+ 1

r

∂

∂r
(r Hu) = 0, (3.3)
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together with the boundary conditions (2.4), (2.5),

ru = 1, H = 1 on r → 0, (3.4)

2
∂u

∂r
+ u

r
= H

4
on r = rN , (3.5)

in which r, t, H and u were respectively non-dimensionalised by

R, T, H0 and R/T, (3.6)

where the natural time and horizontal length scales are

T ≡ ν

g′H0
, R ≡

(
νQ

2πg′H2
0

)1/2

. (3.7)

Such flow exhibits self-similar and steady-state solutions (Pegler & Worster 2012) that
we describe briefly here. In the early stage of the flow (rN � 1), the impact of buoyancy
forces is substantially weaker compared with viscous forces. Neglecting buoyancy, the
flow admits a similarity solution of the form

η ≡ t−1/2r, H ≡ f (η), u ≡ t−1/2s(η), (3.8)

where η is the early-time similarity coordinate, f (η) and s(η) are respectively the self-
similar thickness and radial velocity. This form of solution implies that the early-time
evolution of the front position is rN ∝ t1/2 (Pegler & Worster 2012).

At steady state, the axisymmetric SSA model (3.2) takes the form

−HH′′ + (
H ′)2 + HH′

2r
= 1

4
r H3 H ′, (3.9a)

ruH = 1, (3.9b)

where prime denotes a derivative with respect to r . The solution for the steady-state
thickness far from the origin

H ∼
√

6
r

(3.10)

describes the envelope that bounds the transient unsteady thickness solutions (Pegler &
Worster 2012).

In the late stage of the flow, buoyancy forces become of the same order as viscous forces,
leading to a different similarity solution of the form

ξ ≡ t−1r, H ≡ t−1 f (ξ), u ≡ u(ξ), (3.11)

where ξ is the similarity coordinate, and f (ξ) and u(ξ) are respectively the dimensionless
thickness and radial-velocity solutions in the similarity space. This form of solution
implies that the late-time evolution of the front position is rN ∝ t (Pegler & Worster 2012).

To compare these theoretical axisymmetric solutions with our quasi-3-D simulation, we
initiate the simulation with an axisymmetric ring of inner radius rg , uniform thickness
H0 and radial width δ0 (figure 3a). We find that the resulted flow, including the velocity
and thickness fields and the front pattern, evolves highly axisymetrically (figure 3b,c).
Averaging the simulation results over θ , we compare the radial distribution of each field
with the axisymmetric prediction and find good agreement between them for both the
steady and similarity solutions (figure 4).
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Figure 3. Simulation results for an axisymmetric initial condition (base state), showing snapshots of the fluid
velocity (arrows) and thickness (colour) distribution at times t = 0, 25, 50. (a) Initial condition consisting of
an axisymmetric ring of uniform thickness H0 and radial width δ0 = 0.3, and a slim fluid layer of thickness
10−4 H0 (pale colour) that fills the rest of the numerical domain between rN = rg(1 + δ0) and rd = 20rg . (b,c)
Thickness, velocity and fluid front remaining axisymmetric throughout the evolution.

We note that in the axisymmetric model, the inner boundary is specified at the origin
rg = 0 to represent a line source, while in our simulation, the source is cylindrical with
finite radius rg > 0. This difference leads to the discrepancy in the vicinity of the origin in
the thickness and in the early-time evolution of the front (figure 4a,c). However, the details
near the origin have no impact on the late-time evolution of the flow, which is consistent
with the late-time similarity solution of the axisymmetric model and with the steady-state
envelope towards which the late-time similarity solution converges (figure 4a,c).

Another feature to note is the small kinks that form in each front at z = 0 (figure 4a,b).
These kinks are artefacts of the numerical method that we use, in which the viscous
fluid fills the entire numerical domain. That is, the thickness of the viscous fluid varies
smoothly from ∼H0 in the shelf region to an order of 10−4 H0 in the no-shelf region.
Consequently, the free surfaces at the top and the base of the viscous fluid layer change
continuously from the thick shelf region, across the shelf front, to the thin film at the no-
shelf region, where they are significantly closer to sea level z = 0. Therefore, looking at the
vertical cross-section of the viscous fluid, which consists of its top and base free surfaces
(figure 4a,b), the viscous film at the no-shelf region appears as a thread of fluid emerging
from the shelf front through a kink at sea level. Larger kinks in the late-time profiles are
due to coarser spatial resolution chosen to sustain computationally long-time simulations
and thereby resolve long shelves that approach the self-similar asymptotic profile. Due
to limited computational resources, we restricted the domain size to rd = 20 rg at most,
which appears insufficient to reach a late-enough time when a complete convergence
to the similarity solution can be observed for the thickness and velocity. Nevertheless,
their trends appear to be on the path of convergence to the late-time similarity solution
(figure 4b,d).

Our quasi-3-D simulations have demonstrated consistency with the predicted
axisymmetric solutions for a range of dimensional parameters, including viscosity,
flux, inner boundary radius and thickness. Moreover, our quasi-3-D results demonstrate
axisymmetric patterns consistently with the predicted solutions and throughout the
entire evolution, even though it is not constrained to evolve axisymmetrically (figure 3).

1023 A31-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
84

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10845


L. Stern, H. Gudmundsson and R. Sayag

(a) (b)

(c) (d )

0.2

0

–0.2

–0.4

–0.6

–0.8

0
0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

1

2

3

z

5

0

–5

–10

–15

tz

r

u

50 10

3-D simulation

3-D simulation

Axisymmetric early-time

Axisymmetric late-time

Steady axisymmetric

15

r/t
0.20 0.4

Time

Time

0.6

r/tIn(t)

In
(r

N
)

0.20.1–1 0 1 2 3 4 0.3 0.4

rN = 1.71t1/2

rN = 0.43t

Figure 4. Validation of the quasi-3-D simulation with axisymmetric solutions. (a) Radial cross-section of the
evolving fluid layer, showing results of the quasi-3-D simulation (solid, green) at t = 1, 10, 20, 30, compared
with the axisymmetric solutions at early time (dash-dotted, red), with axisymmetric solutions at late times
(dashed, orange) and with the steady-state solution (dashed, blue). The horizontal line (solid, dark) represents
sea level. (b) Simulation results at t = 20, 30, 40, 53 (solid, green) mapped to the similarity space, showing
convergence towards the late-time similarity solution (solid, black). (c) Simulation results of the evolution of the
fluid front rN (solid) compared with the theoretically predicted similarity solutions at early time (dash-dotted,
red) and late time (dashed, orange). (d) Simulation results of the radial velocity at t = 20, 30, 40, 53 (solid,
green) mapped to the similarity space, showing the process of convergence towards the late-time similarity
solution (solid, black).

Therefore, these results enhance the confidence in our numerical scheme and particularly
in its capacity to accurately resolve the evolution of the leading front.

4. Flow evolution and stability under geometric perturbations
Having validated the performance of the numerical scheme with axisymmetric solutions,
we now investigate the evolution of the flow following geometric perturbations of the front.
In particular, we explore the stability of the flow, and the evolving patterns of the front and
in the secondary flow.
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Figure 5. Perturbation parameters of the quasi-3-D numerical simulations that we performed, represented
(a) in a table form and (b) in the k0−A0 space, where each shape represents a different δ0.

4.1. Perturbing the axisymmetric base state
We consider the axisymmetric solution presented in § 3.2 as the base-state solution and
perturb it by adding a harmonic pattern to the axisymmetric front. Normalising the radius
of the perturbed front by rg , it has the dimensionless form

rN (θ, t = 0) = 1 + δ0 + A0 cos(k0θ), (4.1)

where δ0 is the dimensionless radial width of the initial (base-state) annular fluid layer, k0
is the perturbation azimuthal wavenumber and A0 = a0δ0 is the perturbation amplitude,
which is a fraction a0 of δ0. We performed several simulations for a range of δ0, k0
and A0 that are 10 % to 75 % of δ0 (figure 5). We traced the resulted thickness and
flow distributions and the front shape (figure 6), and compared them with the patterns
of the corresponding axisymmetric base-state. In all the simulations, we considered a
Newtonian fluid injected through the inner boundary at rg = 1.5 cm, with constant mass
flux Q = 6.4 cm3 s−1 and with initial uniform thickness H0 = 2 cm.

4.2. Evolution of the perturbation amplitude and volume
A common feature among all simulations is that perturbations do not grow, though the
k0-fold rotational symmetry of the initial perturbation persists over time. In particular, two
major evolution patterns emerge. When the perturbation amplitude and wavenumber are
relatively small, the amplitude declines relatively fast (figure 6a), whereas a perturbation
with relatively large amplitude and wavenumber relaxes more slowly, and evolves into a
pattern with pointy edges having a k0-fold symmetry (figure 6b).

We evaluate the evolution of the perturbation amplitude through the the ratio a(t) =
A(t)/δ(t), where the instantaneous amplitude A(t) is the average radial distance between
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Figure 6. Plan-view snapshots of the fluid thickness field (colour) at dimensionless times (left to right)
t = 0, 10, 20 of two simulations with initially perturbed fronts, having perturbation amplitudes and
wavenumbers (a) A0 = δ0/10, k0 = 5, and (b) A0 = δ0/2, k0 = 14.

troughs and crests of the fluid front, and δ(t) is the instantaneous width of a reference
base-state simulation. We find that a(t) declines in a power-law form

a(t) ∝ (t/Tp)
−7/10 (4.2)

in all simulations (figure 7a), where

Tp ≡ 2πr2
g H0 A0(1 + δ0)

Q
(4.3)

is a time scale representing the ratio of the volume of a ring of fluid having a radius of the
initial base-state front rN (0) and a width of the perturbation amplitude A0, to the flux Q.
This decline implies that the perturbations relax and that the simulated flows are stable.

The relative amplitude of the perturbation a(t) reflects only part of the perturbation
evolution because it does not account for variations in the fluid thickness. A more
indicative quantity for the evolution of the perturbation is the fluid volume in a perturbation
crest, given by

Vcrests(t) =
∫

θcrests

∫ rN (θ,t)

1+δ(t)
H(r, θ, t) r dr dθ, (4.4)

compared with the fluid volume of the corresponding base state V (t). We find that

Vcrests

V
∝ (t/Tp)

−8/10 (4.5)
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Figure 7. Evolution of (a) the perturbation relative amplitude a = A/δ, and of (b) the volume ratio Vcrest/V ,
showing power-law relaxation of the front perturbations. Regression analyses of the power-law relaxation
intervals (black, dashed) yield the exponents −7/10 and −8/10 for the relative amplitude and volume ratio,
respectively.

in all simulations (figure 7b), which reinforces that the fluid front is stable and implies
that the relaxation of the perturbation is faster when accounting also for the thickness
variations.

4.3. Evolution of the kinetic energy
Although the amplitude and volume perturbations in the front region diminish over time
(§ 4.2), a more thorough stability analysis should account for the evolution of perturbations
in the entire fluid volume. This can be achieved by examining the evolution of the total
kinetic energy Ek(t), given by

Ek(t) = ρi

2

∫ 2π

0

∫ rN (θ,t)

rg

u2(θ, r, t)H(r, θ, t) r dr dθ, (4.6)

compared with the simultaneous base-state kinetic energy Eb
k (t), which has the same form

as definition (4.6) only with the base-state quantities. Though Eb
k (t) grows in time, as

more energy is pumped into the system through the entry flux Q than dissipated through
viscous deformation, we expect that if limt→∞ Ek(t)/Eb

k (t) = 1, then perturbations decay
and the flow is stable. Indeed, computing the ratio Ek(t)/Eb

k (t), we find that it converges
towards 1 for each simulation shown in figure 5, including in particular simulations with
large perturbation amplitudes (figure 8). This implies that the energy of the perturbations
decays over time in the entire fluid volume, reinforcing more substantially that the flow is
globally stable.

4.4. Generation of super- and sub-harmonics
Even though the flow remains stable independently of the perturbation amplitude and
wavenumber, the perturbed front can develop non-axisymmetric patterns. The resulted
patterns vary with the perturbation amplitude and wavenumber through the emergence of
super- and sub-harmonics of the fundamental perturbation mode, which we investigate by
analysing the power spectrum of the evolving fluid front (figure 9).
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(figure 5), indicating global stability.
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Figure 9. (a) Front shape of a simulation with a perturbation wavenumber k0 = 9 and amplitude A0 = δ/2
at times t = 0, 15, 75, and (b) the corresponding power spectrum at each instant normalised by the global
maximum over the entire simulation time.

Each perturbation consists of a single mode k0, which dominates the initial evolution of
the front. As time progresses, additional harmonics of k0 gradually emerge. This includes
super-harmonics of the mode k0 (integer multiplications of k0), whose number at any
given time grows with k0 A0, while their relative power diminishes monotonically with the
wavenumber (figures 10 and 11a). Consequently, as time progresses, the initial sinusoidal
pattern of the front sharpens with k0 A0, forming cusp-like patterns while maintaining the
initial k0-fold rotational symmetry (e.g. figure 9a). This implies that although the power
of each super-harmonic grows with time, that of the initial mode remains sufficiently
dominant throughout the evolution in determining the leading order shape of the front.
The emergence of cusp-like patterns when large-amplitude perturbations are introduced
could be a consequence of the SSA equations becoming hyperbolic. Specifically, the SSA
force balance is elliptic in the velocity, while the thickness evolution equation is parabolic
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Figure 10. Evolution of the instantaneous power spectrum of the front shape, for simulations with varying
perturbation wavenumbers and perturbation amplitude (specific values for each panel (bottom-left to top-right)
are: k0 = 4, 4, 5, 8, 8, 9, 18, 18, 18 and A0 = 0.04, 0.1, 0.15, 0.05, 0.1, 0.15, 0.04, 0.075, 0.15). Wavenumbers
are normalised by k0 and the power spectrum amplitude is normalised by the global maximal amplitude.

in the thickness. The large spatial gradients introduced by a large-amplitude perturbation
may modify this normally elliptic–parabolic system, making it partially or fully
hyperbolic, consequently admitting solutions with discontinuities in the derivatives such
as cusps.

On a longer time scale (dimensionless time greater than 300), we observe the generation
of sub-harmonics of the perturbation wavenumber k0 (figure 10, left column). The power
of these sub-harmonics grows in time faster than that of the fundamental mode and its
super-harmonics (figure 11b), which suggests that over time, the k0-fold pattern of the
front may undergo coarsening into a lower k-fold symmetry. Our present simulations do
not reach the stage when coarsening becomes observable, though such coarsening occurs
experimentally in similar flows with strain-rate softening fluids (Sayag & Worster 2019a),
and was implied theoretically, though inconsistently, in linear stability analysis (Sayag &
Worster 2019b).

1023 A31-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
84

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10845


L. Stern, H. Gudmundsson and R. Sayag

t/TpA0k0

k0 = 4, A0 = 0.04

70060050040030020010003.02.52.01.51.00.50

8

7

6

5

4

S
u
p
er

 h
ar

m
o
n
ic

s

3

2

1

Pk

1.2

1.0

0.8

0.6

0.4

0.2

k/k0

0.3
1
2

(a) (b)

Figure 11. (a) Number of super-harmonics at t = 50, 100, 200 (marker’s size grows with time) as a function of
perturbation parameters A0k0. (b) Power spectrum evolution of a simulation with A0 = 0.04, k0 = 4 showing
the faster growth of a sub-harmonic mode (k/k0 = 0.3) compared with the fundamental (k/k0 = 1) and the
first super-harmonic (k/k0 = 2) modes.

4.5. The secondary flow field
The persistence of a k0-fold rotational symmetry of the front pattern suggests that the
secondary flow has a similar symmetry. In the case of a uniform fluid thickness (Sayag &
Worster 2019b), the secondary flow, u1, derived by a linear perturbation analysis, has
a k0-fold symmetry consisting of two types of streamline patterns, whose dominance
depends on K (t) ≡ k0δ(t) (figure 12a). The dominating pattern at early time (lower K
values) consists of open streamlines that are primarily azimuthal, diverging from the
centres of frontal troughs and converging towards frontal crests (figure 12a, K = 1). As
time progresses, δ grows and a vortex pattern emerges near the inner boundary, having a
similar k0-fold symmetry as the early-time pattern, with their centres along the boundaries
between frontal crests and troughs (figure 12a, K = 2.5). At later times (higher K values),
the vortex pattern dominates the flow, while maintaining the same k0-fold symmetry
(figure 12a, K = 7). This vortex expansion reduces the perturbation outflow near the front
crests and inflow near the front troughs, thereby enhancing the stability of the flow (Sayag
& Worster 2019b). The corresponding perturbation vorticity ∇ × u1 is more intense at the
front near the trough–crest boundaries and it also has a k0-fold symmetry in phase with
the streamline pattern (figure 12a).

Even though the simulations we consider involve non-uniform fluid thickness, we find
similarities in the secondary flow with the linearised uniform-thickness theory. For the
simulations, we define the secondary flow as the difference between the full field and the
base flow:

uII ≡ u − ub, (4.7)

and examine the resulted streamline and vorticity patterns at relatively low and high
perturbation amplitudes.

To compare the secondary flow fields with the linear theory, we considered the
simulation with the same k0 and with relatively small perturbation amplitude of a0 = 10 %
(A0k0 = 0.09), at times corresponding to K = 1, 2.5 and 7 (figure 12b). To leading order,
we find a remarkable qualitative agreement between the linear theory of uniform sheet
thickness and the fully nonlinear secondary flow in the simulation, particularly at large
K values (figure 12, K = 7 column). Similar to the linear case, vortices emerge from the
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Figure 12. Comparison of the secondary flow streamline and vorticity (colour) patterns between the linear
perturbation field u1 of the uniform-thickness theory (a) calculated analytically (Sayag & Worster 2019b), and
the simulation secondary flow uII of a non-uniform fluid thickness (b). All panels have k0 = 3 and the same
colour scale, and columns correspond to K = 1, 2.5 and 7. The perturbation amplitude used in the simulation
is A0k0 = 0.09 and a0 = 10 %.

inner boundary and gradually dominate the flow field as K (and therefore time) grows.
This similarity includes both the front rotational symmetry and the flow orientation.
Discrepancies between the two fields are more apparent at early time (figure 12, K = 1
column), where a streamline pattern similar to the early-time pattern of the linearised
uniform-thickness theory appears to occupy only a thin margin close to the fluid front.
In addition, the vortex pattern seems to emerge and dominate the flow earlier than in
the linear calculation (figure 12, K = 1, 2.5). Though a full vortex is not clearly visual
in those snapshots, we believe that this is a graphical artefact, as in fact the secondary
velocities uII are identically zero along the inner boundary (r = 1). The vorticity field
∇ × uII in the simulation also appears consistent with the linear prediction, to leading
order. Consequently, we find that the linear analysis of a uniform-thickness layer (Sayag &
Worster 2019b) predicts surprisingly well the leading order of the full secondary flow of
the simulations with non-uniform thickness.

Increasing the perturbation amplitude, new patterns emerge in the secondary flow that
are not predicted by the linearised uniform-thickness theory. Specifically, at low A0k0,
a k0-fold pattern of vortices fills the entire space between the inner boundary and the
front, and the intensity of those vortices declines with time (figure 13a). However, as
the magnitude of A0k0 grows, the vortex structure in the inner region collapses and
streamlines becomes more distorted and random, even though a k0-fold vortex pattern
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Figure 13. Secondary-flow streamline and vorticity (colour) fields of the simulation, showing (a) an early
(left) versus a late (right) instant of a low amplitude simulation (A0k0 = 0.09), and (b) a medium amplitude
simulation (A0k0 = 0.36, left) versus a higher amplitude simulation (A0k0 = 1.35, right), at nearly the same
instant and having the same wavenumber k0 = 9. Vorticity signature corresponds to clockwise and counter-
clockwise flows (blue and red colour, respectively).

is still maintained in a smaller annular region adjacent to the front (figure 13b). The
corresponding vorticity also grows quite dramatically with A0k0 (figure 13b).

5. Physical mechanism and the likelihood of instability
The successful prediction of the secondary flow in a fluid layer of non-uniform thickness
by the linear theory for uniform thickness (figure 12) suggests that the stability mechanism
predicted by that theory may also apply to the non-uniform flow in the simulations,
particularly when the nonlinearity k0 A0 is weak. The linear stability theory for the case of
uniform thickness (Sayag & Worster 2019b) considers a power-law fluid having viscosity
field of the form

μ ∝ E1/n−1
II , (5.1)

where EII = √
E : E is the second invariant of the rate-of-strain tensor, and the exponent

n represents a Newtonian fluid (n = 1) and shear-thinning or -thickening fluids (n > 1 or
n < 1, respectively). In that model, the perturbation radial force

−∂p1

∂r
= −1

r

∂τ1rθ

∂θ
−
(

∂τ1rr

∂r
+ τ1rr − τ1θθ

r

)
, (5.2)

where p1 is the perturbation pressure field and the subscript 1 denotes a perturbation or
secondary flow field, provides insights into the forces that stabilise or destabilise the front
and to the potential impact of non-Newtonian rheology on rift formation.

The radial force due to the shear-stress divergence (first term on the right-hand side
of (5.2)) enhances the perturbation radial force −∂p1/∂r at the front, making it positive
along perturbation crests and negative along perturbation troughs. This is evident when
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expressing that term using the boundary condition of no tangential stress along the base-
flow front R0

τ1rθ = 2τ0θθ

R0

∂ R1

∂θ
on R0, (5.3)

where R1(θ) ∝ eikθ is the perturbation amplitude of the front, to get

−1
r

∂τ1rθ

∂θ
= −2τ0θθ

R2
0

∂2 R1

∂θ2 = 2k2

R2
0

τ0θθ R1 = 4k2

R4
0

R1 on R0, (5.4)

since the base-flow hoop stress τ0θθ = 2μ0 E0θθ = 2/R2
0 is extensional (subscript 0 denotes

a base-flow quantity). Consequently, the perturbation radial force grows proportionally to
R1(θ) due to this term, which drives the instability.

The radial force due to the normal-stress divergence (second term on the right-hand
side of (5.2)) acts to attenuate the perturbation along the front. To see that, we substitute
τθθ = −τrr, due to incompressibility in this approximation, which implies that

−
(

∂τ1rr

∂r
+ τ1rr − τ1θθ

r

)
= −

(
∂τ1rr

∂r
+ 2τ1rr

r

)
= −1

n

(
∂

∂r
(2μ0 E1rr) + 4μ0 E1rr

r

)
.

(5.5)

In the Newtonian limit n = 1, the base-state viscosity is the constant μ0 = 1 and the
perturbation problem has an exact closed-form solution (Sayag & Worster 2019b), which
suggests (Appendix B) that to leading order the normal-stress divergence equals to

−
(

∂τ1rr

∂r
+ 2τ1rr

r

)
≈ −∂τ1rr

∂r
≈ −8k2

R4
0

R1 on R0, (5.6)

which grows proportionally to −R1(θ) and, consequently, stabilises the perturbation radial
force.

Combining (5.4) and (5.6) into (5.2), we find that for a Newtonian fluid,

−∂p1

∂r
≈ −4k2

R4
0

R1 (5.7)

to leading order, making Newtonian flows stable regardless of k and R0. The decline of the
perturbation pressure gradient with the base-state radius R0 suggests that the destabilising
force gradually becomes comparable to the stabilising force as time progresses (R0 =√

1 + 2t). This implies that the flow may become marginally stable at late time. We
find this approximation consistent with the exact theoretical predictions in the uniform
thickness limit (figure 14).

The theoretical solutions based on linear-stability analysis (Sayag & Worster 2019b)
provide a good prediction for the simulation results in the nonlinear regime when the
perturbation amplitude is low. In particular, the perturbation pressure gradient in the
simulations is stabilising along the advancing front and its magnitude declines as time
progresses towards neutral stability (e.g. A0k0 = 0.09, 0.21, figure 14). This consistency
arises despite the varying fluid thickness in the simulation, while it is assumed uniform
in the theoretical calculation. Moreover, the role of the stabilising and destabilising
contributions to the perturbation radial force −dp1/dr at the front, as described in
(5.4), (5.6) and (5.2), persists into the interior of the fluid layer (figure 15). Specifically,
the pattern of the radial force due to the shear-stress divergence is proportional to the
perturbation pattern R1 (figure 15a) and opposite to the contribution of the normal
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Figure 14. Perturbation radial force −dp1/dr at the front (normalised by k2
0) variation with R0 and k0 –

linear-stability theory versus simulation. Exact theoretical predictions shown for base-state radius 1 � R0 � 20
and perturbation wavenumbers k0 = 2, 4, 8, 20, 40 (solid, coloured), and the approximated theoretical value
by (5.7) (dashed, black). Simulation were initialised with δ0 = 0.3, a = 10 % and k0 = 3 (A0k0 = 0.09, blue
marker) and k0 = 7 (A0k0 = 0.21, green marker).

–(1/r) (∂τ1rθ/∂θ) –((∂τ1rr/∂r) + (2τ1rr/r)) –∂p1/∂r EII

S
im

u
la

ti
o
n

T
h
eo

ry

0.5

0.4

0.3

0.2

0.1

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.5

0.4

0.3

0.2

0.1

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.05

0.04

0.03

0.02

0.01

–0.05

–0.04

–0.03

–0.02

–0.01

0

0.05

0.04

0.03

0.02

0.01

–0.05

–0.04

–0.03

–0.02

–0.01

0

(a) (b) (c) (d)

Figure 15. Simulation results of low perturbation amplitude (top row) compared with theoretical predictions
(bottom row), showing the secondary (perturbation) fields of the (a) destabilising and (b) stabilising
components of the radial force, (c) total radial force, and (d) of the second invariant of the strain-rate tensor.
The magnitude of each field is shown in colour and the geometrical perturbation of the fronts in solid black.
The simulation parameters are δ0 = 0.3, a0 = 10 %, k0 = 7 and A0k0 = 0.21.

stress divergence (figure 15b). The latter is dominant in magnitude, making the total
perturbation radial force proportional to −R1 (figure 15c), which stabilises the flow. The
qualitative impact of the destabilising and stabilising contributions on the radial force
remains consistent with the theoretical predictions even for relatively large perturbation
amplitudes (e.g. A0k0 = 1.35, figure 16, top row), with correspondingly larger magnitudes.
In particular, compared with a low perturbation simulation A0k0 = 0.21 having the same
base state (figure 16, bottom row), the full field pressure gradient becomes weaker when
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Figure 16. Simulation results of high perturbation amplitude a0 = 50 % (top), along with lower perturbation
amplitude a0 = 10 % (bottom), showing the full fields of the (a) destabilising and (b) stabilising components of
the radial force, (c) total radial force, and (d) the second invariant of the strain-rate tensor at the same time. The
magnitude of each field is shown in colour and the geometrical perturbation of the fronts in solid black. The
simulation parameters are δ0 = 0.3, a0 = 50 %, k0 = 9 and A0k0 = 1.35 (top), and δ0 = 0.3, a0 = 10 %, k0 = 7
and A0k0 = 0.21 (bottom).

the perturbation amplitude is smaller. This implies that the stabilising force dominates
under large-amplitude perturbation, while it is more closely balanced by the destabilising
force at lower amplitude perturbations. Therefore, stronger nonlinearity tends to make the
radial force more stabilising.

An insight into the possible emergence of instability and the formation of rifts is
provided by the second invariant of the strain rate tensor EII (figures 15d and 16d).
Specifically, in both low and high perturbation amplitudes, the strain-rate second invariant
is larger at perturbation troughs than at perturbation crests. Though insignificant for
Newtonian fluids, this pattern suggests that shear-thinning fluids (n > 1) may have a
smaller viscosity inside troughs and larger viscosity along crests (5.1). In addition, the
effective stress, which is proportional to E1/n

II , is larger in troughs than it is in crests,
particularly under large perturbations (figure 16d). This combination of more mobile fluid
together with larger stress field inside troughs increases the likelihood of rift formation in
shear-thinning fluids. Moreover, the stabilising contribution to the radial force (5.5) would
potentially become weaker as the fluid exponent n gets larger (i.e. becoming more shear
thinning) due to the decline of the 1/n coefficient on one hand and the bounded stress
field in that limit on the other. This weakening may result in the stabilising contribution
becoming less dominant as n grows and possibly smaller than the destabilising shear-
stress divergence. Consequently, we expect that shear-thinning fluids having sufficiently
large n > 1 would develop radial force −dp1/dr ∝ R1 that would drive an instability and,
potentially, the development of rifts.

6. Conclusions
Though there is no experimental evidence for instability of Newtonian flows spreading
in circular geometry under frictionless conditions, predictions made by linear-stability
analysis (Sayag & Worster 2019b) suggest that the instability mechanism is active in
such flows, only suppressed by stabilising processes. Therefore, our exploration here
addresses the possibility that large-amplitude perturbations may lead to nonlinear effects
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that would drive an instability. We use a quasi-3-D numerical simulation of the shallow-
shelf equations with non-uniform fluid thickness and an evolving fluid font, which we
validate with theoretical predictions of an axisymmetric model. Thereafter, our exploration
focuses on the evolution of non-axisymmetric initial conditions of harmonic structure and
varying amplitude. In particular, we evaluate the stability of the flow and the evolving
patterns, and explore the nonlinear effects on the physical mechanism.

Surprisingly, we find that such flows can be non-axisymmetric, even though they
are globally stable, as indicated by the global kinetic energy. In particular, we reveal
the emergence of cusp-like patterns in the fluid front and complex secondary flow
patterns. The emerging patterns depend on the magnitude of the nonlinearity, described
by the dimensionless quantity A0k0. Specifically, when A0k0 is relatively small, the
perturbations relax relatively fast in dimensionless time and the resulted patterns are
similar to predictions made by linear stability analysis on similar flows with uniform
thickness. These patterns include laminar eddies in the secondary flow and coarsening of
the front shape through the growth of sub-harmonics. As the nonlinearity A0k0 grows, the
resulted patterns are strongly modified through the growth of cusps along the front, having
k0-fold rotational symmetry. The secondary flow in the large-amplitude regime involves
intense and distorted eddies along the front, while the interior flow consists of disordered
streamlines. Though there is no experimental evidence for non-axisymmetric patterns in
extensional flows of Newtonian fluids, our numerical prediction of the emergence of cusp-
like patterns may motivate conducting such experiments with fixed grounding lines and
with large-amplitude disturbances induced at the front.

Despite the new non-axisymmetric patterns in the nonlinear flow regime, large-
amplitude perturbations are insufficient to give rise to rift-like patterns in Newtonian
fluids. Consistently with linear stability theory, our analysis demonstrates that stability
persists primarily by the radial force due to normal-stress divergence, which dominates
over the destabilising radial force due to shear-stress divergence. We expect the stabilising
force to decline the more shear thinning the fluid is, thereby facilitating the emergence
of instabilities and the likelihood of rift formation. This argument is strengthened by the
distribution of the strain-rate and stress invariants, which suggest that a shear-thinning fluid
could be more mobile and have a more intense stress field in frontal troughs than in frontal
crests. This implies that the formation of ice rifts may strongly depend on the nonlinear
rheology of ice. In Part 2 of this study, we focus on the impact of the fluid nonlinearity on
the flow stability in the nonlinear regime, and on the formation and evolution of rift-like
patterns.
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Appendix A. Dynamic conditions along the moving fluid front
The dynamical boundary conditions (2.9) are imposed on the boundaries of the numerical
domain. To explore how accurately these conditions are satisfied along the fluid front, we
estimate the stress field along the resolved fluid front of a base-state simulation. Due to
the perfectly circular front evolution rN = rN (t), the stress balance along it should satisfy
(2.9),
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Figure 17. Histograms and Gaussian fit of the normalised (a) tangential stress condition (A1b) and (b) normal
stress condition (A1a) along the fluid front.

2τrr + τθθ = 1
2
ρi g

′H, (A1a)

τrθ = 0. (A1b)

We find that the mean of the simulation tangential and normal stress conditions at rN
are in a good agreement with the conditions (A1), with rather small standard deviation
(figure 17). Therefore, even though the boundary conditions are not explicitly imposed on
the fluid front, they are transmitted in good accuracy to the fluid front regardless the shape
and distance of the computational boundary.

Appendix B. Analytic solution from linear stability analysis of a Newtonian fluid
In the Newtonian limit (n = 1), the governing equations for the perturbations resulting
from linear stability analysis (Sayag & Worster 2019b) are

2
∂ E1rr

∂r
+ 4

r
E1rr + 2

r

∂ E1rθ

∂θ
= ∂p1

∂r
, (B1a)

2
r

∂ E1θθ

∂θ
+ 4

r
E1rθ + 2

∂ E1rθ

∂r
= 1

r

∂p1

∂θ
, (B1b)

E1rr + E1θθ = 0, (B1c)

representing respectively the force balance in the radial (5.2) and azimuthal directions,
and continuity. In those equations, we substituted the base-state viscosity μ0 = 1 and the
perturbation strain-rate components given by (2.2) in terms of the perturbation velocity.
The corresponding boundary conditions are

u1 = ∂u1

∂r
= 0 on r = 1, (B2a)

E1rθ = 2
R3

0

∂ R1

∂θ
, p1 = 2E1rr + 4

R3
0

R1 on r = R0. (B2b)
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Equation (B1) can be joined into a single fourth-order ordinary differential equation for
the perturbation of the radial velocity component

1
2k2 r4u(4)

1 + 3
k2 r3u(3)

1 +
(

5
2k2 − 1

)
r2u(2)

1 −
(
1 + 1

2k2

)
ru(1)

1 +
(

k2

2
+ 1

2k2 − 1
)

u1 = 0.

(B3)

The general solution of this ordinary differential equation is

u1(r) = c1r1+k + c2r1−k + c3r−1+k + c4r−1−k, (B4)

with the four coefficients determined by the boundary conditions (B2), resulting in
(Sayag & Worster 2019b)

c1 = k
(
R2k

0 + k
(
R2

0 − 1
)+ 1

)
k2 Rk+1

0 − 2
(
k2 − 1

)
Rk+3

0 + k2 Rk+5
0 + R3−k

0 + R3k+3
0

R1,

c2 =
k
(
− (k + 1) R2k

0 + k R2k+2
0 − 1

)
k2 Rk+1

0 − 2
(
k2 − 1

)
Rk+3

0 + k2 Rk+5
0 + R3−k

0 + R3k+3
0

R1,

c3 = − k
(
k
(
R2

0 − 1
)+ R2

0
(
R2k

0 + 1
))

k2 Rk+1
0 − 2

(
k2 − 1

)
Rk+3

0 + k2 Rk+5
0 + R3−k

0 + R3k+3
0

R1,

c4 =
k
(

k R2k
0 − (k − 1) R2k+2

0 + R2
0

)
k2 Rk+1

0 − 2
(
k2 − 1

)
Rk+3

0 + k2 Rk+5
0 + R3−k

0 + R3k+3
0

R1. (B5)

The stabilising term evaluated at the base-flow front R0 is

−
(

∂τ1rr

∂r
+ 2τ1rr

r

)

= −4k
k3 R2k−2

0 − 2k
(
k2 − 1

)
R2k

0 + k
(
k2 + 2

)
R2k+2

0 + (2k + 1)R4k
0 + 2k − 1

k2 R2k+2
0 − 2

(
k2 − 1

)
R2k+4

0 + k2 R2k+6
0 + R4k+4

0 + R4
0

R1

(B6)

where

τ1rr = 2μ0 E1rr. (B7)

In the limit of k > 1 and since R0 > 1, dominant balance implies

−
(

∂τ1rr

∂r
+ 2τ1rr

r

)
≈ −8k2 R4k

0

R4k+4
0

R1 = −8k2

R4
0

R1 on R0, (B8)

consistently with (5.6).
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