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Abstract 

Alzheimer's Disease (AD) is the most common cause of dementia globally, leading to memory 

loss and cognitive decline. Accumulating studies have uncovered the correlation between 

sensory impairments and AD, suggesting that changes in sensory functions could be early 

biomarkers of the disease. Utilizing sensory biomarkers for AD detection offers a privileged 

approach since sensory tests could be more rapid, portable, earlier, and less invasive compared to 

traditional clinical diagnostic methods. However, solely relying on sensory deficits from a single 

sensory system has significant limitations, particularly regarding accuracy, as sensory 

impairments can vary among individuals and can easily be influenced by other non-AD-related 

factors such as environment and aging. Therefore, a more holistic and integrating 

multidimensional approach is necessary for early diagnosis of AD using sensory biomarkers. 

This review explores changes in the sensory system of AD patients, and the earliest time point of 

detectable sensory deficits in various AD transgenic mouse models focusing on olfactory, visual, 

and auditory functions. The aim is to integrate sensory testing combined with other diagnostic 

methods such as conventional methods and artificial intelligence models to develop a systematic 

and reliable early detection of AD through sensory systems.  

 

Keywords: Alzheimer’s Disease, sensory biomarkers, AD diagnosis, transgenic mouse model, 

artificial intelligence. 
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1. Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is the most prevalent 

cause of dementia globally, accounting for 60-80% of all dementia cases. With about 5 million 

new cases occurring annually, it is estimated that the number of people with AD and AD-related 

dementia will increase by more than 3-fold (~131 million) by 2050 
1
. AD is indeed a significant 

burden on the burden and public health 
2,3

, as the number of patients is rapidly increasing. Thus, 

early diagnosis and treatment methods are crucial in addressing this challenge. AD is clinically 

characterized by a progressive cognition decline and dementia, in addition to the two required 

pathologies hallmarks, amyloid-β (Aβ) plaque aggregation and hyperphosphorylated tau tangles 

4
. The traditional clinical criteria for AD diagnosis were originally founded upon cognitive 

assessments, based on the belief that there are no motor, sensory, or coordination deficits early in 

the disease, and cannot be determined by laboratory tests 
5
. However, accumulating clinical 

evidence indicates that AD may have early symptoms other than cognitive decline. In 2011, the 

National Institute on Aging and Alzheimer’s Association (NIA-AA) created separate diagnostic 

recommendations for the preclinical, mild cognitive impairment, and dementia stages of 

Alzheimer’s disease, labeled as “research framework” 
6
. This proposed AD diagnostic criteria 

focuses on the diagnosis of AD with biomarkers grouped into amyloid-β deposition, pathologic 

tau, and neurodegeneration, also known as the AT(N) classification system 
7
. Based on the 

AT(N) system, several methods can be conducted to diagnose AD prior to cognitive 

symptomatology, including cerebrospinal fluid (CSF) analysis, positron emission tomography 

(PET), and magnetic resonance imaging (MRI) 
8
. Although capable of identifying early changes 

during the asymptomatic stage, these core clinical criteria are more generally reliable and 

provide high diagnostic accuracy in most patients for the advanced stages of AD. In early 

diagnosis, these methods are still premature and have drawbacks such as overdiagnosis, 

increased cost, and invasiveness of the assessment 
9
.  

 

Recently, accumulated evidence revealed that sensory changes, including olfactory, auditory, 

visual, tactile, and gustatory dysfunction are associated with AD pathological processes, and 

usually emerge prior to the mild cognitive symptoms 
10-15

. Thus, the impairment in sensory 

systems could be potentially used as biomarkers for the early detection and intervention of AD. 

However, the examination of sensory function alone may not provide sufficient accuracy for the 
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clinical AD diagnosis, since it can also be caused by various non-AD-related factors, such as 

neutral aging, environmental factors, and other neurological disorders like Parkinson's disease 
16

. 

Thus, integrating comprehensive sensory alteration across the pathological progression could 

lead to reliable and early detection of AD, and pave the way to establish an early non-invasive 

AD diagnostic method. Furthermore, sensory deficits may also promote AD pathology, while 

early interventions and corrections may alleviate cognitive decline and slow down the AD 

pathological process. Recent studies in both human and animal models revealed that visual 

impairments, or hearing loss (induced by cochlear ablation in mouse models) are associated with 

an increased likelihood of developing dementia 
17-19

. Preventive actions for vision problems, 

such as eye exams, eyeglasses, and cataract surgery, may reduce the risk for AD and related 

dementias 
20

. Hearing intervention might also reduce cognitive change over 3 years in 

populations of older adults at increased risk for cognitive decline 
21

. These findings suggest the 

promise of implementing several early interventions targeting sensory alterations to potentially 

reduce the risk of AD. 

 

This review aims to collate current research on sensory changes caused by AD in the olfactory, 

visual, and auditory systems in both patients and transgenic mouse models of AD, exploring their 

relationship with established AD sensory biomarkers during the AD pathologic process, and 

outlining a potential integration diagnostic technique for AD identification at early stages.  

2. Pathogenesis and Diagnosis of AD 

2.1 The pathogenesis of AD 

AD is an irreversible, highly complex, and progressive neurodegenerative disease. It was first 

described in 1907, with neurotic plaques, neurofibrillary tangles, and amyloid angiopathy in the 

cerebral cortex 
22

. These autopsy characterizations were then become the hallmarks of AD. Over 

the past several decades, numerous hypotheses have been made for AD pathogenesis. The 

amyloid cascade hypothesis postulates that neurodegeneration in AD is caused by abnormal 

accumulation of amyloid beta (Aβ) plaques in the cerebral cortex 
23

. Aβ is cleavage from the 

amyloid precursor protein (APP), the defective intracellular cleavage of APP is thought to be the 

predominant cause of plaque formation. The tau theory focuses on the aggregation of 

intracellular neurofibrillary tangles (NFTs) formed by accumulated tau protein in a 
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hyperphosphorylated state 
24

. The tau hypothesis suggests that the hyperphosphorylation of tau 

(P-tau) induces the formation of neurofibrillary tangles, which is another hallmark pathology of 

AD 
25,26

. Calcium dysregulation seems to generate large amounts of tau 
27

. The inflammatory 

hypothesis is based on the observation that the increased inflammatory markers in AD patients, 

such as pro-inflammatory cytokines interleukin-1β, (IL-1β), interleukin-6 (IL-6), and tumor 

necrosis factor α (TNF α) 
28

. Increased oxidative stress in the AD brain is characterized by 

increased lipid peroxidation, increased protein, and DNA oxidation, these data support the 

oxidative stress hypothesis 
29,30

. Mitochondrial disturbances are also associated with both 

oxidative stress and AD plaque formation 
28

.  

 

2.2 The diagnosis of AD 

In 2011, the National Institute on Aging-Alzheimer’s Association (NIA-AA) conceptualized the 

pathophysiological process of AD in 2 stages, that is preclinical stages and clinical stages based 

on whether the patients have overt symptoms of dementia and cognitive impairment 
7
. The 

diagnosis of AD in the clinical stage is clear in the guidelines, but the recommendations for 

preclinical AD which could potentially be decades before the symptoms become noticeable 
31

 

were not established. Furthermore, accumulated evidence indicates that the neurodegeneration 

and cognitive decline in AD is a continuous pathophysiological process that should be regarded 

as a continuum rather than two distinct preclinical and clinical entities 
6,32

. This concept is 

recognized widely, indicating the importance of early AD diagnosis methods.  

 

In 2011 NIA-AA guidelines, several methods have been established for identifying and assessing 

the progression of AD in clinical stages (Figure 1). These methods can be clustered into two 

divisions, clinical assessments, and neuroimaging techniques. The clinical assessments of AD 

rely on patient informant history, mental state examination, thorough physical examination, 

bedside cognitive testing including mini-mental state examination (MMSE) and Montreal 

cognitive assessment (MoCA), and some neuropsychologic and psychiatric tests such as 

memory, attention, language, problem-solving skills, attention 
33

. AD can be further diagnosed 

with firm clinical evidence provided by neuroimaging techniques such as magnetic resonance 

imaging (MRI) and positron emission tomography (PET) scans 
34,35

, or direct biomarker tests 

including cerebrospinal fluid (CSF) analysis and blood tests 
36,37

. All these traditional methods 
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have a certain limitation, as these methods always work after the symptoms presented, such as 

memory loss and cognitive decline. Furthermore, these diagnostic techniques could be invasive 

procedures, or require radiation exposure, posing a risk of side effects. Also, certain methods 

need specialized and costly equipment that is less available. Additionally, AD can only be 

noticed by families 4 years before a firm diagnosis is made, and this delay is often longer and 

includes misdiagnosis in the variants and early onset groups 
38

.  

 

3.  Early Biomarkers of AD in the Sensory System 

In recent years, more and more results have shown that the sensory system can be affected in AD 

patients. For example, several studies have revealed that olfactory function was profoundly 

affected by AD in the clinical stages, revealing that the impairment of olfactory function could 

be a potential biomarker for cognitive impairment and neurodegeneration 
39-43

. Visual 

manifestations can also be observed in AD patients, with decreased visual acuity, reduced 

contrast sensitivity, poor color discrimination, and abnormal ocular motor function 
44

. AD also 

manifests with hearing loss 
45

, even though the causation between hearing loss and dementia 

remains unknown, evidence shows that the intervein of age-related hearing loss could prevent 

AD, making hearing loss another high-risk factor for AD 
46

. In this section, we started with a 

concise summary of the structure composition of different sensory systems, then we aimed to 

provide an overview of early sensory biomarkers related to AD in preclinical research. Following 

this, we encapsulated the sensory deficits reported in the symptomatic stage of AD and 

concluded by describing the discoveries related to sensory impairments in preclinical AD 

patients.  

3.1 Structural overview of sensory pathways 

Olfaction is a highly conservative primary sensory system 
47

. Olfactory can be clustered as the 

peripheral and central system 
48

. Odorants are first received by olfactory sensory neurons (OSNs) 

located on the olfactory epithelium (OE), where the chemical signals are converted to neuro-

electrical signals 
49

. The electrical potentials are then transferred to the mitral cells and tuft cells 

(M/T) on the surface of the olfactory bulb (OB) via OSNs projection 
50

, and then handover to 

olfactory cortical areas, including the piriform cortex (PCX), the medial olfactory cortex, and the 

amygdala 
51

. 
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About half of the neuronal pathway in the brain subserves visual function, light signals are 

transduced to the neuronal signals via photoreceptors, the cones, and rods which are located on 

the outer nuclear layer of the retina. It is then passed to the inner nuclear layer, including 
52

, 

followed by ganglion cells on the last layer. The axon of ganglion cells projects to the brain 

cortex via the lateral geniculate nucleus, and superior colliculus, and finally reaches the visual 

cortex. 

The auditory system can be divided into two main components, peripheral and central systems, 

both are essential for normal hearing function. The peripheral auditory system includes external, 

middle, and inner ears, approximately 70% of hearing loss is caused by various pathologies in 

the inner ear and auditory nerve 
53

. A specialized hearing organ in the inner ear, the cochlea, 

transduces the sound vibrations to neuronal electrical signals, this process is also known as 

mechanotransduction 
54

. The main sensory cells for mechanotransduction in the cochlea are hair 

cells. The ion homeostasis of the cochlea and hair cells (e.g. K
+
 and Ca

2+
) is required for normal 

hearing function and the development of the auditory system 
55-58

. After mechanotransduction, 

the spiral ganglion neurons transmit the acoustic information from the cochlea to the central 

auditory system via the superior olivary complex, lateral lemniscus, inferior colliculus, medial 

geniculate nucleus, and the auditory cortex 
59

.  

 

3.2 Preclinical research revealed early sensory biomarkers related to AD 

AD animal models, primarily rodent models, have provided valuable insights into the disease 

and contributed to preclinical research. Since rodents do not develop AD, introducing human AD 

pathogenic genes is essential to model the AD pathology in mice. Thus, mouse models of AD 

can be generally classified as follows based on what gene is engineered, and each of these 

models is slightly difference in AD pathophysiology. Here, we briefly summarized the 

pathogenesis of 5 main AD mouse models, including the APP transgenic model, APP/PS1 

transgenic model, 5xFAD transgenic model, Tau transgenic model, and 3xTg mouse model.  

Interestingly, numerous studies have also demonstrated that early sensory impairments are 

present in AD mouse models, highlighting the utility of these AD mouse models for exploring 

sensory deficits as potential early indicators of AD. The impairment of sensory systems can be 

assessed through behavioral tests, such as odor discrimination, identification, threshold test 
60,61

, 

Morris water maze 
62,63

, acoustic startle response (ASR), and pre-pulse inhibition (PPI) tests 
64

. 
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Behavioral tests, however, may suffer from certain limitations such as variability in sensitivity, 

and environmental factors, and may not always directly correlate to the function being assessed. 

Electrophysiologic tests of sensory functions provide a non-invasive diagnosis 
65

. Here, we 

highlighted the earliest point at which the cerebral Aβ deposition, coupled with cognition decline 

can be detected in each AD mouse model, which is, as previously described, the hallmark for the 

transition from the pre-clinical to clinical stages of AD (Table 1). We also summarized the 

earliest time points at which sensory impairments manifest, based on the primary research papers 

we have reviewed, this includes Aβ/P-tau aggregation in different sensory systems, functional-

related behavioral deficits, and electrophysiologic changes within sensory systems including 

olfactory, auditory, and visual impairment (Table 2).  

3.2.1 APP transgenic model 

APP transgenic models overexpress the mutation of human APP, which is associated with 

familial AD (FAD), such as the famous Tg2576 mouse model that overexpress Swedish mutation 

(K670M/N671L) 
66

. Tg2576 mice exhibit a large number of failures in the Morris water maze 

test with visible platforms starting from 6-11 months 
67

 and exhibit cognitive decline around 6 

months of age 
68

. At this age, the soluble Aβ levels in the brain cortex start to increase 
69

. 

However, the actual cerebral Aβ plaques can be observed around 6-10 months old, typically by 

9-12 months 
70

. Another APP transgenic mouse model is TgCRND8. Similar to Tg2576, 

TgCRND8 mice encode Swedish mutation (K670M/N671L) and Indiana mutations (V717F) 

APP protein 
71

. With the extra expression of mutant Aβ peptides, TgCRND8 shows an earlier 

onset of AD pathology compared to the Tg2576 model. The Aβ deposits can be detected as early 

as 3 months old, accompanied by the early onset of memory and learning impairment 
71

.  

 

Tg2576 transgenic mice exhibited sensory impairment at the early stage of AD. In the APP 

transgenic model Tg2576, the soluble human Aβ is detectable in the OB as early as 2 months 

old, which is before the deposition in the PCX, entorhinal cortex (EC), or hippocampus 
72,73

. The 

nonfibrillar Aβ deposition can be observed within the olfactory bulb (OB) around 3 months of 

age in Tg2576 mice 
74

. Mistargeted OSN connection in Tg2576 mice can be observed at ages 

from 12 months down to even postnatal day 10 
75

. Furthermore, the decline of olfactory function 

is also revealed by the impairment of odor-related behaviors in Tg2576 mice. 4-month-old 

Tg2576 mice showed a significant impairment in the olfactory working memory task when more 
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odors were applied 
76

. 4-month-old Tg2576 mice are also impaired at object placement, an EC-

dependent cognitive task 
72

. These results indicate that the Aβ deposition in the olfactory system 

is earlier than it is in the brain cortex, and the impairment of olfactory function also emerges 

much earlier compared to the MCI and neurodegeneration. Tg2576 mice also show changed 

electrophysiology characters in the olfactory system before the cognitive impairment. 3-month-

age Tg2576 mice exhibit hyperactive odor-evoked activity in the PCX, which is shown to be 

involved in higher-order olfactory functions, and increased OB-PCX functional connectivity 
77

. 

The hyperactivity can be also seen in both OB and PCX, with significantly increased beta and 

gamma band power of spontaneous local field potential (LFP) activity 
77

. The single-unit 

spontaneous activity in PCX shows a trend toward increased baseline firing starting from 3 

months of age 
78

. This data reveals a hyperactive activity persisted during the early stage of AD, 

before converting to a hyporesponsive state 
77

. However, in 18-21-month-old APP knock-in mice 

(harboring three familial AD mutations from Swedish, Iberian, and Arctic), no significant 

differences were observed for the olfactory-related mRNA expression 
79

, indicating that the 

correlation might only be observed at the early stage of AD and could be overlapped by the 

normal aging process. We discussed the aging factor during AD pathologies in the following 

section.  

 

The APP transgenic model exhibited visual impairment at the early stage of AD. APP 

immunoreactivity can be observed as early as the 7.8-month-old Tg2576 mice ganglion cell layer 

and the inner nuclear layer of the retina 
80

. Aβ can be detected in the retina of 12-month-old 

Tg2576 mice 
81,82

. Tg2576 mice were impaired in visible platform recognition at 9 months of age 

and increased activity measures as early as 3 months old 
83

. Other research confirmed that at both 

6 and 14 months of age, the Tg2576 mice were not affected using water maze spatial reference 

memory and T-maze working memory 
84

.  
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3.2.2 APP/PS1 transgenic model 

APP/PS1 is another AD mouse model that harbors a chimeric mouse/human APP 

(Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9), both are associated with early-

onset AD 
85

. Compared to APP transgenic mice, APP/PS1 mice show an early onset of Aβ 

plagues and AD pathology. APP/PS1 mice express cerebral Aβ deposition in APP/PS1 mice can 

be detected as early as 3 months of age, the significant memory deficits start from 5 months old 

86
.  

APP/PS1 mice exhibit olfactory deficits but not cognitive impairment at 3-4 months of age, with 

soluble Aβ deposition aggregates and morphology changes in granule cells (GCs) and mitral 

cells (MCs) in OB 
87

. At this age, APP/PS1 mice show impaired odor-related behavioral 

performance in odor sensitivity tests and discrimination tests 
87

. APP/PS1 mice also have an 

altered electrophysiology in the olfactory system at the early stage of AD. MCs exhibit increased 

spontaneous firing rates as early as 3 months induced by the inhibitory defects of pre-synapses in 

OB 
88

. 3-month-old APP/PS1 mice show altered LFP activity, with a reduced theta band and 

increased low gamma oscillatory activity that can be detected in OB slices from 3-month-old 

APP/PS1 mice 
89

. Others reported reduced low and high gamma oscillations with or without odor 

stimulation using the LFP analysis in the anterior piriform cortex (aPCX) from 3-month-old 

APP/PS1 mice 
90

.  

Aβ can be detected in 6 months of age APP/PS1 mice 
81

. Another report indicates that Aβ levels 

in the retina correlate with cerebral levels that can be detected as early as 5 months 
91

. Substantial 

color and contrast-mode alternation deficits appear in APP/PS1 mice as early as 8.5 months of 

age 
92

. APP/PS1 mice exhibit altered electroretinogram and optical coherence tomography 

starting from 3 months, the retinal pathology, with a reduced inner retinal thickness measured by 

optical coherence tomography (OCT), can be observed as early as 9 months 
93

. 

 

It has been reported that APP/PS1 mice showed an early-onset of hearing loss as early as 2 

months old, starting from the high-frequency region, and appears to be whole-frequency range 

later on, similar to the age-related hearing loss 
94,95

. However, another study has reported that 

there is no significant change in both ABR and DPOAE thresholds even in 13 months of age 

APP/PS1 mice. A recent study showed progressive age-related hearing loss in both WT and 

APP/PS1 mice after shame operation (SO) of cochlear ablation, the ABR thresholds were 

https://doi.org/10.1017/cts.2024.525 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2024.525


compatible at 4, 6, 9, and 12 months of ages between WT and APP/PS1 mice with SO 
18

. One 

possible reason for the different outcomes could be that different backgrounds of mice were 

utilized. C57 mice typically show a faster onset of age-related hearing loss, while CBA/CaJ mice 

exhibit a longer hearing lifespan due to the cdh23 mutation 
96

. Thus, the difference may be 

obscured by normal aging, given the inherent age-related hearing loss in some mouse 

backgrounds. For the auditory-related behavioral test, no significant difference between APP and 

APP/PS1 mice and wild-type mice at 6 months old 
97

. This data is also confirmed using a 7-

month-old APP/PS1 mouse model that a non-significant trend of altered ASR but no changes in 

PPI can be found 
98

. 
99

. another report also showed that APP/PS1 mice exhibited normal ASR 

and PPI at 3 months old, but significantly lower PPI starting from 7 months of age 
100

. APP 

protein expression in the auditory cortex can be detected as early as 2 months old, accompanied 

by decreased auditory-evoked cortical potential (AECP) 
13

. These data indicate that hearing loss 

and reduced auditory cortical response could be early biomarkers for AD in this mouse model. 

 

3.2.3 5xFAD transgenic models 

5xFAD mouse model co-express 5 FAD mutations, 3 APP mutations (mutant human APP with 

Swedish (K670N, M671L), Florida (I716V), and London (V717I) mutations), and 2 PS1 

mutation (M146L, L286V) (Oakley et al., 2006). 5xFAD mouse model is designed for the early 

onset of AD, as it displays strong Aβ pathologies, with plaques appearing in the brain from 2-4 

months of age, resulting in robust synaptic and neuronal loss 
101

. Early cognitive deficits related 

to the frontal cortex appear at 4 months of age 
102

. 

 

The odor-related behavioral change can be detected in 3-month-old 5xFAD mice, with  
103

. The 

Aβ deposition in this model can be seen at 2 months of age 
104

 and is high in the OSNs located in 

the olfactory epithelial ectoturbinate and the ventral olfactory bulb glomeruli at 3 months of age 

103
. Another report shows that Aβ is co-localized with synaptic markers on olfactory bulb 

glomeruli as early as 2-4 months of age, but the olfactory memory is not impaired from 3 to 15 

months of age 
105

. However, other research shows an impaired olfactory function starting from 3 

months and can be detected at 6 and 8 months of age 
61,106

. OSNs from 5xFAD mice at 3 months 

of age show reduced responses to odorant stimulation measured by Ca
2+

 signals 
103

.  
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5xFAD mice show reduced ganglion cell responses to light as early as 6 months of age, with a 

thicker inner plexiform layer 
107

. This mouse model exhibits impaired spatial learning in water 

maze tests starting at 6 months of age 
108

. The changed full-field ERGs can be observed as early 

as 3 months of age 
108

.  

 

In 5xFAD mice, Aβ deposition and intracellular accumulation can first be found in the primary 

auditory cortex as early as postnatal day 21 (p21), the extracellular plaques appear later by age 

p90 
109,110

. The Aβ accumulation occurs at cortical levels and the upper auditory brainstem as 

early as 3 months of age, but at lower levels of the brainstem such as the cochlear nucleus 
99

. 

Using ASR and PPI test, 5xFAD mice exhibit an age-related decline in acoustic startle as early 

as 3 months of age before any hearing loss symptom 
111

, but no significant reduction of PPI at 3-

4 months of age 
112

. 13-month-old 5xFAD mice have increased auditory brainstem response 

(ABR) thresholds, indicating an early-onset of hearing loss 
111

. 5xFAD mice also exhibit gap 

detection deficits in startle response tests as early as 2 months of age 
113

, with degraded gap 

responses and baseline firing rates in the auditory cortex 
114

. All these results demonstrate early-

onset impairments of the central auditory system in 5xFAD mice. However, it has also been 

reported that at 3 months of age, 5xFAD mice are indistinguishable from the control in central 

auditory activity and hearing threshold, but at 6 months of age, the central gain was significantly 

increased (p4:p1) in 5xFAD mice 
99

. Overall, 5xFAD mice exhibit delayed ASR, which could be 

a potential biomarker for early AD diagnosis 
115

. 

 

3.2.4 Tau transgenic model 

The tau pathology and synaptic failure correlate with cognitive decline 
116

. Thus, overexpression 

of incorrect tau protein could also induce AD in mouse models. Tau transgenic model exhibits 

mutant tau protein, the P301S (PS19) mice model, for example, expressing P301S mutation Tau 

driven by mouse prion protein promoter (Prnp), gives rise to neurofibrillary tangles and 

neurodegeneration by 9 -12 months of age 
117,118

. Hyperphosphorylated Tau (P-tau) can be 

detected in the hippocampus and cortex at 6 months of age 
119

. Memory deficits can be identified 

around 5 months of age in P301S mice 
120

. Spatial learning deficits can be observed as early as 4 

months of age 
121

. P301S mice do not typically develop Aβ plaques since it is designed for tau 

pathology research. However, it has been reported that the intracerebral injection of Aβ1-42 
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increases tau phosphorylation, cleavage, and aggregation 
122

. Co-expression of soluble Aβ (Aβ4-

42) in the P301S tau transgenic model worsens spatial memory deficits and motor performance 

123
. These data demonstrate that Aβ promotes tau pathogenesis.  

 

Tau transgenic mice (P301S) show increased P-tau expression levels in the OB and PCX as early 

as 1 month of age, the MC layer is severely affected 
124

. A progressive neuronal cell loss in OB 

and PCX can be observed during aging 
125

. The olfactory impairment starts as early as 2 months 

of age using the food-seeking test 
61,124

. 3-month-old P301S mice show a reduction in gamma 

frequency oscillation and severe early impairments in the theta-gamma phase-amplitude coupling 

in the OB area, but the LFP oscillatory activities do not show any difference in EC 
126

.  

 

Hyperphosphorylated tau starts to accumulate in the nerve fiber layer in the P301S mouse model 

at 2 months of age, and aggregates into filamentous inclusions in retinal ganglion cells 
127

. P301S 

mice show a worse learning curve compared to wild-type mice at 2.5 months of age 
120

. Another 

study reports early and persistent spatial working memory deficits, with hyperactivity in the Y-

maze test with less alternation, and this trend can be seen as early as 2 months of age 
128

.  

 

P301S mice express phosphorylated tau in the auditory cortex, amygdaloid nucleus, and ventral 

hippocampus as early as 4 months of age, with the enhancement of the PPI test 
119

. Other studies 

show that P301L mice exhibit unaltered ASR but reduced PPI (or increased %PPI) at 3 months 

of age 
119,129

. Whether the tau pathway affects auditory electrophysiology needs further 

investigation.  

 

Overall, in four commonly utilized AD mouse models, a consistent pattern can be observed that 

sensory system impairments were detectable earlier than the cerebral Aβ deposition and 

cognitive decline (Table 1-2). Furthermore, most of these models exhibited multiple sensory 

deficits at the early stage of AD, suggesting the possibility of using an integrated assessment of 

sensory system impairments as a non-invasive diagnostic tool. 
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3.3 Sensory deficits and aging in the symptomatic stage of AD 

Transitioning from the exploration of sensory deficits in the research animal models to  

the symptomatic stage marks a critical juncture in understanding the disease's progression. 

During the pre-clinical phase, subtle sensory changes may begin to emerge, often unnoticed or 

dismissed as benign age-related decline. However, as AD advances to its symptomatic stage, 

these sensory impairments become more pronounced, directly impacting patients' quality of life 

and their ability to interact with the world around them (Table 3).  

 

A variety of ocular abnormalities have been observed in AD patients in the MCI stage, indicating 

a strong association between AD and visual impairment 
130

. In the clinical stage, a large number 

of visual disorders and their association with Aβ burden have been reported in AD patients 
131

, 

such as lower visual acuity in recognition of low luminance and low spatial frequency pictures 

132
, reduced visual contrast sensitivity 

133
, altered color vision 

134
, retinal hemodynamic 

parameters 
135

, visual field loss 
136

 , and poor ocular motor function 
137

. A deteriorated olfactory 

function can be observed in AD patients 
138

. Furthermore, olfactory dysfunction is associated 

with Aβ burden, several studies have reported early olfactory impairment in AD patients also 

known as hyposmia 
139

, these patients exhibit a reduced ability to detect, discriminate, and 

identify odors, coupled with abnormal odor coding 
140,141

. As many as 60% of older adults with 

AD and ADRD have hearing loss 
142

. All these sensory impairments could be used to evaluate 

the AD pathophysiology and should be taken into consideration for the AD clinical diagnosis. 

Multiple epidemiological studies have revealed that hearing loss is correlated with pathological 

cognitive decline and dementia 
59,143

. Hearing loss is a risk factor for cognition impairment. It 

has been reported that mild to severe hearing loss significantly increases the dementia risk 
144,145

. 

Elderly individuals with hearing loss symptoms have a higher risk of AD, which is also 

associated with loss of brainstem and cerebellar volume 
146

. Furthermore, AD could cause a 

faster onset of hearing loss. Individuals' AD risks can be evaluated using a polygenic risk score 

(PRS) 
147

, high PRS individuals are more likely to experience hearing difficulty than those with 

lower PRS 
148

. However, the causation between AD and hearing loss is still controversial. 

Several hypotheses might explain the relationship between AD and hearing loss. Firstly, hearing 

loss could cause cognitive decline, and eventually dementia. Indeed, hearing loss induced by 

noise exposure exacerbates cognitive decline 
149

, expressing Aβ derivatives in the cochlear hair 
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cells leads to an early onset of hearing loss, especially in high-frequency regions, similar to age-

related hearing loss 
111

. Overexpression of tau synergistically worsens the Aβ-induced hearing 

defects 
111

. These data indicate that Aβ and tau are both toxic to the peripheral auditory system, 

and overexpression of Aβ might accelerate the process of age-related hearing loss. Furthermore, 

hearing loss leads to less engagement in social and leisure activities which results in dementia. 

Lastly, both hearing loss and cognitive decline could be caused by a ‘common factor’ 
150

, and 

might share the same pathway with age-related hearing loss, or presbycusis 
151

. Despite the 

unclear causation between AD and auditory impairment, it has been reported that inducing 

gamma oscillations in the auditory cortex improved spatial and recognition memory and reduced 

Aβ in AC 
152

, indicating the auditory pathway could be a potential target to ameliorate AD-

associated pathology. 

 

Noticeably, all the sensory impairments mentioned above could also be the comorbidities of the 

natural aging process 
153

. This confluence of sensory impairments with aging complicates the 

differential diagnosis of AD from normal age-related changes, necessitating a nuanced 

understanding of pathological versus physiological decline. Moreover, the overlap of sensory 

impairments with AD is not uniquely induced by the aging process but could also be induced by 

other neurodegenerative diseases such as Parkinson's Disease (PD) and Dementia with Lewy 

Bodies (DLB) 
154,155

. Critical to advancing this differentiation is the longitudinal study of sensory 

deficits, utilizing both animal models and human subjects, to delineate the specific markers of 

AD-related sensory degradation. The challenge remains to disentangle the intricate web of aging 

and disease-specific sensory changes, requiring innovative methodologies and interdisciplinary 

approaches. Integrating multi-sensory assessments with cognitive evaluations and biomarker 

analysis could enhance the specificity of early AD diagnoses. Ultimately, this comprehensive 

approach will not only improve our understanding of AD progression but also pave the way for 

the development of targeted interventions to mitigate sensory deficits and improve the quality of 

life for individuals with AD. 
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3.4 Sensory impairments in preclinical AD patients 

The impairment of the sensory system in AD patients may occur in the preclinical stage, well 

before the emergence of the onset of clinical symptoms (Figure 1). Olfactory dysfunction is 

associated with a higher Aβ burden in older people, early olfactory impairment in AD patients 

also known as hyposmia 
139

, patients exhibit a reduced ability to detect, discriminate, and 

identify odors, coupled with abnormal odor coding 
140,141

, elucidating the potential contribution 

of olfactory testing to detect preclinical AD 
156

. In clinically normal elderly individuals, worse 

olfactory function was associated with decreased hippocampal volume, thinner entorhinal cortex, 

and a trend associated with greater Aβ burden 
155

. Another study showed that reduced odor 

identification (OI) was associated with lower cognitive score and older age, and increased CSF 

tau and Aβ, revealing that OI could be an affordable biomarker of AD pathology 
157

. The visual 

deficit is considered a high-risk factor for AD and is increasingly supported by evidence linking 

visual system alterations to the early stage of AD 
158

. For the preclinical stage, substantial visual 

deficits have been reported in AD patients, 
44,159

. Potential measurable functional, structural, 

metabolic, and vascular changes have been identified in the retina during the early stages of AD 

160
, indicating vision could be another biomarker for early detection of AD. As another high-risk 

factor of AD, hearing loss was also associated with higher Aβ and tau burden. A study indicated 

that worsened hearing was related to the increased Aβ and tau burden 
161

.  

 

Above all, the evidence supporting sensory deficits as early indicators of AD suggests a 

paradigm shift in the approach to diagnosing and managing this complex condition in the pre-

clinical stages.  

4. Integrating Sensory Detection in Early AD Diagnosis 

4.1 The Imperative of Incorporating Sensory Detection 

In our comprehensive review of early changes in various AD mouse models, notable early 

alternations take place in sensory systems prior to the cognition decline and the cerebral Aβ/P-

tau aggregation. Here we listed out the early time point of alternation in different sensory 

systems using different AD mouse models (Table 2). This trend is consistent in olfactory, visual, 

and auditory systems across different AD models. Further, we also found a trend of hyperactivity 

status across sensory systems before the onset of neurodegeneration and cognition decline. The 

https://doi.org/10.1017/cts.2024.525 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2024.525


soluble Aβ oligomers induced hyperactivity on memory performance, cell death, epileptiform 

activity, gamma oscillations, and slow wave activity can be observed in both AD mouse models 

and human patients 
162

, consistent with early detection of soluble Aβ in sensory organs. The 

hyperactivity status of sensory functions, also known as network hyperexcitability 
163

, could be a 

biomarker for AD.  

 

However, we also found results may vary in different research due to the diversity of 

methodologies and sensory systems. Indeed, some tests have certain limitations. For example, 

the behavioral test can be affected easily by handling and environmental factors and can be 

stressful for animals 
164,165

. Additionally, the accurate measurement and diagnosis of AD using 

sensory deficits may be complicated by other variables, including natural aging processes, 

Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), and various other 

neurodegenerative conditions, which can introduce significant variability into the assessment of 

sensory impairments. The variability and uncertainty indicate the necessity of integrating sensory 

function tests and the combination of sensory tests and other test methods to increase the 

accuracy of early AD diagnosis. To achieve this, multidisciplinary approaches that incorporate 

neuropsychological, neurobiological, and genetic analyses are essential. Implementing these 

strategies will improve the accuracy of early AD diagnosis through sensory deficit detection and 

contribute to a more nuanced understanding of the disease's pathophysiology. For instance, the 

combination of vision and hearing deficits in older people experience higher rates of cognitive 

impairment 
166

. Thus, the simultaneous application of visual and auditory assessments could 

potentially enhance the precision of pre-clinical AD diagnosis, offering a more robust framework 

for identifying early indicators of cognitive impairment. Above all, sensory tests have 

demonstrated potential as supplementary tools for the diagnosis of AD and MCI. For instance, 

odor identification screening (Sniffin’ Sticks Odor Identification Test, SS-OIT) can improve the 

diagnostic accuracy of AD and MCI when combined with MoCA, providing additional 

information for clinical categorization of AD and MCI 
167

. Visuospatial measures show a 

significant diagnostic and prognostic potential in dementia, which means visuospatial tests could 

also improve the diagnosis of AD 
168

. Central auditory testing might be another suitable 

biomarker for identifying people at risk for dementia combined with electrophysiologic testing 

169
.  
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Nevertheless, before these approaches can be adopted clinically, extensive validation steps are 

essential. This encompasses replicating findings across diverse studies to ensure reproducibility, 

alongside rigorous comparisons with established diagnostic benchmarks to clinical 

implementation. Additionally, defining precise diagnostic thresholds for sensory tests is crucial 

to delineate AD-related sensory impairments from those attributable to other causes. Moreover, 

evaluating the predictive value of these tests in foreseeing disease progression is essential. The 

pathway towards clinical adoption involves meticulous steps, including the elaboration of a clear 

context of use, submission of a comprehensive qualification package to regulatory bodies, and 

achieving a consensus on standards for test performance 
170-173

. These processes are instrumental 

in ensuring the reliability, efficacy, and clinical relevance of sensory detection methods, thereby 

facilitating the integration into the diagnostic repertoire for early AD.  

 

4.2 integrating Sensory Change Detection with Artificial Intelligence 

Utilizing artificial intelligence (AI) in predicting AD is a rapidly evolving field. AI aids early 

detection and diagnosis based on a variety of machine learning-trained models. Based on the 

cognitive tests, imaging techniques, and CSF test, AI can improve the accuracy of traditional 

diagnostic methods, such as analyzing PET and MRI scan images 
28

, and new biomarkers 

analysis beside Aβ42 and P-tau using the CSF database 
174

. AI can also do end-to-end detection 

without using additional diagnostic methods. A pre-trained data2vec model can perform a self-

supervised algorithm that works for speech, vision, and text 
175

. An integrating pre-trained model 

that can access multimodal sensory test data would be a potential method for rapid, non-invasive 

AD diagnosis during the early detection window (Figure 2).  
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5. Conclusion 

In conclusion, we have thoroughly reviewed the changes in multiple sensory systems in the early 

stage of AD, focusing on olfactory, visual, and auditory functions. Changes in these sensory 

systems manifest significantly in both AD patients and various AD mouse models, the 

alternations of the sensory system appear much earlier than the typical neurodegeneration and 

cognitive decline. These results shed light on the importance of multiple sensory tests for early 

and non-invasive AD diagnosis. Moreover, the potential integration of multi-sensory 

examination and the combination with traditional diagnostic methods and/or AI prediction 

presents a promising methodology for the improvement of accuracy and rapid AD detection in 

the future. 
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Figure 1. Overview of traditional diagnostic methods and early biomarkers in sensory systems. 

MMSE: Mini-mental State Examination. MoCA: Montreal Cognitive Assessment. 
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Figure 2: Schematic of Alzheimer’s Disease (AD) Stages. Amyloid beta (Aβ) begins to 

accumulate many years before cognitive decline, marking the asymptomatic stage. This 

accumulation of Aβ starts to impair the sensory system's function, including olfactory, visual, 

and auditory systems, before the onset of Mild Cognitive Impairment (MCI). After the 

asymptomatic stage, some clinical diagnostic methods become applicable. However, by this 

point, patients start to experience cognitive decline, which, at this stage, is irreversible. 

Therefore, the window for early detection through sensory function tests is crucial. Integrating 

these tests with common clinical diagnostics and artificial intelligence (AI) could enhance the 

accuracy of early AD diagnosis before the onset of cognitive decline. 
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Table 1 Earliest Detection Points of symptoms in AD mouse models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mo: month of age 

  

AD model mice Cerebral Aβ/P-tau Cognition decline 

APP transgenic 

models 

(Tg2576) 

6 Mo 
70

 6 Mo 
68

 

APP/PS1 3 Mo 
86

 5 Mo 
86

 

5xFAD 2 Mo 
101

 4 Mo 
102

 

Tau transgenic 

models 

(P301S) 

6 Mo 
119

 4 Mo 
121

 

Normal 

Abnormal 
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Table 2 Earliest Detection Points of sensory deficits in AD mouse models 

Mo: month of age, N.A: not applicable. 
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1 Mo 
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Mo 
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1 Mo 
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124
 

3 

Mo 
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2 Mo 
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3 

Mo 

129
 

N.A 
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Table 3 Sensory deficits in the symptomatic stage of AD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensory system Sensory deficits Reference 

Vision 
Difficulty reading, loss of 

contrast sensitivity 
Lee et al., 

178
 

Vision 

Decreased visual field and/or 

contrast sensitivity, and fixation 

problems 

Ikram et al., 
179

 

Vision 
Changed topological organization 

of higher-level visual 
Deng et al., 

180
 

Vision Loss of retinal ganglion cells Kirby et al., 
181

 

Olfactory Increased olfactory threshold  Serby et al., 
41,182

 

Olfactory Smaller OB volumes Jobin et al., 
183

 

Olfactory Impaired olfactory identification Vyhnalek et al., 
139

 

Hearing 
Cannot recognize or misinterpret 

environmental sounds 
Dietz et al., 

184
 

Hearing Changes N200 and P300 latencies Cintra et al., 
185
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