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Abstract
Graphs can help people arrive at data-supported conclusions. However, graphs might also induce bias by shifting
the amount of evidence needed to make a decision, such as deciding whether a treatment had some kind of effect.
In 2 experiments, we manipulated the early base rates of treatment effects in graphs. Early base rates had a large
effect on a signal detection measure of bias in future graphs even though all future graphs had a 50% chance of
showing a treatment effect, regardless of earlier base rates. In contrast, the autocorrelation of data points within
each graph had a larger effect on discriminability. Exploratory analyses showed that a simple cue could be used to
correctly categorize most graphs, and we examine participants’ use of this cue among others in lens models. When
exposed to multiple graphs on the same topic, human judges can draw conclusions about the data, but once those
conclusions are made, they can affect subsequent graph judgment.

1. Introduction

Suppose you are a doctor prescribing a new drug to a patient. This patient has high cholesterol, and you
worry the new drug may worsen this condition. So, you measure the patient’s blood cholesterol daily
before and after starting them on the drug, adding each measurement to a graph. After several days,
you look at the graph and make your final decision; will you continue the patient on the drug, or try a
different treatment? This was an example of an interrupted time series; you observed a variable (blood
cholesterol) before and after an interruption (the drug). Interrupted time series are not exclusive to
medicine, however. Whether to adopt a new sleep schedule, try a new exercise routine, or begin piano
lessons, interrupted time series are ubiquitous. Even when experimental evidence is available regarding
the average effect of the intervention, one must still make the important decision: did this drug work
for me? Graphical presentation of data is one way to facilitate this type of decision and is used in
areas ranging from education to health to public policy (Franconeri et al., 2021; Garcia-Retamero and
Cokely, 2017). However, while graphs facilitate these sorts of decisions, they do not eliminate the
unfair interpretation of information. Even when data are presented graphically, human judges remain
more likely to identify trends that fit with their previous beliefs (Freedman and Smith, 1996; Lee and
Lee, 2022; Mena, 2023; Nyhan and Reifler, 2019). Could such beliefs be induced by graphs themselves,
and if so, how do such beliefs influence judgments of later graphs?
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Figure 1. Example interrupted time series graph.

Table 1. The signal detection theory response matrix.

Base truth Decision

Signal present Signal absent

Signal present Hits (7) Misses (1)
Signal absent False alarms (1) Correct rejections (1)
Note: Parentheses indicate the number of responses by the hypothetical ‘first doctor’.

It is tempting to try to answer this question by assessing graph judgment via accuracy. However,
the same accuracy can be achieved by vastly different means. To illustrate this, suppose a patient
took a drug that may have increased their cholesterol, as shown in Figure 1. A doctor evaluates 10
graphs like this carefully and thereby achieves 80% accuracy. In contrast, a second doctor achieves the
same accuracy by noting that cholesterol increases are common for this drug and—without evaluating
any individual cases—summarily identifies all 10 cases as increases. Both doctors achieved the same
accuracy, but the second doctor ignored the cases themselves. The second doctor’s background beliefs
aided accuracy for the eight patients who truly had cholesterol increases but harmed accuracy for the 2
who did not. Accuracy fails to differentiate between true skill at detecting cholesterol increases and a
predilection to favor a certain response because both contribute to accuracy.

In contrast, Signal detection theory provides a way to separate these 2 components: the ability to
detect the cholesterol increase as discriminability, and a predilection in favor of that response as bias
(e.g., Witt and Warden, 2021). To do so, as shown in Table 1, each response can be categorized by
whether cholesterol truly increased and whether the doctor decided it increased. The first doctor had a
hit rate of 0.88 because they correctly identified 7 of the 8 true increases, and a false-alarm rate of 0.50
because they falsely identified 1 of the 2 non-increases.

In a signal detection model, human judges decide that a signal is present when the perceived strength
of evidence exceeds some threshold (see Figure 2A). The signal-detection framework considers
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Figure 2. A signal detection model of interrupted time-series graph judgment.

decisions to be the product of 2 separate phenomena: discriminability and bias. Generally, the purpose
of decision aids such as graphs is to increase discriminability, or the extent to which signal and noise
can be discriminated from one another (Witt and Warden, 2021). On the other hand, bias is represented
by where the threshold is placed (vertical line in Figure 2A). The results of various thresholds are
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summarized by a receiver operating characteristic (ROC) graph which plots the combination of hits
and false alarms associated with each threshold (Peterson and Birdsall, 1953; see Figure 2B and 2C).
When it is easier to discriminate between signal present and absent (between cholesterol increases and
non-increases), hits will be high and false alarms will be low, leading to ROC points closer to the upper
left. ROCs also highlight bias; a doctor who requires less evidence to believe a treatment works is
biased in favor of treatment effects, leading to ROC points closer to the upper right in Figure 2C. The
most common interpretation of such a bias is that it is due to shifting the threshold farther to the left in
Figure 2A (in some situations, the same bias could also result from shifting both distributions in Figure
2A to the right by the same amount; Witt et al., 2015). Such a doctor will tend to generally decide
that cholesterol increases more often, and so both hits and false alarms will be higher. The second
doctor, who always decided cholesterol increased, is an extreme case of bias and would be represented
by a dot exactly at the upper-right corner (1,1). Overall, unlike accuracy and related measures that
conflate discriminability and bias, signal detection theory along with ROC plots disentangle these
values (Gronlund et al., 2014).

Because bias is easier to manipulate than discriminability, comparisons based on accuracy are more
likely to reflect changes in bias. Despite this, researchers could incorrectly conclude that variation in
accuracy results from discriminability. For example, judges may be more likely to identify treatment
effects as being present than absent in a variety of tasks, resulting in higher accuracy when effects
are present (Bishara, Peller, et al., 2021). This does not, however, imply that judges are ‘better’ at
identifying treatment effects; if judges were truly better at identifying when treatment effects are
present, they would have to also be better at identifying when treatment effects are absent because
effect presence/absence is a binary decision. Similarly, manipulations such as base rate which typically
affect bias (Bohil and Maddox, 2001; Maddox and Bohil, 2005) can be misinterpreted as selectively
making a judge better or worse at the task under certain conditions. For example, an increase in the
base rate of treatment effect presence may lead to higher accuracy when an effect is present, but lower
accuracy when an effect is absent. So base rate and effect presence are expected to interact on accuracy
due to bias, though it would be clearer to have a direct measure of bias rather than this interaction.
The signal detection measure of bias reduces the complexity in patterns of results by providing a
measure that is directly affected. For example, there was initial enthusiasm about sequential lineups
in witness identification. Some early studies showed that sequential lineups decreased false alarms with
only a slight reduction in hits, and it was therefore concluded that sequential lineups were superior.
However, later signal detection analyses suggested that sequential lineups biased witnesses against
selecting any suspect (innocent or not) while reduced or at least did not improve discriminability
(respectively, Wixted and Mickes, 2014; Kaesler et al., 2020; for related examples, see Anderson et al.,
2005; Modirrousta-Galian and Higham, 2023).

In a signal-detection framework, the shifting of criteria can be normative. When base rates of
signal and noise conditions are unequal, a judge trying to maximize utility should establish a criterion
that proportionally favors decisions more likely to be correct (Bohil and Maddox, 2001; Healy and
Kubovy, 1981; Lynn and Barrett, 2014). That is, the doctor who concluded that all 10 patients showed
a cholesterol increase was not entirely wrong to do so; 8 of the patients walked away with the correct
diagnosis. In this way, the second doctor achieved similar patient outcomes while conserving effort.
The shifting of criteria (bias) is therefore not inherently bad; it can be helpful to the extent that it
reflects reality. Unfortunately, human judges sometimes fail to adequately account for base rates and
therefore do not capitalize on their full potential (Healy and Kubovy, 1981; Kahneman and Tversky,
1973). Furthermore, when changes in context obsolesce previous beliefs, human judges may rely too
heavily on early information and therefore not shift their criterion enough (Hogarth and Einhorn, 1992;
Maddox and Bohil, 2005; C. R. Peterson and Ducharme, 1967). This effect is amplified if the judge does
not receive immediate feedback (Maddox and Bohil, 2005). If the second doctor were to review case
files from a population where cholesterol increases are less common, patient outcomes would likely
suffer due to a failure to effectively shift criterion. Criteria are often affected by base rates, especially
as compared to discriminability (Healy and Kubovy, 1981).
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In addition to shifting criteria, initial information might change the weight that the decision-maker
gives to different cues. For example, predecisional information distortion affects how the ‘given
information’ itself is interpreted (DeKay, 2015). Relatedly, instead of maximizing utility, the goal of
motivated reasoning is to reach a conclusion that affirms prior beliefs (Kunda, 1990). In this case, even
disconfirming evidence (e.g., cues that contradict an earlier established belief) may be re-interpreted
as supporting the desired conclusion. If this is the case, base rates might affect discriminability by
changing which information is weighed more heavily.

Multiple sources of information (cues) are used to make decisions, but their relevance (validity)
varies. For example, people sometimes attend to the slope of a graph after an interruption (e.g.,
introduction of a drug), while neglecting to compare it to the slope before the interruption (White, 2015;
Zhang and Rottman, 2023). Suppose a patient had a steadily rising cholesterol level before trying a new
drug. After starting the drug, the patient’s cholesterol continued to increase at the same rate. The doctor
may see the rising cholesterol level and incorrectly conclude that the drug increases cholesterol. In some
cases, less reliable cues may be used to ease the decision-making process. For example, the doctor may
attend mostly to the data points immediately before and after starting the drug (days 10 and 11) to
see if the change from baseline to treatment co-occurs with a change in cholesterol (Soo and Rottman,
2018). To achieve a more complete understanding of human decisions in these kinds of circumstances,
a lens model displays the correlation of various cues with both human decisions and actual outcomes
(Brunswik, 1956; Dhami and Mumpower, 2018). In this way, the lens model may offer insight into
motivated reasoning and pre-decisional information distortion. The lens model provides some evidence
on predecisional information distortion and motivated reasoning by comparing models in which base
rates directly affect decisions versus ones in which base rates interact with other cues.

To better understand the effect of base rates, we compare that manipulation to another—the auto-
correlation of the time series. Autocorrelation, or serial dependence, is the extent to which data points
in a time series correlate with their previous values; if blood cholesterol is positively autocorrelated, a
day of high blood cholesterol is more likely to be followed by another day of high blood cholesterol.
Positive autocorrelation can make time series graphs appear smoother as error from one-time point
partially spills over into the following time points. In past work, when judging interruptions amidst
positive autocorrelation, participants often incorrectly inferred a treatment effect where none existed
(Bishara, Peller, et al., 2021; Matyas and Greenwood, 1990). Positive autocorrelation both decreased
discriminability and increased bias to decide that an interruption had some kind of effect (Bishara,
Peller, et al., 2021). The bias effect likely occurred because participants evaluated a non-directional
hypothesis: decide whether the interruption had no effect versus any effect. In that scenario, positive
autocorrelation can create the illusion that a treatment effect occurred because it makes time series
data more likely to drift in either direction. In contrast, the present experiments asked participants to
evaluate a unidirectional hypothesis: deciding whether an interruption increased an outcome versus
not. In this scenario, positive autocorrelation can create the illusion of a treatment effect only when it
causes the time series data to drift upward. When autocorrelation causes the data to drift downward, it
can create the illusion that a treatment effect did not occur. These 2 effects should largely cancel out
with respect to bias, leading autocorrelation to primarily affect discriminability rather than bias. As a
result, autocorrelation may contrast with early base rates, the latter of which is expected to primarily
affect bias.

Finally, we also examined the effects of negative autocorrelation. As shown in Figure 3, negative
autocorrelation causes an oscillatory pattern where high scores tend to be followed by low scores and
vice versa; a day of high blood cholesterol is more likely to be followed by a day of low cholesterol,
and vice versa. Such a pattern might occur, for example, if consumption of a high-cholesterol food
leads to sensory-specific satiety, and therefore temporary avoidance of that food and similar ones.
Negative autocorrelation has been less studied in graph judgment, but some results suggest that negative
autocorrelation should decrease accuracy (Ximenes et al., 2009). The oscillating, highly variable pattern
may visually obscure the mean height of data points, thus making it harder for a human to discriminate
treatment effects. In contrast, if an algorithm can accurately measure the mean before the interruption
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Figure 3. Example interrupted time-series graphs with various levels of autocorrelation.

and the mean afterward, the algorithm could better discriminate treatment effects. Furthermore, with
negative autocorrelation, the residuals partially cancel out because a positive residual at one-time
point usually leads to a negative residual at the next. An algorithm might leverage that cancellation,
thereby achieving higher discriminability amidst negative autocorrelation than positive or even zero
autocorrelation.

2. Experiment 1

The present experiment involved 3 early base rate conditions: Low, High, and Neutral base rates
of treatment effects. These conditions were crossed with 3 autocorrelations: Positive, Negative, and
Zero autocorrelation. Both factors were manipulated within subjects, and participants’ discriminability
and bias were compared. We hypothesized that early base rates would primarily influence bias while
autocorrelation would primarily influence discriminability. Additionally, we explored how participants’
judgment compared to a simple after-minus-before model (White, 2017) given only a single cue:
the mean of the post-intervention period minus the mean of the pre-intervention period. Finally, we
explored how participants’ judgment could be described by a lens model with multiple cues.

2.1. Method

2.1.1. Participants
One hundred and twenty undergraduates were recruited from introductory psychology courses at the
College of Charleston. As pre-registered (https://aspredicted.org/PCN_98J), a participant was excluded
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if (1) any of the critical trials were uncompleted, (2) overall accuracy was less than or equal to chance
(0.5), (3) median reaction time was less than 1 second, or (4) overall experiment completion time
exceeded 1.5 hours. These rules resulted in the exclusion of 1 participant for accuracy, 7 participants
for median reaction time, and 9 participants for experiment completion time. Due to unforeseen
technological problems, 12 participants’ data were lost. This resulted in a final sample size of n = 91
(20 male and 71 female). Estimating power to detect autocorrelation’s effect on discriminability,
unpublished pilot data showed an effect size of 𝜂2

p = 0.32. The pilot means, standard deviations, and
repeated measures correlations, along with the current sample size of 91, led to power to detect the
same-sized effect of autocorrelation on discriminability in the current experiment to exceed 0.999 (via
the Superpower R package, Lakens and Caldwell, 2021), though this could be an overestimate of power
as the smaller sample size of the pilot data (n = 38) may have led to a noisy estimate of effect size. No
existing data were available to estimate the effect size of early base rates on bias, but power was 0.97 for
detecting a medium-sized effect (𝜂2

p = 0.06) and 0.29 for a small-sized effect (𝜂2
p = 0.01; both medium

and small estimates conservatively assumed no correlation among repeated measures; Faul et al., 2009).
Age ranged from 18 to 38, M = 19.2, SD = 2.48. Participants were compensated with credit for their
introductory psychology course.

2.1.2. Design and materials
A 2 (Effect Present vs. Absent) × 3 (Autocorrelation Positive vs. Negative vs. Zero) × 3 (Early Base
Rate: High vs. Low vs. Neutral) repeated measures factorial design was used. The Effect Present
condition was defined by a positive (15) population mean difference between the pre- and post-
intervention data. The population mean difference was 0 in the Effect Absent condition. The Early Base
Rate High condition had 16 of the first 18 stimuli from the Effect Present condition, while Early Base
Rate Low had 2 of the first 18, and Early Base Rate Neutral condition had 9 of the first 18. To manipulate
autocorrelation, the population lag-1 autoregressive coefficient a was set to Negative (−0.75), Positive
(+0.75), or Zero, representing how a given y-value is influenced by the y-value immediately preceding
it. While some types of data show autoregressive tendencies with higher lag values (e.g., lag-2 where the
current score is determined by the previous 2 values), lag-1 is generally acceptable for approximating
behavioral interventions (Matyas and Greenwood, 1990).

Stimuli were generated using a 1-lag auto-regressive interrupted time-series model:

yt = b + dt + vt, (1)

where yt was the score at time t, and t ranged from the 1st to the 20th day. A medication was initiated
after the 10th day denoted by a vertical line (see Figures 1 and 3). The constant b represented the mean
of the pre-intervention period (t ≤ 10) and was set to 175. The value dt represented a population mean
difference and was set to 0 for all t ≤ 10. For t ≥ 11, dt was either 0 in the Effect Absent condition or
15 in the Effect Present condition. To incorporate serial dependence in the model, vt was influenced by
previous time points via a 1-lag autoregressive model:

vt = avt−1 + et, (2)

where a was the population autocorrelation. An a of 0.00 represents no autocorrelation and denotes
that vt were generated independently of one another, an a of .75 represents a strong tendency for the
current value to remain close to the previous, and an a of −0.75 represents an equally strong tendency
for the current value to differ from the previous. The value for the immediately previous time point is
indicated by vt−1. For random error, et was sampled from a random normal distribution with population
mean = 0 and population standard deviation = 10. To make vt approximately stationary even amidst
autocorrelation, et was generated starting with t = −21 to allow for a ‘burn-in’ period of 22 time
points before the plot started at t = 1 (22 was determined by the arima.sim function’s default algorithm
(R Core Team, 2020)).
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Participants completed 3 blocks of 126 trials each. Each block consisted of 18 feedback trials
followed by 108 critical (no feedback) trials. In feedback trials, the effect was present in 16 of 18
(Early Base Rate High), 9 of 18 (Neutral), or 2 out of 18 (Low) graphs. Of these 18 graphs, 6 came
from each of the 3 autocorrelation conditions. Of the 108 critical trials, 54 trials had an effect present
while the other 54 did not, and 18 of the 54 trials belonged to each of the autocorrelation conditions.
For exploratory analyses of judgment over time, each set of 108 critical trials was divided into 6 mini-
blocks consisting of 18 trials each, though sampling of conditions was not balanced across mini-blocks.

All trials within a block used one of the 3 fictitious drug names (Thalyde, Ofrocium, or Ziaxin),
and the feedback trials within that block used one of 3 Early Base Rate conditions (High, Neutral, or
Low). The assignment of drug names and Early Base Rate conditions to the 3 blocks was randomized
for each participant with the constraint that each drug name and Early Base Rate condition would be
used exactly once for every set of 3 participants. For each participant, the specific graph in each trial
was parametrically sampled from a pool of candidate graphs.

Ag was used as a nonparametric measure of discriminability. Ag is the area under the polygon
produced by connecting ROC points (see Figure 2B). This measure was selected because it does not
assume that signal and noise distributions are normal, nor does it assume that their variances are equal.
Ag ranges from 0 to 1, where higher values indicate better discriminability, and 0.5 indicates chance
performance. For bias, the nonparametric measure lnβ’K was chosen for the same reasons (Kornbrot,
2006). An lnβ’K of 0 indicates no bias, positive values indicate a bias to decide that a stimulus is
from the signal distribution (cholesterol increased), and negative values indicate a bias to decide that a
stimulus is from the noise distribution (cholesterol did not increase).

2.1.3. Procedure
Participants answered 3 open-ended questions about age, sex, and ethnicity. Participants were then
instructed to imagine a scenario in which they were tasked with determining whether 3 different drugs
had a side effect of increasing cholesterol. First, participants were shown an example graph depicting
treatment day on the x-axis and blood cholesterol on the y-axis. This graph had some variance in the day-
to-day measurements. The second and third example graphs, however, depicted both treatment effect
sizes (Effect Present and Effect Absent) with zero variance. That is, in the Effect Present condition,
participants were shown a horizontal line at height y = 175 for days 1 to 10, followed by a horizontal
line at height y = 190 for days 11–20. For the Effect Absent condition, both horizontal lines were at
y = 175. This was followed by the presentation of 2 more graphs depicting these 2 effect sizes with
random error. The purpose of these graphs was to show what a mean cholesterol increase looked like in
both error-free and more realistic data. Participants were instructed to look at each graph and respond
to the following question: ‘Did the drug raise cholesterol?’ Participants responded by selecting a button
from a 6-point scale. From left to right, the buttons read: ‘Definitely No Increase (Wager 3)’, ‘Probably
No Increase (Wager 2)’, ‘Guess No Increase (Wager 1)’, ‘Guess An Increase (Wager 1)’, ‘Probably An
Increase (Wager 2)’, and ‘Definitely An Increase (Wager 3)’.

Participants were informed that they would start with a score of 250, and with each question they
would wager between 1 and 3 points depending on their response. Points would either be added to or
subtracted from their score depending on if their response was correct or incorrect, respectively. For
example, responding ‘Probably An Increase (Wager 2)’ in the Effect Present condition would result in
a gain of 2 points, while the same response in the Effect Absent condition would result in a loss of 2
points. Participants were instructed to use all 6 response keys while maximizing their score.

After each feedback trial, the screen showed the participant’s current score, the change in their
score from that trial, and the correct answer to that trial (‘Increase Present’ or ‘No Increase’). As a
manipulation check, after finishing the 18 feedback trials for the drug, participants were asked what
percentage of graphs for that drug appeared to be in the Effect Present condition.

Participants then completed 108 critical trials for that drug without feedback before moving on to
the next drug. After all trials, participants were debriefed about the study’s purpose and their final score
was shown.
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2.2. Results and discussion

2.2.1. Primary analyses
As pre-registered, a 3 (Autocorrelation: Negative, Positive, Zero) × 3 (Early Base Rate: Low, Neutral,
High) repeated-measures ANOVA was performed for discriminability and then for bias. The Effect
Present vs. Absent factor is already summarized in discriminability and bias measures, hence the 2-way
ANOVA in a 3-factor design. The Greenhouse–Geisser correction was applied whenever Mauchly’s test
showed a significant violation of sphericity. As shown in Figure 4, Autocorrelation had a large effect
on discriminability and a small effect on bias. In contrast, as shown in Figure 5, the opposite pattern
occurred with Early Base rates, which had a large effect on bias and a small effect on discriminability
(Table 2).

Autocorrelation had a large and significant effect on discriminability (F(1.71, 153.58) = 111.26,
p < .001, 𝜂2

G = 0.15). Tukey’s HSD was conducted post-hoc for all significant primary effects. Because
post-hoc tests were not preregistered, we report Bonferroni corrected p-values for them by multiplying
each original p by the number of Tukey’s HSD families used in the primary analyses (4). All 3
Autocorrelation conditions were significantly different from one another with respect to discriminability
(ps < .001); discriminability was highest in Zero Autocorrelation (M = 0.84), followed by Negative
Autocorrelation (M = 0.81), and finally Positive Autocorrelation (M = 0.73). Early Base Rates had a
small but significant effect on discriminability (F(2, 180) = 7.91, p = .001, 𝜂2

G = 0.02). Discriminability
was significantly lower in Early Base Rate Low (M = 0.78) compared to either of the other 2 conditions
(ps < .04; Ms = 0.80 and 0.81). Discriminability was not affected by the interaction of Autocorrelation
and Early Base Rates (F(3.63, 326.54) = 0.79, p = .52, 𝜂2

G = 0.002). Importantly, Autocorrelation had a
significantly larger effect on discriminability (𝜂2

G = 0.15) than did Early Base Rates (0.02), as indicated
by a nonparametric percentile bootstrap of the difference (95% CI [0.09, 0.18]).

Autocorrelation had a small but significant effect on bias (F(2, 180) = 17.40, p < .001, 𝜂2
G = 0.01).

Bias was significantly lower in the Positive Autocorrelation condition (M = 0.20) compared to either
of the other 2 conditions (ps < .001; M’s = 0.34 and 0.36 for Negative Autocorrelation and Zero
Autocorrelation, respectively). Early Base Rates had a large and significant effect on bias (F(1.71,

Figure 4. Experiment 1: ROC of human and model judgment at varying levels of autocorrelation.
Note: The dotted lines represent after-minus-before model performance. ROC, Receiver Operating Characteristics.
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Figure 5. Experiment 1: ROC of human and model judgment at varying early base rates.
Note: The dotted lines represent after-minus-before model performance. The model is not affected by the Early Base Rates because it ignores

previous graphs when judging the current graph. ROC, Receiver Operating Characteristics; EBR, Early Base Rate.

Table 2. Experiment 1: mean discriminability and bias by Autocorrelation and Early Base Rate.

Early base rate Autocorrelation

Negative Zero Positive Negative Zero Positive

Discriminability (Ag) M Bias (lnβ’K) M

High 0.82 0.85 0.75 0.81 0.95 0.91 0.67 0.84
Neutral 0.82 0.85 0.74 0.80 0.40 0.39 0.22 0.34
Low 0.80 0.82 0.71 0.78 −0.33 −0.23 −0.28 −0.28
M 0.81 0.84 0.73 0.79 0.34 0.36 0.20 0.30
Note: Boldface values indicate means.

154.15) = 81.64, p < .001, 𝜂2
G = 0.28). Bias varied significantly between all Early Base Rates conditions

(ps < .001), with the highest bias in Early Base Rate High (M = 0.84), followed by Early Base Rate
Neutral (M = 0.34), and finally Early Base Rate Low (M = −0.28). Autocorrelation and Early Base
Rates also had a small but significant interaction for bias (F(3.63, 326.85) = 6.73, p < .001, 𝜂2

G = 0.01).
Early Base Rates had a significantly larger effect on bias (𝜂2

G = 0.28) than did Autocorrelation (0.01;
95% CI of the difference [0.21, 0.35]).

As pre-registered, a 3 (Autocorrelation: Negative, Positive, Zero) × 3 (Early Base Rate: Low,
Neutral, High) × 2 (Effect: Present, Absent) repeated-measures ANOVA was conducted on accuracy.
Accuracy was defined as (Hits + Correct Rejections) / (Hits + Correct Rejections + Misses + False
Alarms). All ‘. . . An Effect’ responses, regardless of wager, were collapsed, and likewise, all ‘. . . No
Effect’ responses were collapsed. As shown in Table 3, the Autocorrelation had a small main effect on
accuracy (F(1.61, 144.84) = 84.32, p < .001, 𝜂2

G = 0.05), as did Early Base Rates (F(2, 180) = 8.64,
p < .001, 𝜂2

G = 0.01) and Effect Presence (F(1, 90) = 5.18, p = .03, 𝜂2
G = 0.01). The interaction of Early

Base Rates and Effect Presence had a large effect (F(1.69, 151.96) = 75.71, p < .001, 𝜂2
G = 0.20) while
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Table 3. Experiment 1: mean accuracy by autocorrelation, Early
Base Rate, and Effect Presence.

Variable Accuracy

Effect present Effect absent

Autocorrelation
Negative 0.80 0.71
Zero 0.82 0.75
Positive 0.68 0.70

Early Base Rate
Low 0.64 0.81
Neutral 0.78 0.74
High 0.87 0.62

the interaction between Autocorrelation and Effect Presence had a small effect (F(2, 180) = 45.49,
p < .001, 𝜂2

G = 0.02). Finally, the 3-way interaction of Autocorrelation, Early Base Rates, and Effect
Presence had a small but significant effect (F(4, 360) = 6.78, p < .001, 𝜂2

G = 0.01).

2.2.2. Exploratory analyses
Participant performance was compared to the performance of a simple after-minus-before logistic
regression model. For this model, each graph was summarized by a single numerical value: the mean
of days 11–20 minus the mean of days 1–10 (White, 2017). This after-minus-before value was used
as a predictor variable in logistic regression, and the binary outcome variable was whether each graph
truly had a cholesterol increase (1) or not (0). To avoid evaluating the model on the same data it was
trained on, which would overestimate the model’s performance, this logistic regression model was
fit to half of the graphs sampled randomly (the training stimuli). For the remaining graphs (the test
stimuli), the model produced a p-value indicating the probability that cholesterol increased. Lower
p-values indicated greater perceived evidence for a cholesterol increase. That is, lower p-values were
represented farther to the right on the horizontal axis of Figure 2A.

This after-minus-before model’s performance is shown by the dotted lines in Figures 4 and 5. The
model outperformed human judgment in every condition with an average discriminability (Ag) of
0.91. As it was with human judgment, model performance was reduced by positive autocorrelation
(Ag = 0.79). However, unlike human judgment, model performance was improved by negative
autocorrelation (Ag = 0.999). Negative autocorrelation caused error to partly cancel out across time
points, making the sample mean of each phase more representative of the population means. This
made the after-minus-before value an excellent cue. However, the oscillating visual pattern produced
by negative autocorrelation (see Figure 3) may make it harder for humans to notice this cue. Note that,
unlike human judgment, the model’s performance was unaffected by early base rates because it ignores
previous graphs when judging the current graph.

A lens model was used to provide more insight into what cues participants used to make decisions.
First, a list of potential cues was created: after-minus-before value, observed autocorrelation, proportion
of feedback trials in the Effect Present condition, the difference between time points 10 and 11, the
pooled standard deviation, and the slope of the post-intervention phase. The first 3 cues were sample
estimates of manipulated variables. The difference between the point immediately before and after the
intervention (points 10 and 11) was included because it may be a simple way to estimate the correlation
of a transition (Soo and Rottman, 2018). The pooled standard deviation of the pre-/post-intervention
trials was included because people may make decisions like a t-test, considering not only the after-
minus-before value (the numerator of a t-test) but also some measure of noise (the denominator; Obrecht
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et al., 2007; White, 2017). The slope of the post-intervention phase was included because it can affect
judgment, sometimes even in cases where it is unchanged relative to the pre-intervention phase (White,
2017; Zhang and Rottman, 2023). Finally, 2-way interactions between each cue and early base rates
were considered because early base rates may affect how other information is processed following a
motivated reasoning framework (Kunda, 1990). Examining every possible combination of these cues,
275 multiple logistic regression models were tested. In these models, the binary outcome variable
was whether the participant gave one of the ‘. . .An Effect’ or ‘. . .No Effect’ response on critical (no-
feedback) trials. Models were then assessed using their Bayesian information criterion (BIC), and the
model with the lowest BIC was selected. This selected model had 4 cues: the after-minus-before value,
the 10–11-point change, the proportion of feedback trials from the Effect Present condition, and the
post-intervention slope. There were no interaction terms. All other cues and all interactions led to higher
(worse) BICs, suggesting that they were less accurate descriptions of the cue utilization by participants.

The point-biserial correlation was then calculated for each predictor of the selected model to both
participant responses and whether the stimulus had been generated from the population with an effect
present. As shown in Figure 6, participants relied on the after-minus-before difference and the 10–
11-point difference less than they should have; participants also relied on Early Base Rates and

Figure 6. Experiment 1: lens model.
Note: Numbers show the point-biserial correlation between each cue (middle set of circles) and the actual answer (left circle) or each cue and the

human decision (right circle). After-minus-before is the mean of the post-intervention points (11–20) minus the mean of the pre-intervention points

(1–10).
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Figure 7. Experiment 1: bias across mini-blocks.

post-intervention slope, though neither of these had any correlation with the variable they were trying
to predict (|r|s < 0.01). As such, participant achievement (the correlation between effect presence and
human decisions) was only moderate (0.49). In contrast, the after-minus-before model had a strong
correlation (0.70) with the outcome variable.

Could the effect of base rates disappear over trials, perhaps as participants noticed that the base rates
had reverted to 50% effect presence? Critical trials were divided into 6 mini-blocks, each comprised of
18 trials. A 3 (Early Base Rate High vs. Low vs. Neutral) × 6 (mini-blocks) within-subjects ANOVA
was conducted on bias (lnβ’K). As shown in Figure 7, mini-block had a small main effect on bias (F(5,
450) = 5.86, p < .001, 𝜂2

G = 0.01). However, mini-block did not significantly interact with Early Base
Rates (F(8.46, 761.68) = 0.99, p = .45, 𝜂2

G = 0.002), suggesting that the biasing effects of base rates
failed to dissipate over time. Furthermore, when the ANOVA was restricted to mini-blocks 3–6, the
main effect of mini-block became non-significant, suggesting that bias stabilized by mini-block 3 (F(3,
270) = 0.23, p = .88, 𝜂2

G = .000). Even when restricted to mini-blocks 3–6, the large effect of Early Base
Rates remained (F(1.7, 152.71) = 65.5, p < .001, 𝜂2

G = 0.22).
For the manipulation check, participants estimated that the percentage of cholesterol increases in

the feedback trials were 77.8%, 54.8%, and 27.3% in the Early Base Rates High, Neutral, and Low
conditions respectively (F(1.83, 164.31) = 159.68, p < .001, 𝜂2

G = .53). Tukey’s HSD revealed that all
conditions were significantly different from each other (ps < .001).

3. Experiment 2

In the first experiment, Early Base Rates affected later graph judgments. However, as a manipulation
check, participants were asked about these base rates immediately before the critical trials for the drug.
Participants might have inferred that these base rates were important (after all, why else ask about
them; Grice, 1975) and therefore made special effort to use early base rates with a drug for future
judgments of that drug. Even without this inference, recalling the feedback trials would likely make
them more memorable than trials that required no recall (Roediger and Karpicke, 2006). In Experiment
2, we moved this manipulation check to the end of each set of critical trials (each drug) to avoid these
problems.
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Experiment 2 also addressed a concern about interpreting the negative autocorrelation condition.
As negative autocorrelation leads to jagged graphs (high data point followed by low followed by
high, etc.), the variance of data points in such graphs was larger than in the other conditions. So, it
is unclear whether negative autocorrelation itself or the larger variance that resulted from it caused
lower discriminability. To address this issue, in Experiment 2, we included a condition where the
autocorrelation was 0, but the population variance was approximately matched to that of the negative
autocorrelation condition. Relatedly, this condition allowed us to explore the possibility that noise
could enhance the effects of motivated reasoning, which could be shown by an interaction with other
cues. This ‘Zero with Matched Noise’ condition replaced the Positive Autocorrelation condition from
Experiment 1. The replacement of the Positive Autocorrelation condition allowed for the number of
trials per condition to remain the same across experiments.

3.1. Method

3.1.1. Participants
One hundred and twenty undergraduates were recruited from introductory psychology courses at the
College of Charleston. Criteria for participant exclusion were pre-registered (https://aspredicted.org/
XYR_TQX) to be identical to Experiment 1. The criteria resulted in the exclusion of 9 participants
for accuracy, 14 participants for median reaction time, and 21 participants for experiment completion
time. Two participants were excluded for 3 criteria, and another 7 participants were excluded for 2
criteria. The remaining 24 participants excluded from analysis were excluded for only one criterion.
Lastly, the data of 6 participants were corrupted due to an internal error with Qualtrics. This resulted
in a final sample size of n = 81 (18 male and 65 female). With this sample size, power to detect the
effect of base rates on bias exceeded .99, as estimated via Experiment 1 means, standard deviations, and
repeated measures correlations (Lakens and Caldwell, 2021). We had no previous data regarding the
Zero Autocorrelation with Matched Noise condition’s effect on discriminability, but power to detect a
medium effect (𝜂2

p= 0.06) was 0.95, and power to detect a small effect (𝜂2
p = 0.01) was 0.26 (Faul et al.,

2009). Age ranged from 18 to 32 (M = 19.6, SD = 2.43).

3.1.2. Design and materials
A 2 (Effect Presence: Present vs. Absent) × 3 (Autocorrelation: Negative vs. Zero vs. Zero with
Matched Noise) × 3 (Early Base Rate: High vs. Low vs. Neutral) repeated measures factorial design
was used. The Negative Autocorrelation and Zero Autocorrelation conditions were identical to those
of Experiment 1, and the Positive Autocorrelation condition was replaced with a ‘Zero with Matched
Noise’ condition. In the Zero with Matched Noise condition, a was set to 0, but the standard deviation
of et was set at 15.45937. This made the stimuli’s population variance approximately that of the
Negative Autocorrelation condition (see Supplementary Material for details on this approximation).
Like Experiment 1, stimuli falling into each of these 3 conditions were shuffled within blocks, but with
the added specification that the 18-trial mini-blocks were fully balanced with respect to effect presence
and autocorrelation.

3.1.3. Procedure
Participants’ experience in this experiment was identical to Experiment 1 with the sole exception that
participants were only asked about the portion of trials appearing to raise cholesterol after the final
critical trial for each drug, rather than after the feedback trials.

3.2. Results and discussion

3.2.1. Primary analyses
As in Experiment 1, Autocorrelation primarily affected discriminability, whereas Early Base rates
primarily affected bias (Table 4). As shown in Figure 8, the main effect of Autocorrelation on
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Table 4. Experiment 2: mean discriminability and bias by autocorrelation and Early Base Rate.

Early base rate Autocorrelation

Zero w/matched Zero w/matched
Negative Zero Noise Negative Zero Noise

Discriminability (Ag) M (Ag) Bias (lnβ’K) M (lnβ’K)

High 0.84 0.87 0.78 0.83 0.91 0.92 0.87 0.90
Neutral 0.85 0.85 0.77 0.82 0.60 0.63 0.53 0.59
Low 0.81 0.84 0.76 0.81 0.18 0.21 0.17 0.19
M 0.84 0.85 0.77 0.82 0.56 0.59 0.52 0.56
Note: Boldface values indicate means.

Figure 8. Experiment 2: ROC of human and model judgment at varying levels of autocorrelation.
Note: The dotted lines represent after-minus-before model performance. ROC, Receiver Operating Characteristics.

discriminability was significant and of medium effect size (F(2, 160) = 91.83, p < .001, 𝜂2
G = 0.11).

Tukey’s HSD was again conducted post-hoc for all significant primary effects. Because post-hoc
tests were not preregistered, we report Bonferroni corrected p-values for them by multiplying each
original p by the number of Tukey HSD families used in the primary analyses (3). All 3 conditions
of Autocorrelation were significantly different from one another with respect to discriminability
(ps < .03); Zero Autocorrelation showed the highest discriminability (M = 0.85), followed by Negative
Autocorrelation (M = 0.83) and finally Zero with Matched Noise (M = 0.77). As shown in Figure 9,
the main effect of Early Base Rates was small but significant (F(2, 160) = 4.56, p = 0.01, 𝜂2

G = 0.01).
Discriminability was significantly higher in Early Base Rate High (M = 0.83) compared to Early Base
Rate Low (M = 0.81; p = .047). The 2 factors did not interact (F(4, 320) = 1.87, p = .12, 𝜂2

G = 0.004).
Autocorrelation had a significantly larger effect on discriminability (𝜂2

G = 0.11) than did Early Base
Rates (0.01; 95% CI of the difference [0.06, 0.15]).

Like Experiment 1, Early Base Rates had a large and significant effect on bias (F(1.51,
120.60) = 44.08, p < .001, 𝜂2

G = 0.17). Bias was again significantly different between all conditions
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Figure 9. Experiment 2: ROC of human and model judgment at varying EBR.
Note: The dotted lines represent after-minus-before model performance. ROC, Receiver Operating Characteristics; EBR, Early Base Rate.

Table 5. Experiment 2: mean accuracy by autocorrelation, Early
Base Rates, and Effect Presence.

Variable Accuracy (M)

Effect present Effect absent

Autocorrelation
Negative 0.83 0.75
Zero with matched noise 0.76 0.68
Zero 0.85 0.75

Early Base Rate
Low 0.74 0.79
Neutral 0.82 0.73
High 0.87 0.67

(ps < .001): highest in Early Base Rate High (M = 0.90), then Early Base Rate Neutral (M = 0.59),
and lowest in Early Base Rate Low (M = 0.19). Autocorrelation was almost significant with respect to
bias (F(1.82, 145.39) = 2.81, p = .07, 𝜂2

G = 0.002), and the 2 factors did not interact (F(4, 320) = 0.30,
p = .88, 𝜂2

G = 0.000). Early Base Rates had a significantly larger effect on bias (𝜂2
G = 0.17) than did

Autocorrelation (0.002; 95% CI of the difference [0.10, 0.24]).
In terms of accuracy, as shown in Table 5, the Autocorrelation had a small main effect (F(2,

160) = 101.59, p < .001, 𝜂2
G = 0.05) while the main effect of Effect Presence was moderate (F(1,

80) = 17.7, p < .001, 𝜂2
G = 0.07). The interaction of Effect Presence and Early Base Rates was moderate

(F(1.70, 136.34) = 38.07, p < .001, 𝜂2
G = 0.09). All other effects and interactions were nonsignificant.
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Figure 10. Experiment 2: lens model.
Note: After-minus-before is the mean of the post-intervention days (11–20) minus the mean of the pre-intervention days (1–10).

3.2.2. Exploratory analyses
Participant performance was again compared to the performance of a simple after-minus-before model.
A similar pattern emerged, with model performance exceeding human performance in all conditions,
as shown in Figure 8.

The model with the lowest BIC in Experiment 2 included just 2 cues: the after-minus-before value
and the Early Base Rate (see Figure 10). As before, participants relied most heavily on the after-
minus-before value, though not as much as they should have. Participants again relied on the Early
Base Rate despite it having no correlation with effect presence. The key difference is that participants
made use of neither the post-intervention slope nor the 10–11-point difference. Reliance on the post-
intervention slope may be more likely amidst positive autocorrelation, as the smoothing effect of
positive autocorrelation makes (illusory) directional trends more apparent. Positive autocorrelation may
also increase the salience of the 10–11-point difference by smoothing out other transitions between
days.

Like Experiment 1, mini-block had a small main effect on bias (F(4.36, 349.18) = 4.01, p = 0.003,
𝜂2

G = 0.01), but there was no significant interaction between mini-block and Early Base Rates (F(7.79,
623.15) = 1.22, p = .29, 𝜂2

G = 0.003). Again, when the ANOVA was restricted to mini-blocks 3–6, the
main effect of mini-block became non-significant (F(2.61, 208.78) = 0.35, p = .76, 𝜂2

G = 0.000), but the
effect of Early Base Rates remained (F(1.52, 121.98) = 35.69, p < .001, 𝜂2

G = .13).
For the manipulation check, participants estimated that the percentage of cholesterol increases across

all trials (feedback and critical) were 63.1%, 55.5%, and 52.8% for the drug in the Early Base Rates
High, Neutral, and Low conditions respectively (F(2, 160) = 12.54, p < .001, 𝜂2

G = .05). Tukey’s HSD
revealed that the drug in the Early Base Rate High condition received significantly higher estimates
than the drugs in the other 2 conditions (ps < .01).

4. General discussion

After viewing 18 graphs, judges became biased by the base rate of that initial information. Indeed, even
as context changed and their newly established beliefs obsolesced, human judges failed to adjust their
beliefs to make them more consistent with the task environment. In Experiment 1, the effect of Early
Base Rates on bias may have been amplified by conversational norms and/or recall practice induced by
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the manipulation check. That is, asking participants to recall the base rate of the early graphs may have
made participants attend to and remember this information more strongly. However, in Experiment 2,
when this manipulation check was moved to the end of each block, it could no longer affect graph
judgments of that drug. Nevertheless, the feedback trial base rates still had a large effect on the bias
of later critical trial judgments. Likewise, decision-makers in other contexts may also fail to adjust
their beliefs adequately (Healy and Kubovy, 1981; Kahneman and Tversky, 1973), especially when
they receive limited or delayed feedback on the veracity of their judgments (Maddox and Bohil, 2005).
Believing their decisions to be correct, the decision maker may cease to adjust their criterion once they
feel they understand the task; indeed, after about 54 trials (Mini-Block 3), bias stabilized and did not
adjust further, continuing to bias future decisions.

We have interpreted the effects of base rates on bias as being due to a change in the response
threshold (Figure 2A dotted line). However, an alternative interpretation is that it is due to a shift of both
the signal and noise distributions’ means by the same amount in the same direction (Witt et al., 2015;
also see Modirrousta-Galian and Higham, 2023). For example, bias in the high base rate condition could
also be due to shifting both distributions to the right while keeping the response threshold constant. One
could imagine that the high base rate condition caused participants to opportunistically seek out any
graph features, even spurious ones, which could be construed to support a cholesterol increase. This
would increase the perceived evidence for cholesterol increases for both effect present and effect absent
trials. Such an interpretation predicts that base rates would interact with the utilization of other graph
cues. We found no evidence of such an interaction in the lens models, though of course there could be
relevant graph features that were not considered in these models. The results showed a primacy effect
where the early probability of effects in graphs had a large impact on later judgments. However, the
relative importance of primacy versus recency likely depends on the task characteristics (Hogarth and
Einhorn, 1992). A primacy effect could have occurred here because feedback was removed after 18
trials with a drug. The lack of feedback could lower the weight given to critical trials when updating
judgments of the base rate. Additionally, primacy may also be due to the length of the task (126 graphs
per drug), which could encourage participants to develop firmer and firmer beliefs, and thereby make
smaller and smaller adjustments in later trials (Hogarth and Einhorn, 1992). This primacy effect was
useful here mainly for a methodological reason: it allowed us to observe a base rate effect on bias while
equating the base rates of critical trials (always 50%).

Had these experiments used a text-based rather than graphical presentation format, the outcome
might have been different. Graphical presentation of data may increase sensitivity to trends such as the
post-intervention slope (White, 2017; Zhang and Rottman, 2023). Because the post-intervention slope
was utilized by participants in Experiment 1 but was not predictive, reduced utilization of this cue could
have actually increased discriminability. Base rates have been shown to bias human judges in a variety
of contexts, so text-based presentation is unlikely to diminish this effect (Han and Dobbins, 2008;
Maddox and Bohil, 2005). In fact, if mean difference utilization decreased with text-based presentation
(e.g., White, 2015), it is possible that base rates could make up a larger portion of their decision-making
process. Another finding of note is that unlike previous research (Han and Dobbins, 2008; Healy and
Kubovy, 1981), base rates had a small but significant effect on discriminability such that the High Early
Base Rate condition had a small but consistent advantage over the Low Early Base Rate condition. It is
possible that low early base rates lead to slightly less effort in searching for a difference between before
versus after the medication was started. Nevertheless, this discriminability effect was more subtle and
appeared to be restricted to the 3 more relaxed criteria (the 3 right-most dots in Figures 5 and 9).

One concern is that these base rate effects might transfer narrowly to only stimuli with similar surface
features (e.g., line graphs with 20 days on the x-axis, an interruption after day 10, etc.). However, there
were large changes in bias from block to block where drug names changed while those surface features
remained relatively constant. This pattern suggests that base rates affected participants’ higher-order
beliefs about each drug (e.g., belief that Ziaxin usually raises cholesterol). In other words, it is plausible
that these base rate effects could transfer to other stimuli (e.g., text or tables), so long they involved the
same drug.
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The discriminability of human judgment was reduced by both autocorrelation and noise. The finding
that autocorrelation reduces discriminability is not new, but the lens model analysis does put it in a new
view. Compared to a simple after-minus-before model, informal human judgment was worse in every
case. Conversely, the simple after-minus-before cue was quite effective. Note that these experiments
used a simple population-generating model which included a possible mean difference, but no trends
(non-zero slopes). Interrupted time series with trends would make this simple cue less diagnostic.

Negative autocorrelation improved model performance while worsening human performance. The
reduction in discriminability of both human and model decisions when stimuli had increased variance
compared to negative autocorrelation suggests that autocorrelation uniquely affects judgment in a
way that variance alone does not. Increased model performance suggests that negative autocorrelation
increased the viability of the after-minus-before value as a decision cue. This is likely because negative
autocorrelation creates positive and negative residuals in an alternating pattern which partly cancels out.
It is unclear why negative autocorrelation reduced human discriminability, but one possible explanation
is that the jagged pattern of negatively autocorrelated data makes means (and in turn after-minus-before
values) harder to judge by eye.

Positive autocorrelation reduced both human performance and model performance. Interestingly,
observed autocorrelation was not included as a parameter in the selected lens model for either
experiment nor were any autocorrelation interactions. This suggests that positive autocorrelation might
not affect how human judges use other cues, including the after-minus-before value. Instead, positive
autocorrelation likely makes the after-minus-before value a less useful cue (as supported by the dotted
lines in Figure 4).

The failure of human judgment to outperform even a simple model is unfortunate given the
prevalence of single-case time series judgment in a variety of contexts (Matyas and Greenwood,
1990; White, 2015, 2017). The limited discriminability of informal human judgment is likely caused
by both sub-optimal cue utilization and inconsistency. Inconsistency in human judgment reduces
discriminability because judgment often varies based on irrelevant contextual factors (Goldberg, 1968).
As a result, an individual’s decisions vary not only from case to case, but even in the same case when
viewed in different contexts (Ashton, 2000). Signal detection theory has been instrumental in analyzing
human and model performance. Had analyses been limited to accuracy, it would have been harder to
spot what factors made the task more difficult and what factors biased participants (Anderson et al.,
2005; Bishara, Li, et al., 2021; Modirrousta-Galian and Higham, 2023; Wixted and Mickes, 2014). For
example, in Experiment 1 early base rates affected accuracy, suggesting that base rates affected task
difficulty; signal detection theory revealed base rates primarily affected bias rather than discriminability.
These results show a circumstance where initial beliefs alter a response criterion, even without those
beliefs interacting with other potential cues (for a related example, see Vicente et al., 2023).

Graph literacy was not measured in the experiments reported here. Participants were non-experts,
specifically undergraduates, and so their graph literacy likely varies (Galesic and Garcia-Retamero,
2011). In previous work, time series graph judgment has been examined both in a general U.S. adult
population and in experts (graduate students in behavioral analysis programs, most of whom had
experience with single-subject interrupted time series graphs; Bishara et al., 2021). The 2 groups’
average performance was similar. Furthermore, the experts showed about the same impairment due
to autocorrelation as the general population did. It may be hard for even experts to adjust for
autocorrelation because the perceptual features it creates are similar to those of noise (or lack thereof).
For example, a smooth line produced by high autocorrelation may be mistaken as data with little noise,
and the low perceived noise of the data may in turn cause judges to infer that effects are more likely
to be present (White, 2017). While expertise is unlikely to moderate the effects of autocorrelation, its
potential to moderate base rate usage in graph judgment is less clear.

Graph judgment remains a powerful tool for the exploration and dissemination of data. Graphs can
enhance understanding of trends as well as reduce misperceptions (White, 2017). Nonetheless, previous
research shows that graph judgment can be affected by background beliefs (Freedman and Smith, 1996;
Lee and Lee, 2022; Mena, 2023; Nyhan and Reifler, 2019). As shown by the experiments here, these
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background beliefs can be created by graphs themselves. Furthermore, these beliefs can affect behavior
largely through bias, that is, a change in a decision threshold. Finally, even though such bias can be
adaptive while those beliefs are valid, the bias can persist even when those beliefs cease to be so.
Overall, when exposed to multiple graphs on the same topic, human judges can draw conclusions about
the data, but once those conclusions are made, they can affect subsequent graph judgment.
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