
JFP 32, e4, 69 pages, 2022. c© The Author(s), 2022. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original
work is properly cited.
doi:10.1017/S0956796821000277

Fregel: a functional domain-specific language
for vertex-centric large-scale graph processing

H I D E Y A I W A S A K I
The University of Electro-Communications, Tokyo, Japan

(e-mail: iwasaki@cs.uec.ac.jp)

K E N T O E M O T O
Kyushu Institute of Technology, Fukuoka, Japan

(e-mail: emoto@csn.kyutech.ac.jp)

A K I M A S A M O R I H A T A
The University of Tokyo, Tokyo, Japan

(e-mail: morihata@graco.c.u-tokyo.ac.jp)

K I M I N O R I M A T S U Z A K I
Kochi University of Technology, Kochi, Japan

(e-mail: matsuzaki.kiminori@kochi-tech.ac.jp)

Z H E N J I A N G H U
Peking University, Beijing, China

(e-mail: huzj@pku.edu.cn)

Abstract

The vertex-centric programming model is now widely used for processing large graphs. User-defined
vertex programs are executed in parallel over every vertex of a graph, but the imperative and explicit
message-passing style of existing systems makes defining a vertex program unintuitive and diffi-
cult. This article presents Fregel, a purely functional domain-specific language for processing large
graphs and describes its model, design, and implementation. Fregel is a subset of Haskell, so Haskell
tools can be used to test and debug Fregel programs. The vertex-centric computation is abstracted
using compositional programming that uses second-order functions on graphs provided by Fregel. A
Fregel program can be compiled into imperative programs for use in the Giraph and Pregel+ vertex-
centric frameworks. Fregel’s functional nature without side effects enables various transformations
and optimizations during the compilation process. Thus, the programmer is freed from the burden
of program optimization, which is manually done for existing imperative systems. Experimental
results for typical examples demonstrated that the compiled code can be executed with reasonable
and promising performance.

1 Introduction

The rapid growth of large-scale data is driving demand for efficient processing of the
data to obtain valuable knowledge. Typical instances of large-scale data are large graphs
such as social networks, road networks, and consumer purchase histories. Since such large

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796821000277
https://orcid.org/0000-0002-3708-6624
mailto:iwasaki@cs.uec.ac.jp
mailto:emoto@csn.kyutech.ac.jp
https://orcid.org/0000-0003-2741-5954
mailto:morihata@graco.c.u-tokyo.ac.jp
mailto:matsuzaki.kiminori@kochi-tech.ac.jp
mailto:huzj@pku.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796821000277&domain=pdf
https://doi.org/10.1017/S0956796821000277

2 H. Iwasaki et al.

graphs are becoming more and more prevalent, highly efficient large-graph processing is
becoming more and more important. A quite natural solution for dealing with large graphs
is to use parallel processing. However, developing efficient parallel programs is not an
easy task, because subtle programming mistakes lead to fatal errors such as deadlock and
to nondeterministic results.

From the programmer’s point of view, there are various models and approaches to the
parallel processing of large graphs, including the MapReduce model (Bu et al., 2012), the
matrix model (Kang et al., 2011, 2012), the data parallelism programming model with a
domain-specific language (Hong et al., 2012; Nguyen et al., 2013), and the vertex-centric
model (Malewicz et al., 2010; McCune et al., 2015). The vertex-centric model is partic-
ularly promising for avoiding mistakes in parallel programming. It has been intensively
studied and has served as the basis for a number of practically useful graph processing
systems (McCune et al., 2015; Khan, 2017; Liu & Khan, 2018; Song et al., 2018; Zhuo
et al., 2020). We thus focus on the vertex-centric model in this article.

In vertex-centric graph processing, all vertices in a graph are distributed among
computational nodes that iteratively execute a series of computations in parallel. The com-
putations consist of communication with other vertices, aggregation of vertex values as
needed, and calculation of their respective values. Communication is typically between
adjacent vertices; a vertex accepts messages from incoming edges as input and sends the
results of its calculations to other vertices along outgoing edges.

Several vertex-centric graph processing frameworks have been proposed, including
Pregel (Malewicz et al., 2010; McCune et al., 2015), Giraph,1 GraphLab (Low et al.,
2012), GPS (Salihoglu & Widom, 2013), GraphX (Gonzalez et al., 2014), Pregel+ (Yan
et al., 2014b), and Gluon (Dathathri et al., 2018). Although they release the programmer
from the difficulties of parallel programming for large-graph processing to some extent,
there still exists a big gap between writing a natural, intuitive, and concise program and
writing an efficient program. As discussed in Section 2, a naturally written vertex-centric
program tends to have inefficiency problems. To improve efficiency, the programmer must
describe explicit and sometimes complex controls over communications, execution states,
and terminations. However, writing these controls is not only an error-prone task but also
a heavy burden on the programmer.

In this article, we present a functional domain-specific language (DSL) called Fregel for
vertex-centric graph processing and describe its model, design, and implementation.

Fregel has two notable features. First, it supports declarative description of vertex com-
putation in functional style without any complex controls over communications, execution
states, and terminations. This enables the programmer to write a vertex computation in a
natural and intuitive manner. Second, the compiler translates a Fregel program into code
runnable in the Giraph or Pregel+ framework. The compiler inserts optimized code frag-
ments into programs generated for these frameworks that perform the complex controls,
thereby improving processing efficiency,

Our technical contributions can be summarized as follows:

• We abstract and formalize synchronous vertex-centric computation as a second-
order function that captures the higher-level computation behavior using recursive

1 http://giraph.apache.org.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

http://giraph.apache.org
https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 3

execution corresponding to dynamic programming on a graph. In contrast to the
traditional vertex-centric computation model, which pushes (sends) information
from a vertex to other vertices, our model is pull-based (or peek-based) in the
sense that a vertex “peeks” on neighboring vertices to get information necessary
for computation.

• We present Fregel, a functional DSL for declarative-style programming on large
graphs that is based on the pulling-style vertex-centric model. It abstracts com-
munication and aggregation by using comprehensions. Fregel encourages concise,
compositional-style programming on large graphs by providing four second-order
functions on graphs. Fregel is purely functional without any side effects. This
functional nature enables various transformations and optimizations during the com-
pilation process. As Fregel is a subset of Haskell, Haskell tools can be used to test
and debug Fregel programs. The Haskell code of the Fregel interpreter in which
Fregel programs can be executed is presented in Section 5. Though sequential, this
interpreter is useful for checking Fregel programs.

• We show that a Fregel program can be compiled into a program for two vertex-
centric frameworks through an intermediate representation (IR) that is independent
of the target framework. We also present optimization methods for automatically
removing inefficiencies from Fregel programs. The key idea is to use modern con-
straint solvers to identify inefficiencies. The declarative nature of Fregel programs
enables such optimization problems to be directly reduced to constraint-solving
problems. Fregel’s optimizing compilation frees programmers from problematic
programming burdens. Experimental results demonstrated that the compiled code
can be executed with reasonable and promising performance.

Fregel currently has a couple of limitations compared with existing Plegel-like frame-
works, Giraph and Pregel+. First, the target graph must be a static one that does not change
shape or edge weights during execution. Second, a vertex can communicate only with adja-
cent vertices. Third, each vertex handles only fixed-size data. These mean that algorithms
that change the topology of the target graph, update edge weights, or use a variable-length
data structure in each vertex cannot be described in Fregel. Removing these limitations by
addressing the need to handle dynamism, for example, changing graph shapes and handling
variable-length data on each vertex, is left for future work.

The remainder of this article is structured as follows. We start in Section 2 by explain-
ing vertex-centric graph processing and describing its problems. In Section 3, we present
our functional vertex-centric graph processing model. On the basis of this functional
model, Section 4 describes the design of Fregel with its language constructs and presents
many programming examples. In Section 5, we present an interpretive implementa-
tion of Fregel in Haskell. In Section 6, we present a detailed implementation of the
Fregel compiler, which translates a given Fregel program into Giraph or Pregel+ code.
Section 7 discusses optimization methods that remove inefficiencies in the compiled code.
Section 8 presents the results of a wide-range evaluation using various programs for
both Giraph and Pregel+. Related work is discussed in Section 9, and Section 10 con-
cludes with a summary of the key points, concluding remarks, and mention of future
work.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

4 H. Iwasaki et al.

This article revises, expands, and synthesizes materials presented at the 21st ACM
SIGPLAN International Conference on Functional Programming (ICFP 2016) (Emoto
et al., 2016) and the 14th International Symposium on Functional and Logic Programming
(FLOPS 2018) (Morihata et al., 2018). New materials include many practical program
examples of Fregel, redesign and implementation of the Fregel compiler that can generate
both Giraph and Pregel+ code, and a wide-range evaluation of the Fregel system from the
viewpoints of the performance and the memory usage through the use of both Giraph and
Pregel+.

2 Vertex-centric graph processing

Vertex-centric computation became widely used following the emergence the Pregel
framework (Malewicz et al., 2010). Pregel enables synchronous computation on the basis
of the bulk synchronous parallel (BSP) model (Valiant, 1990) and supports procedural-
style programming. Hereafter, we use “Pregel” both as the name of the framework and as
the name of the BSP-based vertex-centric computation model.

2.1 Overview of vertex-centric graph processing

We explain vertex-centric computation by using Pregel for procedural-style programming
through several small examples.

In Pregel, the vertices distributed on computational nodes iteratively execute one unit of
their respective computation, a superstep, in parallel, followed by a global barrier synchro-
nization. A superstep is defined as a common user-defined compute function that consists
of communication between vertices, aggregation of values on all active vertices, and cal-
culation of a value on each vertex. Since the programmer cannot specify the delivery order
of messages, operations on delivered messages are implicitly assumed to be commutative
and associative. After execution of the compute function by all vertices, global barrier
synchronization is performed. This synchronization ensures the delivery of communica-
tion and aggregation messages. Messages sent to other vertices in a superstep are received
by the destination vertices in the next superstep. Thus, only deadlock-free programs can be
described.

As an example, let us consider a simple problem of marking all vertices of a graph reach-
able from the source vertex, for which the identifier is one. We call it the all-reachability
problem hereafter.

We start with a naive definition of the compute function, which is presented in Figure 1.
Here, vertex.compute represents a compute function that is repeatedly executed on each
vertex. Its first argument, v, is a vertex that executes this compute function, and its second
argument, messages, is a list of delivered messages sent to v in the previous superstep.
superstep is a global variable that holds the number of the current superstep, which
begins from 0. The compute function is incomplete in the sense that its iterative com-
putation never terminates. Nevertheless, it suffices for the explanation of vertex-centric
computation. Termination control is discussed in Section 2.2.

Every vertex has a Boolean member variable rch that holds the marking information,
that is, whether the vertex is judged to be reachable at the current superstep. The compute

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 5

Fig. 1. Incomplete and naive Pregel-like code for all-reachability problem.

T

(a) (b) (c) (d)

F F

F

F
T

F

T

FF

T

F

F

T

T

F

T

T

T

T

T

F

T

T

F

T

T

T

T

T

Fig. 2. First three supersteps of the naive program for all-reachability problem.

function accepts a vertex and its received messages as input. At the first superstep, only
the source vertex for which the identifier is one is marked true and the other vertices
are marked false. Then each vertex sends its marking information to its neighboring
vertices. At the superstep other than the first, each vertex receives incoming messages by
“or”ing them, which means that the vertex checks if there is any message containing true.
Finally, it “or”s the result and the current rch value, stores the result as the new marking
information, and sends it to its neighboring vertices.

Figure 2 demonstrates how three supersteps are used to mark all reachable vertices for
an input graph with five vertices. The T and F in the figure stand for true and false,
respectively, and the double circle indicates the starting vertex.

Though the definition of the compute function is quite simple and easy to understand,
the compute function has three apparent inefficiency problems in addition to the non-
termination problem.

1. A vertex need not send false to its neighboring vertices, because false never
switches a neighbor’s rch value to true.

2. A vertex need not send true more than once, because sending it only once suffices
for marking its neighbors as true.

3. It is not necessary to process all vertices at every superstep except the first one.
Only those that receive messages from neighbors need to be processed.

The compute function also has two potential inefficiency problems.

4. Global barrier synchronization after every superstep might increase overhead.
Though Pregel uses synchronous execution, iteration of the compute function could
be performed asynchronously without global barrier synchronization.

5. Though the compute function is executed independently by every vertex, a set
of vertices placed on the same computational node could cooperate for better
performance in the computation of vertex values in the set.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

6 H. Iwasaki et al.

Fig. 3. Improved Pregel-like code for all-reachability problem.

The last two inefficiencies have already been recognized, and mechanisms have been
proposed to remove them (Gonzalez et al., 2012; Yan et al., 2014a).

2.2 Inactivating vertices

To address the apparent inefficiencies, Pregel and many Pregel-like frameworks such as
Giraph and Pregel+ introduced an “active” property for each vertex. During iterative exe-
cution of the compute function, each vertex is either active or inactive. Initially, all vertices
are active. If nothing needs to be done on a vertex, the vertex can become inactive explicitly
by voting to halt, which means inactivating itself. At each superstep, only active vertices
take part in the calculation of the compute function. An inactive vertex becomes active
again by being sent a message from another vertex. The entire iterative processing for
a graph terminates when all vertices become inactive and there remain no unreceived
messages. Thus, inactivating vertices are used to control program termination.

Figure 3 presents Pregel code for the all-reachability problem that remedies the apparent
inefficiencies and also terminates when the rch values on all vertices no longer change.

At the first superstep, only the source vertex is marked true, and it sends its rch value
to its neighbors. Then all vertices inactivate themselves by voting to halt. At the second
and subsequent supersteps, only those vertices that have messages reactivate, receive the
messages, and calculate their newrch values. If newrch and the current rch are not the
same, the vertex updates its rch value and sends it to its neighboring vertices. Then, all
vertices inactivate again by voting to halt. If newrch and the current rch are the same on
all vertices, they inactivate simultaneously, and the iterative computation of the compute
function terminates.

As can be seen from the code in Figure 3, to remove the apparent inefficiencies, a com-
pute function based on the Pregel model describes communications and termination control
explicitly. This makes defining compute functions unintuitive and difficult.

When aggregations are necessary, the situation becomes worse. For example, suppose
that we want to mark the reachable vertices and stop when we have a sufficient number
(N) of them. For simplicity, we assume that there are more than 100 reachable vertices
in the target graph. We call this problem in which N = 100 the 100-reachability problem.
At each superstep, the compute function needs to count the number of currently reachable

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 7

Fig. 4. Pregel-like code for 100-reachability problem.

vertices to determine whether it should continue or halt. To enable acquiring such global
information, Pregel supports a mechanism called aggregation, which collects data from
all active vertices and aggregates them by using a specified operation such as sum or max.
Each vertex can use the aggregation result in the next superstep. By using aggregation
to count the number of vertices that are marked true, we can solve the 100-reachability
problem, as shown in the vertex program in Figure 4.

Note that aggregation should be done before the check for the number of reachable
vertices. This order is guaranteed by using the odd supersteps to compute aggregation and
the even supersteps to check the number. The programmer must explicitly assign states to
supersteps so that different supersteps behave differently. The value of newrch is set in an
odd superstep and read in the next even superstep. Since the extent of a local variable is
one execution of the compute function in a superstep, newrch has to be changed from a
local variable in Figure 3 to a member variable of a vertex in Figure 4.

Only active vertices participate in the aggregation, because inactive vertices do not
execute the compute function. Thus, vertices marked true should not inactivate, that is,
should not vote to halt, in order to determine the precise number of reachable vertices. This
subtle control of inactivation is error-prone no matter how careful the programmer.

The program for the 100-reachability problem shows that explicit state controls and
subtle termination controls make the program difficult to describe and understand.

2.3 Asynchronous execution

For the fourth potential inefficiency, asynchronous execution in which vertex computations
are processed without global barrier synchronization can be considered instead of syn-
chronous execution. Removing barriers could improve the efficiency of the vertex-centric

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

8 H. Iwasaki et al.

computation. For the all-reachability problem, both synchronous and asynchronous exe-
cutions lead to the same solution. Generally speaking, however, both executions do not
always yield the same result; this depends on the algorithm. In addition, even if they yield
the same result, which execution style of the two is more efficient depends on the situation.

Some vertex-centric frameworks, for example, GiraphAsync (Liu et al., 2016), use
asynchronous execution. There are also frameworks that support both synchronous and
asynchronous executions, such as GraphLab (Low et al., 2012), GRACE (Wang et al.,
2013), and PowerSwitch (Xie et al., 2015).

2.4 Grouping related vertices

For coping with the fifth potential inefficiency, placing a group of related vertices on the
same computational node and executing all vertex computation as a single unit of pro-
cessing could improve efficiency. This means enlarging the processing unit from a single
vertex to a set of vertices. Many frameworks have been developed on the basis of this idea.
For example, NScale (Quamar et al., 2014), Giraph++ (Tian et al., 2013), and GoFFish
(Simmhan et al., 2014) are based on subgraph-centric computation, and Blogel (Yan et al.,
2014a) is based on block-centric computation. Again, which computation style of the two,
vertex-centric or group-based, is more efficient depends on the program.

2.5 Fregel’s approach

Fregel enables the programmer to write vertex-centric programs without the complex con-
trols described in Section 2.2 from the declarative perspective and automatically eliminates
the apparent inefficiencies of naturally described programs. Since explicit, complex, and
imperative controls over communications, terminations, and so forth are removed from a
program, the vertex computation proceeds to a functional description with “peeking” on
neighboring vertices to obtain information necessary for computation.

To solve the all-reachability problem in Fregel, the programmer writes a natural func-
tional program that corresponds to the Pregel program presented in Figure 1 with a
separately specified termination condition. Depending on the compilation options specified
by the programmer, the Fregel compiler applies optimizations for reducing inefficiencies
in the program and generates a program that can run in a procedural vertex-centric graph
processing framework.

As a solution for the fourth potential inefficiency, we propose a method for removing
the barrier synchronization and thereby enabling asynchronous execution. This optimiza-
tion also enables removing the fifth potential inefficiency. In asynchronous execution, the
order of processing vertices does not matter; therefore, a group of related vertices can
be processed independently from other groups of vertices. To improve the efficiency of
processing vertices in a group, we propose introducing priorities for processing vertices.

3 Functional model for synchronous vertex-centric computation

We first modeled the synchronous vertex-centric computation as a higher-order function.
Then, on the basis of this model, we designed Fregel, a functional DSL. In this section,

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 9

we introduce our functional model by using Haskell notation. The Fregel language will be
described in Section 4.

In the original Pregel, data communication is viewed as explicit pushing in which a
vertex sends data to another vertex, typically to its adjacent vertex along an outgoing
edge. Thus, a Pregel program describes data exchange between two vertices explicitly,
for example, by using sendToNeighbors in Figure 1, which results in a program with an
imperative form. Since our aim is to create a functional model of vertex-centric compu-
tation, the explicit-pushing style, which has a high affinity with imperative programs, is
inappropriate.

We thus designed our functional model so that data communication is viewed as implicit
pulling in which a vertex pulls (or “peeks at”) data in an adjacent vertex connected by an
incoming edge. The iterative computation at each vertex is defined in terms of a function,
and its return value, that is, the result of a single repetition, is implicitly sent to the adjacent
vertices. Every adjacent vertex also implicitly receives the communicated value via an
argument of the function.

3.1 Definition of datatypes

First, we define the datatypes needed for our functional model. Let Graph a b be the
directed graph type, where a is the vertex value type and b is the edge weight type. The ver-
tices have type Vertex a b, and the edges have type Edge a b. A vertex of type Vertex a b
has a unique vertex identifier (a positive integer value), a value of type a, and a list of
incoming edges of type [Edge a b]. An edge of type Edge a b is a pair of the edge weight
of type b and the source vertex of this edge. Graph a b is a list of all vertices, each of which
has the type Vertex a b.

The definitions of these datatypes are as follows, where vid, val, and is are the identifier,
value, and incoming edges of the vertex, respectively,

data Vertex a b = Vertex { vid :: Int, val :: a, is :: [Edge a b] }
type Edge a b = (b, Vertex a b)
type Graph a b = [Vertex a b]

For simplicity, we assume that continuous identifiers starting from one are assigned
to vertices and that all vertices in a list representing a graph are ordered by their
vertex identifiers. As an example, the graph in Figure 2(d) can be defined by the fol-
lowing data structure, where v1, v2, v3, v4, and v5 are the upper-left, upper-right,
lower-left, middle, and lower-right vertices, respectively. We assume that all edges have
weight 1:

g :: Graph Bool Int
g = let v1= Vertex 1 True []

v2= Vertex 2 True [(1, v1)]
v3= Vertex 3 True [(1, v1)]
v4= Vertex 4 True [(1, v2), (1, v3), (1, v5)]
v5= Vertex 5 False []

in [v1, v2, v3, v4, v5]

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

10 H. Iwasaki et al.

3.2 Description of our model

In synchronous vertex-centric parallel computation, each vertex periodically and syn-
chronously performs the following processing steps, which collectively we call a logical
superstep, or LSS for short.

1. Each vertex receives the data computed in the previous LSS from the adjacent
vertices connected by incoming edges.

2. In accordance with the problem to be solved, the vertex performs its respective
computation using the received data, the data it computed in the previous LSS,
and the weights of the incoming edges. If necessary, the vertex acquires global
information using aggregation during computation.

3. The vertex sends the result of the computation to all adjacent vertices along its
outgoing edges. The adjacent vertices receive the data in the next LSS.

These three processing steps are performed in each LSS. An LSS represents a seman-
tically connected sequence of actions at each vertex. Each vertex repeatedly executes this
“sequence of actions.” An LSS is “logical” in the sense that it might contain aggregation
and thus might take more than one Pregel superstep. We represent an LSS as a single func-
tion and call it an LSS function. As explained earlier, an LSS function does not explicitly
describe sending and receiving data between a vertex and the adjacent vertices.

The arguments given to an LSS function are an integer value called the clock and the
vertex on which the LSS function is repeatedly performed. A clock represents the number
of iterations of the LSS function. Note that the result of an LSS function may have a
type different from that of the vertex value. Thus, the type of an LSS function is Int→
Vertex a b→ r, where a is the vertex value type and r is the result type.

We express the LSS function using two functions. One is an initialization function,
which defines the behavior when the clock is 0, and the other is a step function, which
defines the behavior when the clock is greater than 0. Let t be a clock value. The initializa-
tion function takes as its argument a vertex and returns the result for t= 0. Thus, its type
is Vertex a b→ r. The step function takes three arguments: the result for the vertex at the
previous clock, a list of pairs, each of which is composed by the weight of an incoming
edge and the result of the adjacent vertex connected by the edge at the previous clock, and
the vertex itself. Thus, its type is r→ [(b, r)]→ Vertex a b→ r. On the basis of these two
functions, a general form of the LSS function is defined in terms of lssGeneral, which can
be defined as a fold-like second-order function as follows:

type Clock = Int
lssGeneral :: (Vertex a b→ r)→ (r→ [(b, r)]→ Vertex a b→ r)

→Clock→ Vertex a b→ r
lssGeneral linit lstep 0 v = linit v

lssGeneral linit lstep t v = lstep (lssGeneral linit lstep (t− 1) v)
[(e, lssGeneral linit lstep (t− 1) u) | (e, u)← is v]
v

An LSS function, lss, for a specific problem is defined by giving appropriate initial-
ization and step functions, ainit and astep, as actual arguments to lssGeneral, that is,
lss = lssGeneral ainit astep.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 11

Fig. 5. Termination functions.

Let g= [v1, v2, v3, . . .] be the target graph of type Graph a b of the computation,
where we assume that the identifier of vk is k. The list of computation results of LSS
function lss on all vertices in the graph at clock t is [lss t v1, lss t v2, lss t v2, . . .] :: [r].
Further, let gt be a graph constructed from the results of lss on all vertices at clock t, that
is, gt =makeGraph g [lss t v1, lss t v2, lss t v3, . . .]. Here, makeGraph g [r1, r2, . . .]
returns a graph with the same shape as g for which the i-th vertex has the value ri and the
edges have the same weights as those in g:

makeGraph :: Graph a b→ [r]→Graph r b
makeGraph g xs = newg

where newg =
[Vertex k (xs !! (k − 1))

[(e, newg !! (k′ − 1) | (e, Vertex k′ _ _)← es]
| Vertex k _ es← g]

Then the infinite stream (list) of graphs [g0, g1, g2, . . .] represents infinite iterations of
LSS function lss. This infinite stream can be produced by using the higher-order function
vcIter, which takes as its arguments initialization and step functions and a target graph
represented by a list of vertices:

vcIter :: (Vertex a b→ r)→ (r→ [(b, r)]→ Vertex a b→ r)
→Graph a b→ [Graph r b]

vcIter linit lstep g = [makeGraph g (map (lssGeneral linit lstep t) g) | t← [0..]]

Though vcIter produces an infinite stream of graphs, we want to terminate its compu-
tation at an appropriate clock and return the graph at this clock as the final result. We can
give a termination condition to the infinite sequence from outside and obtain the desired
result by using term (vcIter linit lstep g), where term selects the desired final result from
the sequence of graphs to terminate the computation.

Figure 5 presents example termination functions. A typical termination point is when the
computation falls into a steady state, after which graphs in the infinite list never change.
The termination function fixedValue returns the graph of the steady state of a given infinite
list. Another termination point is when a graph in the stream comes to satisfy a specified
condition. We can use the higher-order termination function untilValue for this case. It
takes a predicate function specifying the desired condition and returns the first graph that
satisfies this predicate from a given infinite stream. Finally, nthValue retrieves the graph at
a given clock.

We define vcModel as the composition of a termination function and vcIter. We regard
the function vcModel as representing functional vertex-centric graph processing:

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

12 H. Iwasaki et al.

Fig. 6. Formulation of reachability problems in our model.

vcModel :: (Vertex a b→ r)→ (r→ [(b, r)]→ Vertex a b→ r)→
([Graph r b]→Graph r b)→Graph a b→Graph r b

vcModel linit lstep term = term . vcIter linit lstep

An LSS function defined in terms of lssGeneral has a recursive form on the basis of the
structure of the input graph. Although a graph has a recursive structure, a recursive call of
an LSS function does not cause an infinite recursion, because a recursive call always uses
the prior clock, that is, t− 1.

3.3 Simple example

Figure 6 presents the formulation of the reachability problems on the basis of the pro-
posed functional model, where reAllPregelModel is for the all-reachablity problem and
re100PregelModel is for the 100-reachability problem. Variable numTrueVertices is the
number of vertices with a value of True for the target graph. The only difference between
these two formulations is the termination condition; the all-reachability problem formula-
tion uses fixedValue, while the 100-reachability problem one uses untilValue. Note that the
LSS function characterized by reInit and reStep has no description for the aggregation that
appears in the original Pregel code (Figure 4).

3.4 Limitations of our model

Our model suffers the following limitations:

• Data can be exchanged only between adjacent vertices.
• A vertex cannot change the shape of the graph or the weight of an edge.

In the Pregel model, a vertex can send data to a vertex other than the adjacent ones
as long as it can specify the destination vertex. In our model, unless global aggregation
is used, data can be exchanged only between adjacent vertices directly connected by a
directed edge. A vertex-centric graph processing model with this limitation, which is some-
times called the GAS (gather-apply-scatter) model, has been used by many researchers
(Gonzalez et al., 2012; Bae & Howe, 2015; Sengupta et al., 2015).

Furthermore, in our model, computation on a vertex cannot change the shape of the
graph or weight of an edge. This limitation makes it is impossible to represent some
algorithms including those based on the pointer jumping technique. However, even under
this additional limitation, many practical graph algorithms can be described.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 13

The Fregel language inherits these limitations because it was designed on the basis of
our model. As mentioned in Section 1, removing these limitations from the Fregel language
is left for future work.

3.5 Features of our model

Our model has four notable features.
First, our model is purely functional; computation that is periodically and synchronously

performed at every vertex is defined as an LSS function without any side effects that
have the form of a structural recursion on the graph structure. The recursive execution
of such an LSS function is regarded as dynamic programming on the graph on the basis of
memorization.

Second, an LSS function does not have explicit descriptions for sending or receiving
data between adjacent vertices. Instead, it uses recursive calls of the LSS function for
adjacent vertices, which can be regarded as an implicit pulling style of communication.

Third, an LSS function enables the programmer to describe a series of processing
steps as a whole that could be unwillingly divided into small supersteps due to barrier
synchronization in the BSP model if we used the original Pregel model.

Fourth, the entire computation for a graph is represented as an infinite list of resultant
graphs in ascending clock time order. The LSS function has no description for the termina-
tion of the computation. Instead, termination is described by a function that appropriately
chooses the desired result from an infinite list.

4 Fregel functional domain-specific language

Fregel is a functional DSL for declarative-style programming on large-scale graphs that
uses computation based on vcModel (defined in Section 3). A Fregel program can be run
on Haskell interpreters like GHCi, because Fregel’s syntax follows that of Haskell. This
ability is useful for testing and debugging a Fregel program. After testing and debugging,
the Fregel program can be compiled into a program for a Pregel-like framework such as
Giraph and Pregel+.

4.1 Main features of Fregel

Fregel captures data access, data aggregation, and data communication in a functional man-
ner and supports concise ways of writing various graph computations in a compositional
manner through the use of four second-order functions. Fregel has three main features.

First, Fregel abstracts access to vertex data by using three tables indexed by vertices.
The prev table is used to access vertex data (i.e., results of recursive calls of the step
function) at the previous clock. The curr table is used to access vertex data at the current
clock. These two tables explicitly implement the memorization of calculated values. The
third table, val is used to access vertex initial values, that is, the values placed on vertices
when the computation started. An index given to a table is neither the identifier of a vertex
nor the position of a vertex in a list of incoming edges but rather is a vertex itself. This
enables the programmer to write in a more “direct” style for data accesses.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

14 H. Iwasaki et al.

Second, Fregel abstracts aggregation and communication by using a comprehension
with a specific generator. Aggregation is described by a comprehension for which the
generator is the entire graph (list of all vertices), while communication with adjacent
vertices is described by a comprehension for which the generator is the list of adjacent
vertices.

Third, Fregel is equipped with four second-order functions for graphs, which we
call second-order graph functions. A Fregel program can use these functions multiple
times. Function fregel corresponds to functional model vcModel defined in Section 3.
Function gzip pairs values for the corresponding vertices in two graphs of the same
shape, and gmap applies a given function to every vertex. Function giter abstracts iterative
computation.

In the following sections, we first introduce the core part of the Fregel language
constructs and then explain Fregel programming by using some specific examples.

4.2 Fregel language constructs

A vertex in the functional model described in Section 3.1 has a list of adjacent vertices
connected by incoming edges. However, some graph algorithms use edges for the reverse
direction. For example, the min-label algorithm (Yan et al., 2014b) for calculating strongly
connected components of a given graph, which is described in Section 4.6, needs back-
ward propagation in which a vertex sends messages toward its neighbors connected by its
incoming edges. In our implicit pulling style of communications, this means that a vertex
needs to peek at data in an adjacent vertex connected by an outgoing edge. Thus, though
different from the functional model, we decided to let every vertex have two lists of edges:
one contains incoming edges in the original graph and the other contains incoming edges
in the reversed (transposed) graph. An incoming edge in the reversed graph is an edge
produced by reversing an outgoing edge in the original graph. This makes it easier for the
programmer to write programs in which part of the computation needs to be carried out on
the reversed graph. Hereafter, a “reversed edge” means an edge in the latter list.

Figure 7 presents the syntax of Fregel. Other than the normal reserved words in bold
font, the tokens in bold-slant font are important reserved words like identifier names and
data constructor names in Fregel. Program examples of Fregel can be found from Sections
4.3 to 4.6. Please refer to these examples as needed.

A Fregel program defines the main function, 〈mainFn〉, which takes a single input graph
and returns a resultant graph. In the program body, the resultant graph is specified by a
graph expression, 〈graphExpr〉, which can construct a graph using the four second-order
graph functions.

Second-order graph function fregel, which is probably the most frequently used function
by the programmer, corresponds to vcModel and defines the iterative behavior of an LSS.
As described above, it is abstracted as two functions: the initialization function (the first
argument) and the step function (the second argument), which is repeatedly executed.

The initialization function of fregel is the same as that of vcModel. It takes a vertex of
type Vertex a b as its only argument and returns an initial value of type r for the iteration
carried out by the step function. On the other hand, a step function of fregel is slightly
different.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 15

Fig. 7. Core part of Fregel syntax.

• First, the step function of vcModel executed on every vertex is passed its own result
and those of adjacent vertices at the previous clock, together with the weights of
incoming edges, through its arguments. In contrast, the step function of fregel takes
a prev table from which the results of every vertex at the previous clock can be
obtained. Edge weights are not explicitly passed to the step function. They can be
obtained by using a comprehension for which the generator is the list of adjacent
vertices.

• Second, fregel’s step function takes another table called curr, which holds the
results at the current clock for the cases in which these values are necessary for
computing the results for the current LSS. We show an example of using the curr
table in Section 4.5.

• Third, while the termination judgment of vcModel is made using a function
that chooses a desired graph from a stream of graphs, that of fregel is not a
function.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

16 H. Iwasaki et al.

Since the initialization and step functions return multiple values in many cases, the pro-
grammer must often define a record, 〈recordDef〉, for them before the main function and
let each vertex hold the record data. Fregel provides a concise way to access a record field
by using the field selection operator denoted by .^, which resembles the ones in Pascal
and C.

Second-order graph function giter iterates a specified computation on a graph. Similar
to fregel, it takes two functions: the initialization function iinit as its first argument and the
iteration function iiter as its second argument. Let a and b be the vertex value type and
edge weight type in the input graph, respectively, and let r be the vertex value type in the
output graph. The following iterative computation is performed by giter, where g is the
input graph:

g :: Graph a b
iinit−→ g0 :: Graph r b

iiter−→ g1 :: Graph r b
iiter−→ · · · iiter−→ gn :: Graph r b

First, before entering the iteration, iinit is applied to every vertex in input graph g to
produce the initial graph g0 of the iteration. Then iiter is repeatedly called to produce
successive graphs, g1, . . . , gn. The iteration terminates when the termination condition
given as the third argument of giter is satisfied. The Haskell definition of giter in the
Fregel interpreter, which may help the reader understand the behavior of giter, is presented
in Section 5. Different from fregel’s step function, giter’s iteration function, iiter, takes a
graph and returns the next graph, possibly by using second-order graph functions. Since
giter is used for repeating fregel, gmap, etc., it takes only a graph. Section 4.6 presents an
example of using giter.

The termination condition, 〈termination〉, is specified for the third argument of fregel
and giter. This is not a function like fixedValue in the functional model, but a data rep-
resented by a data constructor like Fix, Until, or Iter, where Fix means a steady state,
Until means a termination condition specified by a predicate function, and Iter specifies
the number of iterations to perform.

The expressions in Fregel are standard expressions in Haskell, field access expres-
sions on a vertex (〈fieldAccess〉), and aggregation expressions (〈comAggr〉) each of which
applies a combining function to a comprehension with specific generators. There are three
generators in Fregel; (1) a graph variable to generate all vertices in a graph, (2) is v where
v is a vertex variable to generate all pairs of v’s adjacent vertices connected by incoming
edges and the edge weights, and (3) rs v where v is a vertex variable to generate all pairs
of v’s adjacent vertices connected by reversed edges and the edge weights. A combining
function is one of the six standard functions that have both commutative and associative
properties such as minimum.

Though Fregel is syntactically a subset of Haskell, Fregel has the following restrictions:

• Recursive definitions are not allowed in a let expression. This means that the pro-
grammer cannot define (mutually) recursive functions nor variables with circular
dependencies.

• Lists and functions cannot be used as values except for functions given as arguments
to second-order graph functions.

• A user-defined record has to be non-recursive.
• A specified data obtained from the curr table have to be already determined.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 17

(a)

(b)

Fig. 8. Fregel programs for solving reachability problems.

Due to these restrictions, circular dependent values cannot appear in a Fregel program.
Thus, Fregel programs do not rely on laziness. In fact, the Fregel compiler compiles a
Fregel program into a Java or C++ program that computes non-circular dependent values
one by one without the need for lazy evaluation.

4.3 Examples: reachability problems

Our first example Fregel program is one for solving the all-reachability problem (Figure
8(a)). Since the LSS for this problem calculates a Boolean value indicating whether each
vertex is currently reachable or not, we define a record RVal that contains only this Boolean
value at the rch field in this record.

Function reAll, the main part of the program, defines the initialization and step functions.
The initialization function, reInit, returns an RVal record in which the rch field is True
only if the vertex is the starting point (vertex identifier is one). The vertex identifier can
be obtained by using a special predefined function, vid. The step function, reStep, collects
data at the previous clock from every adjacent vertex connected by an incoming edge. This
is done by using the syntax of comprehension, in which the generator is is v. For every
adjacent vertex u, this program obtains the result at the previous clock by using prev u and
accesses its rch field. Then, reStep combines the results of all adjacent vertices by using
the or function and returns the disjunction of the combined value and its respective rch
value at the previous clock.

In reAll, reInit and reStep are given to the fregel function. Its third argument, Fix,
specifies the termination condition, and the fourth argument is the input graph.

Figure 8(b) presents a Fregel program for solving the 100-reachability problem. This
program is the same as that in Figure 8(a) except for the termination condition. The ter-
mination condition in this program uses Until, which corresponds to untilValue in our
functional model. Until takes a function that defines the condition. This function gathers
the number of currently reachable vertices by aggregation. Fregel’s aggregation takes the
form of a comprehension for which the generator is the input graph, that is, a list of all
vertices.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

18 H. Iwasaki et al.

Fig. 9. Fregel program for calculating diameter.

Note that both the initialization and step functions are common to both reAll and re100.
The only difference between them is the termination condition: reAll specifies Fix and
re100 specifies Until. The common step function describes only how to calculate the value
of interest (whether or not each vertex is reachable). A description related to termination
is not included in the definition of the step function. Instead, it is specified as the third
argument of fregel. This is in sharp contrast to the programs in the original Pregel (Figures
3 and 4), in which each vertex’s transition to the inactive state is explicitly described in the
compute function.

4.4 Example: calculating diameter

The next example calculates the diameter of a graph whose endpoints include the vertex
with identifier one. This example sequentially calls two fregel functions, each of which is
similar to the reachability computation. The input is assumed to be a connected undirected
graph. In Fregel, an undirected edge between two vertices v1 and v2 is represented by two
directed edges: one from v1 to v2 and the other from v2 to v1.

The first call uses values on edges to find the shortest path length from the source ver-
tex (vertex identifier one) to every vertex. This is known as the single-source shortest
path problem. The second one finds the maximum value of the shortest path lengths of all
vertices.

Figure 9 presents the program. The LSS for the first fregel calculates the tentative short-
est path length to every vertex from the source vertex, so record SVal consists of an integer
field dist. The step function ssspStep of the first fregel uses the edge weights, that is, the
first component e of the pair generated in the comprehension, to update the tentative short-
est path for a vertex. It takes the minimum sum of the tentative shortest path of every
neighbor vertex (prev u .^ dist) and the edge length (e) from the neighbor vertex.

In the second fregel, every vertex holds the tentative maximum value in the record
MVal among the values transmitted to the vertex so far. In its step function, maxvStep,
every vertex receives the tentative maximum values of the adjacent vertices connected by
incoming edges, calculates the maximum of the received values and its previous tentative
value, and updates the tentative value.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 19

Fig. 10. Fregel program for solving reachability with ranking problem.

The output graph of the first fregel, g1, is input to the second fregel, and its resultant
graph is the final answer, in which every vertex has the value of the diameter.

4.5 Example: reachability with ranking

Next, we present an example of using the curr table. The reachability with ranking prob-
lem is essentially the same as the all-reachability problem except that it also determines the
ranking of every reachable vertex, where ranking r means that the number of steps to the
reachable vertex is ranked in the top r among all vertices. A Fregel program for solving
this problem is presented in Figure 10.

We define a record RRVal with two fields: rch (which is the same as that in RVal in
the other reachability problems) and ranking. For the source vertex, the initialization func-
tion, rerInit, returns an RRVal record in which the rch and ranking fields are True and 1,
respectively. For every other vertex, it returns an RRVal record in which rch is False and
ranking is −1, which means that the ranking is undetermined. The step function, rerStep,
calculates the new rch field value in the same manner as for the other reachability prob-
lems. In addition, it calculates the number of reachable vertices at the current LSS by
using the global aggregation, for which the generator is the entire graph with the sum
operator. To do this, it filters out the vertices that have not been reached yet. Writing this
aggregation as:

[1 | u← g, rch′]

is incorrect because rch′ is not a local variable on a remote vertex u but rather a local
variable on the vertex v that is executing rerStep. To enable v to refer to the rch′ value of
the current LSS on a remote vertex u, it is necessary for u to store the value in an RRVal
structure by returning an RRVal containing the current rch′ as the result of rerStep. Vertex
v can then access the value by curr u .^ rch.

4.6 Example: strongly connected components

As an example of a more complex combination of second-order graph functions, Figure
11 presents a Fregel program for solving the strongly connected components problem. The
output of this program is a directed graph with the same shape as the input graph; the
value on each vertex is the identifier of the component, that is, the minimum of the vertex
identifiers in the component to which it belongs.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

20 H. Iwasaki et al.

Fig. 11. Fregel program for solving strongly connected components problem.

This program is based on the min-label algorithm (Yan et al., 2014b). It repeats four
operations until every vertex belongs to a component.

(1) Initialization: Every vertex for which a component has not yet been found sets the
notf flag value. This means that the vertex must participate in the following computation.

(2) Forward propagation: Each notf vertex first sets its minv value as its identifier. Then
it repeatedly calculates the minimum value of its (previous) minv value and the minv
values of the adjacent vertices connected by incoming edges. This is repeated until the
computation falls into a steady state.

(3) Backward propagation: This is the same as forward propagation except that the direc-
tion of minv propagation is reversed; each notf vertex updates its minv value through the
reversed edges.

(4) Component detection: Each notf vertex judges whether the results (identifiers) of
forward propagation and backward propagation are the same. If they are, the vertex belongs
to the component represented by the identifier.

The program in Figure 11 has a nested iterative structure.
The outer iteration in terms of giter repeatedly performs the above operations for the

remaining subgraph until no vertices remain. In this outer loop, each vertex has a record
C that has only the sccId field. This field has the identifier of the component, which is the
minimum identifier of the vertices in the component, or −1 if the component has not been
found yet.

In the processing of operations (1)–(4), each vertex has a record MN with two fields. The
minv field holds the minimum of the propagated values, and the notf field holds the flag
value explained above. The initialization uses gmap to create a graph ga. There are two
inner iterations by the fregel function: one performs forward propagation and the other
performs backward propagation. Both take the same graph created in the initialization.
Their results, gf and gb, are combined by using gzip and passed to component detection,
which is simply defined by gmap.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 21

Fig. 12. Haskell implementation of Fregel.

The four second-order graph functions provided by Fregel abstract computations on
graphs and thereby enable the programmer to write a program as a combination of these
functions. This functional style of programming makes it easier for the programmer to
develop a complicated program, like one for solving the strongly connected components
problem.

5 Fregel interpreter

As stated at the beginning of Section 4, a Fregel program can be run on Haskell. We
implemented the Fregel interpreter as a library of Haskell. Though this Haskell imple-
mentation is used only in the testing and debugging phases during the development of
Fregel programs, we describe it here to help the reader understand the behaviors of Fregel
programs.

Figure 12 shows the core part of the implementation. The datatypes for the graphs are the
same as those described in Section 3.1 except that each vertex has a list of reversed edges
in its record under the field name rs. The termination point is defined by the Termination
type. It has three data constructors: Fix means a steady state, Until means a termination
condition specified by a predicate function, and Iter specifies the number of LSS iterations
to perform. Function termination applies a given termination point to an infinite list of
graphs.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

22 H. Iwasaki et al.

Fregel
Program

Normalized
Fregel

Program

FregelIR
Code

Giraph
Program

Pregel+
Program

Normalization
Transformation

to FregelIR

Code
Generation

Fig. 13. Compilation flow of Fregel program.

The second-order graph function fregel takes as its arguments an initialization function,
a step function, a termination point, and an input graph and returns the resultant graph of
its computation. As explained in Section 4.2, the definition of fregel here differs somewhat
from that of vcModel, because it has to implement the memorization mechanism. It does
this by using two lists of computation results for all vertices, which are accessed via the
vertex identifiers.

Function gmap applies a given function to every vertex in the target graph and returns
a new graph with the same shape in which each vertex has the application result. This is
simply defined in terms of makeGraph, for which the definition was presented in Section 3.

Function gzip is given two graphs of the same shape and returns a graph in which each
vertex has a pair of values that correspond to those of the vertices of the two graphs. A pair
is defined by the Pair type with _fst and _snd fields. This function can also be defined in
terms of makeGraph.

Function giter is given four arguments: iinit, iiter, term, and an input graph. It first
applies gmap iinit to the input graph and then repeatedly applies iiter to the result to pro-
duce a list of graphs. Finally, it uses term to terminate the iteration and obtain the final
result. It can be defined by using a standard function, iterate.

6 Fregel compiler

This section describes the basic compilation flow of Fregel programs. Optimizations for
coping with the apparent inefficiency problems described in Section 2.2 are described in
Section 7.

6.1 Overview of Fregel compiler

The Fregel compiler is a source-to-source translator from a Fregel program to a program
for a Pregel-like framework for vertex-centric graph processing. Currently, our target
frameworks are Giraph, for which the programs are in Java, and Pregel+, for which the
programs are in C++. The Fregel compiler is implemented in Haskell. Figure 13 presents
the compilation flow of a Fregel program.

First, a Fregel program is parsed into an abstract syntax tree (AST). Then the AST is
transformed into another AST for a normalized Fregel program. Since ASTs are inter-
nal representations of Fregel programs, we show Fregel programs instead of their ASTs
hereafter.

As we have seen in Sections 4.4 and 4.6, a Fregel program can contain multiple uses
of second-order graph functions. We do not naively compile each second-order graph

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 23

function into a Pregel computation, because each invocation of a Pregel computation may
start up the Pregel system, which is costly. Instead, we normalize the AST for a Fregel
program with (possibly) multiple uses of second-order graph functions into an equivalent
one of the following form that uses fregel with Fix as the only use of a second-order graph
function:

prog g = let . . . in fregel newInit newStep Fix g

We call this process and the resulting ASTs normalization and normalized ASTs, respec-
tively. The normalized AST is transformed into an IR called FregelIR. FregelIR is a
framework-independent representation in rather procedural style that is close to the target
languages, Java (for Giraph) and C++ (for Pregel+). On the one hand, programs in these
target languages have many common features such as control structures and styles of func-
tion (method) definitions. On the other hand, there are big differences that originate from
the design of individual Pregel-like frameworks, such as how to define the compute func-
tion, how to exchange messages between vertices, and how to perform aggregations. Thus,
we designed FregelIR as an appropriate abstraction layer that represents common features
of the two frameworks and moreover absorbs the above-mentioned big differences.

Finally, Giraph or Pregel+ code is generated from a FregelIR representation depending
on the option specified by the programmer. The Fregel compiler judges whether a given
Fregel program uses reversed edges, rs, and records the judgment into the FregelIR repre-
sentation of the program. If the program does not use rs, the compiler generates Giraph or
Pregel+ code in which the vertices do not have a data structure for unnecessary reversed
edges.

6.2 Normalization of Fregel programs

6.2.1 Simple example of normalization

Essentially, normalizing a Fregel program entails building a single-step function that emu-
lates program execution. This step function is basically a phase transition machine. Before
formerly describing the normalization algorithm, we explain the normalized program by
using diameter in Figure 9 as an example. Recall that diameter contains two occurrences
of fregel. The normalization results in a program of the following form:

diameter g = let newInit = . . . ;
newStep = . . .

in fregel newInit newStep Fix g

The program consists of a single fregel function. Its step function, that is, newStep,
performs the essential computation in two phases followed by the termination phase. These
two phases correspond to the two occurrences of fregel in the original program.

1. At the beginning of the first phase, the same initialization as that of ssspInit is
performed. Then, the same computation as that of ssspStep for finding the shortest
path length is repeatedly performed, and whether the computation has fallen into a
steady state is detected. If a steady state is detected, the program moves on to the
second phase.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

24 H. Iwasaki et al.

2. At the beginning of the second phase, the same initialization as that of maxvInit is
performed. During the second phase (except at the beginning), the same computa-
tion as that of maxvStep is performed and, similar to the first phase, whether the
computation has fallen into a steady state is detected. If a steady state is detected,
the program moves on to the termination phase.

Since newStep executes the computations of both fregel functions, it is necessary to
combine the two records, namely SVal and MVal, into a single record. In addition, newStep
has to determine what to execute in the current LSS. We thus let the combined record
possess the current phase number and the current counter, that is, the elapsed clock, in the
current phase. Thus, the combined record has the following definition:

data ND = ND { phase :: Int, counter :: Int, datSVal :: SVal, datMVal :: MVal }
The initialization function, newInit, initializes this record appropriately.

Since newStep uses the combined record, record field accesses in the original program
before normalization are replaced with the corresponding field accesses to the combined
record as follows:

• In ssspStep: prev v .^ dist −→ prev v .^ datSVal .^ dist
• In maxvInit: val v .^ dist −→ prev v .^ datSVal .^ dist
• In maxvStep: prev v .^ maxv −→ prev v .^ datMVal .^ maxv

Please note that since val v .^ dist in maxvInit refers to the result of the first fregel in
the original program, it corresponds to the dist field in SVal in the combined record at the
previous clock. Thus, it is replaced with prev v .^ datSVal .^ dist.

The termination point of every fregel in the original program is examined explicitly in
the newStep, because it advances the phase if the condition is satisfied. To this end, newStep
uses an aggregation. Since Fix means a steady state, every vertex determines whether the
previous and current values of the current phase’s computation are the same. For the first
phase, previous and current values of vertex u are obtained by prev u .^ datSVal .^ dist
and curr u .^ datSVal .^ dist, respectively. Thus, when the current counter is positive, the
result of the aggregation:

and [prev u .^ datSVal == curr u .^ datSVal | u← g]

represents whether the computation has reached a steady state, where g represents the
target graph. If it has, newStep advances the phase field of the combined record. In addition,
counter is advanced every time LSS in the current phase is executed and is reset to zero
when a new phase begins. The new values of phase and counter are specified in the ND
record returned by newStep.

Figure 14 presents the pseudocode of the normalized diameter. We suppose that the
phase numbers of the first, second, and termination phases are one, two, and three, respec-
tively. In addition, in the definition of newInit, defaultSVal and defaultMVal, respectively,
represent appropriate default values of SVal and MVal for which the definitions are omit-
ted. In the definition of newStep, d1 is defined as the value of the datSVal field in the
combined record at the next clock. Variable e1 is a Boolean value representing whether the
first phase has reached the termination point. Variables d2 and e2 are similarly defined.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 25

Fig. 14. Pseudocode of normalized Fregel program for calculating diameter.

6.2.2 Normalization algorithm

We assume that the following preprocessings have already been done on the target Fregel
program. They are easily performed using standard techniques such as α-conversion.

1. Bind every call of a second-order graph function to a distinct variable, which we
call a graph variable.

2. Make variable names unique throughout the program, especially making sure that
the variable name of the input graph given to the entire program is g as g is regarded
as a special instance of a graph variable.

3. Make the function arguments of giter unique throughout the program. If two giters
uses the same function, the function should be duplicated with distinct names.

4. Inline user-defined variables and functions within step functions.
5. Infer types of subexpressions and make remaining type-variables monomorphic.

The normalization process consists of five steps.

Step 1: Enumerate phases. The first step is to enumerate each phase corresponding to a
use of a second-order graph function. Given the first assumed preprocessing, this is essen-
tially the same as enumerating graph variables except the one for the input graph. Thus,
we use graph variables and phases interchangeably.

Let P be the set of graph variables except the input graph. Since giters need special
treatment later, we define a subset I of P, where I = { p | p ∈ P, p binds a giter result }.

For scc in Figure 11, we have P= { gr, ga, gf , gb, gfb, g′ } and I = { gr }.

Step 2: Define new record type. The next step is to define a new record type, ND, for
use in the normalized program. We assume that P= { p1, . . . , pn } and I = { pi1 , . . . , pim }

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

26 H. Iwasaki et al.

(m≤ n, i1 < i2 < · · ·< im) and that Tp denotes the vertex type of a graph variable p. As
stated in Section 6.2.1, we let ND possess the current phase number and the current counter
in the current phase:

data ND = ND { phase :: Int, counter :: Int, dp1 :: Tp1 , . . . , dpn :: Tpn ,
ictrpi1

:: Int, . . . , ictrpim
:: Int }

In the above definition of ND, datpj is used to hold the result of the computation of phase
pj ∈ P and ictrpij

is used to hold the number of iterations of the giter bound to pij ∈ I . The
new record data for scc is shown at the head of Figure 16.

Step 3: Build code pieces for each phase. The new step function for the only fregel func-
tion in the normalized program needs two code pieces for every phase p ∈ P: step function
body compp for implementing the computation in the phase and termination judgment
expression texpp for detecting the end of the computation in p.

During the building process of compp and texpp, prev, curr, and val used in the original
components must be replaced with suitable counterparts. To this end, we define two sub-
stitutions, σ 1

p and σ 2
p′ . The former defines the substitution of prev x and curr x, while the

latter defines the substitution of val x. Their subscripts (p and p′) specify which member in
the combined record ND is used in the substitution:

σ 1
p = { prev x
→ prev x .^ dp, curr x
→ curr x .^ dp }

σ 2
p′ = if p′ == g then { } else { val x
→ prev x .^ dp′ }

σp,p′ = σ 1
p ∪ σ 2

p′

Both compp and texpp depend on the second-order graph function for which the result
is bound to the graph variable corresponding to p. In the following cases, we assume
that v is the formal parameter for the vertex given to the new step function we are
building.

Case 1: p = fregel init step term p′

In this case, compp performs the computation of init at the beginning of the phase,
that is, when counter is zero, or the computation of step afterward. Thus, compp is
defined as:

compp = if prev v .^ counter == 0 then σp,p′ (init v) else σp,p′ (step v prev curr),

where σp,p′ (init v) means applying substitution σp,p′ after inlining function application
init v. Other applications of a substitution in the rest of this section are done in the same
manner.

Termination judgment expression texpp depends on the termination condition, term.
When term is Fix, judgment is done by checking whether the value of this phase remains

unchanged on all vertices. Considering that this judgment is possible after running step at
least once, we have the following definition of texpp:

texpp = prev v .^ counter > 0 && and [prev u .^ dp == curr u .^ dp | u← p′]

When term is Until (λ p′′ → e), texpp is defined as e with a suitable substitution applied:

texpp = σ 2
p′′ (e)

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 27

When term is Iter k, the judgment is done simply by checking the current counter:

texpp = prev v .^ counter == k

Case 2: p = gmap f p′

In this case, compp simply applies substitution σp,p′ to the inlining result of f v. Since
gmap does not perform iterative computation, texpp is always true:

compp = σp,p′ (f v)
texpp = True

Case 3: p = gzip p1 p2

In this case, compp pairs up the components corresponding to graph variables p1 and p2.
Similar to Case 2, texpp is always true:

compp = Pair (prev v .^ dp1) (prev v .^ dp2)
texpp = True

Case 4: p = giter iinit iiter term p′

In this case, compp performs initialization by iinit for the first time, that is, when ictrp

is 0. Note that ictrp holds the number of iterations of the corresponding giter. Otherwise,
since the computation of compp has already been done by iiter, compp can simply obtain
the result of iiter by dp′′ , where p′′ is the output graph of iiter:

compp = if prev v .^ ictrp == 0 then σp,p′ (iinit v) else prev v .^ dp′′

Similar to Case 1, termination judgment expression texpp depends on termination con-
dition term. The difference is that ictrp is used instead of counter for giter. Specifically,
when term is Fix, texpp is as follows:

texpp = prev v .^ ictrp > 0 && and [prev u .^ dp == curr u .^ dp | u← p′]

When term is Until (λ p′′ → e),

texpp = σ 2
p′′ (e).

When term is Iter k,

texpp = prev v .^ dp == k.

Step 4: Build a phase transition machine. Now we define a phase transition machine by
using two functions.

One, next :: P→ P, is used to indicate which phase is to be executed next when the
computation of the current phase terminates (i.e., when the termination judgment expres-
sion returns True.) This is defined by a topological sort determined by the dependencies
of graph variables. For a program that uses giter, since the output graph of iiter is bound
to the graph variable corresponding to the giter, this dependency also has to be taken into
account.

The other, stay :: P→ P, is used to indicate which phase is to be executed to continue the
computation in the current phase (i.e., when the termination judgment expression returns

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

28 H. Iwasaki et al.

Fig. 15. Template of normalized Fregel program.

False.) Basically, stay p= p for most phases, but for a phase that corresponds to giter, stay
returns the entry phase of the iterative computation by the giter.

For example, graph variables of scc have the following dependencies:

• gf and gb depend on ga by fregel.
• gfb depends on gf and gb by gzip.
• g′ depends on gfb by gmap.
• gr depends on g′ because gr corresponds to giter and g′ is the output of sccIter.
• ga depends on gr because ga is the input graph of giter.

Thus, we can define next(ga)= gf , next(gf)= gb, next(gb)= gfb, next(gfb)= g′, and
next(g′)= gr. It should be noted that we can swap gf and gb in the above definition of next
because there is no dependency between them. For stay, we define stay(gr)= ga because
ga is the entry phase of giter, and stay(p)= p for other phases.

Step 5: Build a normalized program. A normalized program is built by using the com-
ponents built so far. We assign a unique phase number (integer) rp to each phase p. We
also introduce a special phase pe and its phase number rpe to indicate the termination of
the entire computation and let stay(pe)= pe and next(gr)= pe, where gr is the output graph
variable in the original program.

Figure 15 shows the template of a normalized Fregel program. The main part is the new
step function, newStep, to emulate the original computation. When the current phase num-
ber obtained by prev v .^ phase is rpj , it executes the step function body comppj

. The phase
transition is controlled by the termination judgments, texppj

, and the transition functions,
next and stay. Note that newStep returns the same value as before once prev v .^ phase
becomes npe , because stay(pe) returns pe and counter′ is always bound to 0. Thus, the
computation terminates. The initialization function, newInit, simply initializes the current

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 29

Fig. 16. Normalized Fregel program for scc.

phase to rp1 , counters (counter, ictrpi1
, . . . , ictrpım

) to 0, and other members in ND to their
default values, defvalpij

.

Figure 16 presents the normalized Fregel program for scc in Figure 11.

6.2.3 Simple optimization in normalization process

For brevity, the transformation explained so far did not take the efficiency of the normal-
ized program into account and introduced much redundancy. Standard optimizations such

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

30 H. Iwasaki et al.

Fig. 17. Simplified type definitions of FregelIR in Haskell.

as inlining and simplification can reduce redundancy. For example, on the right-hand side
of dg′ of the normalized program in Figure 16, the redundant pair introduced by gzip can
be eliminated by replacing prev v .^ dgfb .^ _fst and prev v .^ dgfb .^ _snd with prev v .^ dgf

and prev v .^ dgb, respectively. This simple optimization has been implemented in the
normalization process.

6.3 Transforming normalized Fregel into FregelIR

6.3.1 Design of FregelIR

FregelIR is specialized to express Fregel programs. It bridges the gap between the func-
tional style of Fregel programs and the imperative style of programs in the Giraph and
Pregel+ frameworks. To this end, we designed FregelIR as a state transition machine with
two key features. First, every phase in a normalized Fregel program is further split into
subphases, each of which corresponds to a superstep in Pregel. As a result, a phase that per-
forms communications including aggregations necessarily consists of multiple subphases.
Each state is a pair of a phase and its subphase. Second, computation is imperative in a
state where processing order is important. This makes generating Java and C++ programs
from a FregelIR representation a straightforward process.

Figures 17 and 18 present simplified type definitions of FregelIR in Haskell.
Type IRProg is the top-level representation for the entire program. It consists of

datatypes used in phases, datatypes for vertices, edges, messages and aggregators, and
IRCompute data that represents the computation. Each datatype has a name and mem-
bers; IRVertexStruct has additional members for phase and subphase, and IRAggStruct
has information about the aggregation operator for every aggregator. Type IRCompute

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 31

Fig. 18. Simplified type definitions of FregelIR in Haskell, continued.

is essentially a list of IRComputeProcess’es. Each IRComputeProcess represents the
computation for its corresponding state with the following information:

• state, that is, a pair of a phase and subphase,
• local variables,
• a block for the computation including receiving messages,
• conditions for state transitions and next states, and
• a block for sending messages to neighbors.

A block consists of statements represented in IRStmt form, which has enough levels
of abstraction to absorb the differences between frameworks. FregelIR contains minimum
functionalities for expressing programs obtained from Fregel programs. For example, it
does not have a structure corresponding to a general-purpose while-loop, because while-
loops are unnecessary for transformed framework code.

We next explain the abstraction of FregelIR by using an example of the all-reachability
problem, for which a program was presented in Figure 8. In the Fregel program, each
vertex collects Boolean values sent from neighboring vertices by using a comprehension
and takes their “or” value. This part is represented as the following type IRStmt data:

IRStmtMsg (IRVarLocal (“agg", irBool)) IRAggOr (IRMVal (“agg", irBool))

Here, “agg" is a local variable name to which the result is assigned. The same name is
also used as the member name in the message structure. IRAggOr represents the disjunction
operation used in combining received data, and irBool represents the Boolean type. This
representation is abstract enough to express the computation in a framework-independent
manner. From this IRStmtMsg structure, the following Java code for Giraph is generated,
where MsgData is the typename for messages:

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

32 H. Iwasaki et al.

agg = false;
for (MsgData msg : messages) agg = (agg || (msg.agg).get());

For Pregel+, the following C++ code is generated. Here, messages is a vector for messages
incoming to the vertex:

agg = false;
for (int i = 0; i < messages.size(); i++)

agg = (agg || messages[i].agg_X425);

Note that in the above IRStmt data, there is no explicit description of iterating over
messages or of obtaining a Boolean value from each message.

6.3.2 Generating FregelIR

Through normalization, a Fregel program is transformed into a program that contains
a single fregel function. However, there remain three essential differences between a
normalized Fregel program and FregelIR code:

• A normalized Fregel program is functional, while FregelIR code is imperative.
• A normalized Fregel program describes an LSS, while FregelIR code is composed

of supersteps in the Pregel sense.
• A normalized Fregel program describes communications, that is, message

exchanges between vertices and aggregations, based on comprehensions and val-
ues of other vertices found in a look-up table. In contrast, FregelIR code explicitly
describes these communications.

For generating imperative FregelIR code, the FregelIR generator identifies the depen-
dencies of let-bound variables and reorders computation of values for these variables so as
not to refer to not-yet-computed values.

For every phase p, it is necessary to split the LSS composed by the step function body
compp and termination judgment texpp into multiple supersteps at the points where com-
munications occur. Each superstep is referred to as a subphase. As a concrete example,
consider the generation of FregelIR code from the normalized scc program in Figure 16.

In the expression bound to dgf , communications between adjacent vertices are performed
using the following comprehension:

minimum [prev u .^ dgf .^ minv | (e, u)← is v, prev u .^ dgf .^ notf]

FregelIR code for this comprehension uses IRStmtSendN to send the minv value and
then transits to the next subphase. From every IRStmtSendN , an appropriate code that uses
a message-sending API for the target framework (Giraph or Pregel+) is generated. In the
next subphase, the FregelIR code gathers the messages sent from neighbors in the previous
subphase by using IRStmtMsg.

Similarly, an aggregation for termination detection can be found in the expression bound
to egf :

and [prev u .^ dgf == curr u .^ dgf | u← g]

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 33

FregelIR code for this aggregation submits the result of equality test by using
IRStmtAggr and then transits to the next subphase. The code receives the submitted values
and combines them by the and function using IRAggr in the next subphase.

On the basis of the split subphases, FregelIR code is generated as a state transition
machine. In the termination detection of each phase, if termination of the computation at
the current phase is detected, the execution state at the next superstep is set to the entrance
subphase of the next phase. Otherwise, it is set to the beginning of the iteration of the
current phase.

By splitting a phase into multiple subphases, local (non-vertex) variables might be used
over successive subphases, that is, supersteps. Such variables should be moved as member
variables in the data structure held by each vertex.

6.4 Generating framework programs from FregelIR

From an IRProg structure for the entire program in PregeIR, a program for the target
framework is generated. For every datatype in IRProg, a class (for Giraph) or a struct (for
Pregel+) is defined. The target framework may require members that are not explicitly
described in FregelIR, and such members are automatically added. For example, Pregel+
requires that the vertex struct has a vector of outgoing edges.

The compute function is built from IRComputeProcess datatypes, each of which
describes a computation for its corresponding state. The compute function at each ver-
tex dispatches its execution on the basis of the current phase and subphase obtained from
its vertex struct.

For generating framework-dependent code, we used Haskell’s type classes. To illustrate
the basic idea, we describe the generation of framework code for the following IRStmtMsg
structure, which was presented in Section 6.3.1:

IRStmtMsg (IRVarLocal (“agg", irBool)) IRAggOr (IRMVal (“agg", irBool))

To enable framework-dependent code generation, we define a type class called
PregelGenerator (Figure 19(a)). This type class is a collection of function and variable def-
initions used for generating framework-dependent code. For each framework, an instance
of PregelGenerator is defined: GiraphGenerator for Giraph and PregelPlusGenerator for
Pregel+.

For the above example of IRStmtMsg, we generate framework code using ggIRStmtMsg,
for which the definition is presented in Figure 19(c). Framework code consists of an
initialization of the destination variable generated by ggAssign and a loop generated
by gRecvMsgLoop, which successively takes a delivered message and performs a
value-combining operation. In this code, since the loop structure is framework-dependent,
PregelGenerator requires every instance to define gRecvMsgLoop, which generates a code
fragment for the loop structure. Thus, GiraphGenerator and PregelPlusGenerator define
gRecvMsgLoop so as to return a string containing a suitable for-statement (Figure 19(c)).

We do not convert the IR into the AST of the target language (Java or C++). This
is because the IR itself is sufficiently low-level to enable program strings of the target
language to be directly generated from the IR without going through an AST.

We defined every function that generates framework-dependent code to take an instance
of PregelGenerator type class as its argument. By defining a suitable instance in this way,

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

34 H. Iwasaki et al.

(a)

(b)

(c)

Fig. 19. Generating framework dependent code.

parts of the Fregel compiler for framework-dependent code generation can be packaged
within the instance definition.

7 Code optimization

At this point, we have introduced the Fregel programming language and its basic compi-
lation. Although this approach facilitates the development of runnable graph processing
programs, as discussed in Section 2.1, it is still difficult to achieve efficiency. Natural
programs tend to be slow.

To see the problem, recall the programs for the all-reachability problem (reAll) shown
in Figure 8 and the single-source shortest path problem (sssp), which is the first half of
the diameter problem in Figure 9. We use these two problems as running examples of the
optimizations newly proposed in this section.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 35

These two programs are based on the following algorithm:

• First, the source vertex is assigned True (reAll) or 0 (sssp), and the other vertices
are assigned False (reAll) or ∞ (sssp). For reAll, this value is the flag indicating
whether each vertex is reachable or not at the current LSS. For sssp, this value is the
tentative distance from the source vertex to each vertex at the current LSS.

• Then, each vertex sends the flag (reAll) or tentative distance (sssp) to its neighbors
and updates its value if it receives True (reAll) or a shorter distance (sssp).

• The second step is repeated until all vertex values are no longer changed.

While these programs are clear and reasonable, they also suffer from the following
inefficiency problems discussed in Section 2.1. Some communications are apparently
unnecessary (it is sufficient to process only those vertices for which values are updated),
and global barrier synchronization for every superstep may bring overhead. Moreover, for
sssp, there is an additional source of inefficiency: the algorithm is essentially the Bellman–
Ford algorithm, for which the time complexity is O(n2), where n is the size of the graph,
and processing near-source vertices prior to distant ones as in Dijkstra’s algorithm may
reduce the amount of work to possibly O(n log n).

We developed a method for automatically removing these inefficiencies that incorpo-
rates four optimizations:

• Eliminate unnecessary communications. (Section 7.2)
• Inactivate vertices that do not need to be processed. (Section 7.3)
• Remove barrier synchronization, thereby enabling asynchronous execution.

(Section 7.4)
• Introduce priorities for processing vertices. (Section 7.5)

These optimizations can be implemented by focusing on specific program patterns
(Kato & Iwasaki, 2019), but this ad hoc approach is sensitive to the program details.
Our proposed method is based on a more robust approach that uses constraint solvers
for identifying possible optimizations. We discuss the use of two constraint solving meth-
ods: quantifier elimination (QE) (Caviness & Johnson, 1998) and satisfiability modulo
theories (SMT) (de Moura & Bjørner, 2011). The former enables the use of arbitrary
quantifier nesting and can generate the program fragments that are necessary for the opti-
mizations. Therefore, it is suitable for formalizing optimizations. However, it is somewhat
impractical because of its high computational cost. We thus use SMT solvers as a practical
implementation method that captures typical cases.

The first two optimizations listed above were implemented in the Fregel compiler.
Implementation of the other two is left for future work because they need a graph pro-
cessing framework that supports asynchronous execution. Nevertheless, we discuss them
here in consideration of the possibility that they may be lead to further optimizations.

7.1 Target programs for optimization

The targets for the optimizations are programs written using the fregel function. We refer
to its second parameter (a step function) as fStep and assume that it is written in the

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

36 H. Iwasaki et al.

Table 1. Step functions for all-reachability and sssp problems

reStep ssspStep

n 1 1
pk p1(pu) = True p1(pu) = True
fk f1(e, pu) = pu .^ rch f1(e, pu) = pu .^ dist+ e
⊕k ⊕1 = | | ⊕1 = ‘min‘
g g(pv, c1) = RVal ((pv .^ rch) | | c1) g(pv, c1) = SVal ((pv .^ dist) ‘min‘ c1)

Fig. 20. Target program for optimization.

form shown in Figure 20. In the program, fi, pi, and ⊕i (1≤ i≤ n), respectively, represent
computation over each neighbor’s value, the condition showing the necessity of sending
the value, and the operator used for combining received values. Here, for convenience,
〈aggOp〉 in the Fregel’s aggregation syntax (Figure 7) is represented by its commutative
and associative binary operator⊕i. For example, the aggregation operation “sum” is repre-
sented by its binary operator “+”. Function g denotes the calculation of the new value of a
vertex. For simplicity, we assume the termination condition is Fix, and only the is function
is used as a generator. We discuss these limitations in Section 7.6.

The fStep corresponds to reStep for the reAll problem and ssspStep for the sssp problem,
as presented in Table 1.

We use ū and ¯̄u for the following meanings in this section:

• ū denotes the current value of vertex u, and
• ¯̄u denotes the previous value of vertex u.

7.2 Eliminating unnecessary communications

Since accesses to a neighbor’s information are compiled to message exchange, modifying
the condition pk and thereby avoiding unnecessary accesses reduces the amount of com-
munication. In the following discussion, we focus on reducing communications caused by
the computation of ck . Our strategy is to formalize the situation in which optimization is
possible and then to use constraint solvers to implement the optimization.

7.2.1 Formulation

Consider formulating the necessity of sending ū to neighboring vertices. The follow-
ing property naturally formulates the situation in which the sending of ū does not affect
computation on the destination vertex:

∀ pv, e, c1, . . . , cn .
g(pv, c1, . . . , cn) = g(pv, c1, . . . , ck−1, ck ⊕k fk(e, ū), ck+1, . . . , cn)

(7.1)

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 37

For reStep, Property (7.1) is instantiated as:

∀ pv, c . RVal (pv .^ rch | | c) = RVal (pv .^ rch | | (c | | ū .^ rch)).

This is equivalent to ū .^ rch = False. It means that a vertex can skip message sending if
its rch value is False.

For ssspStep, Property (7.1) is instantiated as:

∀ pv, e, c . SVal (pv .^ dist ‘min‘ c) = SVal (pv .^ dist ‘min‘ (c ‘min‘ (ū .^ dist+ e))).

This is equivalent to ū .^ dist = ∞, which means that a vertex can skip message sending
if its dist value is infinity.

This property avoids the sending of apparently useless messages, a solution for the
first inefficiency problem described above. Note that the “value of useless” derived from
Property (7.1) is the unit value of ⊕k : False for or and∞ for ‘min′. We call optimization
on the basis of this property “unit values elimination.”

For both reAll and sssp, even more message sending can be avoided. A vertex need not
send a message if its rch (reAll) or dist (sssp) value is unchanged from the previous step. To
capture this case, we need another formulation that takes the previous value into account.
A vertex may be able to skip message sending if sufficient information had been sent at
the previous step. The following formula captures this idea:

∀ pv, e, c1, . . . , cn, c′1, . . . , c′n .
g(pv′, c′1, . . . , c′n) = g(pv′, c′1, . . . , c′k−1, c′k ⊕k fk(e, ū), c′k+1, . . . , c′n)
where pv′ = g(pv, c1, . . . , ck−1, ck ⊕k fk(e, ¯̄u), ck+1, . . . , cn)

(7.2)

The necessity of ū is checked on the basis of the premise that the message-receiving vertex
(which has value pv′) took into account the previous value ¯̄u of the message-sending vertex.
We call this optimization “redundant values elimination.”

For reStep, Property (7.2) is instantiated to

∀ pv, c, c′ . RVal (pv′ .^ rch | | c′)= RVal (pv′ .^ rch | | (c′ | | ū .^ rch))
where pv′ = RVal (pv .^ rch | | (c | | ¯̄u .^ rch)).

This means that a vertex can skip communication when ū .^ rch = ¯̄u .^ rch, that is, the
rch values of ū and ¯̄u are the same.

Similarly for ssspStep, Property (7.2) is instantiated to

∀ pv, e, c, c′ .
SVal (pv′ .^ dist ‘min‘ c′)= SVal (pv′ .^ dist ‘min‘ (c′ ‘min‘ (ū .^ dist+ e)))
where pv′ = SVal (pv .^ dist ‘min‘ (c ‘min‘ (¯̄u .^ dist+ e))).

This is equivalent to ū .^ dist ≥ ¯̄u .^ dist : a vertex can skip communication when the
current dist value is not smaller than the previous one. Since the current dist value is never
larger than the previous one, this is essentially equivalent to ū .^ dist = ¯̄u .^ dist.

7.2.2 Remarks on implementation

We could implement this optimization by dynamically checking Properties (7.1) and (7.2)
for each vertex. However, because these properties consist of quantifiers, their evalua-
tion is likely impossible or very slow. To obtain efficient codes, we need a method for

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

38 H. Iwasaki et al.

synthesizing a simple (especially quantifier-free) formula that is equivalent to (or express-
ing a sufficient condition of) the property. For this purpose, we can use constraint solvers.

QE translates a formula into a quantifier-free equivalent one. For example, it may trans-
late ∀x. x2 + ax+ b≥ 0 into 4b− a2 ≥ 0. While QE is theoretically ideal for our purpose,
QE solvers are impractical for three reasons. First, there are only a few formal systems
for which QE procedures are known. Second, QE procedures are usually very slow. Third,
current implementations of QE tend to be experimental. Nevertheless, it is worthwhile to
formulate the optimizations as QE, because these problems may one day be solved.

As a more practical implementation, we propose using SMT instead of QE. Given a
closed formula consisting of only one kind of quantifier, SMT checks (i.e., does not trans-
late) whether it is satisfiable. For example, it may answer “yes” for ∀x, a. x2 + ax+ a2 ≥
0. Efficient SMT solvers have recently been developed and are now used in many
applications.

There are two problems in using SMT for checking Properties (7.1) and (7.2). They
contain free variables, ū and ¯̄u, and moreover, SMT solvers are unable to synthesize a
simple formula. To overcome these problems, we prepare templates of simple reasonable
formulae, such as ū=∞ (e.g., ū .^ dist=∞) or ū= ¯̄u. If the SMT solver guarantees that a
template is a sufficient condition of these properties, we insert the negation of the template
into pk . The effectiveness of this approach relies on the generality of the template.

The most common case that satisfies Property (7.1) is one in which the message value is
the unit of ⊕k . Since Fregel’s syntax allows only a limited operator such as minimum and
or as 〈aggOp〉, we can know the unit value of an 〈aggOp〉 without using constraint solvers.
However, if a user-defined combining operation were able to be specified as 〈aggOp〉, we
would use an SMT solver to check whether one of the template values is the unit of the
operation.

For the case of Property (7.2), several templates can be considered. We believe that
comparing values in ū and ¯̄u captures most practical cases.

Considering sssp, for Property (7.1), we have already found that sending∞ is unneces-
sary because it is the unit of ‘min‘. For Property (7.2), we instruct an SMT solver to check
the following formula:

∀ ū, ¯̄u, pv, e, c, c′ .
ū = ¯̄u −→ SVal (pv′ .^ dist ‘min‘ c′)= SVal (pv′ .^ dist ‘min‘ (c′ ‘min‘ (ū .^ dist+ e)))

where pv′ = SVal (pv .^ dist ‘min‘ (c ‘min‘ (¯̄u .^ dist+ e))).

The solver verifies the condition. We thus modify the program as follows. We instruct
each vertex to check and remember the truth of the template. Then, we modify p1 so that it
checks the remembered truth. Letting notChanged be the vertex variable for remembering
the truth of the template, we modify ssspStep to a code that is essentially equivalent to the
one presented in Figure 21.

7.3 Inactivating vertices

Next, we discuss inactivating vertices. A vertex u is inactivated if the following condition
holds; unless the vertex receives a message, its value ū does not change and it need not
send a message. The optimization condition is thus formalized as:

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 39

Fig. 21. sssp program for eliminating redundant communications.

(∧
1≤i≤n

¬pi(ū)

)
∧ (g(ū, ι1, . . . , ιn)= ū), (7.3)

where ιi (1≤ i≤ n) is the unit of ⊕i and corresponds to the absence of messages. In
Property (7.3), “¬pi(ū)” corresponds to the fact that the current vertex need not send a
message for the i-th aggregation, and “g(ū, ι1, . . . , ιn)= ū” means that the vertex’s value is
unchanged unless the vertex received a message. Since this property contains no quantifier,
this optimization can be implemented without the use of a constraint solver. We call this
optimization “vertices inactivation.”

For effective vertices inactivation, the predicate pi, which specifies the necessity of send-
ing messages, should result in “false” as much as possible. Hence, vertices inactivation
should be applied after communication reduction optimization described in Section 7.2.

For sssp, Property (7.3) is instantiated to

ū .^ notChanged ∧ (SVal d′ (d′ == ū .^ dist)) = ū where d′ = ū .^ dist ‘min‘∞,

which is equivalent to ū .^ notChanged. In short, a vertex can be inactivated if its value is
the same as before.

7.4 Removing barriers

Recall that the execution of Fregel is based on the BSP model. Each local computation is
followed by barrier synchronization. Though this makes program behaviors deterministic
and deadlock-free, barriers can make execution slower, especially when there are many
computational nodes. For most graph algorithms including reAll and sssp for which asyn-
chronous barrier-less execution and synchronous execution yield the same result, barrier
synchronization is unnecessary.

The flexibility of asynchronous execution enables further optimizations such as vertex
splitting (also known as vertex mirroring) (Yan et al., 2015; Verma et al., 2017). Practical
graphs often contain vertices that have too many edges, and such vertices form a bottleneck
in vertex-centric computation. Vertex splitting resolves the bottleneck by splitting these
vertices and distributing their edges among the computational nodes. With synchronous
execution, vertex splitting requires an additional superstep to merge the messages sent
to the split vertices. With asynchronous execution, an additional superstep is unnecessary
because message delay does not matter. Another possible optimization is to repeatedly pro-
cess vertices in the same computational node before sending messages to other nodes. This

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

40 H. Iwasaki et al.

optimization is related to subgraph-centric (or neighborhood-centric) approaches (Tian
et al., 2013; Quamar et al., 2016) in which subgraphs rather than vertices are the target
of parallel processing.

7.4.1 Formulation

We have developed a method that automatically guarantees equivalence between syn-
chronous and asynchronous execution. We first present the following lemma.

Lemma 7.1. For functions h and h′ and a binary relation�, three conditions are assumed:

• Monotonicity of h: ∀x, y. (x� y)→ (h(x)� h(y)).
• Ordering of h and h′: ∀x. (x� h′(x))∧ (h′(x)� h(x)).
• Antisymmetry of �: ∀x, y. (x� y∧ y� x)→ (x= y).

Then, h∗(x)= h∗(h′(x)) holds for any x, where h∗ is defined by h∗(x) = if h(x)=
x then x else h∗(h(x)).

Proof From the monotonicity and the ordering of h and h′, we have x� h′(x)� h(x)�
h(h′(x)). Now let h0(x)= x and hn(x)= hn−1(h(x)) for n > 1. By induction, we have
hn(x)� hn(h′(x))� hn+1(x) for any n. When h∗(x) terminates, there exists an integer
m such that h∗(x)= hm(x)= hm+1(x). Then, hm(x)= hm(h′(x))= hm+1(x) follows from
the inequality mentioned above and the antisymmetry of �, and hence h∗(h′(x))=
hm(h′(x)). When h∗(x) is non-terminating, so is h∗(h′(x)). We prove it by contradic-
tion. Suppose hm(h′(x))= hm+1(h′(x)) for some m. Recall that hm(h′(x))� hm+1(x)�
hm+1(h′(x))� hm+2(x)� hm+2(h′(x)) holds. This inequality and hm(h′(x))= hm+1(h′(x))=
hm+2(h′(x)) imply hm+1(x)= hm+2(x), which contradicts the non-termination of h∗(x). �

We apply Lemma 7.1 as follows. We regard h as a complete one-step processing of
the graph. Similarly, we regard h′ as a partial processing in which some vertices and
messages are skipped. We regard asynchronous execution as a series of partial process-
ings. Lemma 7.1 guarantees that a partial processing does not change the result; then, by
induction, asynchronous execution does not change the result as well.

Lemma 7.1 requires an appropriate binary relation, �. From the ordering between h
and h′, a natural candidate is comparison of the progress in computation: g1 � g2 indicates
that graph g2 can be obtained by processing computation from g1. Another requirement is
bridging the gap between graph processing and vertex processing. While h, h′, and � deal
with graphs, we would like to consider vertex-processing functions. The following lemma
bridges the gap. For simplicity, we assume that the fStep function contains only one access
to a neighbor’s information by a combining operator ⊕.

Lemma 7.2. For fStep, let� be a binary relation defined by x� y ⇐⇒ (∃m. y= g(x, m)).
Three conditions are assumed:

• ∀x, m, m′. g(x, m⊕m′)= g(g(x, m), m′).
• ∀x, y. (x� y∧ y� x)→ (x= y).
• ∀x, y, z. (x� y)→ (g(z, x)� g(z, y)).

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 41

Then, hfStep, h′fStep, and �G satisfy the premise of Lemma 7.1: the first two are respectively
complete and partial one-step processing (here, “partial” means processing some of the
vertices using some of the messages) over the graph by fStep and the last one compares
graphs on the basis of vertex-wise comparison using �.

Proof [proof sketch] The first condition and the definition of � guarantee the ordering
between hfStep and h′fStep. The antisymmetry of�G easily follows from the second condition.
The third condition together with the first one and the commutativity of ⊕ guarantees the
monotonicity of hreStep. �

The first condition of Lemma 7.2 can be taken to mean that message delay is not harmful.
This is a natural requirement for asynchronous execution.

For sssp, the definition of the relation � is instantiated as:

x� y ⇐⇒ ∃w. x .^ dist ‘min‘ w .^ dist= y,

which is equivalent to x .^ dist ≥ y .^ dist. Therefore, confirming the three conditions is
easy.

7.4.2 Remarks on Implementation

The first and second conditions can be checked using either QE or SMT. Note that the
second is equivalent to ∀x, m, w . (g(g(x, m), w)= x)→ (g(x, m)= x), where y is expressed
as g(x, m). Since the definition of � contains an existential quantifier, the third condition
cannot be directly checked using SMT. When using an SMT solver, we may instead check
the following sufficient condition:

∀x, y, z . (x� y)→ (g(g(z, x), y)= g(z, y)).

This can be read to mean that the previous result, x, can be “overwritten” by the newer
result, y. This is also natural in asynchronous execution.

7.5 Prioritized execution

Another interesting optimization that asynchronous execution enables is prioritized exe-
cution (Prountzos et al., 2015; Cruz et al., 2016; Liu et al., 2016). For example, in
sssp, a prioritized execution may more intensively process vertices nearer the source, like
Dijkstra’s algorithm.

Prioritized execution typically focuses on vertices for which the values are nearer the
final outcome and thus likely contribute to the final outcome for other vertices. Therefore,
it is natural to use � defined in Lemma 7.1, which essentially compares progress in com-
putation, as a priority for processing vertices. For sssp, � is equivalent to ≥ and thus is a
perfect candidate.

However, there are two problems with using � for prioritized execution. First, since
its definition contains an existential quantifier, it is essentially not executable unless QE
is used. The other, more essential problem is that � may not be a linear order. Nonlinear
orders are less effective for prioritized execution and make it difficult to process vertices
efficiently using priority queues. A practical solution to these problems is to check whether

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

42 H. Iwasaki et al.

a known linear order, ≥ for example, is consistent with �, that is, ∀x, y. (x� y)→ (x≥ y).
If it is, the linear order can be used for prioritization. The condition can be checked by an
SMT solver.

7.6 Limitations and generalization

We have assumed that information read from neighbors is expressed using the is generator.
Use of other kinds of generators, including the one for expressing an aggregator, generally
does not introduce any difficulty. We did not assume anything about communication except
that the communication topology does not change during computation.

A notable exception is the case of vertex inactivation. Since the results of aggregation
may change regardless of message arrival, if the k-th communication is an aggregator, the
following condition should be checked instead of Property (7.3):(∧

1≤i≤n

¬pi(ū)

)
∧ (∀wk . g(ū, ι1, . . . , wk , . . . , ιn)= ū).

Namely, the vertex value should not change regardless of the aggregator’s value if the
vertex does not receive a message. Since it contains a quantifier, unless QE is used, an
executable sufficient condition is needed. A natural candidate is the following condition:

∀ū.

(∧
1≤i≤n

¬pi(ū)

)
→ (∀wk . g(ū, ι1, . . . , wk , . . . , ιn)= ū).

If it holds, a vertex having ū can be inactivated if (
∧

1≤i≤n ¬pi(ū)) holds. The condition can
be checked using SMT.

We have considered only a certain form of programs. For example, termination condi-
tions other than Fix and second-order graph functions other than fregel were neglected.
This limitation is theoretically inconsequential. As discussed in Section 6.2, the Fregel
compiler normalizes other forms of programs into the one in Figure 15. Nevertheless, from
the practical perspective, since the normalization complicates programs, it is questionable
whether normalized programs can be effectively optimized.

7.7 Implementation of optimizations

We implemented unit values elimination and redundant values elimination described in
Section 7.2 and vertices inactivation described in Section 7.3 in the Fregel compiler. We
left implementation of the last two optimizations described in Sections 7.4 and 7.5 as
future work because the target frameworks of the current Fregel compiler are based on
synchronous execution.

For the unit values elimination optimization, as described in Section 7.2.2, we did not
use an SMT solver because specifiable message-combining operators are limited, and their
unit values to be eliminated can be easily determined.

For both the redundant values elimination and vertices inactivation optimization, we
used the Z3 SMT solver.2 Implementation using Z3 is mostly straightforward. It is worth
noting that the units for minimum and maximum, −∞ and∞, are necessary for vertices

2 https://z3.codeplex.com/.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://z3.codeplex.com/
https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 43

Fregel
Program

FregelIR
Code

Giraph
Program

Pregel+
Program

Normalization Transformation
to FregelIR

Code
GenerationParsing

AST
Normalized

AST

Redundant values elimination
+

Vertices inactivation
+

Determining if each
optimization is possible

+
Unit values elimination

Fig. 22. Optimizations in compilation flow of Fregel program.

inactivation. We prepared numerals with −∞ and ∞ and used them instead of the ones
conventionally used, such as Int.

Figure 22 illustrates how the proposed optimizations are carried out during compilation
of a Fregel program. After parsing the program and constructing an AST for the program,
the compiler checks in turn on the basis of the optimizing options given by the user whether
or not each specified optimization can be applied.

First, the compiler checks unit values elimination by identifying a combining operator
used in a comprehension and modifies its AST so as to contain checking code at the top of
its predicate part, if this optimization is possible. For example, the comprehension part of
reStep is modified to

or [prev u .^ rch | (e, u)← is v, prev u .^ rch /= False].

Next, the compiler checks the possibility of redundant values elimination by generating
a Z3 program that corresponds to Property (7.2), invoking Z3, and storing the result, that is,
True (possible) or False (impossible), in a flag variable. Similarly, the compiler checks the
possibility of vertices inactivation by using Z3 on the basis of Property (7.3) and stores the
result in another flag variable. These flag variables are referred to during transformation
from a normalized AST to FregelIR code, resulting in optimized FregelIR code.

If redundant values elimination is possible, the compiler extends the vertex record so
as to contain a notChanged variable that records whether the vertex value of the current
LSS is the same as that of the previous LSS. In addition, the compiler generates code
that sets notChanged properly and eliminates message sending to neighboring vertices if
notChanged on a vertex is True.

If vertices inactivation optimization is possible, the compiler generates the following
code:

• Instead of performing an aggregation to detect termination of the computation, the
generated code refers to notChanged and votes to halt if its value is True.

• Since an aggregation for termination detection is removed, it is not necessary to
separate the computations before and after the aggregation into different super-
steps. Thus, the generated code executes these computations successively in a single
superstep.

8 Evaluation

In this section, we will report our experimental results on the performance of Fregel pro-
grams. We used as the parallel computation hardware a PC cluster consisting of 16 nodes,

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

44 H. Iwasaki et al.

each of which had a four-core CPU (Intel R©CoreTMi5-6500) and 16 GB memory. Thus, the
maximum number of worker processes was 64. The software consisted of Ubuntu 18.04.5
LTS (x86_64), JDK 1.8.0_131-b11, Hadoop 1.2.1, Giraph 1.2.0, and Pregel+ (for Hadoop
1.x). We used Giraph and Pregel+ as our compilation targets.

Six computations were used as benchmarks:

• sssp Single-source shortest path (the first part of the diameter computation in
Figure 9).

• reAll All-reachability from a given node (Figure 8(a)).
• re100 100-reachability from a given node (Figure 8(b)).
• reRanking Reachability with ranking (Figure 10).
• diameter Diameter from a given node (Figure 9).
• scc Strongly connected components (Figure 11).

For each benchmark, we implemented a Fregel program and two kinds of handwritten
programs in the compilation target (Giraph or Pregel+). This resulted in four kinds of
programs for each benchmark:

• handwc Handwritten program with the use of combiners. It was directly written by
hand in Java (Giraph) or C++ (Pregel+). The implementation of each benchmark is
explained below.

• hand Handwritten program without combiners. The code was the same as for
handwc, but without combiners.

• naive Program generated by a naive compilation from the Fregel program.
• opt Program generated by a compilation with all available optimizations from the

Fregel program.

Here, combiners are objects used to combine messages delivered to a vertex when
individual (raw) messages are not important. A message-combining mechanism using
combiners is provided by both Giraph and Pregel+. Combining generally improves
program efficiency.

The handwritten code for Pregel+ was as follows:

• sssp Pregel+’s sample code with small modifications. Each active vertex did the
following in a superstep: (1) compute the minimum value of the messages received,
(2) update its current distance if necessary, (3) send the distance to its neighbors if it
was updated, and (4) vote to halt. Only the source vertex was active at the beginning.

• reAll Almost the same code as for sssp, but Boolean values were used instead of
numbers.

• re100 Made by adding two modifications to reAll: (1) a summation aggregator was
added to count the number of reached vertices, and (2) active vertices did not vote
to halt unless the aggregator’s value exceeded 100.

• reRanking Similar to re100 but another mechanism was used to stop the compu-
tation. Two aggregators were used: a summation aggregator was used to count the
number of reached vertices, and a logical disjunction aggregator was used to check
if there was a newly reached vertex. Active vertices voted to halt when the aggrega-
tor returned false (i.e., there was no newly reached vertex in the previous superstep).

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 45

In addition, two fields were added to each vertex: one for storing the rank and one
for indicating whether it was newly reached in the superstep.

• diameter Since this computation performed two different vertex-centric computa-
tions, each vertex used two fields to control the switching of the computation phases:
one for storing the current computation phase and one for indicating whether its
value was updated in the superstep. The vertex first executed, as the first phase, the
same computation as reRanking until the disjunction aggregator on the second field
returned “false.” Then, instead of voting to halt, it switched its phase to the second,
and executed the second computation similar to that for sssp.

• scc Similar to diameter, the same mechanism was used to switch between the for-
ward and backward computation phases. Both phases did the same computation as
that for sssp, but the backward phase used the reversed edges.

For every benchmark, the implementation strategy of the handwritten code for Giraph was
the same as that for Pregel+’s.

The input graphs were three random graphs based on the Watts–Strogatz model (Watts
& Strogatz, 1998) with three parameters: N (the number of vertices), K (the mean degree),
and P (the probability of reconnection):

• ws10m2 N = 10× 106, K/2= 2, P= 0.2
• ws10m4 N = 10× 106, K/2= 4, P= 0.2
• ws20m2 N = 20× 106, K/2= 2, P= 0.2

We used the Watts–Strogatz model because it generates graphs with the small-world prop-
erty, that is, a high clustering coefficient and a low average shortest path length among
vertices, which is often seen in real-world graphs such as social networks. ws10m2 is the
smallest input graph with 10 M vertices and 40 M edges. ws10m4 has more edges and the
same number of vertices, so a comparison of the results for ws10m2 and ws10m4 reveals
the effect of an increase in degree. Similarly, ws20m2 has more vertices and the same
average degree, so a comparison of the results for ws10m2 and ws20m2 reveals the effect
of an increase in the number of vertices.

8.1 Compilation target: Giraph

This section reports the experimental results for Giraph.
Tables 2–7 show the measured execution times (the median of five runs) for the pro-

grams with 4, 8, 16, 24, 32, 48, and 64 worker processes as well as the number of supersteps
(“# SS”) and the number of messages (“# messages”). Since the input graphs were too big
for runs on a single worker process, we selected four as the minimum number of processes.
Note that for each program, the number of supersteps equalled the number of messages for
all runs. Also note that the number of messages was counted before the use of combiners;
the number of messages for handwc was the same as that for hand.

Figures 23 and 24 show the execution time of each program relative to that of handwc
with 4 and 64 worker processes, respectively.

The naively compiled Fregel program naive was about 4–6 times slower than handwc
with 4 worker processes and about 2–3 times slower with 64 worker processes. This was
due to greater numbers of messages and supersteps. The number of messages was about

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

46 H. Iwasaki et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

(a)

(c)

(b)

Fig. 23. Computation times compared with that for handwc with four worker processes on Giraph.

2–4 times more for scc and diameter, about 10–25 times more for sssp, reAll, and reRank-
ing, and much more for re100, which needed only a few vertices to be active. The number
of supersteps was four times more for scc, which was complex enough to need many phases
in the normalized program (Section 6.2), and twice as many for the other computations.

The Fregel program opt (compiled with the proposed optimizations) achieved better per-
formance than naive. The message reduction and vertex inactivation optimizations worked
especially well to make the number of messages the same as that of handwc. In addition,
the simple optimization to run multiple phases in a single superstep made the number of
supersteps the same as that of handwc. As a result, opt was about 1.5 times slower than
handwc with 4 worker processes and only 1.1 times slower with 64 worker processes. The
remaining inefficiency was due to (1) opt not using combiners while handwc did and to
(2) each vertex in opt having more data fields, for example, the phase number and total
number of supersteps, than handwc.

For re100, opt used fewer messages and more supersteps than handwc. This was
because handwc sent values to the aggregator and messages to its neighbors simultane-
ously in a single superstep to reduce the total number of supersteps, while opt performed
these communications separately in two successive supersteps to reduce the number of
messages.

The optimizations also worked in the more complex computations for reRanking, diam-
eter, and scc, in which a part of the whole computation was improved by the proposed
optimizations so that opt had in general fewer messages and supersteps than naive.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 47

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

(a)

(c)

(b)

Fig. 24. Computation times compared with that for handwc with 64 worker processes on Giraph.

Figures 25–30 show the parallel performance, that is, the ratio of the actual parallel
speedup to its ideal value: (t4/tp)/(p/4), where tp is the execution time with p worker
processes. First, the parallel performances of both naive and opt were not worse than that
of handwc. In some cases, naive and opt achieved superlinear performance (> 1.0) when
the number of worker processes was not large. This was because a vertex in naive and opt
had more data than handwc and because there was a lack of memory when running on
a small number of worker processes. In general, their performance improved as the input
graph became larger.

To sum up, the proposed optimizations achieved reasonably good performance for both
simple and complex computations.

Finally in this section, we compare memory consumption. Basically, the programs com-
piled from Fregel code (naive and opt) used more memory than the handwritten versions
(handwc and hand). Table 8 shows the memory footprints of the vertex data fields,
excluding those defined in the base class of vertices.

In the handwritten versions (handwc and hand), every vertex held only user-defined
fields: 4 bytes for an integer for the shortest distance in sssp, 1 byte for the Boolean value
for the flag in reAll, 12 bytes for three integers for the rank, the diameter, and the phase
(1 or 2) in diameter, and so on. Fregel’s naively compiled program (naive) needed an
additional 17–51 bytes for each vertex, which included

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

48 H. Iwasaki et al.

Table 2. Execution times of sssp with 4–64 worker processes on Giraph (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 60.7 40.3 27.7 27.7 29.4 34.1 35.8 49 174,593,726
hand 65.3 42.5 27.7 29.4 30.9 34.7 37.1 49 174,593,726
naive 245.2 122.7 71.2 67.7 62.1 66.2 72.3 98 1,920,000,000
opt 79.0 51.2 33.6 34.2 34.0 34.6 39.5 49 174,593,726

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 76.7 45.6 29.4 32.9 30.2 32.9 35.7 44 521,880,562
hand 92.4 49.5 31.7 34.2 32.0 35.3 36.8 44 521,880,562
naive 304.8 142.7 80.2 73.6 69.1 71.1 75.4 88 3,440,000,000
opt 116.6 56.1 37.3 39.4 36.6 39.7 41.0 44 521,880,562

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 116.7 67.4 41.6 38.7 35.7 37.4 42.5 49 342,144,658
hand 131.9 73.9 45.0 40.2 37.8 40.0 43.3 49 342,144,658
naive 621.0 266.3 127.2 112.7 94.0 98.9 103.3 98 3,840,000,000
opt 173.3 89.2 54.5 52.1 43.6 47.4 49.0 49 342,144,658

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) (b)

(c)

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

Fig. 25. Parallel performance of sssp on Giraph.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 49

Table 3. Execution times of reAll with 4–64 worker processes on Giraph (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 40.3 27.8 19.4 22.2 22.4 24.1 25.4 28 40,000,000
hand 42.1 30.9 21.2 22.2 23.0 24.7 26.4 28 40,000,000
naive 148.2 78.6 45.9 44.1 42.9 44.9 49.4 56 1,080,000,000
opt 47.0 35.5 24.1 25.9 26.7 26.8 31.4 28 40,000,000

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 40.1 24.5 19.2 19.6 19.5 20.9 21.9 15 80,000,000
hand 43.4 26.7 19.9 20.7 19.7 21.2 22.2 15 80,000,000
naive 116.1 61.0 36.5 35.6 32.9 37.0 37.0 30 1,120,000,000
opt 52.2 35.6 24.0 22.7 23.6 23.4 25.7 15 80,000,000

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 70.9 43.8 30.5 29.9 27.8 28.2 30.6 28 80,000,000
hand 71.7 45.2 30.6 30.9 30.5 29.4 34.8 28 80,000,000
naive 339.4 154.1 80.1 72.1 62.0 66.4 68.5 56 2,160,000,000
opt 97.3 62.2 45.5 38.3 31.5 34.7 37.1 28 80,000,000

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 26. Parallel performance of reAll on Giraph.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

50 H. Iwasaki et al.

Table 4. Execution times of re100 with 4–64 worker processes on Giraph (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 24.3 18.8 15.9 16.6 16.1 16.8 18.6 7 577
hand 24.6 19.0 15.8 16.3 16.8 17.7 18.0 7 577
naive 48.3 36.4 23.3 23.0 21.7 23.1 24.2 12 200,000,000
opt 35.5 26.4 18.0 20.7 19.8 20.3 21.1 12 272

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 27.8 20.0 16.3 15.7 16.2 16.9 18.3 5 2,366
hand 27.0 19.1 16.9 15.3 15.6 18.5 17.7 5 2,366
naive 53.1 32.9 22.5 21.2 21.7 26.0 23.7 8 240,000,000
opt 39.1 25.7 18.7 18.4 19.2 18.8 20.6 8 516

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 36.2 24.7 19.3 17.7 18.9 18.5 19.5 6 462
hand 37.0 24.1 19.5 18.6 18.8 18.8 20.5 6 462
naive 88.0 50.3 31.3 30.8 26.3 28.2 33.7 10 320,000,000
opt 68.4 38.0 29.6 25.4 24.9 25.1 24.7 10 205

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 27. Parallel performance of re100 on Giraph.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 51

Table 5. Execution times of reRanking with 4–64 worker processes on Giraph (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 44.2 31.3 21.1 23.2 22.7 25.1 26.1 29 40,000,000
hand 43.3 29.7 21.9 23.5 22.5 25.2 29.4 29 40,000,000
naive 157.9 83.9 49.0 47.8 45.9 47.0 47.4 56 1,080,000,000
opt 112.8 65.4 39.1 42.2 40.0 41.5 44.3 56 357,244,816

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 39.4 27.8 20.7 20.2 20.7 22.0 23.8 16 80,000,000
hand 44.2 29.4 21.7 21.2 21.0 22.2 23.5 16 80,000,000
naive 125.5 64.6 39.7 36.5 35.7 38.8 41.6 30 1,120,000,000
opt 83.8 52.3 32.4 32.9 30.3 34.4 32.1 30 310,250,240

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 78.0 49.3 30.7 31.6 28.4 32.4 31.9 29 80,000,000
hand 79.4 47.4 32.6 30.7 29.1 33.9 34.0 29 80,000,000
naive 442.7 171.2 88.8 78.5 67.3 65.0 67.6 56 2,160,000,000
opt 239.7 129.3 74.8 65.6 54.6 61.0 64.0 56 719,102,699

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 28. Parallel performance of reRanking on Giraph.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

52 H. Iwasaki et al.

Table 6. Execution times of diameter with 4–64 worker processes on Giraph (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 116.3 65.5 41.7 42.9 40.0 42.3 50.4 80 766,722,947
hand 133.9 70.7 47.1 45.5 43.6 44.0 52.3 80 766,722,947
naive 442.4 209.8 114.1 102.3 95.5 101.8 101.8 160 3,120,000,000
opt 203.3 114.7 69.4 66.7 65.4 66.5 74.8 129 806,722,943

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 123.7 62.0 40.1 43.9 39.7 43.9 46.8 60 1,298,415,856
hand 147.5 72.7 44.2 44.0 43.6 44.6 48.5 60 1,298,415,856
naive 476.3 215.9 116.1 110.4 94.2 100.5 104.6 120 4,640,000,000
opt 236.6 114.4 65.4 66.1 60.7 66.2 74.6 104 1,378,415,845

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 252.6 135.6 72.4 63.6 57.1 60.9 65.5 84 1,664,378,402
hand 292.5 153.2 81.4 71.3 64.8 62.7 68.3 84 1,664,378,402
naive 1412.2 490.0 224.6 197.7 158.1 161.2 224.3 168 6,560,000,000
opt 600.6 247.9 127.3 117.4 100.3 106.5 109.5 133 1,744,378,397

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 29. Parallel performance of diameter on Giraph.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 53

Table 7. Execution times of scc with 4–64 worker processes on Giraph (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 95.0 50.4 34.2 34.7 35.7 36.4 36.7 32 829,920,554
hand 102.1 55.9 35.3 37.0 34.7 37.1 40.0 32 829,920,554
naive 394.1 188.0 106.2 104.0 89.6 94.1 103.5 132 2,160,000,000
opt 323.7 163.3 91.7 85.4 79.3 85.8 85.0 130 1,499,841,116

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 89.0 49.9 32.9 33.0 30.7 30.4 34.5 19 1,047,609,058
hand 107.6 55.1 35.4 32.6 32.1 36.4 37.0 19 1,047,609,058
naive 329.3 153.5 83.4 81.4 70.9 76.8 77.7 80 2,240,000,000
opt 290.9 137.7 75.9 73.2 64.6 75.7 72.8 78 1,775,218,138

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 190.5 94.2 52.2 47.7 44.9 44.3 48.1 32 1,658,070,383
hand 214.2 102.9 56.7 50.1 46.5 51.3 50.2 32 1,658,070,383
naive 1242.4 398.7 200.3 183.5 149.9 147.5 149.2 132 4,320,000,000
opt 998.9 356.0 168.7 148.8 132.1 126.7 123.9 130 2,996,140,776

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 30. Parallel performance of scc on Giraph.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

54 H. Iwasaki et al.

Table 8. Memory footprint (bytes) of vertex’s data fields in Giraph programs, excluding fields

defined in the base class of vertices

Impl. sssp reAll re100 reRanking diameter scc

handwc 4 1 1 5 12 16
hand 4 1 1 5 12 16
naive 24 18 18 26 32 67
opt 25 19 19 27 33 58

• integers for the current phase, subphase, and superstep,
• the initial value in the input graph,
• the previous values of the user-defined fields computed in the previous phase, and
• data used to control the phase transition (Section 6.2) caused by the use of giter,

which was necessary only in scc.

For all benchmarks except scc, Fregel’s optimized program (opt) needed another byte
compared with naive for the Boolean value indicating whether its user-defined fields had
been changed in the superstep. For scc, the size of opt was less than that of naive because
some fields were eliminated by the optimizations.

The memory consumptions for edges were the same for all benchmarks.
In summary, for a simple computation like reAll, the Fregel vertices needed much more

memory than the ones in the handwritten programs due to the additional fields used for
controlling the phase transition. However, this increase in the vertex memory footprint did
not matter as it did not substantially increase maximum memory consumption. This is more
clearly evident in the results for maximum memory consumption for Pregel+ presented in
the next section. (Since Giraph uses Java, it is difficult to observe the maximum memory
consumptions for Giraph.)

8.2 Compilation target: Pregel+

This section reports the experimental results for Pregel+.
Tables 9–14 show the measured execution times (the median of five runs) for the

programs with 4, 8, 16, 24, 32, 48, and 64 worker processes, as well as the number of
supersteps (# SS) and the number of messages (# messages). Note that the number of
messages was counted after the use of combiners. Thus, the number of messages of
handwc differed from that of hand.

Figures 31 and 32 show the execution time of each program relative to that of
handwc with 4 and 64 worker processes, respectively. Figures 33–38 show the parallel
performance.

In general, the results show the same tendency as those for Giraph. The performance
degradation of naive from handwc was much more than that for Giraph. This was because
Pregel+ runs more efficiently than Giraph, so the overhead of Fregel programs was empha-
sized when running on Pregel+. For the same reason, no superlinear parallel performance
was observed.

Table 15 shows the memory footprints of the vertex data fields, excluding those defined
in the base class of vertices. The results are similar to those for Giraph (Table 8). The

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 55

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 31. Computation times compared with that for handwc with four worker processes on Pregel+.

reason Pregel+ had a little more vertex data in many cases was that additional fields were
needed for the aggregators.

Similar to the results for Giraph, memory consumption for the edges was the same for
all benchmarks.

Table 16 shows the maximum memory consumption of a worker process for ws20m2.
This input graph had the largest ratio of the number of vertices against that of edges among
the three input graphs, and hence the effect of the vertex memory footprint on memory
consumption was the largest. Each figure shows the median for five runs of the program.
For each run, we took the median memory usage of all worker processes except the master
process. The results show that even in the worse case (naive for re100 with four worker
processes), the program compiled from Fregel code consumed only 53.1% more memory
than handwc although its vertex footprint was much bigger. The increase in the amount of
memory consumption decreased as the number of processes increased. These results show
that the increase in the vertex memory footprint in Fregel did not cause a serious problem
in terms of maximum memory consumption.

In addition, for simple computations like sssp, reAll, and re100, opt consumed less
memory than naive even though opt had a bigger footprint than naive. This was because
opt used fewer messages and less memory space for processing messages. These results
clearly show that reducing the number of messages is also effective for reducing memory
consumption.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

56 H. Iwasaki et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sssp reAll re100 reRanking diameter scc

co
m

pu
ta

tio
n

tim
e

re
la

tiv
e

to
 h

an
dw

c

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 32. Computation times compared with that for handwc with 64 worker processes on Pregel+.

9 Related work

Vertex-centric graph processing, pioneered by Google’s Pregel (Malewicz et al., 2010), is
now a major approach to efficient large-scale graph processing. Many vertex-centric graph
processing frameworks have been proposed, including Giraph,3 GraphLab (Low et al.,
2012), GPS (Salihoglu & Widom, 2013), GraphX (Gonzalez et al., 2014), and Pregel+
(Yan et al., 2014b). Many other frameworks can be found from extensible surveys on
large graph processing (Khan & Elnikety, 2014; McCune et al., 2015; Yan et al., 2016;
Khan, 2017; Yan et al., 2017; Kalavri et al., 2018; Liu & Khan, 2018) and experimental
evaluations of these frameworks (Han et al., 2014; Lu et al., 2014; Guo et al., 2014; Satish
et al., 2014; Capota et al., 2015; Gao et al., 2015; Verma et al., 2017).

Among vertex-centric graph processing frameworks, Fregel has two key features. First,
its deterministic functional style makes programs concise, compositional, and easy to
develop and test. Second, its optimizations eliminate major inefficiencies in naively written
vertex-centric graph processing programs.

Most vertex-centric graph processing frameworks are based on sequential program-
ming. In Section 2, we compared an existing approach with Fregel. Because of Fregel’s
high-level declarative nature, programmers can write graph processing programs concisely
without careful control over communications, execution states, and terminations. Second-
order graph functions, fregel in particular, provide clear separation between initialization,
the computation applied in each step, and the termination condition. For supporting the

3 http://giraph.apache.org.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

http://giraph.apache.org
https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 57

Table 9. Execution times of sssp with 4–64 worker processes on Pregel+ (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 12.29 10.47 6.30 5.31 4.75 4.35 4.03 49 173,763,321
hand 15.05 10.96 6.37 5.28 4.73 4.28 3.99 49 174,593,726
naive 118.69 99.39 57.82 46.83 42.64 39.27 37.13 98 1,920,000,000
opt 16.03 11.50 6.63 5.44 4.80 4.37 4.07 49 174,593,726

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 22.67 27.70 18.21 15.80 14.26 13.04 12.23 44 515,487,212
hand 32.51 33.88 19.42 16.23 14.60 13.22 12.26 44 521,880,562
naive 173.49 194.15 115.38 98.00 87.67 80.72 76.01 88 3,440,000,000
opt 33.56 33.15 19.76 16.58 14.63 13.21 12.28 44 521,880,562

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 24.74 21.03 12.56 10.59 9.53 8.47 7.85 49 340,513,631
hand 32.14 22.99 13.02 10.82 9.52 8.42 7.81 49 342,144,658
naive 260.89 208.08 118.45 103.07 94.98 79.77 75.72 98 3,840,000,000
opt 33.79 23.50 13.34 10.93 9.66 8.47 7.79 49 342,144,658

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 33. Parallel performance of sssp on Pregel+.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

58 H. Iwasaki et al.

Table 10. Execution times of reAll with 4–64 worker processes on Pregel+ (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 4.26 2.85 1.71 1.34 1.15 0.99 0.97 28 39,878,618
hand 4.83 2.92 1.69 1.32 1.14 0.98 0.94 28 40,000,000
naive 63.25 46.98 26.95 21.47 19.22 17.34 16.06 56 1,080,000,000
opt 5.29 3.25 1.79 1.40 1.18 1.05 0.98 28 40,000,000

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 4.70 4.18 2.57 2.13 1.82 1.64 1.50 15 79,351,311
hand 5.96 4.70 2.75 2.15 1.88 1.61 1.48 15 80,000,000
naive 55.47 52.58 29.96 24.68 21.42 19.03 17.77 30 1,120,000,000
opt 6.62 5.08 2.88 2.25 1.93 1.68 1.51 15 80,000,000

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 8.56 5.71 3.43 2.70 2.26 1.90 1.79 28 79,757,890
hand 9.98 6.01 3.40 2.64 2.28 1.91 1.77 28 80,000,000
naive 140.52 98.02 55.92 46.37 41.89 35.15 32.93 56 2,160,000,000
opt 10.99 6.44 3.61 2.82 2.36 1.98 1.79 28 80,000,000

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 34. Parallel performance of reAll on Pregel+.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 59

Table 11. Execution times of re100 with 4–64 worker processes on Pregel+ (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 0.41 0.23 0.13 0.10 0.09 0.10 0.10 7 575
hand 0.41 0.23 0.14 0.11 0.09 0.10 0.10 7 577
naive 12.44 8.90 5.14 4.16 3.71 3.31 3.10 12 200,000,000
opt 1.50 0.80 0.45 0.33 0.28 0.24 0.23 12 272

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 0.35 0.19 0.11 0.08 0.08 0.07 0.07 5 2,355
hand 0.35 0.19 0.11 0.09 0.08 0.08 0.08 5 2,366
naive 12.79 11.63 6.54 5.44 4.72 4.18 3.83 8 240,000,000
opt 1.10 0.58 0.32 0.24 0.19 0.17 0.16 8 516

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 0.71 0.38 0.21 0.15 0.13 0.11 0.11 6 461
hand 0.71 0.38 0.21 0.15 0.13 0.11 0.11 6 462
naive 22.20 14.76 8.64 7.12 6.41 5.43 5.08 10 320,000,000
opt 2.50 1.33 0.71 0.51 0.40 0.33 0.28 10 205

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 35. Parallel performance of re100 on Pregel+.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

60 H. Iwasaki et al.

Table 12. Execution times of reRanking with 4–64 worker processes on Pregel+ (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 5.06 3.34 1.97 1.59 1.31 1.14 1.06 29 39,878,618
hand 5.61 3.43 1.97 1.54 1.30 1.13 1.05 29 40,000,000
naive 63.85 47.67 27.10 21.61 19.23 17.14 16.04 56 1,080,000,000
opt 27.29 17.97 10.37 8.44 7.41 6.58 6.09 56 357,244,816

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 5.01 4.33 2.77 2.26 1.94 1.72 1.56 16 79,351,311
hand 6.58 5.17 2.93 2.40 2.02 1.75 1.55 16 80,000,000
naive 55.92 52.47 30.05 24.93 22.01 19.30 17.67 30 1,120,000,000
opt 20.26 16.92 9.46 8.11 6.79 5.88 5.35 30 310,250,240

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 10.14 6.78 3.89 3.04 2.57 2.14 1.94 29 79,757,890
hand 11.66 7.05 3.91 3.01 2.58 2.14 1.91 29 80,000,000
naive 142.35 98.57 56.15 46.56 42.13 34.77 32.77 56 2,160,000,000
opt 58.71 37.84 21.39 17.46 15.24 13.20 12.19 56 719,102,699

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 36. Parallel performance of reRanking on Pregel+.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 61

Table 13. Execution times of diameter with 4–64 worker processes on Pregel+ (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 41.69 38.64 23.64 20.55 18.55 16.81 16.02 80 761,733,549
hand 53.82 41.55 24.15 20.57 18.56 17.09 15.74 80 766,722,947
naive 211.09 201.40 121.71 110.53 95.09 88.71 85.04 160 3,120,000,000
opt 71.35 58.87 34.57 31.96 27.45 25.26 23.90 129 806,722,943

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 49.45 61.64 42.25 37.51 34.53 31.39 29.83 60 1,278,987,924
hand 73.89 80.47 45.90 39.34 35.27 31.70 29.99 60 1,298,415,856
naive 260.42 351.53 208.24 186.69 169.78 156.24 149.53 120 4,640,000,000
opt 95.74 110.68 68.23 57.45 53.87 47.98 45.98 104 1,378,415,845

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 91.93 83.86 51.88 45.39 41.67 36.98 34.95 84 1,653,750,466
hand 130.90 96.63 53.76 45.67 42.38 37.02 34.90 84 1,664,378,402
naive 482.90 439.63 258.55 237.90 220.94 205.36 180.70 168 6,560,000,000
opt 164.36 135.87 75.51 69.31 60.76 58.67 51.72 133 1,744,378,397

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 37. arallel performance of diameter on Pregel+.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

62 H. Iwasaki et al.

Table 14. Execution times of scc with 4–64 worker processes on Pregel+ (in seconds)
(a) Input graph: ws10m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 65.08 65.03 40.36 37.06 33.44 30.96 29.22 58 1,485,886,562
hand 93.92 78.00 43.58 39.98 33.84 31.04 29.02 58 1,499,841,116
naive 160.30 146.86 88.80 79.77 73.37 63.06 60.28 132 2,160,000,000
opt 118.35 105.16 62.87 56.22 52.97 44.81 43.37 130 1,499,841,116

(b) Input graph: ws10m4

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 57.00 75.64 52.03 47.14 43.50 41.35 38.98 32 1,739,688,640
hand 90.72 100.90 59.24 51.13 46.56 42.77 39.40 32 1,775,218,138
naive 137.74 170.46 101.14 90.51 82.55 78.49 74.80 80 2,240,000,000
opt 112.92 137.32 81.63 71.74 67.65 62.80 58.44 78 1,775,218,138

(c) Input graph: ws20m2

Impl. 4 8 16 24 32 48 64 # SS # messages

handwc 136.37 132.70 82.14 74.88 69.86 64.16 59.40 58 2,968,308,280
hand 208.34 160.68 88.94 81.62 74.49 67.51 59.40 58 2,996,140,776
naive 344.21 293.54 178.03 163.21 150.90 140.61 134.56 132 4,320,000,000
opt 253.67 202.65 128.27 113.96 105.79 98.82 95.17 130 2,996,140,776

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 24 32 48 64

pa
ra

lle
l p

er
fo

rm
an

ce

the number of worker procs.

handwc
hand
naive

opt

(a) (b)

(c)

Fig. 38. Parallel performance of scc on Pregel+.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 63

Table 15. Memory footprint (bytes) of vertex data fields for Pregel+ programs, excluding

fields defined in base class of vertices

Impl. sssp reAll re100 reRanking diameter scc

handwc 4 1 1 6 13 17
hand 4 1 1 6 13 17
naive 26 20 23 32 35 71
opt 27 21 24 33 36 62

Table 16. Maximum memory consumption (MB) of a worker process for Pregel+ programs for

ws20m2
(a) Computation with four worker processes

Impl. sssp reAll re100 reRanking diameter scc

handwc 1260.7 1245.2 1055.4 1324.0 1456.0 1810.7
hand 1353.6 1272.3 1055.1 1349.1 1633.7 2040.1
naive 1726.5 1616.9 1616.2 1616.8 1983.7 2592.8
opt 1508.7 1428.9 1211.8 1617.4 2084.2 2514.7

(b) Computation with 16 worker processes

Impl. sssp reAll re100 reRanking diameter scc

handwc 423.1 407.7 361.1 440.9 451.5 535.9
hand 440.5 407.6 361.0 440.4 496.7 583.7
naive 497.2 482.1 481.9 494.2 543.4 696.7
opt 479.0 446.4 400.1 508.5 579.9 692.7

(c) Computation with 64 worker processes

Impl. sssp reAll re100 reRanking diameter scc

handwc 180.0 166.0 152.4 183.3 197.3 210.7
hand 177.8 166.0 152.3 183.6 198.7 210.7
naive 194.9 186.6 186.0 199.0 219.4 246.1
opt 187.4 175.8 162.1 200.8 224.8 245.3

expressive power of Fregel as a functional vertex-centric framework, a high-level DSL
(Emoto & Sadahira, 2020) that is able to manipulate vertex subsets has been developed: a
program written in this DSL is compiled into a Fregel program on the basis of second-order
graph functions.

Several graph processing frameworks provide declarative programming interfaces,
including Elixir (Prountzos et al., 2012, 2015), Distributed SociaLite (Seo et al., 2013),
and CLM (Coordinated Linear Meld) (Cruz et al., 2016). Elixir automatically derives an
efficient distributed graph processing code from the declarative specification of the output
graph. Distributed SociaLite is a graph processing language similar to Datalog. It accel-
erates single-source-shortest-path-like computation by processing vertices in accordance
with a special priority if a certain kind of monotonicity property is detected. CLM is based

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

64 H. Iwasaki et al.

on linear logic and provides control over scheduling and data layout using coordination.
Interestingly, all of these frameworks are concurrent; that is, by default, the underlying
graph is processed nondeterministically. In contrast, Fregel is based on BSP and therefore
deterministic.

We believe that Fregel’s deterministic nature makes it easier to develop and test non-
trivial graph processing programs. Moreover, Fregel’s optimizer can automatically detect
possibilities of nondeterministic, that is, asynchronous, evaluation. Another difference
is that existing frameworks require programmers to provide clues for optimization. For
instance, with Elixir, programmers should specify the conditions for sending messages
and the priorities for processing vertices. With Distributed SociaLite, prioritized execution
is applied only if programmers use certain operators. CLM can generate efficient code only
when programmers provide appropriate annotations called “coordination facts.”

Several recently proposed frameworks take dynamic optimization approaches.
SLFE (Song et al., 2018) reduces redundancies in vertex computation by utilizing a graph’s
topological knowledge on the fly. SympleGraph (Zhuo et al., 2020) eliminates unnecessary
computations and communications by propagating loop-carried dependency dynamically.
Unlike these frameworks, Fregel takes a static optimization approach, but the optimization
methods used for Fregel are not new. Vertex inactivation is a part of the core function-
ality of Pregel (Malewicz et al., 2010). The communication reduction technique for the
single-source shortest path problem has been reported (Malewicz et al., 2010). Many
vertex-centric graph processing frameworks support asynchronous execution (Gonzalez
et al., 2012; Low et al., 2012; Wang et al., 2013; Han & Daudjee, 2015); moreover, some
combine asynchronous and synchronous execution to further improve efficiency (Xie et al.,
2015; Liu et al., 2016). Several frameworks (Prountzos et al., 2012, 2015; Salihoglu &
Widom, 2014; Cruz et al., 2016; Liu et al., 2016) support prioritized execution as well.
The effectiveness of these optimizations has been intensively studied. Our contribution is
their automation using constraint solvers.

Some frameworks are based on variants of vertex-centric graph processing, including
subgraph-centric ones (Tian et al., 2013; Simmhan et al., 2014; Quamar et al., 2014, 2016;
Quamar & Deshpande, 2016), block-centric ones (Yan et al., 2014a), edge-centric ones,
(Zhou et al., 2017), and path-centric ones (Yuan et al., 2016). The motivation behind these
variants is that the vertex-centric approach is sometimes too fine-grained and thus poten-
tially misses opportunities for optimization based on localities and graph structures. For
example, the subgraph-centric approach processes subgraphs, rather than vertices, so a
specialized algorithm can be used for determining the order and necessity of processing
vertices and edges in the subgraph. To enable potential tuning of the substructures, pro-
gramming with these variants tends to be more difficult than that with the vertex-centric
approach because programmers need to carefully control the processing over substructures
and the communications between substructures. Though Fregel is based on a vertex-centric
approach, the combination of asynchronous and prioritized execution in Fregel may bring
efficiency improvement similar to that obtained by using these variants. For instance, in
a vertex-centric program for the single-source shortest path problem, these optimizations
lead to a code that processes each subgraph by using the Dijkstra algorithm. It is not known
whether our optimizations are sufficient for efficient graph processing for practical cases.
Investigating this is left for future work.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 65

Many researchers have investigated recursive approaches to programming graph algo-
rithms in functional languages (Fegaras & Sheard, 1996; Erwig, 1997, 2001; Hamana,
2010; Oliveira & Cook, 2012; Hidaka et al., 2013; Bahr & Axelsson, 2017). They
regarded cyclic and shared structures as (possibly infinite) trees and provided a way of
structural-recursive processing of the tree representations. Unfortunately, all of them are
for sequential computation. Except for its focus on parallel computation, the Fregel lan-
guage follows a direction similar to that of previous studies, with special attention to
memorization of calculated values and termination control by observing a possibly infinite
sequence of graphs.

10 Conclusion

We have presented a functional formalization of synchronous vertex-centric graph process-
ing and proposed Fregel, a domain-specific language based on the proposed formalized
model. The Fregel compiler translates a Fregel program into one that can be run in the
Giraph or Pregel+ framework for parallel vertex-centric graph processing. The compiler
has two key features. One is automatic division of an LSS at every communication point
into Pregel supersteps to generate a normalized program, which is then transformed into
a program for the target framework via framework-dependent IR. The other is automatic
removal of inefficiencies, for example, unnecessary communication between vertices, by
the use of a constraint solver. These features enable the Fregel programmer to develop
a vertex-centric program intuitively and concisely without being concerned with how to
properly control and terminate the computation on each vertex.

Our main focus has been to investigate the effects of a declarative approach to vertex-
centric graph processing, for example, how the approach relieves the programmer of the
complicated programming tasks when using imperative languages, for which various con-
trols over computation have to be explicitly described. Thus, although Fregel currently has
limited capabilities regarding the use of list data structures and recursive definitions, this is
not a drawback because the purpose of this research is not to develop a compiler for a full-
set functional language. Nevertheless, future work includes overcoming these limitations
to make Fregel more practical.

Future work also includes implementing and evaluating two potential optimizations
described in Sections 7.4 and 7.5. This might require developing a framework that supports
both synchronous and asynchronous execution.

The latest version of the Fregel system is available via the web at https://fregel.
ipl-lab.org/.

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant Numbers JP26280020,
JP15K15965, and JP19K11901.

Conflicts of Interest

None

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://fregel.ipl-lab.org/
https://fregel.ipl-lab.org/
https://doi.org/10.1017/S0956796821000277

66 H. Iwasaki et al.

References

Bae, S. & Howe, B. (2015) Gossipmap: A distributed community detection algorithm for billion-
edge directed graphs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA, November 15–20,
2015, pp. 27:1–27:12.

Bahr, P. & Axelsson, E. (2017) Generalising tree traversals and tree transformations to dags:
Exploiting sharing without the pain. Sci. Comput. Program. 137, 63–97.

Bu, Y., Howe, B., Balazinska, M. & Ernst, M. D. (2012) The Haloop approach to large-scale iterative
data analysis. VLDB J. 21(2), 169–190.

Capota, M., Hegeman, T., Iosup, A., Prat-Pérez, A., Erling, O. & Boncz, P. A. (2015) Graphalytics:
A big data benchmark for graph-processing platforms. In Proceedings of the Third International
Workshop on Graph Data Management Experiences and Systems, GRADES 2015, Melbourne,
VIC, Australia, May 31–June 4, 2015, pp. 7:1–7:6.

Caviness, B. F. & Johnson, J. R. (eds). (1998) Quantifier Elimination and Cylindrical Algebraic
Decomposition. Springer Vienna.

Cruz, F., Rocha, R. & Goldstein, S. C. (2016) Declarative coordination of graph-based parallel
programs. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2016, Barcelona, Spain, March 12–16, 2016, pp. 4:1–4:12.

Dathathri, R., Gill, G., Hoang, L., Dang, H., Brooks, A., Dryden, N., Snir, M. & Pingali, K.
(2018) Gluon: A communication-optimizing substrate for distributed heterogeneous graph analyt-
ics. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18–22, 2018, Foster, J. S. &
Grossman, D. (eds). ACM, pp. 752–768.

de Moura, L. M. & Bjørner, N. (2011) Satisfiability modulo theories: Introduction and applications.
Commun. ACM 54(9), 69–77.

Emoto, K. & Sadahira, F. (2020) A DSL for graph parallel programming with vertex subsets. J.
Supercomput. 76(7), 4998–5015.

Emoto, K., Matsuzaki, K., Hu, Z., Morihata, A. & Iwasaki, H. (2016) Think like a vertex, behave
like a function! A functional DSL for vertex-centric big graph processing. In Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara,
Japan, September 18–22, 2016, pp. 200–213.

Erwig, M. (1997) Functional programming with graphs. In Proceedings of the 1997 ACM SIGPLAN
International Conference on Functional Programming, ICFP 1997, Peyton Jones, S. L., Tofte, M.
& Berman, A. M. (eds). Amsterdam, The Netherlands, June 9–11, 1997. ACM, pp. 52–65.

Erwig, M. (2001) Inductive graphs and functional graph algorithms. J. Funct. Program. 11(5),
467–492.

Fegaras, L. & Sheard, T. (1996) Revisiting catamorphisms over datatypes with embedded func-
tions (or, programs from outer space). In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL 1996. ACM, pp. 284–294.

Gao, Y., Zhou, W., Han, J., Meng, D., Zhang, Z. & Xu, Z. (2015) An evaluation and analysis of
graph processing frameworks on five key issues. In Proceedings of the 12th ACM International
Conference on Computing Frontiers, CF 2015, Ischia, Italy, May 18–21, 2015, pp. 11:1–11:8.

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D. & Guestrin, C. (2012) Powergraph: Distributed
graph-parallel computation on natural graphs. In 10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8–10, 2012, pp. 17–30.

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J. & Stoica, I. (2014) Graphx:
Graph processing in a distributed dataflow framework. In 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2014, Broomfield, CO, USA, October 6–8, 2014, pp.
599–613.

Guo, Y., Biczak, M., Varbanescu, A. L., Iosup, A., Martella, C. & Willke, T. L. (2014) How well do
graph-processing platforms perform? An empirical performance evaluation and analysis. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS 2014, Phoenix,
AZ, USA, May 19–23, 2014, pp. 395–404.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 67

Hamana, M. (2010) Initial algebra semantics for cyclic sharing tree structures. Log. Methods
Comput. Sci. 6(3), 1–23.

Han, M. & Daudjee, K. (2015) Giraph unchained: Barrierless asynchronous parallel execution in
pregel-like graph processing systems. PVLDB 8(9), 950–961.

Han, M., Daudjee, K., Ammar, K., Özsu, M. T., Wang, X. & Jin, T. (2014) An experimental
comparison of pregel-like graph processing systems. PVLDB 7(12), 1047–1058.

Hidaka, S., Asada, K., Hu, Z., Kato, H. & Nakano, K. (2013) Structural recursion for querying
ordered graphs. In ACM SIGPLAN International Conference on Functional Programming, ICFP
2013, Boston, MA, USA - September 25–27, 2013, pp. 305–318.

Hong, S., Chafi, H., Sedlar, E. & Olukotun, K. (2012) Green-marl: A DSL for easy and efficient
graph analysis. In Proceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2012, London, UK, March 3–7, 2012,
pp. 349–362.

Kalavri, V., Vlassov, V. & Haridi, S. (2018) High-level programming abstractions for distributed
graph processing. IEEE Trans. Knowl. Data Eng. 30(2), 305–324.

Kang, U., Tong, H., Sun, J., Lin, C. & Faloutsos, C. (2012) GBASE: An efficient analysis platform
for large graphs. VLDB J. 21(5), 637–650.

Kang, U., Tsourakakis, C. E. & Faloutsos, C. (2011) PEGASUS: Mining peta-scale graphs. Knowl.
Inf. Syst. 27(2), 303–325.

Kato, N. & Iwasaki, H. (2019) Eliminating unnecessary communications in the vertex-centric graph
processing by the fregel compiler. Comput. Software 36(2), 2_28–2_46. In Japanese.

Khan, A. (2017) Vertex-centric graph processing: Good, bad, and the ugly. In Proceedings of the
20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy,
March 21–24, 2017, pp. 438–441.

Khan, A. & Elnikety, S. (2014) Systems for big-graphs. PVLDB 7(13), 1709–1710.
Liu, S. & Khan, A. (2018) An empirical analysis on expressibility of vertex centric graph processing

paradigm. In IEEE International Conference on Big Data, Big Data 2018, Seattle, WA, USA,
December 10–13, 2018, pp. 242–251.

Liu, Y., Zhou, C., Gao, J. & Fan, Z. (2016) Giraphasync: Supporting online and offline graph
processing via adaptive asynchronous message processing. In Proceedings of the 25th ACM
International Conference on Information and Knowledge Management, CIKM 2016, Indianapolis,
IN, USA, October 24–28, 2016, pp. 479–488.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C. & Hellerstein, J. M. (2012) Distributed
graphlab: A framework for machine learning in the cloud. PVLDB 5(8), 716–727.

Lu, Y., Cheng, J., Yan, D. & Wu, H. (2014) Large-scale distributed graph computing systems: An
experimental evaluation. PVLDB 8(3), 281–292.

Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I., Leiser, N. & Czajkowski, G.
(2010) Pregel: A system for large-scale graph processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA,
June 6–10, 2010, pp. 135–146.

McCune, R. R., Weninger, T. & Madey, G. (2015) Thinking like a vertex: A survey of vertex-centric
frameworks for large-scale distributed graph processing. ACM Comput. Surv. 48(2), 25:1–25:39.

Morihata, A., Emoto, K., Matsuzaki, K., Hu, Z. & Iwasaki, H. (2018) Optimizing declarative parallel
distributed graph processing by using constraint solvers. In Functional and Logic Programming –
14th International Symposium, FLOPS 2018, Nagoya, Japan, May 9–11, 2018, pp. 166–181.

Nguyen, D., Lenharth, A. & Pingali, K. (2013) A lightweight infrastructure for graph analytics. In
ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP 2013, Farmington, PA,
USA, November 3–6, 2013, pp. 456–471.

Oliveira, B. C. d. S. & Cook, W. R. (2012) Functional programming with structured graphs. In
ACM SIGPLAN International Conference on Functional Programming, ICFP 2012, Copenhagen,
Denmark, September 9–15, 2012, Thiemann, P. & Findler, R. B. (eds). ACM, pp. 77–88.

Prountzos, D., Manevich, R. & Pingali, K. (2012) Elixir: A system for synthesizing concurrent graph
programs. In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

68 H. Iwasaki et al.

Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21–25, 2012, pp. 375–394.

Prountzos, D., Manevich, R. & Pingali, K. (2015) Synthesizing parallel graph programs via auto-
mated planning. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2015, Portland, OR, USA, June 15–17, 2015, pp.
533–544.

Quamar, A. & Deshpande, A. (2016) Nscalespark: Subgraph-centric graph analytics on apache
spark. In Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics,
NDA@SIGMOD 2016, San Francisco, California, USA, July 1, 2016, pp. 5:1–5:8.

Quamar, A., Deshpande, A. & Lin, J. J. (2014) Nscale: Neighborhood-centric analytics on large
graphs. PVLDB 7(13), 1673–1676.

Quamar, A., Deshpande, A. & Lin, J. J. (2016) Nscale: Neighborhood-centric large-scale graph
analytics in the cloud. VLDB J. 25(2), 125–150.

Salihoglu, S. & Widom, J. (2013) GPS: A graph processing system. In Conference on Scientific
and Statistical Database Management, SSDBM 2013, Baltimore, MD, USA, July 29–31, 2013,
pp. 22:1–22:12.

Salihoglu, S. & Widom, J. (2014) Optimizing graph algorithms on pregel-like systems. PVLDB
7(7), 577–588.

Satish, N., Sundaram, N., Patwary, M. M. A., Seo, J., Park, J., Hassaan, M. A., Sengupta, S., Yin,
Z. & Dubey, P. (2014) Navigating the maze of graph analytics frameworks using massive graph
datasets. In International Conference on Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22–27, 2014, pp. 979–990.

Sengupta, D., Song, S. L., Agarwal, K. & Schwan, K. (2015) Graphreduce: Processing large-
scale graphs on accelerator-based systems. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA,
November 15–20, 2015, pp. 28:1–28:12.

Seo, J., Park, J., Shin, J. & Lam, M. S. (2013) Distributed socialite: A datalog-based language for
large-scale graph analysis. PVLDB 6(14), 1906–1917.

Simmhan, Y., Kumbhare, A. G., Wickramaarachchi, C., Nagarkar, S., Ravi, S., Raghavendra, C. S.
& Prasanna, V. K. (2014) Goffish: A sub-graph centric framework for large-scale graph analytics.
In Euro-Par 2014 Parallel Processing - 20th International Conference, Porto, Portugal, August
25–29, 2014. Proceedings, pp. 451–462.

Song, S., Liu, X., Wu, Q., Gerstlauer, A., Li, T. & John, L. K. (2018) Start late or finish early:
A distributed graph processing system with redundancy reduction. Proc. VLDB Endow. 12(2),
154–168.

Tian, Y., Balmin, A., Corsten, S. A., Tatikonda, S. & McPherson, J. (2013) From “think like a
vertex” to “think like a graph”. PVLDB 7(3), 193–204.

Valiant, L. G. (1990) A bridging model for parallel computation. Commun. ACM 33(8), 103–111.
Verma, S., Leslie, L. M., Shin, Y. & Gupta, I. (2017) An experimental comparison of partitioning

strategies in distributed graph processing. PVLDB 10(5), 493–504.
Wang, G., Xie, W., Demers, A. J. & Gehrke, J. (2013) Asynchronous large-scale graph processing

made easy. In Sixth Biennial Conference on Innovative Data Systems Research, CIDR 2013,
Asilomar, CA, USA, January 6–9, 2013, Online Proceedings.

Watts, D. J. & Strogatz, S. H. (1998) Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440–442.

Xie, C., Chen, R., Guan, H., Zang, B. & Chen, H. (2015) SYNC or ASYNC: Time to fuse for dis-
tributed graph-parallel computation. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco, CA, USA, February
7–11, 2015, pp. 194–204.

Yan, D., Bu, Y., Tian, Y., Deshpande, A. & Cheng, J. (2016) Big graph analytics systems. In
Proceedings of the 2016 International Conference on Management of Data, SIGMOD 2016, San
Francisco, CA, USA, June 26–July 01, 2016, pp. 2241–2243.

Yan, D., Bu, Y., Tian, Y. & Deshpande, A. (2017) Big graph analytics platforms. Found. Trends
Databases 7(1–2), 1–195.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

Fregel: a functional DSL for vertex-centric large-scale graph processing 69

Yan, D., Cheng, J., Lu, Y. & Ng, W. (2014a) Blogel: A block-centric framework for distributed
computation on real-world graphs. PVLDB 7(14), 1981–1992.

Yan, D., Cheng, J., Lu, Y. & Ng, W. (2015) Effective techniques for message reduction and load
balancing in distributed graph computation. In Proceedings of the 24th International Conference
on World Wide Web, WWW 2015, Florence, Italy, May 18–22, 2015, pp. 1307–1317.

Yan, D., Cheng, J., Xing, K., Lu, Y., Ng, W. & Bu, Y. (2014b) Pregel algorithms for graph
connectivity problems with performance guarantees. PVLDB 7(14), 1821–1832.

Yuan, P., Xie, C., Liu, L. & Jin, H. (2016) Pathgraph: A path centric graph processing system. IEEE
Trans. Parallel Distrib. Syst. 27(10), 2998–3012.

Zhou, J., Xu, C., Chen, X., Wang, C. & Zhou, X. (2017) Mermaid: Integrating vertex-centric with
edge-centric for real-world graph processing. In Proceedings of the 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017, Madrid, Spain, May 14–17,
2017, pp. 780–783.

Zhuo, Y., Chen, J., Luo, Q., Wang, Y., Yang, H., Qian, D. & Qian, X. (2020) Symplegraph:
Distributed graph processing with precise loop-carried dependency guarantee. In Proceedings
of the 41st ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15–20, 2020, Donaldson, A. F. & Torlak, E.
(eds). ACM, pp. 592–607.

https://doi.org/10.1017/S0956796821000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000277

	Fregel: a functional domain-specific language for vertex-centric large-scale graph processing
	Introduction
	Vertex-centric graph processing
	Overview of vertex-centric graph processing
	Inactivating vertices
	Asynchronous execution
	Grouping related vertices
	Fregel's approach

	Functional model for synchronous vertex-centric computation
	Definition of datatypes
	Description of our model
	Simple example
	Limitations of our model
	Features of our model

	Fregel functional domain-specific language
	Main features of Fregel
	Fregel language constructs
	Examples: reachability problems
	Example: calculating diameter
	Example: reachability with ranking
	Example: strongly connected components

	Fregel interpreter
	Fregel compiler
	Overview of Fregel compiler
	Normalization of Fregel programs
	Simple example of normalization
	Normalization algorithm
	Simple optimization in normalization process

	Transforming normalized Fregel into FregelIR
	Design of FregelIR
	Generating FregelIR

	Generating framework programs from FregelIR

	Code optimization
	Target programs for optimization
	Eliminating unnecessary communications
	Formulation
	Remarks on implementation

	Inactivating vertices
	Removing barriers
	Formulation
	Remarks on Implementation

	Prioritized execution
	Limitations and generalization
	Implementation of optimizations

	Evaluation
	Compilation target: Giraph
	Compilation target: Pregel+

	Related work
	Conclusion

