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Isometric multipliers

of Segal algebras

K. Parthasarathy and U.B. Tewari

We prove that for a large class of Segal algebras, the isometric

multipliers consist of scalar multiples of translation operators.

1. Introduction

A bounded l i n e a r opera tor T on a commutative Banach a lgebra A i s

c a l l e d a m u l t i p l i e r i f for a l l f,gZA ,

T(f * g) = f * (Tg) = (Tf) * g .

If T is a multiplier of A then there exists a bounded continuous

function T on T , the maximal ideal space of A , such that for all •

/ U , (r/r(Y) = T(y)f(y) and ||?||OT 5 ||T|| . The set of multipliers of

A , denoted by M(A) , forms a commutative Banach algebra of operators

under the operator norm. (For a detailed discussion of multipliers, see

161.)

Let 5 be a Segal algebra on a locally compact abelian group G .

(For definition, examples, and properties of Segal algebras, see [S].) The

maximal ideal space r of S is nothing but the dual of G . Let M(G)

denote the algebra of bounded regular Borel measures on G . For any Segal

algebra S , M(G) can be canonically imbedded in M(5) by considering

u f M(G) as a multiplier defined by u(/) = V * f , for all / € S . This

correspondence is norm decreasing; that is, HHL(c) - H U I L ( G ) ' F o r

S = L (G) , this imbedding is an isometric isomorphism of M{G) onto

M(S) .
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For a € G , l e t 6 € M{G) denote the unit point mass at 'a' . As

an element of M(S) , 6 is nothing but translation by 'a' ; that i s ,

6 (/) = / , where / (x) = f(x-a) . By the definition of a Segal algebra,

||f || = H/ll . Hence X6 for |X| = 1 and a € G is an isometric

multiplier of 5 . We shall prove that for a large class of Segal
algebras, these are the only isometric multipliers. The crucial step in
this attempt is provided by the following theorem which we prove in Section
2.

THEOREM 1. Let A be a commutative, regular, semisimple Banaah
algebra which, is tauberian. Then any isometric multiplier T of A is
surjeotive and has a Gelfand transform of unit modulus.

In Section 3, we prove the following theorems which give sufficient

conditions for the set of isometric multipliers to coincide with the set of

unimodular multiples of translation operators.

THEOREM 2. Let the multiplier algebra M[S) of a Segal algebra be
isometrically isomorphic to M(G) . Then the isometric multipliers of S
are just unimodular multiples of translation operators.

THEOREM 3. Let S be a Segal algebra on a locally compact abelian
group G with connected dual r , and let M(S) be isomorphic to M{G) .
Then the isometric multipliers of S are just unimodular multiples of
translation operators.

In Section 4 we apply the results of Sections 2 and 3 to several
specific Segal algebras and deduce that the isometric multipliers of al l
these Segal algebras consist of unimodular multiples of translation
operators.

If G is a compact abelian group then any function of absolute value

one on T defines an isometric multiplier of L (G) . Thus,, in general,
isometric multipliers need not be given even by measures. However, for
noncompact groups, no simple example of a Segal algebra is known where
isometric multipliers are not point masses. In Section 5, we construct
such an example by using the notion of projective tensor products. (For a
detailed discussion of results on projective tensor products, see [2].)
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2.

We prove a few preliminary lemmas.

LEMMA 1 . Let A be a commutative, semisimple Banach algebra. If T

is an isometric multiplier of A onto A , then T has absolute value one

everywhere.

Proof. We have |?(y) I S \\T\\ = 1 for every y in T , the maximal

ideal space of A . The proof is completed by noting that T is also an

isometric multiplier of A [6]; hence the above inequality holds good

with T replaced by T~ .

The next lemma is a simple consequence of Wiener's Theorem ([3],

39.27). It has been observed by Burnham [/] also.

LEMMA 2. Suppose that A is a commutative, semisimple, regular,

tauberian Banach algebra. Then a multiplier T of A has dense range if

and only if it has nonvanishing Gelfand transform.

Proof. In view of the Wiener Tauberian Theorem, it is enough to

observe the following:

(1) T[A) is an ideal in A ;

(2) the hull of T{A) is just the set of those points of T

where T vanishes.

Proof of Theorem 1. By Lemmas 1 and 2, it suffices to show that the

zero set E of T is void. If E is nonempty, let I denote the

closure of the ideal consisting of those elements of A whose Gelfand

transforms vanish in a neighbourhood of E .

First we show that T(l) = I . The inclusion of T(l) in I being

obvious, it is enough to prove that the hull of the closed ideal T(l) is

E because I is the smallest closed ideal with E as the hull.

If Y does not belong to E , then there is an x in A such that

x(y) = 1 and x has compact support disjoint from E . Then x belongs

to I , but (TZ)"(Y) * 0 . Hence Y is not in hull T(I) .

Thus T is an isometric multiplier of I onto I and so T has

unit modulus outside E . This implies that E is open and closed. If E

is not null, then a non-zero x in A can be found with x supported in
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E . For such an x , Tx = 0 as its Gelfand transform vanishes

identically. This contradiction shows that E is void and completes the

proof.

COROLLARY 1. Any isometric multiplier of a Segal algebra S on a

locally compact abelian group is surjeetive and has unimodular Fourier

transform.

Corollary 1 is very easy to prove in the case of a compact abelian

group G . For, in this case, y € S and

T(y) = T{y * y) = T(y) * y = T(y)y ,

for every y € T .

It is not, of course, true that every multiplier with unimodular

Fourier transform is an isometry in general. For example, let y be a

measure with real valued Fourier-Stieltjes transform and let v = exp(iy) .

Then V has unit modulus, but is not an isometry on any Segal algebra

whose isometric multipliers are given by unimodular multiples of Dirac

measures. (For examples of such Segal algebras, see Section 4.)

3.

Proofs of Theorems 2 and 3 will become t r i v i a l after we prove the

following lemma.

LEMMA 3. Let M(5) be isomorphic to M(G) . If u € M(G) defines

an isometric multiplier of S , then y is a piecewise affine map from V

into the circle group T .

Proof. Since M(S) is isomorphic to M{G) and |L(s) -

it follows that both the norms are equivalent. If u defines an isometric

multiplier, u is invertible by Corollary 1 of Theorem 1 and llun|!u(c) = 1

for n = 0, ±1, ±2, ... . Hence l|un|lw(£) 2 K , a fixed constant for

n = 0, ±1, ±2, .... By Theorem It.7.3 of [9], y is then a piecewise

affine map from T into T . This completes the proof.

If M(S) is isometrically isomorphic to M{G) then the constant K

appearing in the above proof can be taken to be 1 , and then the

homomorphism \p of I (s) into M(G) defined by
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n=_oo

(see the proof of Theorem U.7.3 of [9]) is of norm less than or equal to

1 , and "by h.6.3 (b) of [9], y is actually an affine map of T into T .

Since y is defined on T , it follows that y is a translate of a

continuous homomorphism of T into T ; that is, y = X6 for |x| = 1

and a t G . This proves Theorem 2.

If T is connected, any piecewise affine map of T into T is

automatically affine and Theorem 3 follows as above.

REMARK. The proof of Lemma 3, and hence that of Theorems 2 and 3,

depends on some deep results on homomorphisms between measure algebras of

groups. However, we also have a very elementary proof of Theorem 2.

Suppose y d M{G) defines an isometric multiplier of 5 . Then y

is invertible, ||y|| = ||y~ || = 1 and |y| = 1 . Let y = y + y , be the

decomposition of y into its continuous and discrete parts. Since p is

invertible, y, cannot be zero. We claim that y = 0 . If y ^ 0 then
a o o

IIPJII < 1 and since <5. = y~ * y + y~ * u , , we get that

60 "
= y~ * y, < 1 . But this implies that y * y

continuous measure, is invertible and this is absurd.

Thus y = U , is of the form
a

where the x 's are distinct points of G and £ \a | = 1 . To complete

the proof of the theorem, we shall show that y is supported in a point.

Suppose this is not the case. Then we can assume that a. # 0 and a f

in the representation of y . How, for every y € T ,

https://doi.org/10.1017/S0004972700009126 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009126


K. P a r t h a s a r a t h y and U . B . T e w a r i

= |M(Y)| = . Y)

5 K ( - v Y)« 2 ( - * 2 , Y) I + E
1 1 ^ n>2

Therefore,

This implies that a a Ax -x , Y) - 0 for every y € T . But this

will imply that x = x~ , contrary to our hypothesis.

4.

Wendel [74] proved that the isometric multipliers of L (G) are

unimodular multiples of Dirac measures for any arbitrary locally compact

group G . For abelian groups, Theorem 2 gives an alternative proof of

this fact. We now list a few Segal algebras for which we can conclude that

the isometric multipliers are unimodular multiples of Dirac measures:

(i) C{G) for compact G with sup norm;

(ii) L n CAG) for noncompact G with norm

ll/ll = 11/11 , + II/IL ;
L

( i i i ) L n L (G) for noncompact G with norm

ll/ll = ll/ll , + ll/ll _ for 1 < p < « ;
£ iP

(iv) A (G) = {/ € L1^) : / € LP(T)} with norm

ll/ll = ll/ll , + ll/ll n f o r i ; P < - ;

(v) A (u) , defined as in (iv) with Haar measure on T

replaced by any positive unbounded Radon measure \i ;

(vi) E (u) , defined as in (v) with l}{G) replaced by C(G)

for compact G ;
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(vi i) S(a) for a local ly bounded unbounded function a on

T , defined by

S(a) = {/ 6 Ll(G) : a / vanishes a t infini ty} ,

with norm ||f|| = ||/|| + Hct/L j

(v i i i ) S (G) (for def ini t ion, see Unni [13]).

For cases ( i ) to (iv) our assert ion follows from Theorem 2. For case

( v i i ) , l e t T be an isometric multiplier of S{a) ; then for any

/ € S(a) ,

11/11 , + lla/IL = \\Tf\\ * \\oSf\L
LL(G) LX(G)

LX(G)

The last equality holds since \T\ =1 . Thus \\Tf\\ = ||/|| , and
LL{G) LHG)

T gives an isometric multiplier of L ((?) . Hence the result follows from

the corresponding result for L (G) . The proofs in cases (v), (vi), and

(viii) are similar, the general philosophy being the following. In all

these cases the fact that |T| = 1 implies that T defines an isometric

multiplier of L (G) or C{G) , as the case may be, and the result follows

from Theorem 2.

The isometric multipliers of A (G) were determined by Tewari [//].

The result for ''Ld-') for noncompact G is stated in Krogstad [5], but in

his proof some restriction on y appears to be necessary. The merit of

our approach lies in the fact that it disposes of several classes in one

stroke.

Hot all Segal algebras on abelian groups whose isometric multipliers

are known to be point measures are subsumed by the results given here.

Strichartz [JO] and Parrott [7] proved that for an arbitrary G , the

isometric multipliers of If\G) , p t 2, <*> , are multiples of

translations.
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5.

Finally, we give an example of a Segal algebra on a noncompact group

whose isometric multipliers are not the 'usual ones'. Let G, H be

locally compact abelian groups and let S(G), S(H) be Segal algebras. The

protective tensor product of S(G) and S(H) can be identified with a

Segal algebra S(G x H) on G x H (see Kapoor [4] for details). If

T T are multipliers of S(G), S{H) respectively, then T ® T is a

multiplier of S{G x H) . (This is not difficult to prove - see Tewari

[7 2].) Let us show that if T, T are isometries, then so is T ® Tr •

(f) || =

Now T , T are isometric multipliers and are therefore surjective. Hence

?n = Tlhn ' 9n = T2kn S O m e hn i n
and ' Thus

= 1 r x ^

with ||/^|| = \\hn\\ and H^ll = ||fen|| . But 2

and 2" are , and so f = Y, h ® ^

® T2) (j ̂  ® fcj

^ T 2 is bijective since

follows that

= 11/11 .

Now let G be noncompact and H be compact. Let S(G) = L {G) ,

S(H) = L2{G) , and let 2" , 2"2 be isometric multipliers of S(G),

where r ? is not given by a measure. Then

(i) G x H is noncompact,

(ii) T1 ® T is an isometric multiplier of S{G ® H) , and

(iii) 2", ® 2"p is not given by a measure [72].
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