
The Aeronautical Journal (2025), 1–27
doi:10.1017/aer.2025.10050

SURVEY PAPER

On the Role of Artificial Intelligence in Aerospace
Engineering: Current State of the Art and Future
Trajectories
P. G. Shenwai1, A. Choudhary2, T. Pokuri3, A. Basak2, M. Manikandan1 and B. Singh1

1Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher
Education, Manipal, Karnataka, India
2Department of Data Science and Computer Applications, Manipal Institute of Technology, Manipal Academy of Higher
Education, Manipal, Karnataka, India
3Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education,
Manipal, Karnataka, India
Corresponding author: M. Manikandan; Email: manikandan.m@manipal.edu

Received: 9 August 2024; Revised: 29 June 2025; Accepted: 2 July 2025

Keywords: artificial intelligence; Aerospace Engineering; Space Exploration; Predictive Maintenance; Unmanned Aerial
Vehicle; Q-Learning; Deep Learning; Reinforcement Learning; Long Short Term Memory

Abstract
The rapid development of AI has resulted in an unprecedented paradigm shift across various industries, with
aerospace among the laureates of this transformation. This review paper attempts to explore and provide com-
prehensive overview of the aerospace research imperatives from the AI perspective, detailing the technical sides of
the full lifecycle from vehicle design and operational optimisation to advanced air traffic management systems. By
examining real-world engineering implementations, the review demonstrates how AI-driven solutions are directly
addressing longstanding challenges in aerospace, such as optimising flight performance, reducing operational costs
and improving system reliability. A significant emphasis is placed on the crucial roles of AI in health monitoring
and predictive maintenance, areas that are pivotal for ensuring the safety and longevity of aerospace endeavors, and
which are now increasingly adopted in industry for remaining useful life (RUL) forecasting and condition-based
maintenance strategies. The paper also discusses AI embedded in quality control and inspection processes, where
it boosts accuracy, efficiency and fault detection capability. The review provides insight into the state-of-the-art
applications of AI in planetary exploration, particularly within the realms of autonomous scientific instrumenta-
tion and robotic prospecting, as well as surface operations on extraterrestrial bodies. An important case study is
India’s Chandrayaan-3 mission, demonstrating the application of AI in both autonomous navigation and scientific
exploration within the challenging environments of space. By furnishing an overview of the field, the paper frames
the ever-important, increasing domains of AI as the forefront in the advancement of aerospace engineering and
opens avenues for further discussion regarding the limitless possibilities at the juncture of intelligent systems and
aerospace innovation.

Abbreviation
ADS-B automatic dependent surveillance broadcast
AI artificial intelligence
ANN artificial neural networks
ATFM air traffic flow management
ATM air traffic management
ATS air traffic service
BiLSTM bidirectional long short-term memory

C©The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society. This is an Open Access article, distributed
under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use,
distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/aer.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2025.10050
https://orcid.org/0000-0002-0798-962X
https://orcid.org/0000-0001-9591-3694
mailto:manikandan.m@manipal.edu
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/aer.2025.10050&domain=pdf
https://doi.org/10.1017/aer.2025.10050


2 Shenwai et al.

CCD charged coupled device
ConvLSTM convolutional long short-term memory
COS continued operational safety
CRNN convolutional recurrent neural network
CV computer vision
DAE deep autoencoders
DCB direct capacity balancing
DBN deep belief network
DPP descriptive predictive prescriptive
EA evolutionary algorithm
FO flight operations
GA genetic algorithm
GAN generative adversarial network
GDP ground delay programs
GEO geostationary earth orbit
GRU gated recurrent unit
HS health state
IBC individual blade control
LAD logical analysis of data
LEO low earth orbit
LR logistic regression
LSTM long short-term memory
MDP Markov decision process
ML machine learning
MLM multi-level models
RNN recurrent neural network
ROCD rate of climb or descend
RF random forest
RL reinforcement learning
RUL remaining useful life
SDR service difficulty reports
SVM support vector machines
SVR support vector regression
TCAS traffic collision avoidance system
TCN temporal convolutional neural network
TFMI traffic flow management initiatives
t-SNE t-distributed stochastic neighbour embedding
UAS unmanned aircraft systems
UAV unmanned aerial vehicles
VAE variational autoencoder
VSLAM visual simultaneous localisation and mapping
VO visual odometry
XAI explainable artificial intelligence

1.0 Introduction and background
Aerospace engineering, always at the centre of innovation and creativity, has made a tremendous impact
in the modern world. The stories of the first flight by the Wright brothers and the historic moon landing
are introduced to children at a very young age. Although the field of aerospace engineering tradition-
ally relied heavily on calculations, extensive physical testing and trial-and-error methods, it was not
without setbacks and occasionally catastrophic incidents that required enormous time and resources.
Today, advancements in modern technologies such as artificial intelligence (AI) and machine learning
(ML) have transformed the field, as shown in Fig. 1, leveraging data-driven approaches to save time and
effort [1, 2].
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Figure 1. Application of AI in aerospace engineering [3].

AI has become a crucial tool in aerospace engineering [4, 5], a field historically grounded in the
standards of mechanical, electrical and materials engineering [6, 7]. The integration of AI into aerospace
is not merely a trend but a significant advancement essential to addressing the growing complexity and
demands of aviation ventures [8]. AI’s ability to enhance decision-making, streamline design procedures
and manage vast datasets positions it as a valuable asset, extending the possibilities of space exploration
and aviation [9]. For example, AI systems can review past data and simulations to pinpoint opportunities
for enhancing designs, forecast system responses in various situations and suggest optimisations that may
not be obvious to human engineers [10].

In addition to technical applications, AI addresses broader operational and strategic challenges in
aerospace. In space missions, where situations are unpredictable and beyond human influence, AI’s
quick processing and response to new data are highly valuable [11]. AI systems can independently adapt
satellite and spacecraft operations based on changing circumstances, like flares or orbital debris [12].
This functionality guarantees the longevity and triumph of missions by facilitating real-time decision-
making without monitoring. AI also makes a difference in improving the adaptability of aerospace
endeavours. With the rise in frequency and complexity of space missions, effectively managing them
poses a growing challenge [13]. AI exceeds expectations in taking care of the magnitude and complexity
of directing aerospace projects through optimising asset distribution, observing mission advancement
and guaranteeing that all frameworks work ideally. Also, the intriguing viewpoint of AI cultivates
collaboration over areas inside aerospace engineering. For example, AI can blend information from
aerodynamics, propulsion systems and materials science to offer a viewpoint on a project’s practicality
and potential performance. This integration plays a part in fostering designs and progressive innovations
by empowering a unified problem approach that draws upon the qualities of each specialised area.

AI has become an element in the aerospace industry, driving innovations that push the boundaries
of practices in design, manufacturing, operations and maintenance [14]. The introduction of AI into
aerospace dates back to the 20th century when technological advancements and data analytics capabil-
ities experienced significant growth. Initially, AI applications in aerospace focused on enhancing flight
operations efficiency. Algorithms were created to optimise flight routes by considering factors such as
weather conditions, aircraft weight, and air traffic to determine fuel-efficient trajectories [15, 16]. This
phase also marked the use of AI for maintenance, where ML models were trained to detect system fail-
ures based on historical data patterns thus preventing costly downtimes and improving safety measures
[17, 18].
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AI in aerospace moved beyond simple improvements to become essential in automating important
flight systems. Advanced algorithms were integrated into autopilot systems to reduce pilot workload dur-
ing flight phases and enhance safety by minimising errors [19]. Concurrently, AI applications expanded
to include automating air traffic control processes using ML algorithms to manage scenarios while
optimising routing and scheduling, for increased airspace capacity and reduced delays [20, 21]. AI devel-
opments in aerospace and unmanned aerial vehicles (UAVs) peaked in the mid-2000s. Drones equipped
with AI have been used by both the military and the general public to perform autonomous activities
like surveillance, reconnaissance and targeted operations [22]. This technological progress led to the
creation of AI systems for analysing time and environmental data to make independent navigational
decisions, which is crucial for operating in various and unpredictable conditions [23, 24].

Furthermore, AI has transformed the way aerospace design and manufacturing are done. Engineers
now use digital twins and augmented reality to model and test aircraft components [25–27]. These
AI-enhanced simulations can predict how designs will perform under stress conditions and operational
settings, reducing the need for physical prototyping. In recent times, the integration of AI into aerospace
has reached a stage with projects like autonomous passenger aircraft and interplanetary exploration vehi-
cles such as Mars rovers moving ahead. AI technologies enable these vehicles to carry out tasks on distant
planets like navigating terrain, conducting scientific experiments, and collecting data independently and
effectively [28]. Incorporating AI into aerospace not only streamlines processes but also paves the way
for innovative technologies and applications that were once thought unattainable. With advancements
in AI technology, its utilisation in the aerospace sector is projected to grow, potentially reshaping the
industry’s future course.

2.0 AI in aircraft and spacecraft systems
The aerospace industry, renowned for its unrelenting pursuit of precision and safety, has undergone a
paradigm shift with the incorporation of AI into maintenance processes. Traditional methods, while use-
ful, often fail to address nascent issues before they escalate. In contrast, AI employs advanced sensing,
ML and deep-learning techniques to anticipate and mitigate maintenance issues in aircraft and spacecraft
systems. This integration represents a significant move from reactive to proactive approaches, provid-
ing aerospace engineers and technicians with predictive capabilities to resolve potential issues before
they occur. This section investigates the revolutionary influence of AI in Aircraft Health Monitoring
and predictive paintenance, focusing on its role in improving operating efficiency, assuring safety and
optimising resource utilisation in the aerospace industry.

2.1 Aircraft Health Monitoring and predictive maintenance
In today’s competitive airline industry, cost-consciousness and operational efficiency are paramount,
driving the need for innovative approaches to cost reduction, particularly in maintenance. Despite recent
improvements, unplanned maintenance still accounts for over 25% of maintenance spending and con-
tributes to 5% of wasted fuel consumption. Predictive maintenance, coupled with data analytics, presents
a promising solution to address these challenges, although implementation hurdles still exist.

Predictive maintenance utilises aircraft-generated and operational data to assess onboard systems’
health, monitored by sensors tracking key parameters. This data enables proactive maintenance schedul-
ing, potentially preventing significant performance declines or system failures. Flight Data Acquisition
Units (FDAUs) collect and analyse this data, with some information transmitted from avionics systems
via data buses like ARINC-429. Various methods exist for accessing and transmitting predictive main-
tenance data, including real-time transmission via ACARS or WiFi, or storage on removable media like
compact flash drives. However, challenges such as cost and data volume must be considered. Data clean-
ing is essential before analysis, involving the consolidation and error correction of diverse data formats
and sources, including paper documents.
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Figure 2. Application of AI in predictive maintenance [29].

Figure 3. Spacecraft with large and foldable structures [30].

Recent years have witnessed the integration of AI and ML in aircraft maintenance, enabling anomaly
detection and proactive component maintenance planning. However, challenges persist, such as the ‘no
fault found’ (NFF) dilemma, where components exhibiting anomalous behaviour may pass testing, com-
plicating maintenance optimisation. Modern aircraft generate vast amounts of data, posing challenges
in data utilisation. While data collection is straightforward, establishing baseline conditions for anomaly
detection is crucial. AI and ML algorithms play a pivotal role in identifying trends and exceedances,
enabling proactive maintenance and operational practices as shown in Fig. 2.

In the aerospace domain, both aircraft and spacecraft require high levels of precision and safety. The
adoption of AI represents a transformative strategy for addressing maintenance challenges. Moving away
from traditional methods, AI utilises advanced sensing technologies, combined with ML and DL algo-
rithms, to predict and mitigate issues before they become critical problems. Spacecraft, often equipped
with extensive systems such as antennas, booms and solar arrays as shown in Fig. 3, are susceptible to the
effects of transient thermal states and material fatigue, impacting their overall integrity and functionality.

https://doi.org/10.1017/aer.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2025.10050


6 Shenwai et al.

Figure 4. Block diagram of CRNN for RUL [31].

Traditional damage identification methods typically involve comparisons with undamaged counterparts,
focusing on properties such as stiffness and mass. However, these methods struggle to detect minor dam-
age. Addressing this limitation, Paolo et al. [30] introduced a Bi-LSTM network to classify structural
damages based on the number of beam elements that have failed within a truss system.

Forecasting the RUL of spacecraft components is critical to minimising unnecessary maintenance
and preventing unforeseen equipment failures. Danyang et al. [31] have advanced this domain by devis-
ing a convolutional recurrent neural network (CRNN) shown in Fig. 4 that uses stator current data to
predict the RUL of spacecraft bearings. Additionally, Gang et al. [32] introduced a fault detection frame-
work using spacecraft sensor data. Their model integrates a variational autoencoder (VAE) and a gated
recurrent unit (GRU) network to effectively extract features from the data, facilitating real-time fault
detection in spacecraft.

Sara et al. [33] employed telemetry parameters to assess performance using a support vector machine
for regression (SVR). Subsequent analyses, including k-means clustering, t-distributed stochastic neigh-
bour embedding (t-SNE) and logical analysis of data (LAD), were utilised to construct the dataset.
Following dataset creation, fault tree analysis was applied for fault detection in data derived from
Egyptsat-1 shown in Fig. 5.

Moving on to aircraft systems, engines represent a critical component where predictive maintenance
and fault detection methodologies play a pivotal role in enhancing fuel efficiency, optimising main-
tenance schedules and improving decision-making processes. Changchang et al. [34] employed deep
belief networks (DBN) for condition assessment and fault detection, followed by long short-term mem-
ory (LSTM) networks for RUL prediction. Their methodology, applied to the NASA C-MAPSS dataset,
demonstrated lower error rates compared to traditional methods. Maria et al. [35] developed a numeri-
cal tool that leverages artificial neural networks (ANN) and support vector machines (SVM) to simulate
and predict engine performance under both healthy and degraded conditions. Their approach focuses
on identifying faulty components by analysing engine data, which includes parameters such as alti-
tude, Mach number and rotation speed, alongside measurable variables like exhaust gas temperature
and fuel mass flow rate. This method facilitates a detailed assessment of engine health and performance
anomalies. Like in spacecraft to predict RUL, Ade et al. [36] implemented a convolutional long short-
term memory (ConvLSTM) network. This network was tailored to analyse data from 21 sensors within
an engine shown in Fig. 6, utilising the NASA C-MAPSS dataset. Further, the authors extended their
research by applying advanced deep learning techniques, specifically, temporal convolutional neural
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Figure 5. Egyptsat-1 [Credit: Egypt’s NARSS].

Figure 6. Engine structure used for NASA C-MAPSS dataset [37].

networks (TCNN) and transformers to the same NASA dataset, which encompasses readings from 26
sensors alongside three operational settings.

The majority of the methodologies reviewed herein primarily focus on static analysis. However,
Chuang et al. [38] introduced a dynamic predictive model shown in Fig. 7, distinct in its approach to
forecasting health state (HS) and RUL. This model leverages an ensemble of deep autoencoders (DAE)
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Figure 7. Block flow diagram of using DL to predict RLU [38].

Figure 8. Dents of various size on aircraft structures [39].

paired with bidirectional long short-term memory networks (Bi-LSTM), and it has been trained utilising
the NASA C-MAPSS dataset.

In another application, AI is being utilised for automated aircraft maintenance inspection to detect
structural dents shown in Fig. 8 on various aircraft components. While numerous defects are visually
detectable, smaller defects might elude unaided human observation. Dogru et al. [39] addressed this
issue by proposing a masked R-CNN framework that incorporates transfer learning. Their dataset was
specifically designed to include a variety of dent sizes.

2.2 Air traffic management
AI is revolutionising air traffic management (ATM) through diverse applications: ATM is the complex
choreography that maintains safe and efficient air travel. As airspace becomes increasingly congested,
researchers are employing AI to revolutionise ATM, envisioning a future where human expertise and
machine intelligence work collaboratively. Brittain and Wei [40] proposed a framework using deep
multi-agent reinforcement learning for autonomous air traffic control systems. Trained in the BlueSky
simulation environment, AI agents prioritise safety and efficiency, resolving conflicts in high-density
traffic scenarios. In safety-critical domains like ATM, transparency is paramount, driving the adoption
of explainable AI (XAI) frameworks. Xie et al. [20] emphasise interpretable AI models within ATM
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Figure 9. Framework of prediction model [20].

Figure 10. Synthesis of explainable AI (XAI) conceptual framework [41].

(Fig. 9), investigating post-hoc explanations to elucidate decision processes. Augustin et al. [41] extend
this work with the DPP (descriptive, predictive, prescriptive) model (Fig. 10), enhancing human-centred
AI systems in ATM.

Building on predictive applications, ML techniques are transforming ATM operations: the applica-
tions of AI in ATM extend beyond conventional air traffic control, notably exploring ML techniques
in predicting ground delay programmes (GDPs) [42]. These programmes, activated due to disruptions
like adverse weather, leverage ML algorithms (SVMs, LR, RF) to process historical data, deriving a
‘regional convective weather variable’ that enhances GDP forecasting accuracy. Tang et al. [43] system-
atise these advances, highlighting AI’s role in automating tasks across ATM sectors (ATS, AM, ATFM,
FO) while identifying data quality and user expertise as persistent challenges.

In operational contexts, AI addresses both air and space traffic challenges: in space traffic manage-
ment, Vasile et al. [44] integrate machine learning with orbital mechanics for collision risk mitigation.
For air traffic, Kistan et al. [45] demonstrate deep neural networks (DNNs) in Airborne Collision
Avoidance System (ACAS) Xa, achieving 40% performance gains over Traffic Collision Avoidance
System (TCAS), while Gallego et al. [46] combine DBSCAN, multi-level models (MLM) and ANNs
to analyse aircraft vertical trajectories and predict altitude levels. Evolutionary algorithms also show
promise – Lertworawanich et al. [47] apply genetic algorithms (GA) with K-means clustering to optimise
direct capacity balancing (DCB) overload management.

ML-driven traffic flow analysis exemplifies AI’s spatial-temporal capabilities: Gui et al. [48] analyse
air traffic flow using automatic dependent surveillance broadcast (ADS-B) data, with LSTM networks

https://doi.org/10.1017/aer.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2025.10050


10 Shenwai et al.

Figure 11. Architecture of the LSTM-based air traffic model [48].

outperforming SVR in managing flow variations (Fig. 11). This aligns with broader trends where
temporal modeling excels in dynamic ATM environments.

2.3 Quality control in aerospace manufacturing
In the rapidly evolving domain of aerospace, significant strides in ML, deep learning (DL) and computer
vision (CV) are transforming aircraft inspection methodologies. This section explores the technical intri-
cacies of algorithms deployed in quality control and visual inspection processes. High-resolution and
sensitive charge-coupled device (CCD) cameras, combined with sophisticated imaging systems, serve
as the foundational technology for this application [49]. A notable research initiative has developed an
integrated system for automated aircraft surface inspection, utilising CCD cameras and CV algorithms.
This system incorporates drones, tablets, and pan-tilt-zoom (PTZ) cameras to methodically survey sur-
faces, emphasising detailed defect identification – from hairline fractures to fluid leaks – rather than
mere image acquisition [50].

Expanding beyond 2D imaging, envision a robotic inspector equipped with dual 2D cameras and
a 3D scanner, designed to confirm assemblies match their 3D computer-adided design (CAD) models
[51]. While routine inspections verify component presence and alignment, complexities like flexible
part spacing or interference detection require 3D datasets. The employed CV algorithm involves three
steps: handling parasitic edges, weighting edges and determining gradient orientations.

Further exploration reveals the use of ANNs to enhance continued operational safety (COS) for air-
craft, spacecraft, and unmanned aircraft systems (UAS) [7]. Leveraging databases like service difficulty
reports (SDR) and NASA, these ANNs predict certification-critical parameters via supervised learning,
improving aerospace component reliability.

Beyond component inspection, spatial awareness systems rely on visual simultaneous localisation
and mapping (VSLAM) and visual odometry (VO) to ascertain vehicle orientation and position [52].
Concurrently, CV-driven defect categorisation – such as corrosion, cracks and punctures – streamlines
maintenance workflows [53].

At the forefront of CV advancements, convolutional neural networks (CNNs) like U-Net excel
in defect detection. U-Net’s architecture combines contracting paths (context capture) with expand-
ing paths (precise localisation), integrating convolutional and pooling layers for feature extraction
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and upscaling. This preserves spatial information, enabling effective segmentation in biomedical and
aerospace visual analysis.

2.4 Autonomous navigation and control
Many DL frameworks designed for visual scene interpretation, navigation, guidance and control in UAS
primarily utilise CNNs. Traditional AI problem-solving algorithms, often optimisation-based, are rooted
in mathematical methodologies and can find near-optimal solutions for nondeterministic polynomial-
time (NP)-hard problems.

Learning-based methods encompass both model-based AI algorithms and modern techniques,
including reinforcement learning (RL) and deep reinforcement learning (DRL), which use Markov
decision processes (MDP) or partially observable MDP (POMDP), as well as asynchronous advantage
actor-critic (A3C) architectures for decentralised training.

While the AI sector expands rapidly, many effective methods for autonomous UAV navigation remain
underexplored. Autonomous UAV navigation enhances flexibility in dynamic environments, relying
on optimisation-based approaches such as particle swarm optimisation (PSO), ant colony optimisation
(ACO), genetic algorithm (GA), simulated annealing (SA), pigeon-inspired optimisation (PIO), cuckoo
search (CS), A∗ algorithm, differential evolution (DE) and grey wolf optimiser (GWO). Researchers
have adapted these algorithms for mission-specific constraints to achieve optimal results [54].

This survey bridges technical foundations with practical applications by outlining UAV characteris-
tics and types to familiarise readers with architectures, summarising navigation systems and real-world
implementations, and detailing the principles of AI algorithms used for autonomous navigation.

2.5 Image recognition and computer vision
Recent advancements in image recognition and CV have significantly impacted numerous industries,
including aerospace. Leveraging sophisticated algorithms and ML techniques, these technologies anal-
yse visual data to extract meaningful information from images and videos. In aerospace, CV is crucial
for two primary applications: AI-driven remote sensing and quality inspection of components.

In remote sensing, AI enhances data processing efficiency and accuracy, automating object recog-
nition/classification and detecting environmental changes for improved decision-making. As noted by
Lary [55], AI’s ability to process geospatial data is instrumental here. Among AI’s six primary direc-
tions identified by Wu [56] – CV, natural language processing, robotics, cognitive computing, game
theory/ethics and ML – the latter is particularly vital. Wang et al. [57] emphasise ML’s necessity in
advancing remote sensing capabilities.

For quality inspection, CV systems use cameras and algorithms to perform tasks traditionally reliant
on human vision. The aerospace industry increasingly adopts intelligent visual inspection systems
to ensure component quality. Advances in ML, especially DL, have enabled automatic solutions for
inspecting internal/external components, from surface defects to structural integrity.

2.6 Maintenance and documentation
AI has become a pivotal force in aviation maintenance, offering innovative solutions across diverse
applications. Inspection technologies leverage CNNs with autonomous drones to automate visual
inspections, enhancing defect detection accuracy for issues like dents through image augmentations
and pre-classification techniques [58]. Complementing this, ML and Internet of Things (IoT)-based
methods predict thermal performance in aircraft wing anti-icing systems, outperforming traditional
computational fluid dynamics with ANNs [59].

Beyond component-specific applications, AI drives sustainability efforts: environmental impact
analysis integrates statistical and ML methods to assess fuel burn, emissions and noise, supporting
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Figure 12. UAV dynamic tracking system [70].

data-driven sustainable aviation [60]. For maintenance optimisation, DNNs detect corrosion in aircraft
lap joints with human-level precision, enabling condition-based maintenance [39]. In rotorcraft, fuzzy
neural networks and individual blade control (IBC) reduce hub vibrations, informing better control
laws [61].

Predictive capabilities extend to core systems: generalised regression neural networks (GRNN) accu-
rately forecast exhaust gas temperature baselines for engine health [62]. ML models also advance
lithium-ion battery research for aviation, focusing on health estimation and fault diagnosis [63].

Global aviation authorities recognise AI’s transformative potential. International bodies such
as the International Civil Aviation Organisation (ICAO) emphasise AI training for professionals,
while the European Union Aviation Safety Agency (EASA) proposes AI oversight frameworks and
EUROCONTROL’s FLY AI report prioritises air traffic management adoption [64–66]. Regional initia-
tives, including the European Commission’s AI strategy, promote human-centric AI in transportation,
while the Federal Aviation Administration (FAA) and International Air Transport Association (IATA)
drive research and development and workforce readiness [67–69].

3.0 AI in unmanned systems
UAVs are being used in a variety of technical disciplines, ushering in a new era of possibilities. They
possess unique capabilities in various industries, from object monitoring to wireless communication net-
works, addressing challenges and increasing efficiency. UAVs are employed in dynamic object tracking
as shown in Fig. 12.

For the described study, PTZ cameras are employed to ensure the UAV maintains the target object
within its visual field while minimising the distance to the object. Target identification is performed
using the YOLOv3 (You Only Look Once) algorithm at the ground station. All experimental procedures
are carried out utilising the AirSim simulation environment [70]. This integration of advanced com-
puter vision techniques enables real-time, accurate object tracking and monitoring, supporting various
aerospace and industrial applications. In the study presented by Kalinov et al. [71], the authors intro-
duce a novel integration of unmanned ground robots (UGRs) for global localisation and UAV systems
for barcode scanning applications shown in Fig. 13. The UGR system utilises infrared (IR) sensors to
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Figure 13. Barcode view from UAV [71].

Figure 14. Framework of RL in UAV application [73].

determine the precise location of the UAV, which is equipped with a CNN-based U-Net architecture
designed to enhance the accuracy of barcode detection. An innovative active prediction mechanism is
implemented to augment efficiency. This mechanism directs the scanning efforts towards areas identi-
fied through learned patterns, thus minimising redundant scans and enhancing operational efficiency.
Such a technology holds significant potential for adoption in the aerospace sector, promising substantial
improvements in inventory management and cost reductions.

Considering the global dependence on communication and the issue of spectrum scarcity, Wang
and Peng [72] describe the creation of a cognitive drone network (CDN) that applies CNN to extract
energy matrix information for cooperative spectrum sensing. This approach utilises CNN to learn deep
features from energy matrix data, eliminating the need to determine a detection threshold and enhancing
adaptability to diverse noise environments.

RL models shown in Fig. 14 are widely used in diverse UAV scenarios as reported by Luo et al. [73]. A
DRL architecture tailored for optimising trajectory planning, transmission scheduling and access con-
trol within UAV-assisted wireless sensor networks. The framework integrates DNNs utilising CNNs
to process spatial information and recurrent neural networks (RNNs) to handle temporal dependen-
cies. Additionally, Yanan et al. [74] addresses the application of conventional reinforcement learning
techniques, specifically deep Q-networks (DQNs) and deep deterministic policy gradient (DDPG) to
UAV communication challenges modelled as MDPs. It provides an analysis of using DQNs for effec-
tive power management and transmission target determination, along with the application of DDPG in
devising joint optimisation strategies. These RL-based approaches collectively advance UAV autonomy
and efficiency across communication, navigation and resource management tasks.
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4.0 AI in space exploration
The space industry, categorised into upstream and downstream sectors, has seen limited integration of
AI compared to other sectors. AI’s evolution, from statistical methods to sophisticated models like very
large transformers, has predominantly utilised general-purpose data. Satellite data, however, has been
less explored, with current AI applications in space focusing on specific tasks like detecting buildings
and ships from satellite imagery using finely tuned models. The potential for AI in space exploration
is significant, especially in roles like detecting planetary craters and supporting autonomous robots in
future missions. Significant investments from organisations like the National Geospatial-Intelligence
Agency and ESA Space Solutions are fostering the growth of AI applications in space. Initiatives by
companies such as SkyServe, which aims to deploy AI models directly on satellites, and Satellogic,
which releases labeled data openly, indicate a promising direction toward developing foundational AI
models that could revolutionise the space industry [75, 76]. Although the full potential of AI in space
has not yet been realised, the ongoing investments and innovations suggest a pivotal role for AI in future
space technologies and exploration.

4.1 Space rovers
ML can be effectively utilised in the aerospace sectors to enhance mathematical computations. Rovers
shown in Fig. 15, which are devices engineered for exploring the surfaces of planets and other celestial
bodies, stand to benefit significantly from ML applications. In the context of rovers, ML algorithms
facilitate a range of tasks including autonomous navigation, path planning and anomaly detection.
Additionally, these algorithms are instrumental in mechanical applications such as structural analysis,
materials selection, design optimisation, fault detection and diagnostics, among others. A notable study
explored the implementation of a ML technique known as Q-Learning, detailed in Ref. (77). Q-Learning
is a model-free reinforcement learning algorithm where an agent learns optimal policies by iteratively
updating a Q-table that maps state-action pairs to expected cumulative rewards. The rover interacts with
its environment, receiving rewards for desirable behaviours (e.g., avoiding obstacles, conserving energy)
and penalties for undesirable ones. Through trial-and-error interactions, it maximises the long-term
reward signal defined by Equation (1), as illustrated for the rover in Fig. 15:

Q (st, at)←Q (st, at)+ α
[
rt+1 + γ max

a
Q (st+1, a)−Q (st, at)

]
(1)

where α is the learning rate, γ the discount factor, and st, at, rt+1 represent the state, action and reward
at time t. This approach is particularly suited for rover navigation in unpredictable extraterrestrial
environments, where predefined rules may fail. The field-programmable gate array (FPGA) implementa-
tion enables hardware acceleration of these computations, critical for real-time decision-making under
resource constraints. Specifically, Q-learning has been applied in rovers to improve decision-making
and navigation strategies. The research also demonstrated the deployment of Q-learning in both single
neuron and multilayer perceptron architectures on a Xilinx Virtex 7 FPGA.

Concurrently, another study focused on the locomotion challenges of tensegrity robots, which are
utilised for planetary exploration, as described in Ref. (79). This research proposed an advanced version
of the mirror descent guided policy search (MDGPS) algorithm to autonomously learn effective loco-
motion gaits, addressing the intricate dynamics of these robots. Furthermore, an innovative approach
to identifying rare geological phases on Mars was investigated, employing a Bayesian classifier trained
with spectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), as out-
lined in Ref. (80). This classifier aids in the detection of unique geological features, showcasing the
broad applicability of ML in space exploration contexts. Building on this, further explorations into the
Jezero crater have revealed jarosite and silica on its floor, while chlorite-smectite and Al-rich phyllosili-
cates have been detected along the crater walls. These mineralogical findings suggest a complex history
of water activity within the Jezero region. Moreover, the application of ML techniques has proven to be
significantly more effective than traditional methods for such reconnaissance, underscoring the potential
of ML to enhance geological analysis in planetary exploration.

https://doi.org/10.1017/aer.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2025.10050


The Aeronautical Journal 15

Figure 15. Mars rover’s robotic arm drove a drill bit into flat patch of the rock [78].

In a study conducted by Neil et al. [81], a novel pathfinding algorithm for navigation across uneven
terrains was developed. The algorithm employs a heuristic known as the gradient convolution, which
integrates a metric called the angular cost estimate (ACE). ACE quantifies the irregularity of the terrain
beneath the rover’s wheels. The approach utilises a deep convolutional neural network (DCNN) architec-
ture akin to the UNet model. This architecture processes height maps to produce ACE cost maps, thereby
optimising computational efficiency. The implementation achieved an overall accuracy of 95.3%. This
example illustrates the application of ML techniques to enhance performance and reduce computational
demands in scenarios where traditional models are inadequate.

4.2 Satellites and earth observation
In the expansive realm of outer space, satellites are integral to global connectivity. The incorporation of
AI and ML technologies is revolutionising the utilisation of satellite systems as shown in Fig. 16. This
section explores the application of ML and DL across various satellite operations. Geostationary Earth
Orbit (GEO) satellites, predominantly utilised for communication services such as broadcasting, broad-
band Internet access and telecommunications, benefit significantly from these advancements. Research
in this domain has employed models including SVMs, DNNs and DQNs to optimise resource alloca-
tion. Such innovations not only foster more efficient system designs but also contribute to substantial
cost reductions [82].

In low Earth orbit (LEO) constellations, which are utilised for communication and Earth observation
with hundreds to thousands of satellites, monitoring each satellite’s state poses challenges. Autoencoders
extract features from parameters like position, velocity and mission type, while ML classifiers (random
forest (RF), SVM, neural networks) identify orbit states for debris mitigation and spectrum allocation
[83]. Remote sensing applications further demonstrate ML’s versatility: MIDAPS-AI combines decision
trees, neural networks and SVM on LEO/GEO satellites for disaster management and debris detection
[84], while nanosatellites like OPSAT implement online ML for fault detection, isolation, and recovery
(FDIR), enabling real-time analysis in resource-constrained environments (Fig. 17) [85].
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Figure 16. AI chip implementation in GEO satellite [82].

Figure 17. Orbit-AI app implementation in OPSAT [85].

High-throughput and navigation systems also leverage ML: very high throughput satellites (VHTS)
optimise power/bandwidth using elevation and traffic data [86], while GNSS apply ML for signal
processing and anomaly detection [87]. Cross-domain challenges – resource allocation, interference,
latency – are addressed via neural networks, SVM, and genetic algorithms, enhancing Quality of Service
(QoS) [88, 89].

Data privacy and satellite health are critical considerations: Federated Learning (FedSpace) enables
GDPR-compliant distributed training (Fig. 18) [90], while CNNs analyse temperature sensors for real-
time health diagnostics, outperforming traditional methods in noise resilience [91].

Satellite data analytics rely on ML for tasks like classification and imagery analysis: SVM, decision
trees and random forests handle regression tasks, while CNNs, RNNs and LSTM networks process
imagery and fusion (Fig. 19) [92]. Future advancements in machine learning operations (MLOps) and
space-grade processors will enable adaptive AI for dynamic space environments [93].

4.3 Deep space, autonomous health monitoring in space
The mental and physical demands of multi-year space missions necessitate enhanced astronaut medi-
cal care, and AI shows great promise in improving future crew support systems. By integrating data
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Figure 18. Overview of aggregation schedular in FedSpace [90].

Figure 19. Application of data collected by satellites to monitor construction rate using segmentation
[92].

from sensors monitoring heart rate, skin temperature, exercise and sleep patterns, AI-powered pre-
dictive health analytics can provide customised interventions tailored to each astronaut. This holistic
approach, combining real-time vital signs, behavioural indicators and environmental conditions, enables
sophisticated diagnostics, early risk warnings and personalised treatment plans. For instance, the Crew
Interactive Mobile Companion (CIMON) as shown in Fig. 20, an AI robot designed by Airbus, IBM
and the German Aerospace Centre, assists astronauts on the International Space Station (ISS). CIMON
can navigate the station, document experiments and offer procedural guidance, while also providing
emotional support by sensing stress levels and guiding astronauts through therapeutic exercises. Future
intelligent systems on the ISS and lunar Gateway will further anticipate astronauts’ needs and auto-
mate tasks, with AI virtual assistants adapted for psychological support during Mars missions, where
communication delays with ground control are significant [94].

Scientific research aboard the ISS is critical for advancing space medicine: NASA’s SpaceX Crew-6
recently launched and docked at the ISS, initiating over 200 experiments. These include the Cardinal
Heart 2.0 project, which examines whether approved drugs mitigate microgravity-induced changes in
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Figure 20. CIMON with ESA astronaut Alexander Gerst (Credit: ESA).

heart-cell function, and microbial studies sampling ISS life-support vents to analyse microorganism
behaviour in space. Complementing this, NASA’s Biosentinel experiment – deployed on a CubeSat in
heliocentric deep space radiation effects, marking the first such study in five decades. To expand research
for missions beyond LEO, including lunar and Martian missions, highly automated approaches with AI
and ML will be pivotal. NASA’s 2021 workshop explored AI’s role in advancing space biology and
personalised healthcare [95].

AI has significantly transformed expert medical systems, particularly in differential diagnoses. DL
advancements enable AI systems to match human experts in diagnosing diseases across radiology and
pulmonology. Deep CNNs excel in extracting intrinsic features from raw data, achieving superior results
in medical image tasks like classification and segmentation. For instance, OpticNet-71 trained on opti-
cal coherence tomography (OCT) images identifies age-related macular degeneration, diabetic macular
edema, drusen and choroidal neovascularisation, while CheXNeXt diagnoses 14 diseases from chest
radiographs. Semantic segmentation utilises architectures like U-Net for retinal vessel and brain-tumor
segmentation. Generative adversarial networks (GANs) further innovate medical imaging: conditional
GANs generate fluorescein angiography images from Color Fundus, and RV-GAN specialises in retinal
vessel segmentation. These advancements underscore AI’s potential to revolutionise clinical support
systems [96].

AI in space medicine faces unique challenges: sparse astronaut data for training, limited prospective
research in space environments and ethical/legal complexities like managing astronaut-doctor rela-
tionships and informed consent. These necessitate specialised approaches and ethical frameworks for
effective integration [96].

4.4 Launch vehicles
Recent advancements in AI and ML have significantly enhanced rocket technology reliability and per-
formance. Solid rocket motors (SRMs), critical for launch vehicles and defense missiles, benefit from
AI-driven defect detection. Liu et al. [97] pioneered sensor systems using CNNs and LSTM networks
to identify inner bore cracks and propellant delamination during testing. Building on defect detection,
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Figure 21. Chandrayaan-3 (Credit: ISRO).

ML algorithms address propellant combustion unpredictability: Debus et al. [98] analysed fuel-oxidiser
interactions with RF, SVM, K-Nearest Neighbour (KNN) and ANNs, demonstrating RF’s superior
accuracy over traditional methods.

Hybrid rocket propellant analysis further exemplifies AI’s versatility: Surina et al. [99] combined
imaging techniques (thresholding, last image subtraction, spatial filtering) with U-Net architectures and
Monte Carlo dropout to measure regression rates, enhancing performance insights. For flight perfor-
mance evaluation, surrogate neural networks (SNNs) simulate hybrid rocket engine (HRE) dynamics,
heat transfer and thrust parameters with precision comparable to full-scale simulations [100].

Real-time telemetry optimisation leverages CNNs: Li et al. [101] streamlined rocket status assess-
ment using CNN architectures (input, convolution, pooling, fully connected, output layers) for video
data processing. Collectively, these advancements – defect detection, combustion analysis, regression
measurement, performance simulation and telemetry – enhance safety, reliability and efficiency in
rocketry.

4.5 AI’s role in Chandrayaan-3 mission
AI played a pivotal role in enhancing navigation, hazard avoidance, data interpretation and enabling
autonomous decision-making in the Chandrayaan-3 mission. Chandrayaan-3 (Fig. 21), the successor
to Chandrayaan-2, successfully touched down on the Moon’s southern pole on August 23, 2023 [102].
Building on discoveries from Chandrayaan-1 (water detection in the Aitken basin) and Chandrayaan-2
(mineral mapping via orbiter data), AI systems managed critical landing phases by integrating altimeters,
velocimeters and cameras to adjust altitude, fire thrusters and scan for obstacles [103–105].

Central to the landing was the terrain relative navigation (TRN) system: using a camera and onboard
computer, TRN matched lunar surface images with pre-loaded maps, analysing terrain features, slopes
and hazards via image processing and pattern recognition. While exact models are undisclosed, CNNs,
Siamese networks or LSTM networks likely enabled feature comparison and sequential data processing
during descent [106].

The navigation, guidance, and control (NGC) system dynamically adjusted speed, orientation,
and trajectory using TRN inputs and mission objectives. Potential control mechanisms included
proportional-integral-derivative (PID) controllers, DQNs trained on Chandrayaan-2 data, DNNs for
real-time sensor adjustments or RNNs for sequential data handling.
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Figure 22. Pragyan – lunar rover (Credit: ISRO).

For the Pragyan rover (Fig. 22), AI enabled autonomous navigation: Likely strategies included RL,
A∗/rapidly exploring random trees (RRT) for path planning, and CNNs for real-time image analysis.
Transfer learning may have adapted pre-trained models to lunar conditions. Instruments like the alpha-
proton X-ray spectrometer (APXS) and laser-induced breakdown spectroscope (LIBS) utilised AI for
geological analysis – CNNs identified features, regression/classification interpreted spectral data and
matching algorithms cross-referenced mineral libraries [107].

4.6 Current work by space agencies
Transitioning from exploratory research to practical space applications may seem daunting, but the
European Space Agency (ESA) is already utilising AI in its missions. Rovers, for instance, can
autonomously navigate obstacles, and data downloads from Mars rovers are now scheduled using AI.
AI also supports astronauts aboard the ISS, enhancing their daily operations.

ESA’s Hera planetary defense mission exemplifies AI’s potential, autonomously navigating through
space toward an asteroid by fusing sensor data and making real-time decisions, much like self-driving
cars. While most deep-space missions rely on human controllers, Hera’s onboard autonomy sets a
new standard. Satellites are also gaining more autonomy to perform collision avoidance manoeuvers
amidst increasing space debris. In January 2021, ESA and the German Research Centre for Artificial
Intelligence (DFKI) launched ESA_Lab@DFKI, focusing on AI systems for satellite autonomy and
collision avoidance.

AI also enhances satellite navigation, improving weather forecasting and detecting rogue drones in
sensitive airspace. ESA-led projects have applied AI for autonomous situational awareness in ships, and
the German Aerospace Centre (DLR) has developed AI methods for space and Earth applications, estab-
lishing an Institute of Artificial Intelligence Security in 2021. DLR’s AI assistant, CIMON, supports
astronauts on the ISS by performing voice-controlled tasks and navigating the station.

NASA also employs AI extensively, with an artificial intelligence group dedicated to supporting
scientific analysis, spacecraft operations, mission analysis, deep space network operations and space
transportation systems. NASA’s cognitive radio technology ptimises communication networks by using
‘white noise’ areas in communication bands, enhancing the efficiency of limited telecommunication
resources. AI has also improved solar research data and facilitated autonomous spacecraft operations,
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reducing communication delays. NASA’s collaboration with Google led to the discovery of two exo-
planets by training AI algorithms to analyse Kepler mission data. This success prompted the use of AI
in NASA’s TESS mission to identify potential exoplanets.

Japan’s Japan Aerospace Exploration Agency (JAXA) pioneered AI integration in space mis-
sions with its Epsilon rocket, which autonomously performs performance checks, simplifying payload
launches. JAXA’s ‘Int-ball’ robot autonomously captures ISS experiment photos, saving astronauts
time. The French space agency CNES, in partnership with Clemessy, optimised rocket tank filling using
AI neural networks. The UK Space Agency funded AI projects to detect buried archaeological remains
via satellite imagery, and the Italian Space Agency co-founded an AI-focused company. These initia-
tives highlight the transformative potential of AI in space exploration and operations, underscoring the
importance of ongoing research, development and international collaboration [108].

5.0 Challenges and legality
Despite advances in AI, its implementation in space faces significant challenges. The integration of
AI introduces cybersecurity risks such as signal jamming, satellite command hijacking or physical
destruction through adversarial attacks on navigation or control systems. For example, a compromised
AI-driven navigation system could misinterpret orbital debris avoidance maneuvers, risking collisions,
while manipulated sensor data in robotic rovers might trigger catastrophic drilling operations. Most AI
models in space robotics operate via local inference (e.g., onboard Mars rovers or lunar landers) and lack
internet connectivity, but threats persist through supply chain vulnerabilities or compromised training
data. Robust cybersecurity measures, including radiation-hardened hardware encryption and runtime
integrity verification, are critical [109, 110].

While AI excels in repetitive tasks in harsh environments, there is a gap between AI’s current per-
ceptual abilities and the complex decision-making required for space missions. To fully realise AI’s
potential in space, advancements in autonomy, automation, robotic sensing, perception, mobility, manip-
ulation, rendezvous and docking and onboard and ground-based autonomous capabilities are essential.
Integrating humans with robots and developing comprehensive data analysis tools will be crucial for
expanding human exploration of space.

The balance between human control and AI autonomy will hinge on societal acceptance of automa-
tion risks and consensus on the human values and principles to be preserved. Legal challenges also loom,
as each jurisdiction will develop its approach to liability, accountability and responsibility in space AI,
influenced by existing laws such as criminal, international humanitarian, tort and administrative law. The
Liability Convention, which addresses damages from space objects, may need to adapt to autonomous
systems – for instance, clarifying fault when an AI-controlled satellite malfunctions due to adversar-
ial training data. These legal issues extend to AI systems supporting space-based services, including
GNSS-based emergency response, autonomous vehicles and unmanned aircraft systems.

6.0 Conclusions and future scope
AI and ML have significantly advanced the aerospace industry through predictive maintenance systems
using Bi-LSTM, ConvLSTM, CRNNs and VAE models, which analyse sensor data to reduce unplanned
maintenance by 25%. In ATM, multi-agent systems optimise flight paths and reduce delays, while XAI
enhances transparency in decision-making. Traditional methods like DNNs and genetic algorithms have
demonstrated complementary advantages in ATM.

CV applications automate quality control, with models like U-Net identifying cracks and corrosion
in real time to maintain industry standards. UAVs employ CNNs and RL techniques such as DQNs
and DDPG for trajectory optimisation in dynamic environments. AI-driven UAVs enhance inventory
management using PTZ cameras and YOLOv3 for detection/tracking, alongside U-Net architectures for

https://doi.org/10.1017/aer.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2025.10050


22 Shenwai et al.

barcode scanning. Cooperative spectrum sensing in cognitive drones leverages CNNs to analyse energy
matrices, eliminating manual workflows.

These advances in AI and ML have also impacted rocket technology, with ConvLSTM networks and
SNNs being used for detecting SRM defects and simulating hybrid engine performance.

Transitioning to space exploration, AI has become a pivotal force in enabling new mission capabil-
ities and scientific discoveries. DQNs enhance real-time decision-making in planetary rovers operating
under unpredictable conditions. Chandrayaan-3 utilises a TRN system and RL for the Pragyan rover’s
autonomous path planning. Satellite operations employ autoencoders for orbit state classification, while
AI health monitoring systems like CIMON assist astronauts with daily tasks and psychological support.

Despite these advancements, challenges persist in cybersecurity, legal frameworks and interdisci-
plinary integration.

AI is set to revolutionise space exploration, unlocking new possibilities and transforming our under-
standing of the cosmos. Take an example of NASA’s Parker Solar Probe, scheduled to reach the Sun’s
outer atmosphere in December 2024, which will leverage advanced AI systems to endure extreme tem-
peratures up to 2,500 ◦F (1,370 ◦C) and collect crucial data using its magnetometer and imaging
spectrometer. This mission aims to deepen our knowledge of solar storms and their impact on Earth’s
communication technologies.

Beyond this, AI will significantly enhance the monitoring of Earth-orbiting satellites and the manage-
ment of spacecraft on extended missions. By integrating AI with robotics, future missions could deploy
autonomous robots to explore distant planets and moons, conduct scientific research independently and
relay valuable information back to Earth.

Space travel, exploration and observation involve some of the most complex and dangerous scientific
and technical operations ever undertaken, presenting problems that AI excels at solving. Consequently,
astronauts, scientists and engineers increasingly rely on ML to address these challenges. From automat-
ing spacecraft take-off and landing to steering rockets through space and studying distant planets, AI
optimises fuel use and enhances mission efficiency. SpaceX’s AI autopilot system allows Falcon 9
rockets to perform autonomous operations, including docking with the ISS. CIMON 2, an AI robot,
assists astronauts with hands-free information access and emotional state assessment. NASA’s JPL uses
AI to model mission parameters and plan future missions, while autonomous systems from SpaceX
and the UK Space Agency help avoid collisions with space debris. AI also aids astronomers in map-
ping the universe, predicting cosmic events and detecting black holes. Projects like the Autonomous
Sciencecraft Experiment and SETI@Home demonstrate AI’s potential in both Earth observation and
the search for extraterrestrial intelligence. These applications highlight AI’s transformative impact on
space exploration and its role in overcoming the extraordinary challenges of venturing into the final
frontier.

The future of AI in aerospace and space exploration will be characterised by the development of
intelligent autonomous systems capable of real-time decision-making and adaptive mission planning.
These systems will integrate advanced AI architectures, including deep learning and reinforcement
learning models, to enable spacecraft, satellites and planetary rovers to operate efficiently and safely
in unpredictable environments without continuous human oversight. Such autonomy will be essen-
tial for complex missions, allowing vehicles to self-repair, navigate hazards and optimise performance
dynamically.

Collaboration between humans and AI will become increasingly vital, especially for long-duration
space missions. Research will focus on creating intuitive interfaces and explainable AI (XAI) systems
that foster trust and seamless cooperation between astronauts, engineers and AI assistants. These sys-
tems will support crew health monitoring, psychological well-being and mission planning, enhancing
both operational effectiveness and human factors. Simultaneously, ensuring the resilience and security
of AI-driven aerospace systems will be a priority, with advancements in cybersecurity and fail-safe
mechanisms designed to protect critical assets from cyber threats and system failures.

Moreover, the scaling of AI to manage large satellite constellations, UAV swarms and distributed sen-
sor networks will require innovative approaches such as federated learning and edge computing to enable
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decentralised intelligence while preserving data privacy. Ethical, legal and societal considerations will
guide the responsible deployment of AI, necessitating collaboration with regulatory bodies to establish
standards for transparency, accountability and equitable access. Open, interdisciplinary research and
data sharing will accelerate innovation and ensure that AI’s transformative potential benefits the global
aerospace community, driving sustainable progress and discovery in the coming decades.
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