A NOTE ON A FUNCTIONAL EQUATION

CHUNG-MING AN

(Received 4 February 1970)

Communicated by B. Mond

1

The object of this note is to give an aspect to the problem of the functional equation of the generalized gamma function and Dirichlet series which are defined in [1]. In general, we cannot answer the problem yet. But it is worthy to attack this problem for some special cases.

Throughout this note \mathbb{R} and Z denote the reals and the integers respectively. Let F(X) and E(X) be two homogeneous polynomials in $\mathbb{R}[X]$, $X = (X_1, \dots, X_n)$, of degree d > 0. Assume that $F(x) \neq 0$, $E(x) \neq 0$ for non-zero $x \in \mathbb{R}^n$. We put

$$\zeta(F,s) = \sum_{\gamma \in \mathbb{Z}^{n} - \{0\}} F(\gamma)^{-s},$$

$$\Gamma(E,s) = \int_{\mathbb{R}^n} e^{-|x|^2} E(x)^{s-(n/d)} dx,$$

$$\xi(E,F,s) = \pi^{-(ds)/2} \Gamma(E,s) \zeta(F,s),$$

where $|x|^2 = x_1^2 + \dots + x_n^2$ and $dx = dx_1 \dots dx_n$. It is proved in [1] that Z(F, s) and $\Gamma(E, s)$ are meromorphic functions of s.

If n = 1, we may assume $F(X) = aX^d$, a > 0, and put $F^{-1}(X) = (1/a)X^d$. We denote the number a by |F|. We shall use the same notations for E(X).

If $n \ge 2$, we only consider the case of the quadratic forms, i.e., d = 2. Let

$$E(X) = \sum_{i,j=1}^{n} e_{ij} X_i X_j, \quad F(X) = \sum_{i,j=1}^{n} f_{ij} X_i X_j$$

be two positive-definite quadratic forms. We may assume that $E = (e_{ij})$ and $F = (f_{ij})$ are two $n \times n$ positive-definite matrices with real entries. So $|E| = \det(E) \neq 0$, $|F| = \det(F) \neq 0$. Let E^{-1} and F^{-1} be the inverse matrices of E and F, respectively.

¹ The result in [1] appeared in the Bulletin of the American Mathematical Society, May 1969.

The main result of this paper is

THEOREM. Under the above assumptions, $\xi(E, F, s)$ satisfies the following functional equation

$$\xi\left(E^{-1},F^{-1},\frac{n}{d}-s\right)=\left|E\right|^{\frac{1}{2}},\left|F\right|^{\frac{1}{2}},\xi(E,F,s).$$

2

For n = 1, we observe

$$\zeta(F,s) = a^{-s}(1+K^{-s}) \zeta(ds)$$

$$\Gamma(E,s) = a^{s-n/d} (1 + K^{s-n/d}) \Gamma\left(\frac{ds}{2}\right)$$

where $K = (-1)^d$, $\xi(s)$ is the Riemann-zeta function and $\Gamma(s)$ is the gamma function. Then, the theorem for n = 1 follows immediately from the functional equation of the Riemann zeta function.

For $n \ge 2$ and d = 2, we shall use the polar coordinates in *n*-dimension ([1]). Thus, we have

$$\Gamma(E,s) = \frac{1}{2} \Gamma(s) \int_{S^{n-1}} E(\omega)^{s-n/2} d\omega.$$

We want to prove the following lemma:

LEMMA. If $n \ge 2$ and d = 2, then

$$|E|^{\frac{1}{2}} \int_{S^{n-1}} E(\omega)^{s-n/2} d\omega = \int_{S^{n-1}} E^{-1}(\omega)^{-s} d\omega.$$

PROOF. It is well known that there is an orthogonal $n \times n$ matrix U, i.e., $U^{-1} = {}^{t}U$, such that

Viewing X as a $n \times 1$ matrix, $E(X) = {}^tXEX$ and changing variables by X = UY, we shall have dx = dy, E(X) = A(Y) and $|x|^2 = |y|^2$. Hence, $\Gamma(E, s) = \Gamma(A, s)$, i.e.,

$$\int_{S^{n-1}} A(\omega)^{s-n/2} d\omega = \int_{S^{n-1}} E(\omega)^{s-n/2} d\omega.$$

Thus, it is enough to prove the lemma for the matrix A.

Let

and z = Ty. We shall have $dy = |T|^{-1}dz$, $A(y) = |z|^2$ and $A^{-1}(z) = |y|^2$. So

$$\Gamma(A,s) = |A|^{-\frac{1}{2}} \int_{\mathbb{R}^n} e^{-A^{-1}(z)} |z|^{2s-1} dz.$$

By changing variables into the polar coordinates, i.e., $z = r\omega$, we get

$$\Gamma(A,s) = |A|^{-\frac{1}{2}} \int_{S^{n-1}} \int_0^\infty e^{-r^2 A^{-1}(w)} r^{2s-1} dr d\omega.$$

Put

$$H(\omega) = \int_0^\infty e^{-r^2A^{-1}(w)} r^{2s-1} dr.$$

Since $A^{-1}(\omega) > 0$, for all $\omega \in S^{n-1}$, we may put $t = (A^{-1}(\omega))^{\frac{1}{2}}r$. Then

$$H(\omega) = \int_0^\infty e^{-t^2} t^{2s-1} (A^{-1}(\omega))^{-s} dt = \frac{1}{2} (A^{-1}(\omega))^{-s} \Gamma(s).$$

So, we shall have

$$\Gamma(A,s) = \frac{1}{2} |A|^{-\frac{1}{2}} \Gamma(s) \int_{S^{n-1}} (A^{-1}(\omega))^{-s} d\omega.$$

But, on the other hand

$$\Gamma(A,s)=\frac{1}{2}\Gamma(s)\int_{S^{n-1}}(A(\omega))^{s-\frac{1}{2}n}d\omega.$$

From above two forms, it is clear to see the lemma. q.e.d.

If we apply the functional equation for Epstein zeta function, i.e., ([2]),

$$|F|^{\frac{1}{2}}\pi^{-s}\Gamma(s)\zeta(F,s)=\pi^{-(\frac{1}{2}n-s)}\Gamma(\frac{1}{2}n-s)\zeta(F^{-1},\frac{1}{2}n-s)$$

and the lemma to $\xi(E, F, s)$, we shall obtain

$$\xi(E^{-1}, F^{-1}, \frac{1}{2}n - s) = |E|^{\frac{1}{2}} |F|^{\frac{1}{2}} \xi(E, F, s),$$

which proves the theorem.

3

For general cases, I think that all the difficulties in solving this problem of the functional equation come from the integral over n-sphere

$$\int_{S^{n-1}} E(\omega)^{s-n/d} d\omega$$

in the form of the generalized gamma function and from the lack of theta-formula for the polynomials of higher degree. For example, we may define the function

$$\theta(\tau, x) = \sum_{\gamma \in \mathbb{Z}^n} \exp(2\pi i \tau F(\gamma + x))$$

for a positive-definite homogeneous polynomial $F(X) \in \mathbb{R}[X]$. But, the information for non-quadratic forms is inadequate. Some work in this direction has been done by Ekkehard Krätzel [3].

References

- [1] Chung-ming An, On a generalization of gamma function and its application to certain Dirichlet series, Dissertation, (University of Pennsylvania, 1969).
- [2] C. L. Siegel, Lecture on advanced analytic number theory, (Tata Institute of Fundamental Research, Bombay, India, 1961).
- [3] Ekkehard Krätzel, Höhere theta functionen; I, II. Math. Nachr: 30 (1965), 17-46.

Department of Mathematics The Johns Hopkins University Baltimore, Maryland