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A REMARK ON THE NILPOTENCY INDEX OF THE
RADICAL OF A GROUP ALGEBRA OF A
p-SOLVABLE GROUP

by SHIGEO KOSHITANI
(Received 6th June 1980)

Let K be a field of characteristic p>0, G a finite p-solvable group, P a p-Sylow
subgroup of G of order p®, KG the group algebra of G over K, and J(KG) the
Jacobson radical of KG. In the present paper we study the nilpotency index t(G) of
J(KG), which is the least positive integer t with J(KG)'=0. Since J(EG)=
EQJ(KG) for any extension field E of K (cf. [7, Proposition 12.11]), we may assume
that K is algebraically closed.

D. A. R. Wallace [12] proved that

t(G)zalp—-1)+1.

There is a problem to determine the structure of G with the property t(G)=
a(p—1)+1. When G is of p-length 1, by the results of S. A. Jennings [6] and K. Morita
[8], t{G)=a(p—1)+1if and only if P is elementary abelian (cf. [10, Corollary 1]). But
for p-solvable groups G of p-length =2 the assertion does not hold in general. Indeed,
K. Motose and Y. Ninomiya [10] showed that when p =2 and G =S, (which denotes
the symmetric group of degree 4), t(G)=4 though P is dihedral of order 8. Recently,
K. Motose [9] proved that if p=2, P is metacyclic and G/O,(G)# S,, then t(G)=
a+1if and only if P is elementary abelian. The purpose of this paper is to consider the
proposition for the case where p is odd. If p is odd and P is metacyclic, then P is a
regular p-group (cf. [5, IIT 10.2 Satz (¢)]). Y. Tsushima [11] claimed that when P is
regular, t(G)=a(p—1)+1 if and only if P is elementary abelian. At line 11 of page 37
in [11], he says that since P has exponent p, G is of p-length 1 from [4, Theorem A
(i))]. However, Tsushima’s assertion is not correct. There exists an example (to be given
later) of a p-solvable group G of p-length =2 such that P has exponent p and so that P
is regular. Our main result can be stated as follows: If p is odd and P is metacyclic, then
t(G)=a(p—1)+1 if and only if P is elementary abelian.

Throughout this paper we use the following notation. We write O,(G) and O,(G)
for the maximal normal subgroup of G of order prime to p and the maximal normal
p-subgroup of G, respectively. We define O, ,(G) by O,(G/O,(G)) = O, ,(G)/O,(G).
We write H<1G if H is a normal subgroup of G. For a finite group Y,|Y| and Aut (Y)
denote the order of Y and the group of all automorphisms of Y, respectively. When X
is a subgroup of G, we write Ng(X), C5(X) and |G : X| for the normaliser of X in G,

the centraliser of X in G and the index of X in G, respectively. If x,, ..., x,, are in G,
we write (x,, ..., x,) for the subgroup of G generated by {x,,...,x,}. When H is a
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subgroup of G and ge G, let [H, g]=(h"'g 'hg|he H) and [H, g, g]=[[H, g], g]. We
write GL(2, p) and SL(2, p) for the general linear group and the special linear group,
respectively (cf. [3, p. 40]).

For an odd prime p, we say that G is p-stable in the sense of [1, p. 1104 Definition
2.3].

We write Qd(p) for the group defined in [1, p. 1104] and [2,p. 32]. Then Qd(p) is
the semi-direct product of R by SL(2, p) with respect to the identity map SL(2, p)—
SL(2, p)< GL(2, p)=Aut(R), where R is an elementary abelian group of order p>. It
is noted that if p is odd then the p-Sylow subgroup of Qd(p) is nonabelian of order p?
of exponent p (cf. [2, p. 32 and p. 33 Example 11.4]).

To begin with, we state the next two lemmas which are useful for our aim.

Lemma 1. Let G be a finite group and p an odd prime. If the p-Sylow subgroup of G
is of order p® with exponent p>, then G is p-stable.

Proof. By (1, Lemma 6.3], it suffices to show that X/Y# Qd(p) for any subgroup X
of G and any Y<1X (see [1, p. 1103] for the term “involved”’). Assume that X/Y =
Qd(p) for some subgroup X of G and some Y <1X. Since the order of the p-Sylow
subgroup of Qd(p) is p® by [2, p.32], p/|G: X| and p}lY]. Let P be a p-Sylow
subgroup of X. Then P is a p-Sylow subgroup of G, so that P has exponent p?. On the
other hand, (PY)/Y is a p-Sylow subgroup of X/Y. Hence (PY)/Y has exponent p from
[2, p. 33 Example 11.4]. This is a contradiction since (PY)/Y =P/(PNY)==P. This
completes the proof.

Lemma 2 [3, Theorem 8.1.3]. Let p be an odd prime, and let G be a finite group with
a p-Sylow subgroup P such that O,(G)# 1 and G is p-stable and p-solvable. If A is an
abelian normal subgroup of P, then A < O, ,(G).

Proof. Let H=0,,(G), Q=PNH N=N5(Q) and C=Cs(Q). Then
O,(G) - Q=H<G. Take any x € A. Clearly xe N. Since A<<P20Q, [Q, x]< A. Since
A is abelian, [Q, x, x]<[A, x]=1, so that [@Q, x,x]=1. Since G is p-stable, xCe
O,(N/C). This shows (AC)/C = O,(N/C). Since G is p-solvable, C < H by [3, Theorem
6.3.3], so that C < H N N. By the Frattini argument [3, Theorem 1.3.7], G = HN. Then
we have the following epimorphism

N/C —Ls NI(HAN)=(HN)/H = G/H.
w
yC —>y(HNN)

Since H = O, ,(G), O,(G/H)=1, so that O,(N/(HNN))=1. Since f is an epimorph-
ism, f(O,(N/C))< O,(N/(H N N)). This implies f((AC)/C)=1, so that Ac HNN.

Using these lemmas we can prove the next main result of this paper.
Theorem. Let p be an odd prime, and let G be a finite p-solvable group with a

metacyclic p-Sylow subgroup P of order p®. Then t(G)=a(p—1)+1 if and only if P is
elementary abelian.

https://doi.org/10.1017/50013091500004090 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500004090

NILPOTENCY INDEX OF THE RADICAL OF A GROUP ALGEBRA 33

Proof. Assume that P is elementary abelian. By [3, Theorem 6.3.3], P< O, ,(G).
This implies that G is of p-length 1. So that t(G)=a(p—1)+1 by [10, Corollary 1].

Suppose t(G)=a(p—1)+1. We use induction on |G|. Assume G#1. Let H=
0,(G). By [12, Theorems 2.2 and 3.3], a(p—-1D+1=t(G/H)=«(G)=a(p—1)+1.
Hence we may assume H=1 by induction. Let R=0,(G) and |R|=p® so that
1=b=a. Then a(p—1)+1=t(G)=t(R)+t(G/R)—1 by [12, Theorem 2.4]. Since
t(RYZb(p—1)+1 and t(G/R)=(a—b)(p—1)+1 by [12, Theorem 3.3], we have t(R) =
b(p—1)+1. So that R is elementary abelian from [10, Theorem 1]. Since P is
metacyclic, R is cyclic of order p or is elementary abelian of order p2. Then C5(R)=R
by [3, Theorem 6.3.3], so that

G/R = Ng(R)/C5(R) = Aut (R). *)

If R is cyclic of order p, then p}|G/R| by (*), so that P is cyclic of order p. Hence we
may assume that R is elementary abelian of order p2. By [10, Corollary 1], it suffices to
show that G is of p-length 1. Suppose that G is of p-length =2. Since |Aut (R)|=
|GL(2, p)l=p(p—1)*(p +1) by [3, Theorem 2.8.1], |P/R|=1 or p from (*). This shows
that |P| = p? or p>. Since G is of p-length =2, P is nonabelian from [3, Theorem 6.3.3].
Hence |P|=p>. Since P is metacyclic, we can write

P=M,(p)=(x,y|x"=y”=1,x""yx=y""")

by [3, Theorem 5.5.1]. Then G is p-stable by Lemma 1. Since (x, y*)<IP and (y)<{P
and since R# 1, we have that (x, y’)= R and {(y)< R by Lemma 2. Then x, ye R, so
that P=R. Hence G is of p-length 1, a contradiction. This completes the proof.

Finally we give an example as mentioned in the introduction.

Example. Let p=3, and let R be an elementary abelian group of order 9. Let G be
the semi-direct product of R by SL(2, 3) with respect to the identity map SL(2, 3)—
SL(2,3)= GL(2,3)=Aut(R). Then G=Qd(3) (cf. [1, p.1104] and [2, p.32]). Let
R =(b,c) and S=SL(2,3). For each x=(¢ !)e S, we can write that x~'bx = b*c' and
x'cx=b"c®. Let a=(} eS, then a is of order 3, so that we can write P={(a, b,
cla*=b*=c*=1,a"'ba=bc, a”'ca=c, b-'cb =c), where P is a 3-Sylow subgroup of
G. Then P has exponent 3 (cf. [2, pp. 32-33] and [3, p. 203]). Let Q be a 2-Sylow
subgroup of S. Since Q<SS and since Q is quaternion of order 8, S has the unique
involution z=("% _9) in Q. Let H=05(G). Since |G|=2>-33>=216, H = 0,(G).
Since Q is a 2-Sylow subgroup of G, H< Q. Evidently, HR=HxR. If H#1, then
z € H, so that z € C5(R), a contradiction. Hence H=1. On the other hand, P is not
normal in G. So that G is of 3-length 2.
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