NORMAL AUTOMORPHISMS OF A FREE METABELIAN NILPOTENT GROUP

GÉRARD ENDIMIONI

C.M.I-Université De Provence, 39, rue F. Joliot-Curie, F-13453 Marseille Cedex 13, France e-mail: endimion@gyptis.univ-mrs.fr, Gerard.Endimioni@cmi.univ-mrs.fr

(Received 31 March 2008; revised 16 May 2009; accepted 21 September 2009)

Abstract. An automorphism φ of a group G is said to be normal if $\varphi(H) = H$ for each normal subgroup H of G. These automorphisms form a group containing the group of inner automorphisms. When G is a non-abelian free (or free soluble) group, it is known that these groups of automorphisms coincide, but this is not always true when G is a free metabelian nilpotent group. The aim of this paper is to determine the group of normal automorphisms in this last case.

2000 Mathematics Subject Classification. 20E36, 20F28.

1. Preliminary results. In a group G, consider a map $\varphi: G \to G$ of the form

$$\varphi: x \mapsto x[x, u_1]^{\lambda(1)} \dots [x, u_m]^{\lambda(m)}$$

where u_1, \ldots, u_m are elements of G, the exponents $\lambda(1), \ldots, \lambda(m)$ being integers (as usual, the commutator [a, b] is defined by $[a, b] = a^{-1}b^{-1}ab$). When G is metabelian, using the relation $[xy, u] = y^{-1}[x, u]y[y, u]$, it is easy to see that φ is an endomorphism. These endomorphisms appear in [4] (also see [1]). Such endomorphisms are not necessarily automorphisms. But in a nilpotent group, each map of the form

$$x \mapsto w_0 x^{\lambda(1)} w_1 x^{\lambda(2)} \dots x^{\lambda(n)} w_n$$
 (with $\lambda(1) + \lambda(2) + \dots + \lambda(n) = \pm 1$)

is bijective [2, Theorem 1]. Hence we have:

PROPOSITION 1.1. In a metabelian nilpotent group G, every map $\varphi: G \to G$ of the form $\varphi: x \mapsto x \prod_{i=1}^m [x, u_i]^{\lambda(i)}$ $(u_i \in G, \ \lambda(i) \in \mathbb{Z})$ is an automorphism.

For convenience sake, in a metabelian nilpotent group, an automorphism of the form $x \mapsto x \prod_{i=1}^m [x, u_i]^{\lambda(i)}$ will be called a *generalized inner automorphism*. As usual, in a group, the left-normed commutator $[x_1, \ldots, x_n]$ is defined inductively

As usual, in a group, the left-normed commutator $[x_1, ..., x_n]$ is defined inductively by

$$[x_1, \dots, x_n] = [x_1, \dots, x_{n-1}]^{-1} [x_1, \dots, x_{n-1}]^{x_n}$$

= $[x_1, \dots, x_{n-1}]^{-1} x_n^{-1} [x_1, \dots, x_{n-1}] x_n$.

The next technical result will be useful in the following.

PROPOSITION 1.2. *In a group G, consider a map* $\varphi : G \to G$ *of the form*

$$\varphi(x) = x \prod_{i=1}^{n} [x, v_{i,1}, \dots, v_{i,\sigma(i)}]^{\eta(i)} \quad (\eta(i) \in \mathbb{Z}),$$

for some function $\sigma: \{1, ..., n\} \to \mathbb{N} \setminus \{0\}$ and elements $v_{i,j} \in G$ $(1 \le i \le n, 1 \le j \le \sigma(i))$. Then $\varphi(x)$ can be written in the form

$$\varphi(x) = x [x, u_1]^{\lambda(1)} \dots [x, u_m]^{\lambda(m)} \quad (\lambda(i) \in \mathbb{Z}, u_i \in G).$$

Proof. By induction, using the relation
$$[x, y, z] = [x, y]^{-1}[x, z]^{-1}[x, yz]$$

Frequently in this paper we shall make use of well-known commutator identities (see for example [7, 5.1.5]). In particular, we have the following relations, valid in a metabelian group G, for any x, y, $z \in G$, $t \in G'$ and $\lambda \in \mathbb{Z}$:

$$[xt, y] = [x, y][t, y],$$
 $[t^{\lambda}, y] = [t, y]^{\lambda},$ $[x, y, z][y, z, x][z, x, y] = 1,$ $[t, x, y] = [t, y, x].$

PROPOSITION 1.3. The set of generalized inner automorphisms of a metabelian nilpotent group G forms a (normal) subgroup of the group of automorphisms of G.

Proof. If φ and ψ are generalized inner automorphisms, the fact that $\psi \circ \varphi$ is a generalized inner automorphism follows from Proposition 1.2. It remains to prove that φ^{-1} is a generalized inner automorphism. For that, it suffices to construct for each integer $k \geq 1$ a generalized inner automorphism ψ_k such that $\psi_k \circ \varphi$ is of the form

$$\psi_k \circ \varphi : x \mapsto x \prod_{i=1}^m [x, v_{i,1}, \dots, v_{i,\sigma(i)}]^{\eta(i)}$$

for some function $\sigma:\{1,\ldots,m\}\to\mathbb{N}\setminus\{0\}$ and elements $v_{i,j}\in G$ $(1\leq i\leq m,1\leq j\leq \sigma(i))$, and where each commutator is of weight $\geq 1+2^{k-1}$ (namely, $\sigma(i)\geq 2^{k-1}$ for $i=1,\ldots,m$). Indeed, since G is nilpotent, this implies that $\psi_k\circ\varphi(x)=x$ for k large enough, thus $\varphi^{-1}=\psi_k$ is a generalized inner automorphism, as required. We argue by induction on k. The result is clear when k=1 by taking for ψ_1 the identity map. Now suppose that for some integer $k\geq 1$, there exists a generalized inner automorphism ψ_k such that $\psi_k\circ\varphi(x)=x\prod_{i=1}^m[x,v_{i,1},\ldots,v_{i,\sigma(i)}]^{\eta(i)}$, with $\sigma(i)\geq 2^{k-1}$ for $i=1,\ldots,m$. Put $\psi_{k+1}=\psi'\circ\psi_k$, where ψ' is defined by $\psi'(x)=x\prod_{i=1}^m[x,v_{i,1},\ldots,v_{i,\sigma(i)}]^{-\eta(i)}$. We have

$$\psi_{k+1} \circ \varphi(x) = x \prod_{i=1}^{m} [x, v_{i,1}, \dots, v_{i,\sigma(i)}]^{\eta(i)}$$

$$\times \prod_{j=1}^{m} \left[x \prod_{i=1}^{m} [x, v_{i,1}, \dots, v_{i,\sigma(i)}]^{\eta(i)}, v_{j,1}, \dots, v_{j,\sigma(j)} \right]^{-\eta(j)}.$$

Since

$$\prod_{j=1}^{m} \left[x \prod_{i=1}^{m} [x, v_{i,1}, \dots, v_{i,\sigma(i)}]^{\eta(i)}, v_{j,1}, \dots, v_{j,\sigma(j)} \right]^{-\eta(j)} \\
= \prod_{i=1}^{m} [x, v_{j,1}, \dots, v_{j,\sigma(j)}]^{-\eta(j)} \prod_{j=1}^{m} \prod_{i=1}^{m} [x, v_{i,1}, \dots, v_{i,\sigma(i)}, v_{j,1}, \dots, v_{j,\sigma(j)}]^{-\eta(i)\eta(j)},$$

we obtain

$$\psi_{k+1} \circ \varphi(x) = x \prod_{j=1}^{m} \prod_{i=1}^{m} [x, v_{i,1}, \dots, v_{i,\sigma(i)}, v_{j,1}, \dots, v_{j,\sigma(j)}]^{-\eta(i)\eta(j)}$$

and this completes the proof of the proposition.

2. Main result. We recall that a normal automorphism φ of a group G is an automorphism such that $\varphi(H) = H$ for each normal subgroup H of G. These automorphisms form a subgroup of the group of all automorphisms of G. Obviously, this subgroup contains the subgroup of inner automorphisms of G. It happens these subgroups coincide, for instance, when G is a non-abelian free group [5], a non-abelian free soluble group [8], or a non-abelian free nilpotent group of class 2 [3]. On the other hand, the subgroup of inner automorphisms is of infinite index in the group of normal automorphisms when G is a non-abelian free nilpotent group of class $k \ge 3$ [3]. Also note there are exactly two normal automorphisms in a (non-trivial) free abelian group: $x \mapsto x$ and $x \mapsto x^{-1}$.

Certainly, in a metabelian nilpotent group, each generalized inner automorphism is a normal automorphism, but a normal automorphism need not to be a generalized inner automorphism. However, our main result states that the converse holds in a non-abelian free metabelian nilpotent group.

THEOREM 2.1. In a non-abelian free metabelian nilpotent group, the group of normal automorphisms coincides with the group of generalized inner automorphisms.

- **3. Proof of Theorem 2.1.** In all this section, we consider a fixed set S of cardinality ≥ 2 and we denote by M_k the free metabelian nilpotent group of class k > 1 freely generated by S. In other words, $M_k = F/F''\gamma_{k+1}(F)$, where F is the free group freely generated by S and $\gamma_{k+1}(F)$ the (k+1)th term of the lower central series of F. The normal closure in a group G of an element a is written $\langle a^G \rangle$.
- LEMMA 3.1. For any distinct elements $a, b \in S$ and any integer t, the subgroup $\langle (a^tb)^{M_k} \rangle \cap \gamma_k(M_k) \leq M_k$ is generated by the set of elements of the form $[a^tb, c_1, \ldots, c_{k-1}]$, with $c_1, \ldots, c_{k-1} \in S$.

Proof. First suppose that t=0 and consider an element $w\in \langle b^{M_k}\rangle\cap\gamma_k(M_k)$. Hence w is a product of elements of the form $[c_0,c_1,\ldots,c_{k-1}]^{\pm 1}$, with $c_i\in S$. More precisely, we can write $w=w_0w_1$, where w_0 (resp. w_1) is a product of elements of the form $[c_0,c_1,\ldots,c_{k-1}]^{\pm 1}$ with $c_i\in S\setminus\{b\}$, (resp. with $c_i\in S$, the element b occurring once at least in $[c_0,c_1,\ldots,c_{k-1}]$). In fact, substituting 1 for the indeterminate b in the relation $w=w_0w_1$ and using the fact that w lies in $\langle b^{M_k}\rangle$, we obtain $w_0=1$.

Thus w is a product of elements of the form $[c_0, c_1, \ldots, c_{k-1}]^{\pm 1}$, with $c_i = b$ for some $i \in \{0, \ldots, k-1\}$. If i = 1, we can write $[c_0, b, \ldots, c_{k-1}] = [b, c_0, \ldots, c_{k-1}]^{-1}$. If i > 1, we have $[c_0, c_1, \ldots, b, \ldots, c_{k-1}] = [c_0, c_1, b, \ldots, c_{k-1}]$ and it follows:

$$[c_0, c_1, \dots, b, \dots, c_{k-1}] = [b, c_1, c_0, \dots, c_{k-1}][b, c_0, c_1, \dots, c_{k-1}]^{-1}.$$

Thus we have shown that any element of $\langle b^{M_k} \rangle \cap \gamma_k(M_k)$ is a product of elements of the form $[b, c_1, \ldots, c_{k-1}]^{\pm 1}$, with $c_i \in S$. Since $[b, c_1, \ldots, c_{k-1}] \in \langle b^{M_k} \rangle \cap \gamma_k(M_k)$, the lemma is proved when t = 0.

Now consider the general case. Actually, since clearly $S' = \{a^tb\} \cup S \setminus \{b\}$ is a free basis of M_k , we can use the result obtained in the particular case. It follows that $\langle (a^tb)^{M_k} \rangle \cap \gamma_k(M_k)$ is generated by the set of elements of the form $[a^tb, c_1, \ldots, c_{k-1}]$, with $c_i \in S'$. But, in fact, we may take $c_i \in S$ and so conclude, since

$$[a'b, c_1, \ldots, a'b, \ldots, c_{k-1}] = [a'b, c_1, \ldots, a, \ldots, c_{k-1}]^t [a'b, c_1, \ldots, b, \ldots, c_{k-1}].$$

As usual, the expression $[x,_n y]$ is defined in a group by $[x,_0 y] = x$ and $[x,_n y] = [[x,_{n-1} y], y]$ for each positive integer n.

For a fixed subset $\{a_0, \ldots, a_r\} \subseteq S$ and a function $\Delta : \{0, \ldots, r\} \to \mathbb{N}$, we define in M_k the symbol $[x, y, \Delta]$ $(x, y \in M_k)$ by

$$[x, y, \Delta] = [x, y, \Delta(0) a_0, \Delta(1) a_1, \dots, \Delta(r) a_r].$$

Note that for any sequence b_1, \ldots, b_k of elements of $\{a_0, \ldots, a_r\}$, there is a function $\Delta: \{0, \ldots, r\} \to \mathbb{N}$ such that $[x, y, b_1, \ldots, b_k] = [x, y, \Delta]$, with $\Delta(0) + \cdots + \Delta(r) = k$. If j, j' are distinct given integers in $\{0, \ldots, r\}$ and if $\Delta(j) \neq 0$, we define the function $\Delta_{(j)}^{(j)}: \{0, \ldots, r\} \to \mathbb{N}$ by

$$\Delta_{(j)}^{(j')}(j) = \Delta(j) - 1, \quad \Delta_{(j)}^{(j')}(j') = \Delta(j') + 1 \text{ and}$$

 $\Delta_{(j)}^{(j')}(i) = \Delta(i) \text{ for all } i \in \{0, \dots, r\} \setminus \{j, j'\}.$

When Δ is not the zero-function, we shall denote by $m(\Delta)$ the least integer j such that $\Delta(j) \neq 0$.

If S is ordered, we may define in M_k basic commutators (see for example [6, Chapter 3]). Recall that a basic commutator of weight k' $(2 \le k' \le k)$ is a commutator of the form $[b_1, b_2, \ldots, b_{k'}]$ $(b_i \in S)$, with $b_1 > b_2$ and $b_2 \le b_3 \le \cdots \le b_{k'}$. Any set of these commutators freely generates a free abelian subgroup of M'_k .

In the next lemma, we aim to express a product of commutators of the form $[a_s, a_i, \Delta]$ as a product where only basic commutators occur.

LEMMA 3.2. Let $\{a_0, \ldots, a_r\}$ be a finite subset of S (r > 0). Choose an integer $s \in \{0, \ldots, r\}$ and consider an element $w \in M_{k+2}$ (k > 0) of the form

$$w = \prod_{i,\Delta} [a_s, a_i, \Delta]^{\epsilon(i,\Delta)} \quad (\epsilon(i, \Delta) \in \mathbb{Z}),$$

where the product is taken over all integers $i \in \{0, ..., r\} \setminus \{s\}$ and all functions Δ : $\{0, ..., r\} \rightarrow \mathbb{N}$ such that $\Delta(0) + \cdots + \Delta(r) = k$. Then:

https://doi.org/10.1017/S0017089509990267 Published online by Cambridge University Press

(i) We have

$$w = \prod_{i < s, i \le m(\Delta)} [a_s, a_i, \Delta]^{\epsilon(i, \Delta)} \prod_{s < i, s \le m(\Delta)} [a_i, a_s, \Delta]^{-\epsilon(i, \Delta)}$$

$$\times \prod_{m(\Delta) < s, m(\Delta) < i} \left[a_i, a_{m(\Delta)}, \Delta_{(m(\Delta))}^{(s)} \right]^{-\epsilon(i, \Delta)} \prod_{m(\Delta) < s, m(\Delta) < i} \left[a_s, a_{m(\Delta)}, \Delta_{(m(\Delta))}^{(i)} \right]^{\epsilon(i, \Delta)}$$

(in all these products, i lies in $\{0, \ldots, r\} \setminus \{s\}$).

(ii) We have w = 1 only if all exponents $\epsilon(i, \Delta)$ with $i \in \{0, ..., r\} \setminus \{s\}$ occurring in the expression of w are zero.

Proof. (i) First we write w as a product of two factors:

$$w = \prod_{i \le m(\Delta)} [a_s, a_i, \Delta]^{\epsilon(i, \Delta)} \prod_{m(\Delta) < i} [a_s, a_i, \Delta]^{\epsilon(i, \Delta)}.$$

The first factor can be expressed in the form

$$\prod_{i \leq m(\Delta)} [a_s, a_i, \Delta]^{\epsilon(i, \Delta)} = \prod_{i < s, i \leq m(\Delta)} [a_s, a_i, \Delta]^{\epsilon(i, \Delta)} \prod_{s < i \leq m(\Delta)} [a_s, a_i, \Delta]^{\epsilon(i, \Delta)}$$

$$= \prod_{i < s, i \leq m(\Delta)} [a_s, a_i, \Delta]^{\epsilon(i, \Delta)} \prod_{s < i \leq m(\Delta)} [a_i, a_s, \Delta]^{-\epsilon(i, \Delta)}.$$

In the same way, we have

$$\prod_{m(\Delta)

$$= \prod_{s \le m(\Delta)$$$$

Therefore Lemma 3.2(i) is proved if we show the relation

$$\prod_{m(\Delta) < s, m(\Delta) < i} [a_s, a_i, \Delta]^{\epsilon(i, \Delta)} = \prod_{m(\Delta) < s, m(\Delta) < i} [a_i, a_{m(\Delta)}, \Delta_{(m(\Delta))}^{(s)}]^{-\epsilon(i, \Delta)} \times \prod_{m(\Delta) < s, m(\Delta) < i} [a_s, a_{m(\Delta)}, \Delta_{(m(\Delta))}^{(i)}]^{\epsilon(i, \Delta)}.$$
(1)

For that, write more explicitly the commutator $[a_s, a_i, \Delta]$ (in the following equalities, we write m instead of $m(\Delta)$):

$$[a_s, a_i, \Delta] = [a_s, a_{i, \Delta(0)} a_0, \dots, _{\Delta(r)} a_r]$$

= $[a_s, a_{i, \Delta(m)} a_m, \dots, _{\Delta(r)} a_r]$
= $[a_s, a_i, a_m, _{\Delta(m)-1} a_m, \dots, _{\Delta(r)} a_r].$

Since $[a_s, a_i, a_m] = [a_i, a_m, a_s]^{-1} [a_m, a_s, a_i]^{-1} = [a_i, a_m, a_s]^{-1} [a_s, a_m, a_i]$, we obtain

$$[a_s, a_i, \Delta] = [a_i, a_m, \Delta_{(m)}^{(s)}]^{-1} [a_s, a_m, \Delta_{(m)}^{(i)}].$$
 (2)

Relation (1) is now an immediate consequence of (2).

(ii) Choose an ordering of S such that a_s is the lowest element. Then, since $[a_s, a_i, \Delta] = [a_i, a_s, \Delta]^{-1}$, all commutators involved in w are inverses of basic commutators, and the basic commutators that occur are distinct. The result follows.

LEMMA 3.3. Let φ be a normal automorphism of M_{k+2} (k > 0) acting trivially on $M_{k+2}/\gamma_{k+2}(M_{k+2})$. Then, for all distinct elements $a, b \in S$, there exists a generalized inner automorphism ψ of M_{k+2} such that $\varphi(a) = \psi(a)$ and $\varphi(b) = \psi(b)$.

Proof. Let a, b be two distinct elements of S. Then $a^{-1}\varphi(a)$ and $b^{-1}\varphi(b)$ belong to $\langle a^{M_{k+2}} \rangle \cap \gamma_{k+2}(M_{k+2})$ and $\langle b^{M_{k+2}} \rangle \cap \gamma_{k+2}(M_{k+2})$ respectively. By Lemma 3.1, there is a finite subset $\{a=a_0,a_1,\ldots,a_r=b\}\subseteq S$ such that

$$\varphi(a) = \varphi(a_0) = a_0 \prod_{i,\Delta} [a_0, a_i, \Delta]^{\alpha(i,\Delta)} \quad (\alpha(i, \Delta) \in \mathbb{Z}),$$

$$\varphi(b) = \varphi(a_r) = a_r \prod_{i,\Delta} [a_r, a_i, \Delta]^{\beta(i,\Delta)} \quad (\beta(i, \Delta) \in \mathbb{Z}),$$

where the two products are taken over all integers $i \in \{0, ..., r\}$ and all functions Δ : $\{0, ..., r\} \rightarrow \mathbb{N}$ with $\Delta(0) + \cdots + \Delta(r) = k$ (as in Lemma 3.2, $[a_s, a_i, \Delta]$ is defined by $[a_s, a_i, \Delta] = [a_s, a_i, \Delta(0), a_0, ..., \Delta(r), a_r]$). Note that if |S| = 2 (and so r = 1), Lemma 3.3 is easily verified by taking the generalized inner automorphism ψ defined by

$$\psi(x) = x \prod_{\Delta} [x, a_1, \Delta]^{\alpha(1, \Delta)} \prod_{\Delta} [x, a_0, \Delta]^{\beta(0, \Delta)}.$$

Thus we shall assume in the following that |S| > 2. By Lemma 3.1, for any positive integer t, $(a_0^t a_r)^{-1} \varphi(a_0^t a_r)$ can be expressed as a product of elements of the form $[a_0^t a_r, c_1, \ldots, c_{k+1}]^{\pm 1}$, with $c_1, \ldots, c_{k+1} \in S$. But $(a_0^t a_r)^{-1} \varphi(a_0^t a_r) = (a_0^t a_r)^{-1} \varphi(a_0)^t \varphi(a_r)$ belongs to $\langle a_0, a_1, \ldots, a_r \rangle$. Therefore, substituting 1 for all indeterminates in $S \setminus \{a_0, a_1, \ldots, a_r\}$ in the expression of $(a_0^t a_r)^{-1} \varphi(a_0^t a_r)$, we can assume that $c_1, \ldots, c_{k+1} \in \{a_0, a_1, \ldots, a_r\}$. It follows that $\varphi(a_0^t a_r)$ can be expressed in the form

$$\varphi(a_0^t a_r) = a_0^t a_r \prod_{i,\Delta} \left[a_0^t a_r, a_i, \Delta \right]^{\eta_t(i,\Delta)} \quad (\eta_t(i,\Delta) \in \mathbb{Z})$$
$$= a_0^t a_r \prod_{i,\Delta} [a_0, a_i, \Delta]^{t\eta_t(i,\Delta)} \prod_{i,\Delta} [a_r, a_i, \Delta]^{\eta_t(i,\Delta)}.$$

Thus the relation $\varphi(a_0^t a_r) = \varphi(a_0)^t \varphi(a_r)$ implies

$$\prod_{i,\Delta} [a_0, a_i, \Delta]^{t\eta_t(i,\Delta)} \prod_{i,\Delta} [a_r, a_i, \Delta]^{\eta_t(i,\Delta)}$$

$$= \prod_{i,\Delta} [a_0, a_i, \Delta]^{t\alpha(i,\Delta)} \prod_{i,\Delta} [a_r, a_i, \Delta]^{\beta(i,\Delta)}.$$
(3)

Choose an order in S such that $a_0 < a_1 < \cdots < a_r$ and express each product in (3) as a product of basic commutators (or their inverses). Considering, for instance, the left-hand side of (3) (the treatment of the righthand side is similar), we have

$$\prod_{i,\Delta} [a_0, a_i, \Delta]^{t\eta_t(i,\Delta)} = \prod_{i \neq 0, \Delta} [a_i, a_0, \Delta]^{-t\eta_t(i,\Delta)}$$

and, by using Lemma 3.2(i) with s = r,

$$\begin{split} \prod_{i,\Delta} [a_r, a_i, \Delta]^{\eta_t(i,\Delta)} &= \prod_{i \neq r, i \leq m(\Delta)} [a_r, a_i, \Delta]^{\eta_t(i,\Delta)} \\ &\times \prod_{i \neq r, m(\Delta) < i} \left[a_i, a_{m(\Delta)}, \Delta_{(m(\Delta))}^{(r)} \right]^{-\eta_t(i,\Delta)} \prod_{i \neq r, m(\Delta) < i} [a_r, a_{m(\Delta)}, \Delta_{(m(\Delta))}^{(i)}]^{\eta_t(i,\Delta)}. \end{split}$$

Thus relation (3) can be written in the form

$$\prod_{i \neq 0, \, \Delta} [a_i, a_0, \, \Delta]^{-t\eta_t(i, \Delta)} \prod_{i \neq r, \, i \leq m(\Delta)} [a_r, a_i, \, \Delta]^{\eta_t(i, \Delta)}
\times \prod_{i \neq r, \, m(\Delta) < i} [a_i, a_{m(\Delta)}, \, \Delta_{(m(\Delta))}^{(r)}]^{-\eta_t(i, \Delta)} \prod_{i \neq r, \, m(\Delta) < i} [a_r, a_{m(\Delta)}, \, \Delta_{(m(\Delta))}^{(i)}]^{\eta_t(i, \Delta)}
= \prod_{i \neq 0, \, \Delta} [a_i, a_0, \, \Delta]^{-t\alpha(i, \Delta)} \prod_{i \neq r, \, i \leq m(\Delta)} [a_r, a_i, \, \Delta]^{\beta(i, \Delta)}
\times \prod_{i \neq r, \, m(\Delta) < i} [a_i, a_{m(\Delta)}, \, \Delta_{(m(\Delta))}^{(r)}]^{-\beta(i, \Delta)} \prod_{i \neq r, \, m(\Delta) < i} [a_r, a_{m(\Delta)}, \, \Delta_{(m(\Delta))}^{(i)}]^{\beta(i, \Delta)}.$$
(4)

Now consider an integer $i \in \{1, ..., r-1\}$ and a function $\Delta : \{0, ..., r\} \to \mathbb{N}$, with $\Delta(0) + \cdots + \Delta(r) = k$ (we can always suppose that r > 1 since |S| > 2). By identifying the exponents of the basic commutator $[a_i, a_0, \Delta]$ of each side of relation (4), it is easy to see that

$$t\eta_t(i,\Delta) + \eta_t\left(i,\Delta_{(r)}^{(0)}\right) = t\alpha(i,\Delta) + \beta\left(i,\Delta_{(r)}^{(0)}\right) \tag{5}$$

if $\Delta(r) > 0$, and $\eta_t(i, \Delta) = \alpha(i, \Delta)$ if $\Delta(r) = 0$. We prove by induction on $\Delta(r)$ that actually, we have always the equality $\eta_t(i, \Delta) = \alpha(i, \Delta)$. At first observe that if $\Delta(r) > 0$, we have $\Delta_{(r)}^{(0)}(r) = \Delta(r) - 1$ and so $\eta_t(i, \Delta_{(r)}^{(0)}) = \alpha(i, \Delta_{(r)}^{(0)})$ by induction. Hence relation (5) implies

$$\alpha\left(i,\Delta_{(r)}^{(0)}\right) - \beta\left(i,\Delta_{(r)}^{(0)}\right) = t\left\{\alpha(i,\Delta) - \eta_t(i,\Delta)\right\}.$$

Consequently, each positive integer t divides the integer $\alpha(i, \Delta_{(r)}^{(0)}) - \beta(i, \Delta_{(r)}^{(0)})$, which is independent of t. It follows that $\alpha(i, \Delta_{(r)}^{(0)}) = \beta(i, \Delta_{(r)}^{(0)})$ and so $\eta_t(i, \Delta) = \alpha(i, \Delta)$, as required.

Using theses relations and taking t = 1, relation (3) implies

$$\prod_{\Delta} [a_0, a_r, \Delta]^{\eta(r,\Delta)} \prod_{i,\Delta} [a_r, a_i, \Delta]^{\eta(i,\Delta)} = \prod_{\Delta} [a_0, a_r, \Delta]^{\alpha(r,\Delta)} \prod_{i,\Delta} [a_r, a_i, \Delta]^{\beta(i,\Delta)}$$

(we write η for η_1) and so

$$\prod_{i,\Delta} [a_r, a_i, \Delta]^{\beta(i,\Delta)} = \prod_{i,\Delta} [a_r, a_i, \Delta]^{\eta(i,\Delta)} \prod_{\Delta} [a_r, a_0, \Delta]^{\alpha(r,\Delta) - \eta(r,\Delta)}.$$

Since $\varphi(a_r) = a_r \prod_{i,\Delta} [a_r, a_i, \Delta]^{\beta(i,\Delta)}$, we obtain

$$\varphi(a_r) = a_r \prod_{i,\Delta} [a_r, a_i, \Delta]^{\eta(i,\Delta)} \prod_{\Delta} [a_r, a_0, \Delta]^{\alpha(r,\Delta) - \eta(r,\Delta)}$$
(6)

Now consider the generalized inner automorphism ψ defined by

$$\psi(x) = x \prod_{i=1,\dots,r,\ \Delta} [x, a_i, \ \Delta]^{\alpha(i,\Delta)} \prod_{\Delta} [x, a_0, \ \Delta]^{\alpha(r,\Delta) + \eta(0,\Delta) - \eta(r,\Delta)}.$$

We have

$$\psi(a_0) = a_0 \prod_{i=1, r, \Delta} [a_0, a_i, \Delta]^{\alpha(i, \Delta)} = \varphi(a_0).$$

In the same way,

$$\psi(a_r) = a_r \prod_{i=1,\dots,r-1,\,\Delta} [a_r, a_i,\,\Delta]^{\alpha(i,\Delta)} \prod_{\Delta} [a_r, a_0,\,\Delta]^{\alpha(r,\Delta) + \eta(0,\Delta) - \eta(r,\Delta)}$$

$$= a_r \prod_{i=1,\dots,r-1,\,\Delta} [a_r, a_i,\,\Delta]^{\eta(i,\Delta)} \prod_{\Delta} [a_r, a_0,\,\Delta]^{\alpha(r,\Delta) + \eta(0,\Delta) - \eta(r,\Delta)}$$

$$= a_r \prod_{i,\,\Delta} [a_r, a_i,\,\Delta]^{\eta(i,\Delta)} \prod_{\Delta} [a_r, a_0,\,\Delta]^{\alpha(r,\Delta) - \eta(r,\Delta)}$$

and so $\psi(a_r) = \varphi(a_r)$ by (6). This completes the proof of Lemma 3.3.

LEMMA 3.4. Let φ be a normal automorphism of M_{k+2} (k > 0) acting trivially on $M_{k+2}/\gamma_{k+2}(M_{k+2})$. Then φ is a generalized inner automorphism of M_{k+2} .

Proof. We can assume that |S| > 2 (otherwise Lemma 3.4 is a consequence of Lemma 3.3). Consider two distinct elements $a, b \in S$. According to Lemma 3.3, there exists a generalized inner automorphism ψ such that $\varphi(a) = \psi(a)$ and $\varphi(b) = \psi(b)$. It suffices to prove that for any $c \in S \setminus \{a, b\}$, we have $\varphi(c) = \psi(c)$. For that, apply again Lemma 3.3: there are generalized inner automorphisms ψ' , ψ'' such that $\varphi(a) = \psi'(a)$, $\varphi(c) = \psi'(c)$ and $\varphi(b) = \psi''(b)$, $\varphi(c) = \psi''(c)$. There exists a finite subset $\{a_0, \ldots, a_r\} \subseteq S$, containing a, b, c, such that ψ, ψ', ψ'' can be defined by the equations

$$\psi(x) = x \prod_{i, \Delta} [x, a_i, \Delta]^{\epsilon(i, \Delta)}$$

$$\psi'(x) = x \prod_{i, \Delta} [x, a_i, \Delta]^{\epsilon'(i, \Delta)}$$

$$\psi''(x) = x \prod_{i, \Delta} [x, a_i, \Delta]^{\epsilon''(i, \Delta)}$$

(the products are taken over all integers $i \in \{0, ..., r\}$ and all functions $\Delta : \{0, ..., r\} \rightarrow \mathbb{N}$ with $\Delta(0) + \cdots + \Delta(r) = k$). Since $\psi(a) = \psi'(a)$, we have

$$a \prod_{i \ \Delta} [a, a_i, \Delta]^{\epsilon(i, \Delta)} = a \prod_{i \ \Delta} [a, a_i, \Delta]^{\epsilon'(i, \Delta)}$$

and so

$$\prod_{i,\,\Delta} [a,\,a_i,\,\Delta]^{\epsilon(i,\,\Delta)-\epsilon'(i,\,\Delta)} = 1.$$

Applying Lemma 3.2(ii), we obtain $\epsilon(i, \Delta) = \epsilon'(i, \Delta)$ for all functions Δ and all integers $i \in \{0, ..., r\}$ such that $a_i \neq a$. Similarly, we have $\epsilon(i, \Delta) = \epsilon''(i, \Delta)$ if $a_i \neq b$

and $\epsilon'(i, \Delta) = \epsilon''(i, \Delta)$ if $a_i \neq c$. It follows that $\epsilon(i, \Delta) = \epsilon'(i, \Delta)$ for all function Δ and all integer $i \in \{0, ..., r\}$, hence $\psi = \psi'$. Thus $\varphi(c) = \psi'(c) = \psi(c)$, as required.

Proof of Theorem 2.1. We argue by induction on the nilpotency class k of M_k . If k=2, the result follows from [3, Theorem 2(ii)] (in this case, each normal automorphism is inner). Now consider a normal automorphism φ of M_k , with k>2. Then φ induces a normal automorphism on the quotient group $M_k/\gamma_k(M_k)$. By induction, since this quotient is isomorphic to M_{k-1} , there exists a generalized inner automorphism ψ : $M_k \to M_k$ such that $\varphi(x) = \psi(x)\theta(x)$, where $\theta(x)$ is an element of $\gamma_k(M_k)$. It follows that $\psi^{-1}(\varphi(x)) = x\psi^{-1}(\theta(x))$. Thus $\psi' := \psi^{-1} \circ \varphi$ is a normal automorphism of M_k acting trivially on $M_k/\gamma_k(M_k)$. By Lemma 3.4, ψ' is a generalized inner automorphism, and so is $\varphi = \psi \circ \psi'$. This completes the proof of Theorem 2.1.

REFERENCES

- 1. A. Caranti and C. M. Scoppola, Endomorphisms of two-generated metabelian groups that induce the identity modulo the derived subgroup, *Arch. Math.* **56** (1991), 218–227.
- **2.** G. Endimioni, Applications rationnelles d'un groupe nilpotent, C. R. Acad. Sci. Paris **314** (1992), 431–434.
- **3.** G. Endimioni, Pointwise inner automorphisms in a free nilpotent group, *Quart. J. Math.* **53** (2002), 397–402.
- **4.** J. V. Kuz'min, Inner endomorphisms of metabelian groups (Russian), *Sibirsk. Mat. Zh.* **16** (1975), 736–744; Translation in *Siberian Math. J.* **16** (1976), 563–568.
 - 5. A. Lubotzky, Normal automorphisms of free groups, J. Algebra 63 (1980), 494–498.
 - **6.** H. Neumann, *Varieties of groups* (Springer-Verlag, Berlin, 1967).
 - 7. D. J. S. Robinson, A course in the theory of groups (Springer-Verlag, New York, 1996).
- **8.** N. S. Romanovskii, Normal automorphisms of free solvable pro-*p*-groups (Russian). *Algebra i Logika* **36** (1997), 441–453; Translation in *Algebra and Logic* **36** (1997), 257–263.