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Abstract

In this paper we consider a natural extension of the minimum time problem in
optimal control theory which we refer to as the minimum trapping time problem.
The minimum trapping time problem requires a fixed time interval [0, 7"], where
T is finite. The aim is to determine a control for which the system trajectory
not only reaches a specified target in minimum time but also remains trapped
within the target until time T. Our aim is to devise a computational procedure
for solving the minimum trapping time problem. The computational procedure we
adopt uses control parametrisation in which the class of controls is approximated by
a class of piecewise constant functions. The problem we are solving is therefore an
approximation to the original minimum trapping time problem. Some properties
for the approximate problem are then established. These lead to an extremely
efficient iterative procedure for calculating the minimum trapping time.

1. Introduction

An extremely important and extensively studied problem in optimal control
theory is the minimum time problem (see, for example, [1,2,3,4]). In this pa-
per we consider a natural extension of this which we refer to as the minimum
trapping time problem. We are interested in an actual solution procedure for
solving problems which can be formulated as minimum trapping time prob-
lems. To our knowledge, problems of this type have not been formulated
previously in the optimal control literature, much less solved.

The minimum trapping time problem requires a fixed time interval [0, T],
where T is finite. The aim is to determine a control, subject to its constraints,
for which the system trajectory not only reaches a specified target in minimum
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[2] Minimum trapping time 101

time but also remains trapped within the target until time T. Of course, a
necessary condition for such a minimum time, called T* , to exist is that the
system is controllable to the target in time t < T.

Many problems in optimal control can be naturally formulated as mini-
mum trapping time problems. There are biological or biomedical problems,
for example, where it may be desirable to quickly return one or more of the
states to acceptable levels and keep them there. A specific example might be
to use externally supplied insulin to control a diabetic patient's blood glucose
level. Another class of problems for which the minimum trapping problem
is a natural setting is that of tracking problems in which the aim is to reach
and remain close to a desirable trajectory in minimum time.

In Section 2, there is a precise statement of the minimum trapping time
problem and various assumptions which guarantee the existence of a solu-
tion. The actual computation of the minimum trapping time requires that
the class of admissible controls be approximated. As discussed in Section
3, the computational procedure we adopt uses control parametrisation (see
[5,6,7]) in which the class of controls is approximated by a class of piecewise
constant functions. The problem we are solving is therefore an approxima-
tion to the original minimum trapping time problem. Some properties for
the approximate problem are then established. These lead to an extremely
efficient iterative method for calculating the minimum trapping time as dis-
cussed in Section 4. Two simple examples are then presented in Section 5 to
illustrate the implementation of the solution procedure.

2. Problem statement

Consider the following differential equation on the fixed time interval

[0,71:
x(t) = f(t, x(t), u(t)). (2.1a)

Here, x = [x{, ...xn]
T , u = [ul, ... , ur]

T are, respectively, the state and
control vectors and / = [ / , , . . . , fn]

T . The initial condition for the differ-
ential equation (2.1a) is

x(0) = x°, (2.1b)

where x° is a given vector in R" . Define

U = {veRr:(Ei)Tv<bi, i=\,...,q), (2.2)

where E', i = \, ... , q , are /--vectors, and b(, i = 1, . . . , q , are real
numbers. A bounded measurable function from [0, T] into U is called an
admissible control. Let % be the class of all such admissible controls and
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102 M. E. Fisher, J. L. Noakes and K. L. Teo [3]

for each u e W, let x(-\u) be the corresponding solution of the system (2.1).
We define a target set Z by the inequality

g(t,x)<0, (2.3)

where g is a real-valued function defined on [0, T] x Rn .
The problem is to find the minimum time T* € (0, T) and a corresponding

control u* for the solution x{t\u*) to system (2.1) to reach and remain in
the target set Z until time T. We call this the minimum trapping time
problem and refer to it as problem (P). To be more specific, let &" be a
subset of [0, T] defined as follows: Corresponding to each t e / , there
exists a control u e % such that g(t, x(t\u)) < 0, for all t e [T, T]. Our
problem is to find a T* G (0, T) such that

T* = inf T. (2.4)

T* will be called the minimum trapping time.
To solve our problem we assume the following.
(Al) For each compact set Q c i ? r , there exists a positive constant K such

that \f(t,x, u)\ <K(l + |x |) , forall (t,x, « ) e [ 0 , T] x Rn x Q ;
(A2) fi(t, x, u), i = 1 , . . . , « , are piecewise continuous on [0, T] for

each (x, u) e R" x Rr; furthermore, ft{t, x, u), i = 1 , ... , n , are
continuously difFerentiable with respect to each of the components
x, u for each fixed te[0,T];

(A3) g(t, x) is continuously differentiable with respect to each of the com-
ponents t, x;

(A4) There exists T € (0, T) such that r e / . (A necessary condition
for this assumption to be satisfied is that there exists t e (0, T) such
that the system (2.1) is controllable to the target in time t.)

(A5) Let t e / and e > 0 be arbitrary such that T + s < T. Then, there
exists u e %S such that g(t, x(t\u)) < 0 for all t e [r + e, T] where
x(t\u) satisfies (2.1).

(A6) & is closed.
(A7) x° <£ Z.

As a consequence of the definition of &~ and assumptions (A4) and (A6) we
have that & = [T* , T] where T* e (0, T).

In this paper, our aim is to derive an implementable algorithm for solving
the minimum trapping time problem (P). To this end, consider the following
optimal control problem which we refer to as (PT):

For a fixed x e [0, T] minimise the functional J{x, u) with respect to
« 6 ^ where

/ ( T ,u)= I {max(g(/, x(t\u)), 0)}2 dt, (2.5)

and x{t\u) satisfies the system (2.1).
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[4] Minimum trapping time 103

Denote the optimal value of the objective for this problem as y/{x); that
is,

y/(r) = min J{x, u). (2.6)

Note that y/(i) = 0 if and only if T e &~. One obvious property of the
real valued function y/ is that it is a nonincreasing function of T. The
solution T* to the minimum trapping time problem (P), if it exists, is then
the minimum value of T e [0, T] which is a zero of the function y/.

The problem we now have is essentially to find the first zero of the real val-
ued function y/ in [0, T]. One approach is to use a zero-finding algorithm
to generate a sequence of points xk, k = 1,2, ... which, hopefully, will
then converge to T* . At each rk we evaluate v{~ck) by solving the optimal
control problem (Pr ) .

In the absence of any knowledge of the properties of y/, other than the
existence of a zero in [0, T], the obvious method to use is the bisection
method. In 10 iterations, this method will provide us with an interval con-
taining T* which is 0.1 % the size of [0, T]. There are of course other
methods based on certain assumptions about the form of the function y/
near T* which may provide this accuracy in fewer iterations. These methods
all require the solution of a sequence of optimal control problems (PT) in
order to evaluate function values of y/. The method we use to solve these
subproblems is based on the concept of control parametnsation ([5,6,7]) in
which the time interval [0, T] is partitioned into equal subintervals on which
the controls are approximated by constant functions. Note that any member
in the family of gradient-restoration methods due to Miele and his coworkers
([8,9,10]) could also be used to solve these subproblems. In the next section
we use control parametnsation and derive, under certain assumptions, prop-
erties of the function y/ which enable us to construct a simple but extremely
efficient algorithm for estimating T* .

3. Control parametnsation

To begin, partition the time interval [0, T] into N equal subintervals of
length A = T/N which are closed on the left and open on the right. On each
subinterval, each control is approximated by a constant function. Hence we
have:

M(0 = £ < / * , « (3.1)
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104 M. E. Fisher, J. L. Noakes and K. L. Teo [5]

where Xt(t) is the indicator function defined by

* / W 10 elsewhere,

and ap is a constant vector in Rs with s = rNp . Let Ap be the class of all
those piecewise constant functions which are consistent with the partition,tose pieceise constat uctions
namely, vf e Ap can be written as

where ap' e Rr. This means that each control u" e Ap can be identified
w i t h t h e v e c t o r a " = [ ( a p ' l ) T , . . . , {a"'N")T]T w h e r e , f o r / = I , . . . , N p ,

ap'1 =]ap'', ... , 0P'']T . For convenience, we will sometimes write ap in
the form [ap, ... , ap]T .

Now define
Up = Ur\Ap, (3.3)

and

lf = { ( 7 P G R s : ( E i ) T a p ' ' < b n 1 = 1,...,Np, i = l , . . . , q } . ( 3 . 4 )

Let x{-\ap) represent the solution of the system (2.1) corresponding to the
control a" e If and let F" be a subset of F in which the controls are
restricted to Up.

For a given partition of [0, T], we obtain an approximation to the optimal
control problem (PT) by restricting the control to U" . The approximate
problem will be formulated as follows: For a fixed i e [ 0 , T] minimise the
function Jp(r, a") with respect to a" e If where

J"{x ,<7P)= [ {max(g(t, x{t\a")), 0)}2 dt, (3.5)

and x{t\ap) satisfies the system (2.1).
We denote the optimal value of the objective for this optimisation problem

as y/p{t), that is,
y/"{x)= m i n / W ) . (3.6)

p€Lp

This optimal parameter selection problem will be referred to as (Pp T).

LEMMA 3.1. There exists a T e (0, T) and a positive integer p such that
t e F" for all t&(r,T] and all p>p.

PROOF. By (A4) and (A5), there exists a ? e (0, T) and a u e U such
that g(t, x(t\ti)) < 0 for all t e (?, T]. From Lemma 4.3 in [11],
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where 1/ e U" , can be made arbitrarily close to x(t\u), where u e U, for
all t G [0, T] provided p is large enough. It follows from (A3), therefore,
that there exists p such that g(t, x{t\i/)) < 0 for all t e (T, T] and all
P >P-

As in (2.4), we define TP'* by

/ ' * = inf T, (3.7)

and denote by ap' * the corresponding value of ap which minimises Jp .
If we repeat assumption (A6) for Fp then Fp = [TP'* , T] where TP'* E
(0,T).

The following Lemma lists some properties of the function \f/p\ [0, T\—*
[0, 00] which are immediate consequences of our definitions and assump-
tions (Al) to (A7).

LEMMA 3.2. For a fixed positive integer p,
(i) ^ p : [ 0 , T] —>• [0, 00] is nonincreasing;
(ii) </(0)>0 and p

(iii) p

We now make an assumption regarding the manner in which the system
trajectories enter the target set Z . In most cases this is equivalent to say-
ing that, at the minimum trapping time, the system trajectories cross the
boundary of the target set transversely.

(A8) Let h: [0, T] x Zp -+ R be defined near {i*'*, a"'*) by

h(z,ap) = g(T,x(T\op)); (3.8)

then ^* "*

LEMMA 3.3. There exists J V c I ' and a unique C function (/>: N -* [0, T]
with (p(op'*) — rp'* such that

g{<p{op),x{<p{op)\op)) = 0 (3.9)

and

(i) Km —— (r,ap) = 0 (3.10)

(ii) lim ?J1(T,CTP) = 0 (3.11)
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106 M. E. Fisher, J. L. Noakes and K. L. Teo [7]

PROOF. The implicit function theorem together with the hypothesis (A8) im-
plies the existence of a neighbourhood N of ap'* in I? and a unique
W fimMmn «•• JVf _ * m Tl cotlcArm^ ,„(~P ' * ^ _ J> ' * ~~A Ut,*l~P\ ~P\ —

0 . This establishes (3.9). From (A8) it follows that g(x, x(x\op)) > 0
for T < (f>{op) and sufficiently close. Therefore, and by (3.5), dJp/d-c —
-{g{x, X(T\OP))}2 for T < (p{op). But J P ( T , CT") = 0, for x > <p{op), and
this, together with (3.9), establishes equations (3.10) to (3.12).

We next impose a smooth selection hypothesis:
(A9) There exists a C1 function i ^ : [ 0 , / ' * ] - » ^ such that

(i) £>{xp'') = al>'' and
(ii) y/p(x) = Jp{x, £(x)) for x < T*7'* .

Our aim is ultimately to approximate i//p by a polynomial near
(xp'*, ap'*). However, it is possible that y/p may not even be C2 and
so we first consider how to approximate it by a C function ij/p in a neigh-
bourhood of (xp'*, ap'*). This can be achieved by approximating Jp by a
sufficiently smooth function V and then defining y/"(x) — T'ix, £,{x)). Jp

is approximated by V in such a way that the partial derivatives of Jp are
the same as those of Jp , at least where the latter are defined, namely

(0) Jp(xp'\ap'*) = 0, (3.13)

(1) ^(<p(crp),<jp) = 0, (3.14)

(ii) ^ 4 - ( p ( a p ) V ) = 0, (3.15)
ox

^ ^ 0 ' J = l'---'s- (3.16)

We also require that, for a given value of x, J"(x, crp) should be minimised
by taking CTP = £,{x). For a fixed value of x we now expand Jp in a Taylor
expansion in crp about <{;(T) . There exists a neighbourhood N of op'* in
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IF and functions cJ, y: N x [0, ip'*] -* R with cl:J = Cj ( such that

s Ft V

T(x ,ap) = ipp(r) + E ^
i= 1 '

E I X " «T).X-,;(T' ffP)K " *<*);)• (3-
We shall assume that the ct j are C2 functions.

LEMMA 3.4. At the point r = T^ ' *, we have, for i = 1, 2, ... , s,

^( /• ' .^•WL-O. (3-18)*-^ do-
1=1 '

and

^ ^ " ( T " 1 * ) , = 0. (3.19)

PROOF. Let DOPJP(TP'* , ^(TP'*)) be the vector in Rs with components

Consider a neighbourhood N of op'* in I? in which Jp(rp''', ap) is min-
imised by taking ap = ^(rp'*). If ^(T^1*) is an interior point of Xp then
D^Fif'*, <?(TP'*)) = 0 and (3.18) and (3.19) follow. Suppose £(r"'*) is
a boundary point of IF lying on exactly one of the hyperplanes which form
the boundary of If as denned by (3.4). Suppose that

DnPJp(Tp'\Z(Tp'*))?0. (3.20)

A necessary condition that ap
 =£(TP'*) is a minimum point of yp(-rp'*, ap)

is that DIJPJP(TP'* , <^(TP>*)) is a vector orthogonal to the hyperplane contain-
ing ^(TF'*). Let T be close to r"'*. Since T' is C1 there exists a neigh-
bourhood N' of a"'* in 2P in which D^Pix, £(T)) ^ 0 and ^ ( T , CTP)
is minimized by taking ap — £(T) . Hence ^(T) must also be on the same
hyperplane forming part of the boundary of IF as £(rp'*) since, if not, <^(T)
would be an interior point of IF which contradicts (3.20). This implies that
€'(tp'*) is a vector in the same hyperplane. This argument can be repeated
to show that ^"(rp'*) is also a vector in this hyperplane. Hence, £,' and £,"
are vectors orthogonal to Dap J13 at T = TP'* . A similar argument can be
presented in the case when ^(rp'*) lies on the intersection of two or more
hyperplanes which form the boundary of IF to show that ^'(TP<*) (and
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108 M. E. Fisher, J. L. Noakes and K, L. Teo [9]

£"(.i"'*)) is again a vector orthogonal to D^Jp{xp'*, £(*"'*)). This proves
(3.18) and (3.19).

THEOREM 3.1. The C2 function ipp satisfies

/ '* ) = 0. (3.21)

PROOF. $"{•?'*) = 0 because of (3.13) and £( / '*) = a"'*. «?P)V'*) =
0 from (3.14) and (3.18), where we have again used €(xp'*) = ap'*. Finally,
from (3.15), (3.17), and (3.19),

2 7"J
ox

1-1 J=i

Now, (3.16) says that {d2JPldap
jd-c){xPt*,ap'*) = Q, j = 1 , . . . , s ; which

by (3.17), is equal to -2Y?j=xciJ{Tp'\op'*)£{Tp'*)j, i = \ , . . . , s . Mul-

tiplying by £,'{xp'*)i and summing over i we obtain (y/p)"{xp'*) = 0.

4. The solution procedure

For a fixed positive integer p we here present an algorithm for locating
the first zero, xp'* of the function i//p defined by (3.6). It is based on an
iteration which is a simple variation of the secant method for locating a zero
of a nonlinear function.

The results of Theorem 3.1 imply that ipp has a triple zero at x = TP'* .
Given two starting values T, and x2 , the secant method adapted to the case
of multiple roots (see [12], page 153) results in the recursive formula

T * + . = T f c + ! 7 ^ Z T i > * - 2 , 3 , . . . , (4.1)

where

^Srr̂ - (4-2)

Of course, in practice we use these formulae with values of the function y/p

as defined by (3.6) rather than ipp .
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Algorithm

1. Choose a positive integer p (the number of partitions of [0, T] for
the control parametrisation). Choose a value for the relative accuracy
e.

2. T2 = T

repeat T2 = 0.5 * T2 ; evaluate y/p{t2) until ^ P ( T 2 ) > 0;
Tj = 0.5 * T2 .

3. Evaluate y/p{T{) and compute T3 from (4.1) and (4.2); k = 2 .
4. While |rfc+1 -zk\ <eT do

evaluate VP(ik+\)
(a) if ^(Tfc+1) = 0 then

repeat

= Tk+i ~ mini2e > °-5 * (T*+i - T*
recompute y/p(rk+l)

until ^ ( T ^ + 1 ) > 0 ;
(b) k — k + 1 ; compute Tfc+1 from (4.1) and (4.2).

Notes

1. Step 2 generates two points T, and T2 to the left of i?'*.
2. The iterative procedure in the algorithm is a combination of the se-

cant method and bisection-like steps which generate a strictly mono-
tonic increasing sequence {T^} bounded above by •f'*. Conver-
gence to / ' * can therefore be established if the algorithm is allowed
to proceed to the limit fc-+oo.

3. Step 4(a) is included to cover the possibility that rk+l > T"'* . If
this occurs, rk+l is decreased by amounts no greater than 2e until
rfc+I < TP' *. If this step is invoked then it has the effect of bracketing
T?'* in an interval of width no more than 2e. The midpoint of this
interval then satisfies the convergence criterion.

4. The iterative formula (4.1) has the same order of convergence as
the secant method although, if step 4(a) is invoked, the method is
only first order. Experience shows, however, that convergence to a
small neighbourhood of r"' * is extremely fast and T3 usually gives
a reasonably good estimate of / ' ' . In the examples we tried, an
accuracy of less than 1% (e = 0.01) was obtained with at most 4 or
5 function evaluations.
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110 M. E. Fisher, J. L. Noakes and K. L. Teo [11]

An important issue is the relationship between T77' *, the solution to the ap-
proximate problem, and T* , the solution to the original problem (P). Con-
vergence results exist ([5,6,11,13]) for optimal control problems, including
minimum time problems, which show that, as p —> oo, the solution to the
approximate problem converges to the solution to the original problem.

5. Examples

Here we apply the algorithm of the previous section to estimate the min-
imum trapping time for two simple problems. Both problems were solved
using the optimal control software MISER ([7]).

EXAMPLE 5.1. From [14], the state equations for a continuous stirred-tank
chemical reactor are

*,(0 = -2[x,(/) + 0.25] + [x2(t) + 0.5] exp [ | ^ ^ ] - [*,(') + 0.25]«(0

x2(t) = -0.5 - x2(t) - [x2(t) + 0.5] exp [^%]

(5.1)
Here xl(t) is the deviation from the steady state temperature, x2(t) is the de-
viation from the steady state concentration and u{t) is a normalised control
variable which represents the effect of coolant flow on the chemical reaction.

Suppose the aim is to return the temperature and concentration from a
given initial state to a small neighbourhood of their steady state values as
quickly as possible and maintain them there for a given time period. This is
a minimum trapping time problem and for the purposes of this example we
choose the time period as [0, T] where T — 1. The initial conditions are

*,(()) = 0.05, x,(0) = 0 (5.2)

and the bounds on the control are

- 1 < « ( O < 1 - (5-3)

The aim is to drive the system to the target given by

||x(0H<0.01.

Corresponding to this we define the function g: [0, T] x R2 —> R as

* ( * , * ) = 1 0 0 | | J C ( 0 | | - 1 < 0 . (5.4)

Table 5.1 summarises the results for the solution of this problem for the
cases p = 10, 20 and 40. In these three cases, quite accurate estimates of
rp'* are obtained with only three evaluations of yp{i), that is, by executing
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only steps 1 to 3 of the algorithm. The results show that the case p = 20
probably gives an accurate enough estimate of T* (to within, say 1%) for
most problems. The optimal control u{t), corresponding to the minimum
trapping time T20'* , is plotted Figure 5.1 (a) and the corresponding states
xx{t) and x2(t) are shown in Figure 5.1(b).

TABLE 5.1. Results for Example 5.1.

p

10

20

40

T,

0.25

0.25

0.25

6.149

6.130

6.122

T2

0.5

0.5

0.5

0.5423

0.4556

0.4483

T3

0.701

0.681

0.680

V(t3)

1.573 x 10~8

2.454 x 10~7

9.317 x 10"7

T4

0.701

0.683

0.682

EXAMPLE 5.2. The second example is a simple linear tracking problem from
[15], page 223. The system equations are

xl(t)=x2(t)

together with the initial conditions

x,(0) = -4 .0 ,

(5.5)

(5.6)

Suppose the aim is to drive the state xl close to the trajectory z(t) — 0.2t
in minimum time and maintain it there over a given time period. For this
example we choose the time period as [0, 6] and the bounds on the control
are

- 1 0 < H ( f ) < 1 0 . (5.7)

The target set is given by \x{(t) - z(t)\ < 0.01 and corresponding to this we
define

g(t,x)= (5.8)

Table 5.2 summarises the results for the solution of this problem for the
cases p — 10, 20 and 40. In these three cases, quite accurate estimates of
TP'* are obtained with four or five evaluations of y/(x). Three evaluations
are required for step 2 of the algorithm. In the case p = 40, step 4(a) was
executed with e = 0.01 (see the bottom row of Table 5.2). Again the results
show that the case p - 20 probably gives an accurate enough estimate of
T* . The optimal control u{t), corresponding to the minimum trapping time
T ' *, is plotted in Figure 5.2(a) and the corresponding states x{ {t) and x2(t)
are shown in Figure 5.2(b).
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u(t)

[13]

0.1 -

-o . i

1.0
.. t

0.683

(a)

1.0

(b)

FIGURE 5.1. The (a) optimal control and (b) optimal states, for Example 5.1 for the case
= 20.

TABLE 5.2. Results for Example 5.2.

p

10

20

40

T l

0.75

0.75

0.75

V(

8.480

8.442

8.413

X

X

X

104

104

104

X

1

1

1

2

5

5

5

1.274

1.236

1.207

T2

X

X

X

104

104

104

T3

2.35

2.33

2.32

2.20

V(r3)

12.76

4.812 x 10"7

0

0.2251

T4

2.45

2.33

2.23
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10

- 10 L

u(t)

2.33
6 - t

(a)

= 0.2t

(b)

FIGURE 5.2. The (a) optimal control and (b) optimal states, for Example 5.2 for the case
= 20.
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