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Abstract. Let A be a finite-dimensional hereditary algebra over a finite fiel# (A) andC(A) be,
respectively, the Hall algebra and the composition algebra,of” be the isomorphism classes of
finite-dimensionaA-modules and the isomorphism classes of simplemodules. We defin&, and

«8, @ € P, to be the right and left derivations @8 (A), respectively. By using these derivations and

the action of the braid group on the set of exceptional sequencesnodd, we provide an effective
algorithm of calculating the root vectors of real Schur roots. This means that we get an inductive
method to express, as the combinations of elememitsin the Hall algebra, wheree 7 andi € 2

is any exceptional\-module. Because of the canonical isomorphism between the Drinfeld—Jimbo
guantum group and the generic composition algebra, our algorithm is applicable directly to quantum
groups. In particular, all the root vectors are obtained in this way in the finite type cases.
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1. Introduction

1.1. Let g be a semisimple Lie algebra over the complex fi€EldU(g) be the
universal enveloping algebra of It is well-known thatg has a root space decom-
position

9=0P ][]

aed

with the root systen®. Moreover, for any € @, dimeg, = 1. Choose a complete
set of simple roots imb and denote it by, then the root systend is divided into
two parts:® = &* | J®~, whered* and ®~ are positive and negative roots,
respectively. Thereforg has a triangular decomposition

9=9 PuPyg"

For anya € ®*, choose nonzers, € g, such thaf{x, € g,|a € ®*} constitute
a basis ofg*. Moreover, it is possible to choose € g,(x¢ € ®*) such that
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{xo € Q4|la € ®T} is a Chevalley basis af. The vectors{x, € g,|a € T}
are calledroot vectors.Of courseg ¢ U(g) as Lie subalgebra and(g) has the
triangular decompositiotJ(g) = U~ ® U° @ U+ which satisfiesg™ ¢ U™,
g~ c U~ andgy c U°.

Itis well known that the semisimple Lie algelgdtself cannot be quantized, but
according to Drinfeld and Jimbo, the universal enveloping algeliga of g admits
a nontrivial quantization witly as a parameter, that is the so-called quantum group
or the quantum enveloping algebdi (g) of g. Wheng # 1, there is no longer
g C Uq(9). However according to Lusztig [L], there is an action of the braid group
onUq(9). Itis still possible to obtain a family of linearly independent elements of
Uaf(g) by applying the braid group action in an admissible order on the generators
of U (g). Those elements obtained are degenerated into a bagaafigg — 1.
So we also call those elements toet vectorsof Uaf(g).

1.2.Given any Dynkin diagramh of type A,,, B,, C,, D,,, E;(i = 6,7, 8), F, and

G, and any finite fieldk, there exists a finite-dimensional hereditaralgebraA
corresponding ta\. Let » be the set of isomorphism classes of finite-dimensional
A-modules. The Hall algebré¢ = #(A) is by definition the freeZ[v, v=1]-
module with the basif, |o € £} wherev? = g andg = |k|; the multiplication is
given byu,ug = v 3", o glou; foralle, g € £, where

(o, B) = dim, Homy (V,, Vﬂ) — dimy Exty (V,, Vﬁ)

with V,, € o, Vs € g andgj, is the number of submodules of V; such that
V./X and X lie in the isomorphism classesand 3, respectively. Letl c & be
the set of isomorphism classes of simplenodules. Ringel [R2,R3] has proved
there exists a canonical isomorphignbetween the Lusztig’s quantum group
and #(A) such thaty(6;) = u;,i € I, if they enjoy a common Dynkin diagram.
Furthermore, the generic fort# (A) of F(A) is canonically isomorphic to the
Drinfeld-Jimbo quantum grouplg(g) if they both enjoy a common Dynkin dia-
gram. Under the canonical isomorphism, Ringel has shown that thig,d&t €
P, V, indecomposablgjust provide a complete set of root vectorsugf(g).

1.3.0ne may ask the question: how to decompose the root vectors into the combin-
ations of the generators br(’;(g)? If we apply the Lusztig’s braid group operations

on Uaf(g) to deal with this question, a trouble appears immediately. Namely, we
cannot expect that the computation is undertaken in the interiUla*(Jg). Oppos-

itely, it often goes across into the negative gagt(g), although the final result of

the calculation lies ithaf(g). Ringel has pointed out in [R4] that the braid group ac-
tion on the exceptional sequencesAeinod in the sense of Crawley-Boevey [CB]
may provide an inductive constructure of root vectors. We will give a refinement of
his idea in the present paper. Namely, we will give an accurate recursive formula
to express:; as the combinations of; (i € I) for any exceptional module € 2.
According to our formula, the whole calculation is going on in the interidud;p(g)
moreover, it does not depend on the constructure of the exceptional sequences.
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It is well known that any indecomposabde-module is exceptional i\ is finite
representation type. So our result is suitable for the quantum enveloping algebra of
semisimple Lie algebra. In fact our research is made in the Hall algebras and the
composition algebras of any type. Because of the fundamental theorem of Green
and Ringel, namely, there exists a canonical isomorphism betwgég) and the
generic composition algebra (see [Gr], [R5]), our result is also suitable for the
guantum enveloping algebra of any symmetrizable Kac—Moody algebra.

A complete statement of our result is Theorem 5.1.

2. The Hall Algebra of a Hereditary Algebra

2.1. Let A be a finite-dimensional hereditary algebra over a finite figld® be
the set of isomorphism classes of finite-dimensianahodules,/ C & the set of
isomorphism classes of simple-modules. We choose a representatiyjec « for
anya € #. Given A-modulesM, N, let

(M, N) = dim, Hom, (M, N) — dim Ext, (M, N).

Since A is hereditary{M, N) depends only on the dimension vectors difrand
dimN. Fora, B € 2 we write (o, 8) = (V,, V). So the Ringel form—, —) is
defined orZ[I]. The Ringel symmetric forni—, —) is given by(«, 8) = («, B) +
(B, @) onZ[I].

2.2.Let R be a commutative integral domain containi@gv), wherev? = ¢, g =

|k| and Q(v) is the rational function field ob. The Hall algebraj(A) is by
definition the freeR-module with the basi$u,la € £} and the multiplication
given asu,ug = v P Y, o elou; foralla, g € 2. Itis easy to verify thag (A)

is an associativél[/]-gradedR-algebra with the identity element. The grading
H(A) = ®,ennH: i1s defined as follows: for each € N[/], #, is the R-span

of the set{u; |» € £,dimV, = r}. Ringel [R2, R3] has proved that the elements
u;, i € I satisfy the quantum Serre relations

1—a;j 1

— dajj 1—a;;i—
Z(—l)’[ } wjuju; =0
t=0 t &i

for anyi # j in I, whereq;; = 2% & = dim, End(V;).

2.3.0Of course, a strong feature of a quantum group is its Hopf algebra structure.
According to Ringel-Green theory, we can get the Hopf algebra structure on the
Hall algebra by adding the torus algefrdo it. Let #(A, T) be a freeR-module
with the basig K u,|a € Z[I], » € P}, it is a Hopf algebra under the following
operations (see [X]).

(1) Multiplication:

Ugllg = p@h Zgéﬁu,\ for anya, 8 € P,

rEP
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Koug = v*Pugk, fora e Z[I1,p € P,
KaKﬂ :Ka+ﬁ fOfO{,IB e Z[I],

with identity elementig = Ko = 1.
(2) Comuiltiplication:

agd

ra) =Y v u,Ks ®ug. wherei e 2,
a.

o,feP

r(K,) = K, ® K,, wherex € Z[I],

with couniteu, = 0 foranyx # 0,1 € 2 andeK, = 1 for anya € Z[I].

(3) Antipode:
) X a e
O_(uk) = SAO + Z(—l)m Z U22i<./<)‘”kl>u %
m>=1 TEP a,
Agseeshm €P1

A T —
ngl...kmg;\l...kmK—Aun G(Ka) - K—aa

wherer € ,a € Z[I]andP, = £ — {0}.

We denote by®(A) the R-subalgebra off (A) which is generated by; (i
D), by C(A, T) the subalgebra off (A, T) which is generated by; (i € I) and
K, (@ € Z[I]). ClearlyC(A, T) is a Hopf subalgebra Gf (A, T). The subalgebra
C(A) is called thecomposition algebra.

As an important case, when is finite representation type, i.e, the corres-
ponding Lie algebrag is finite-dimensional complex semi-simple, the Hall algebra
coincides with its composition subalgebra.

2.4.The above fact depends on the following Green formula.
For anya, B, a1, B1 € P, let

A A a Cl/_z;a Cl/g
Nl = Nl(aa ,Ba o1, 131) = E gaﬁgalﬁl B aal 17
A
rEP

N2 = NZ(Ol, /87 o1, :31) = Z q_<p’r>gzoggzlflgglrgg'l[apa”a‘flaf

0,0,01,T1EP

thenN; = N (see [Gr])

2.5. Let k be the algebraic closure &f For anyn € N, let F(n) be a subfield

of k such that[F(n):k] = n. We defineA(n) = A ®; F(n), then A(n) is

a finite-dimensional hereditary (n)-algebra corresponding to the same Cartan
datum as that oA. We also have the Hall algeb#d, = #,(A (n)) of A(n). Define

I =[], oH:. Letv = (v,), € TT wherev, = {/|F(n)|. Obviouslyv lies in the
center offT and is transcendental over the rational fil@dLetu; = (u;(n)), € I
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satisfy thaty; (n) is the element of¢ (A (n)) corresponding t®; (n), whereV; (n) is
the simpleA (n)-module which lies in the clags The generic composition algebra
C(A) of the Cartan datum is defined to be the subring &f generated by the ele-
mentsv, vt andu; (i € I). LetUj;(g) be the positive part of the Drinfeld—Jimbo
guantum group corresponding to the Cartan datur\ fundamental theorem of
Green and Ringel concludes that the mappjngaf(g) — C(A) with n(E;) = u;

(i € I) is a bijection as associative algebras. Moreover, if we exte;j’l@) to the
Borel part ofUy(g) andC(A) to C(A, T), thenn can be extended canonically to
be a bijection as Hopf algebras.

In the following, our results are stated for the Hall algelitaA) and for the
composition algebr& (A). Without any changes, the same conclusions hold for
the corresponding generic composition algedta). For any Cartan datum =
(1, (,)) (see [L]) and any finite field, there exists a finite-dimensional heredit-
ary k-algebraA such that the symmetric Ringel fortr-, —) of A together with
the index setl of simple A-modules gives a realization & (see [R5]). So our
result is really for the quantum groupaf(g) of any symmetrizable Kac-Moody
algebrag.

2.6. An indecomposibleA-module V, is called exceptionalprovided Ex} (V,,
V) = 0. Note that the endomorphism ring of an exceptiohahodule is always
a division ring; in our case, it is a finite field. A pai¥,, V) of exceptionalA-
modules is called aexceptional paiprovided we have in addition

Hom, (Vg, V,) = Extj (Vg, V) = 0.

A sequencgVy,, Vy,, - .., V,,) is calledexceptionalprovided any paicVy,, Vi)
with i < j is exceptional. An exceptional sequen@g,, V,,. ..., V,,) is said

to becompleteprovidedn = |I|: the number of isomorphism classes of simple
A-modules.

For any exceptional sequencg,,, V,,. ..., Vy,), let C(aq, ay, ..., o) be the
smallest full subcategory af-mod which contain®,,, V,,, ..., V,, and is closed
under extensions, kernels of epimorphisms and cokernels of monomorphisms. By
Crawley-Boevey [CB] and Ringel [R6], we know th@{ay, ay, ..., o) iS equiv-
alent to the module category of a finite-dimensional hereditary algebra with pre-
ciselys isomorphism classes of simple modules. Moreover, the functor @@,
ay, ..., ay) tothis module category is exact and induce isomorphisms on both Hom
and Ext. Thus we can talk about simple objects, projective and injective objects of
C(uy, ay, ..., ay), exceptional sequence f@(ay, o, ..., ), etc.

Since the endomorphism ring of any simple objectCaf:y, ay, ..., ay) is a
finite field, C (a1, ay, ..., ) is equivalent to the module category of a finite di-
mensional hereditary algebra over a finite field. In particulaGVif, V) is an
exceptional pair, therC(«, 8) is equivalent to the module category of a finite-
dimensional hereditary algebra over a finite field with two isomorphism classes of
simple modules. Since this kind of algebras have no regular exceptional module,
(see [R1]),(Ve, V) must be one of the following cases:
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(1) (V4, Vp) are slice modules in the preprojective component @f, ).

(2) (V, Vp) are slice modules in the preinjective componenC ok, 8).

(3) (Va, Vp) is orthogonal pair, i.e., HOR(V,, V) = Hom, (Vg, V,,) = 0. In this
case,V, is the simple injective object anids is the simple projective object of
C(a, B).

2.7.1f (V,, Vp) is an exceptional pair, then there are unique modiies g) and
R(a, B) with the property thaiL(«, ), V) and (Vg, R(a, B)) are exceptional
pair in C(«, B). Moreover, ifA = (Vy,, Vi, ..., Va,) IS @ complete exceptional
sequence, let X i < n, there are uniguely determined exceptional sequelces
(Vg Voo oo V) andD = (V,,, V,,, ..., V, ) such thatVg, =V, =V, for all
j i, i+l andVy,, = Vi, Vg, = L(o, oi11), Vyy, = Vi gy Vi = R(0ti, ti41).
Recall that the braid grou,, in n — 1 generatorg, o», ..., 0,_1 is the free group
with these generators and the relations;  10; = o;10;0; 1 forall1 <i <n—1
ando;o; = oj0; for j > i + 2. We defines;A = D,0,*A = B, in this way,
we obtain an action of the braid group,_1 on the set of complete exceptional
sequences (see [CB] [R6]). The above result is valid for arbitrary hereditary Artin
algebra, it is not necessary to assume the basis field is an algebric closed field (see
[R6]).

The effectiveness of our algorithm will base on the following three facts:

(1) Any exceptional module can be enlarged to a complete exceptional se-
guence. (Bongartz Lemma).

(2) The action of the braid grougB,_; on the set of complete exceptional
sequences is transitive. (the theorem of Crawley-Boevey).

(3) LetV, andV, be two exceptional modules, if divh = dimV,, thenV, ~
V,. (for example, see [Ke]).

2.8.1n the quantum group and the Hall algebra, the following notations and rela-
tions are often used.

vi—v7* .

D [sl=———g ="+ v e p o [s]!:lj{[r],
s 1 I T
[F}——[r]![s_r]!, sl="—7 =0 "+ +atl

s s |S]'
| — =
51! Em, r} s =771

We setg = v?, there are the following relations:
s — vr(xfr) S, .
r r

_ s(s—=1)
Is1 = v s, IsI'=v"Z [s]!,
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If we assumey = |k|, then[ i ] is just the number of-dimensional subspaces of
k*. For given a polynomialf € Z[v, v~!] and an integer;, we denote byf, the
polynomial obtained frony by replacingv by v°.

The following formula is often used too.

§ s
Z(—l)’vt(“l) [ } =0, fors> 0.
t=0 ?

® rog
A - &
(3) For any exceptional moduléd/,, set u; A/1t1e)uf, in Hall

algebras, where(1) = dim; End, V;. We have the following identities:!” =

W) Dy, whereu, = uy g ). @ )
—

2.9.LetA, B, X € A-mod, there is a homological formula to calculate the filtration
numbergjx"B according to Riedtmann [Rie] and Peng [P].

LEMMA. ForanyX, A, B € A-mod, we have

x |EXt; (A, B),||Auty X|
4.8 = |AUt, A||AUL, B|[Hom, (A, B)|’

where Ext} (A, B)yx is the set of all exact sequence Ext} (A, B) with middle
termX.

3. Some Derivation of a Hall Algebra

3.1.For anya € £, we denote by, and,é such thats,, .6 € Homg (FH(A),
F(AN)) given by respectlvely,

5(ux)—zvaﬂ8aﬁ — aA (o, 0) Zgaﬁ_uﬂ’

BeP BeP
(Soz(uk) Zvﬂagﬁa )La (o) Zgﬂa_u/s’
BeP BeP

wherei, o € £. In particular, for any € I,
. — (i.B) ;0. 9B . (B.i) g1 9B
i) =Y vl e Sl = D ov gﬂ, u,g,
BeP BeP
wherei € 2. Itis easily checked that far j € I,

(S,'j _ (S,'j 5(1,{) _ (Sij _ (Sij

,'(S i) = T = T A i — = TN A -
)= = e 1) a0 -1
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PROPOSITION 3.2For anyi € I andiy, A, € £, we have
D) i8uaun,) = 18Uy, + U, (:8) (us,),
Q) 8i(upyutn,) = 28 (uy s, + 1,8 (u5,).

Proof. We only prove (1), It is similar for (2).

i6(upty) = 8 (Z UW’AZ)gil)\ZMA)

rEP

= Z (h1.22) g}\l)\zlg(u)\)

reP
. a
— A, h2)+, A ﬂ
— v 22+ mgkl)\zgzﬂ
r,BeP
S uz, = | D v g,ﬁl up, | s,
p1reP
22) as,
= Z oA Zglﬂlgﬁilz ug
B.B1.€P gl

i A aﬁ
u}»l([a)(ulz) = u)tl Z v<l ﬁ2>gi/322a_;uﬁ2
2

BoeP

i\ Ba)+ (A A ag
- Z pP ﬂ2>glﬁzzg)~1ﬁ2 Zuﬁ'
Ba2.BeP *2

In order to prove (1), we only need to prove the following equation

(A1,22) 2 4B
ZU izt gxlngzﬁ

rEP
i,f1)+(B1.22) apy (i,»1) i,B2)+(A1,B2) ag,
Z vt glﬂlgﬁilz +vl ' Z CA Zglﬁzgllﬁz : (*)
B1e€P BoeP *2
Let
a,.a, a,aﬁ
= Ni(A1, A2 0, B) = R
1(A1, A2, 1, B) = nglxz @,
LEP
. —(p.01) I A2 i
= NZ()"la )\'27 L, IB) = Z |k| v 01)gp,élg()'i'lg:gagfjlalapaaaplacl'
p,0,01,01€P
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Weknowthatg,"w #0ifandonlyifp =0,0 =iorp=i,0 =0.p=0,0 =i
impliesp1 = A1. p = i,0 = 0 implieso; = A,. Thus

. —(i,A2) A1 B
No(hy hooi, B) = Y k|72 gl of  aiapa, + > gl2 b i ao,.

pPLEP o1€P

By replacingp; by g, ando, by 8,, we have

. —(i,A9) A A
NZ()\’]J )\'2’ L, IB) = Z |k| ¢ 2>giﬂllg§1)\2al’a/31a12 + Z giﬂzzgflﬁzaiallaﬁZ'

Bl BoeP

In order to provex), we need to show the following identity:

A a; aﬁa,\lah
glilz
a
reP

A2)— (1,2
Z p{HAF(B1r2) = (A1 ko) — gtﬁlgﬂlkza ap,a,+

preP

(A A A1,A2) A
+ 3 ol iR A2 o g, g

B2eP

We may assume here that
dimV,, =dimV; +dimVp,  dimVy =dimVp +dimV,,,
dimV;, = dimV, +dim Vs, dimVj = dimV,, + dim Vj,.
thus
(i, P1) + (B1, A2) — (A1, A2) — (i, B)
= (i, f1— B) + (B1— A1, 22)
= (i, —A2) + (=i, A2)
= —2(i, A2) (i, B2) + (A1, B2) + (i, A1) — (A1, A2) — (i, B)
= (i, B2) + (A1, B2) + (i, A1) + (A1, i) — (A1, X2) — (i, B)
= (i, Bo+ A1) + (A1, Bo + 1) — (A1, X2) — (i, B)
= (i, B) + (A1, A2) — (X1, A2) — (i, B) = 0.

Soin order to provésx), we just verify the following identity

Cl aﬂaklakz A2)
Z 811258 :,s P = Z 2 gzﬁlg,slxza ag,a;, + Z 81,328;\1;52010)\1“/32-
reP 2 preP peP
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But we have set? = |k|, sov—2i*2) = |k|~*2) This is just the equatioiV; (A4,
A2, i, B) = Ny (A1, Ao, i, B) by the Green formula in 2.4.

3.3. We call ;6 ands; the left and right derivation of the Hall algebi (A) re-
spectively. In general, ik ¢ I, .68, 8, have not the property as the same&s; in
Proposition 3.2. We call$, 8, the high order derivations Gf¢(A).

3.4.We consider the following linear maps:
$1: H(A) —> HOMR(H(A), H(A))
u, — 9
$2: H(A) —> HOMg(H(A), H(A))
u, — 06,
wherex € P

PROPOSITION.

(1) ¢1 is an anti-homomorphism, i (u;,u;,) = ¢1(u;,)P1(u;,)
(2) ¢2 is a homomorphism, i.@x(u;,u;s,) = ¢2(us,)P2(uy,).

Proof. We only prove (1), the proof of (2) is similar.

A1 ko) A
$r(uyu) = ¢ | D v uy

r3eP

A
= Z Uul’AZ)g)Li)quﬁl(ukg)’

r3eP

$r(unin) ) = Y v*el3 0 b () (uy)

r3eP
_ A1,A2) 573
= Y vhRel (.8) ()
r3eP
_ (A,22) 573 § (A3, P1)
- Z v 81z v gks /31
A3EP BreP
a
_ § : (A1,A2)+(A3,B1) “h
- U g)nl )ng)xg /31 uﬂl’
A3,B1€P

163074.tex; 11/05/1999; 11:35; p.10

https://doi.org/10.1023/A:1000947529874 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000947529874

EXCEPTIONAL SEQUENCES IN HALL ALGEBRAS AND QUANTUM GROUPS

G1(up)d1(up) (uy) = ¢1(up,)(,6(uy))

a
— ¢l(u)»2) Z v G1h) gkl ﬁ_uﬁ

BeP

= ) v g - (Mé)(uﬁ)

BeP

B.BreP

At the same time we have

dim Vg = dimV;, +dim Vg, dimV, =dimV;, + dim Vg,

dimV, =dimV,, + dim Vg, dimV,, =dimV;, +dimV;,.

So
(A1, B) + (A2, B1) = (A1, A2+ B1) + (A2, B1)
= (A1, A2) + (A1 + A2, B1)
= (A1, 22) + (A3, f1).

In order to prove (1), we only need to prove

(A1,22)+(A3,B1) X (A1, B)+(r2.B1) B
Z v gn 1283, ﬁ1 a Z v S B,

r3eP peP

Itis reduced to

A3 A _ A B
Z Er1.028h3,81 = Z 81,88 1281

r3eP BeP

The two sides of the above equalgtplxzﬁl. This completes the proof.

(x ag (A “/31
Z v 1ﬁg}tlﬁ < Zﬁlgxzﬁl )

(A1, B)+(A ag,
Z vt Zﬁlgklﬁglzﬁl Up,-

171

Remark3.5. From Propositions 3.2 and 3.4uif € C(A), then,d (C(A)) C
C(A) 8,(C(A)) C C(A). Moreover ifu, is expressed as the combination:Qf
i € I,then,é is immediately expressed as the corresponding combinatiofs of

i € I, and completely same for the expressios by ;.
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4. Exceptional Pair

Let (Vy, Vp) be an exceptional pair af-mod, we denote by

n(a, f) =

@B) @B e e @h)
@)~ @ BB~ BB

4.1. THE CASE OFn(«, f)dimvy > dimuvg
LEMMA 4.1.1. In C(«, B) there exist the relative AR-sequence
00— V, — n(a, p)Vy — V3 — 0,
whereL(«, B) >V,
Proof. If n(«, p)dimV, > dim Vg, then(V,, Vp) are the slice modules in the
preprojective component or in the preinjective componer@ @f, 8). The relative

irreducible map space b, g, (V,, Vp) equals to Hom(V,, V). Assume

0 Vy n Va Vﬁ 0

to be an relative AR-sequence@ic, ), then we know that = [Irre gy (Vi Vp):
End, (V,)] = [Hom, (V,, Vi): Endy (V,)]. Since Ex} (V,, Vo) = 0, EXty (V,, V)
= 0, we haver = n(a, 8). This completes the proof.

LEMMA 4.1.2. LetV,, V;, V, be the same as those in Lemta 1, if f:n (o, B)
Vo — Vg is an epimorphism, then kef ~ V, or ker f ~ V,, @ iV, with
1<i < n—1, moreover herd/,, can be embedded intd, and no longer contain

direct summands which are isomorphicWg.
Proof. We know that there exists a relative AR-sequenceé (a, 3)

0— V, 2+ n(. f)Vy —> Vs — 0

and f is a nonsplit epimorphism, so the diagram

0 ker f n(a, B)Vy —L— v 0

S

0 V, —2+ n(a, B)Vy 44— Vj 0

commutates. The morphismhas the forme = (c¢;j)nx, With n = n(«, ) and
¢ij € EndyV,. But End,V, is a finite field ,so there exist inverse transformation
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hi, ho € M,(End,V,) such thathich, = (6 8) where[ is an unit matrix. We
consider the following diagram

-1

ghy hif

0 ker f n(a, B)V, Vg 0
I0
C e
bh 2ta
0 v, % n(a, B)Vy = Vg 0.

The second exact sequence is also a relative AR-sequerde ). If ¢ is non-
degenerate, i.é = I,.,, then kerf ~ V,. If ¢ is degenerate, then kef ~

kerhyf ~ ker((} 9))h;'a). This completes the proof.

LEMMA 4.1.3. LetV,, V4, V,, V,, be the same as those in Lem#ha 2, then we
have

[Ext} (Vg, V) : End, V]
= [EXt} (Vg, Vi, ®iVy) : Endy Vg1 = [EXty (Vp, V3,) :Endy V] = 1.

Proof.We know that Hom (Vg, V) =Homy (Vg, V,)) =Hom, (V, Vy, ®iV,)
= 0, Exty (V4, V) = Ext}(Vg, V) = Ext (V,, Vo) = 0, so dim Ext} (V4,
V,) = =(B.v) = —(B, n(e, B + B) = —(B, n(a, Pa)+ (B, B) = dim;
End, V. It follows [Ext}\(vﬁ, Vy):Endy Vg] = 1. By the same reason, we have
[Ext}\(vﬁ, Vi, @ iVy):EndyVg] = 1. Since Exi(v,g, V,) = 0, we also have
[EXt, (Vg, Vi,) : Endy V)] = 1.

For any exceptional modul®;, we denote by (L) = (A, A) = %(A,A) =
dim; End, V, and for any exceptional paiV,, V), n = n(«, g) for convenience.

LEMMA 4.1.4. LetV,, Vg, V, be the same as those in Lem#a.1, then in the
Hall algebra

B _ 1)a
ugu, = 61 4 Yna |y (B)
dpdy dpdy

wherea, = |Aut, V| forr € P.
Proof. By definitionugu, = v#7) 3", . ¢4 u;. According to the homological
formula in 2.9,

g)\ — |EXt}\(Vﬂ’Vy)V~A|aA
PY ™ aga, |Homy (Vg, V,)|’

where Ex} (V4, V,)v, means the set of all exact sequences iniEX, V,) with
middle termvV,. We know thai[Ext}\(Vﬁ, V,) t Endy Vg] = 1 by Lemma 4.1.3 and
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End, V; is a finite field, thus any nonsplit exact sequence is equivalent to an exact
sequence of the form

0 Vy n Va Vﬁ 0.

So we haveExt} (Vs, V,)ay,| = [EXE (Vs, V,)| — 1 = ¢*® — 1. Also by the fact
Hom, (Vg, V,)) = 0. This completes the proof.

LEMMA 4.1.5. In the Hall algebra#f(A), we have

n—1
—& —&
ﬂ8(una) = p~¢P E Uy ="v ) u, + E E Uy ia | >
AEP i=1 rEP
gZi#O gﬁ%i@ia#o

wherej; for 1 <i < n — landa, 8, y, A; are the same as those in Lemrha.2.
Proof. By definition of the derivation, we know that

a
p8 () = v BL N g 2y,

reP na

Since(V,, Vp) is an exceptional pair, i.e HoqiVg, V,) = 0 and Ex}\(vﬂ, V) =

0, itfollows that(8, na) = 0. Because («, B) is equivalent to the module category
of a finite-dimensional hereditary algebra with two simple modules &hdVp)
are slice modules, then HoVg, V;) = 0 if gg: # 0. From Lemma 4.1.3 we
know that[Ext}\(V,g, Vy): Endy Vg] = 1. As same as in the proof of Lemma 4.1.4,
any nonsplit exact sequence in Exvy, ;) is equivalent to an exact sequence of
the form

0 VA n Va V/g 0.

By the homological formula in 2.9 We have

no

a _ |EXt]A(Vﬁ’ Vk)mxl . qs(ﬁ) -1 -1

g - - Y
P Gy ag|Hom, (Vg, Vy)| ag
then
ﬁ(s(una) =P Z Uy.
rLEP
83 #0

According to Lemma 4.1.2,
n—1

8(na) = 0P | uy, + Z Z Ui @ia
i=1

rEP
no
86,2 @ia 7O
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This completes the proof.
In general, ifgg® o, # O, then[Ext} (Vg, Vi): Endy V] = 1 by Lemma 4.1.3.
(n—i)a

In fact gg7s,, # Oifand only ifgz; ™ # 0. We also have

(—i)a_ I _
8. =1
A(n—i)a

accordingly we have the following results.

LEMMA 4.1.6. In the Hall algebra#(A), we have
ﬁS(ua) = U_s(ﬁ) Z MA,,_j_a

Ap—1€P
& 0
g/s=)‘n—l#

ﬂ8(u201) = Uﬁe(ﬁ) Z u)hn—]_@a_{— Z u)\n—z ’

Ap_1€P Ap_2€P

o 0 2
gﬁvknfl# gﬂ,knfz#o

i
pO(Uiq) = U_s(ﬁ)z Z Ui j @i~ et

j=1 ke
Bk 70

n—j
forl <i <nmanda, B, A,_; are the same as those in Lemrha.2, in particular
we takerg = y.
Proof. It is the direct consequence of the above consideration.

The following Lemma is well known.

LEMMA 4.1.7.

(1) Let V; be an indecomposablé-module withdim, End, V, = s anddim;
rad End, V, =, thena, = (¢*' — Dq’.

(2) Let Vi =~ 51V, @ --- @ s/V,, such thatV,, # V;, foranyi # j, then
a, = (,]SLZSl)Ll cc g wheres = Zi P 8iS; dimy HomA(V)”., VAj)-

(3) LetV, = sV, withEndyV, = F and F is a field, thena, = |GL,(F)| =
[Tic,<,(d —d'"™1), whered = |F| = ¢!,

4.1.8.We follow Lemma 4.1.6, iggim #0, thenVAn_J. is isomorphic to a submod-

ule of V,,. We have Ext (Vi,_ ai—ja> Vo) = Exty(V;,_,. Va) = 0 by Auslander—
Reiten formula. By definition

n—j?

— 3 s (n=i)a) (i — e, (n—i)ar) [ An—j DO —))et
Wi, j@(i—jatbn—iya = VO g i P (n—i)a Whn— @ (n—a-
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Since dimV;, . +dimV;;_;, = dimV;, — dim Vg and(8, «) = 0, we obtain
(An—j, (n — Do) +(( — Je, (n — D))
=({ia,(n—Da)—(B,(n —i)a)=i(n —i)e(w).
We claim that

Ane i B(—j)at Ay, i ®(n—ja

In—j@®G— o, (n—i)a

@, @i - Han-ie[HOMA (Vi @i o Vin-ia)|

By using the fact E>3A1(VM__,, Vy) = 0 and Hom (V,, V,._.) = 0, it follows from

Lemma 4.1.7 that

n—j

An—j,(n—=j)e)

Ay j®(— o = q( Ay, j An—ja-

Also
(n—js (n = j)a) = (jor = B, (n = er) = j(n = je(@),
thenq()\n—jv("—j)a) — (qa(a))]("fl) Thus

jn=j)
oo = (¢°) A, jAn—j)a-

Similarly

Ji=j)
@, ei-pa = @) a6 ja-

Recall thatHomy (Vi ei—ja Vieia)| = g t=Dem=ia) — glia=p+i=ja.
(n=0)a) — (g¢@)"") \ve obtain

J(n=j)
An—j®(n—j)a . (q°) Ay jA(n—j)a

In—j@®G—jla,(n—i)e T

(qe(a))j(l_j)ax,,_ja(ifj)aa(nfi)a (qe(“))l(n_l)
A(n—j)a

agi— jalm—ia (q®)

(i—=j)(n—i)

(n—j)
8(i—ja,(n—ia

n—ji|
i_j e(a)

— (@)= [” -/ } .
L=J e(a)
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So we have the following Lemma.

LEMMA 4.1.9.

n— i
i ! ] Uhe (1= j)or
J e(a)

PROPOSITION 4.1.10AssumgV,, V) to be an exceptional pair ok-mod and
(@ B) _ @ p)

(o, a) (a, )

_ (vs(a))i(nfi)

Uy, j@i—jalt(n-ia

n=n(ap) =

If n(a, B)dimV,, > dim Vg andy e & such thatL(«, 8) ~ V,, then in the Hall
algebra#(A), we have

n—1

r - (n—r)(n—l) —r r

=Y (=1 P ) s8I ul).
r=0
Proof. Let

(n—r)(n—1)

fr) = (=D WPy @) g Mul,

we only need to prover, = Y"_g f(r). By using the notation in 2.8 =
W@ Dy we have

—(n—=r)(n—=D+n—-r)(n—r—=1D+r(r-1)

f(r) =D @) @)

By Lemmas 4.1.6 and 4.1.9, we see

ﬁg(u(nfr)a)ura-

n—r
—(n=r)(n=D+n—-r)(n—r=1)+r(r-1) _
fO) = (=1 @) DS

j=1 hp—j P
Jja

gﬂ’)‘n—j #0
n—j
e(a)y(n—r)
(U “ ) nenr . :| u)h,,__,'@(nfj)a
n—r—yj (@)

n—r
_ -1 e(a)y(n—j—r)r
= (=1 @ @)Y (@) x

j=1

n—j
x [ } Z Uy, _j@(n—je-

n—r—j »
J e(a) *n—j€?
Ja
gﬁ»)hn—j#o
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So

n—1 n—1 n—r o
Z fr)= Z Z(_l)r(vs(a))(nfjfl)r |: n—j :| Z Up,_ i@ (n—j)e-

r=0 r=0 j=1 n—r—j e(@) Pn—je?
jo

J
gls)»n__/‘ #0

Since

n—1 n—r 3
Z Z(_l)r(vs(a))(n*j*l)r |: n J . i| Z Uy, ;&n-j)a

r=0 j=1

n n—j

j=1r=

r a)\(n—j—1)r n_j
(_1) (,US( ))( j=1 |: } Z M)Lnij@(n_j)a.

n=r=J lw Iy jeP

Jo
gls)»n__/‘ #0

By using the equation in 2.8 (2):

n—j . n— i
Z(_l)r(vs(oc))(n—j—l)r |: J :| -0
e(a)

i n—r—j

for anyn — j > 0. We haveyy, = y, so

— Sis (@) (—j—1) n=
— + _1r e(a)\(n—j—Dr
;ﬂr) uy )Y (=D ) [n_r_jL)x

j=1r=0

x> WY ja =ty + 0=,
)L,,__/e:/"

ja
gmnij #0

This completes the proof.

4.2. THE CASE OF 0< n(a, B)dimV, < dim Vg

In fact, in this casé/,, V are the two projective objects ®(«, §), moreoverV,
is the simple projective object @(«, B), lety € & such thatL(«, ) >~ V,,, we
also know that, is the simple injective object @ («, ).

PROPOSITION. Let (V,, Vg) be an exceptional pair, denote by= n(«, g) =
2((at, B)/(et, ). If O < ndimV, < dim Vg, lety e & such thatV, >~ L(a, ),
then in the Hall algebra

_ @@y
N [n]!e(a)

uy, (8a)n(uﬂ)-
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Proof.In C(a, B), there exists an exact sequence

0 nVe Vs v, 0.

If there is another exact sequence of the form

0 n Va V/g V)L 0

thenV, =~ V,. By defination,s, (us) = v<y*"“>g5na2—;uy. We also have!,, = 1
and <ﬂv a) = 01 <y’ na) - <:B — na, na) - —n2<0l, a)i l’l2<a, Ol) - n<a’ :3> - 01

ap = q°® — 1,a, = gt —1. Thusa, = gtV —1 =g -1 = glb-nepna) —

2
q'#P)—1, thereforar, = ag. Sowe haver, = v, (ug) = (V)" 8,4 (up).
Since we have known

(Us(a))—n(n—l)

no = (”a)n,
[n]!e(a)
thus we have
() —n(n—1)
(Sna = (U ) (801)"
[n]eo)

from Proposition 3.4, then

()"
B [n]!e(a)

uy, (8a)n(uﬂ)-

The proof is finished.

4.3. THE CASE OF(a, ) < 0

In this caseV,, V; are the two simple modules ®(«, B), V; is the simple project-
ive object andV,, the simple injective object. Without loss of generality, we may
assumea, B8) < 0. In C(«, B), there exists the standard exact sequence

0 Vg v, nV, — 0,
whereV, is the other indecomposible injective object and

@ __@p)
(o, a) a (a, )’

infactn = (y, a)/{a, @) and{a, y) = 0, then—(«, B8) = —{a, y —na) = n{a, a).
We also knowy, «) = (8 + na, ) = n{a, o), thus—(a, 8) = (y, a).

n=—n(ep)=—
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LEMMAA4.3.1. For {a, B8) < Oandn = —n(«a, B), if there exists an exact sequence

0 Vﬁ \% nVy 0,

thenV >V, , @®iV,,0<i < n,whereV, . does notcontain direct summands
which are isomorphic td/,, moreover there exist monomorphisiis — V,,,
for 0 <i < n,inparticularV;, ~ V, andV,, ~ Vj.

Proof. SinceV, is the other indecomposible injective object, We have the fol-

lowing commutative diagram

0 Vs 14 Ve 0
|
0 Vg v, Ve 0.

By the same reason as those in Lemma 4.1.2, without loss of generality we may
assume = ((’) g) wherel is the unit matrix with ranle — i, so kerg >~ iV,. The
following diagram

~

0 ker f iV,
0 Vg 1% nV, 0
10
I ()
0 Vg v, nVy 0

is commutative, where kef ~ iV,, thusV ~ V, . @& iV,. This completes the
proof.

4.3.2.By definition

n
n{a, An—i®ia
UpgUp =V feB) E E gn;ﬂl Uy, @ia-
i=0 A

n—i €P
823’751.@10(#0
i B don—i . . . .
We also knovxgn;f’“ = 8m_iap andV;, , has a unique simple subobject which
is isomorphic toV in C(a, B), sog, 4™ = g1, 5 = 1, therefore
n
UpoUp = V" Z Z Uy, i@ia-
i=0 Ap—i€P
823’751.@10(#0
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Moreover, in general, for & j < n we have

n—j
Un— jrallg = =D p) Z Z U, joias

i=0 rp_j_je?
A i
J—t
8(n—j—ia, 70

wherea, g anda,_;_; are the same as in Lemma 4.3.1.
Since any extension of the form

0 iVa v/ V, @iV, — 0

n—j—i
is split, then

(e joi i, jay An—j-i B+ e

Up,_j_i@iaU jo =V hn—j—i@ia, jo Uppj_i @G+ ) -

Because that

(An—j—i Fia, ja) = (B +na — ja, ja) = j(n — j){a, a)

and

hjmi®GHDe (it pa | tJ

Mn—j-i®ia,jo T Siaja T i ’

J (o)
therefore
e(@)yj(n—j) J
Up_ji@ialljo = (V) : Uhn—j-i @G+ e
J e(a)

Thus

Un—jaUpU jo

n—j
— p—Di.B) Z Z Up,_j_i@ial jo>
i=0

Ap—j—i€P
A’ ]
S iy p 0
n—j | : .
) L 1+
_ . (n—Ha, e(a n—j)
— =i ﬁ)(v ( ))]( J E : - § Wny_ i@+ )as
i=0 J (o)  Pn—j—i€?
)\. s
S p?0
n—j . .
1+
_ (el —n(mn—j)+jn—j) e(@)yij
= (") P E ()Y _ E Ui ji®i+j)a
i=0 (o) tn—j-i€?
Ap—j—i
8(n—j—i)a, 870
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PROPOSITION 4.3.3Let (V,, Vg) be an exceptional pair ak-mod. If(c, ) < 0
andy € & such thatV, >~ L(«, B), then in the Hall algebra# (A)

n
U, = Z(_l)j(ve(a))n*jug(n*j)uﬂuéj)’

j=0
where
o @B @B
n=-n(apB) = o) 2(05’ 0
Proof. Let

n
f= Z(_l)j(ve(a))n*jug(n*j)uﬂuéj)'

Jj=0

Then by 4.3.2

n
f — Z(_l)j(ve(a))nfj(vé‘(a))(n*j)(n*]’*l)(vs(a))j(j*l) (u(nfj)auﬂuja)

j=0
n n_j . .
. L 1+
-1
= ZZ(_l)J(Ue(a))J(lJrj )|: j :| Z Ui @i+ j)as
=0 i=0 S de@ uejeic?
S /']:il)a,ﬁ 70

sincen—j)+m—j)n—j-D+j(j—D—nn—j)+jn—j)+ij=ji+j-1).
Letr =i + j, since

t=0 j=0 An—t€P

f= Xn: Z(_l)j(ve(a))j(tfl) |: ; i| Z U, oo
e(a)

Ao
oD p?0

According to 2.8 (2),

Xt:(_l)j(ve(a))j(tl) |: t i| =0
J e(a)

j=0
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fort > 0, and), = y, we obtainf = u,,. The proof is completed.
By completely similar proofs, we have a sequence of propositions which are
dual to the above ones.

PROPOSITION 4.4Let(V,, V) be an exceptional pair ak-mod,

_ (e, ) (@, B)
m=m(x, B) = = .
(B, B) (B, B)
Leti € 2 suchthatV, >~ R(«a, B). If mdim V; > dimV,, then in the Hall algebra
H(A),
m—1
U, = Z(_l)rvs(a)(Ufe(ﬁ))(mfr)(mfl)u/(sr)ga(M/(Sm*r))‘
r=0

Proof. This is dual to Proposition 4.1.10.

PROPOSITION 4.5Let (V,, Vp) be an exceptional pair ak-mod

_ Ao, B) (o, B)
m=me R = ey =B
Leti € & such thatV, >~ R(a, B). If 0 < mdimVy < dimV,, then in the Hall
algebra#(A),
e(B)ym
wr = 5 ).

[m]l(p)

Proof. This is dual to Proposition 4.2.

PROPOSITION 4.6.Let (V,, V) be an exceptional pair oA-mod andx € 2
such thatV, >~ R(«, B). If (@, B) < O, then in the Hall algebra#(A),

m
u, = Z(—l)j (vs(ﬁ))m*ju;’)uaug"_")
j=0

where

@h) __@p)

(B, B) B, B)
Proof. This is dual to Proposition 4.3.3.

m=—ma. p) = —

Remarkd.7. Let(V;, V;) be an exceptional pair consisting of two simple mod-
ules.
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(1) In Proposition 4.3.3, since -di¥, + ¢(y) = —e&;n wheres; = (i), then
p—dime Vy+€()/)uy — Z(_l)rv—sirul(n*r)ujulgr)’
r=0
wheren = —a;;. It exactly corresponds to the braid group operat@pon 6; in

the sense of Lusztig (see [L] Chapter 37).
(2) In Proposition 4.6, sincedim, V; + ¢(1) = —e;m, then

m
v*dlmk Vk+é€()»)u)L — Z(_l)rUfs_/ru(jr)uiu(jm—r)’

r=0

wherem = —aj;. It exactly corresponds to the braid group operaffyn, ono; in
the sense of Lusztig (see [L] Chapter 37).
These facts were first observed by Ringel in [R4].

5. Exceptional Sequences in a Hall Algebra

For 1 < s < |I], where|I] is the number of isomorphism classes of simple
modules, letB,_; = (o4, ..., 0,_1) be the braid group on the— 1 generators,
which define relations are the following:

0i0i110; = 0;4110;0;41 for 1 <i <s —1,
0;0j = 0;0; for |l_]|>2

According to Crawley-Boevey and Ringel, there exists an action of the gByup
on the set of exceptional sequences of length A-mod (see [CB] and [R6]). The
action is given as follows.

Let A = (V,,,...,V,) be an exceptional sequence Armod, theno; A =
(Vgy, ..., Vg) suchthatvg, =V, forall j ¢ {i,i +1}, Vg = V,,,, and Vg, =~

R(ej, ai41); 0, "A = (V,,, ..., V,) such thatv,, = V,, forall j ¢ {i,i + 1},
Vy, >~ L(a;, ajy1) andV,, . = V,,. The action is transitive if = |I].
Our main result is the following.

THEOREMS5.1. For1 < s < |I|, let B,_1 = {041, ..., 05_1) be the braid group
ons — 1 generators,A = (V,,, ..., V,,) any exceptional sequence of lengtn
A-mod. Denoted by

m. i+ 1) = (oti, ig1) _ (@i, aiy1)
(otit1, otig1) (Qiy1, 0iq1)
and
nG.i+1) = (o, otiy1) _ (o, ig1)
(o, o) (@i, o)
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and assume that;A = (Vg,, ..., V) ando, *A = (V,,,...,V,) for1 <i <
s — 1. Then, in the Hall algebra# (A), we have

(1) ¥m@,i +1dimV,, , >dimV,, then

m(i,i+1)—1
Upy = D, (D x
r=0
% (vfe(a,url))(m(i‘i+l)7r)(m(i,i+l)7l)u((yri)+18ai (u((yrirlfi‘i+l)7r)).

(2) 10 <m(,i +DdimV,,, <dimV,, then

(vs(ai+1))in(i,i+1)

ug . = L S)MEHED g,
ﬂl+l [m(l,l+1)]'£(al+l) (Oll+1 ) ( 0[,)

) Ifm(@i,i +1) <0, then

—m(i,i+1)

Z (_1)}’(Us(a;+1))—m(i,i+l)—ru(r) u u(—m(i,i+1)—r)
r=0

g1 = iy Beila; q

(') Ifn@,i + HdimV,, >dimV,,_,, then
n(i,i+1)—1

iy, = Z (—1) @D
r=0

76(011-))(n(i,i+l)7r)(n(i‘i+l)fl) (a S(M(n(i‘H»l)fr)))u(r)

x (v o @

i+1

(2) If0<n(G,i+1dimV,, <dimV,,_,, then

(US(ai))n(i,i+1)
Uy, = —
(G, 7+ Dl

(8a)" Y ().

@) Ifn@i,i +1) <0,then

—n(i,i+D)
uy, = Z (_1)r(vs(oc,-))—n(t,t+1)—rul();n(t,t+1)—r)uai+1ul()[i;) )
r=0

Proof. It is the sum of the last section.
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Obviously, all possibilities are listed by Theorem 5.1. Combining with Propos-
ition 3.4, we obtain an algorithm which starts from the complete exceptional se-
guence consisting of simple modules. The algorithm being effective and complete
also depends on the properties (1), (2) and (3) in 2.7. We stress here that our al-
gorithm in fact only depends on the Cartan datum, in the language of representation
theory of A, that is, the symmetric Ringel form and dimension vectors.

COROLLARY 5.2 (Ringel, see [Z])If A € & is an exceptional module, then the
corresponding elemem, lies in the compaosition subalgeb@(A).

Proof. Because the action of the braid group on the set of complete exceptional
sequences is transitive and any exceptional module belongs to some complete
exceptional sequence.

Remark. In fact, we may have a stronger assertion than Corollary 5.2\ leet
P be an exceptional module, our algorithm provides a universal formula to express
u; as a combination of monomials of, i € I, that is, the formula is unchanged
whenever we chose differehtfor the realization ofA corresponding to a given
A. So the element; belongs to the generic composition algebra, that is, to the
guantum group.

Let 8 be aR-subalgebra o€ (A). If for any x € 8 we haveg,(x)(8) C § and
P2(x)(8) C 4, whereg; and ¢, are given in Proposition 3.4, thefis called a
derivation subalgebra @f(A).

COROLLARY5.3. LetA = (V,,, ..., V,,) be any complete exceptional sequence
of A-mod. Then the derivation subalgebra generatedy, ..., u,,} coincides
with the wholeC(A).
Proof. Since we can get the complete exceptional sequence consisting of simple
modules by the action of the braid group 4n
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