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THE ESTIMATION RISK IN EXTREME
SYSTEMIC RISK FORECASTS
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Systemic risk measures have been shown to be predictive of financial crises and
declines in real activity. Thus, forecasting them is of major importance in finance
and economics. In this paper, we propose a new forecasting method for systemic
risk as measured by the marginal expected shortfall (MES). It is based on first
de-volatilizing the observations and, then, calculating systemic risk for the residuals
using an estimator based on extreme value theory. We show the validity of the method
by establishing the asymptotic normality of the MES forecasts. The good finite-
sample coverage of the implied MES forecast intervals is confirmed in simulations.
An empirical application to major U.S. banks illustrates the significant time variation
in the precision of MES forecasts, and explores the implications of this fact from a
regulatory perspective.

1. MOTIVATION

The financial crisis of 2007–2009 has sparked regulatory and academic interest
in assessing systemic risk. For instance, in April 2009 G20 leaders asked national
regulators to develop guidelines for the assessment of the systemic importance of
financial institutions, which were provided in a joint report by the International
Monetary Fund (IMF), the Bank for International Settlements (BIS), and the
Financial Stability Board (FSB) (IMF/BIS/FSB, 2009). By now, these early
developments have manifested themselves in official regulations. For example, the
class of global systemically important banks (G-SIBs) is divided into buckets from
1 to 5, where banks in bucket 5 have to hold the highest additional capital buffers
(FSB, 2021). The Basel framework, that sets out the methodology determining
G-SIB membership, closely relies on systemic risk assessments (Basel Committee
on Banking Supervision, 2019, SCO40).

Next to its regulatory importance, forecasting systemic risk is important in
various other contexts. First, one hallmark of financial crises is that asset prices
start to co-move. To measure the extent to which prices move in lockstep, several
systemic risk measures may be used (Acharya et al., 2017; Adrian and Brunner-
meier, 2016; Billio et al., 2012). Since the tendency of asset prices to co-move
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implies that diversification benefits are seriously reduced, it becomes important to
predict systemic risk measures as indicators of diversification meltdown. Second,
investigating the link between the real economy and the financial sector, Allen,
Bali, and Tang (2012), Giglio, Kelly, and Pruitt (2016), and Brownlees and Engle
(2017) find an increase in systemic risk to be predictive of future declines in
real activity. These examples underscore the importance of accurately forecasting
systemic risk.

Predictions of systemic risk may be produced from a variety of models, such as
multivariate GARCH models or quantile regression models (Adrian and Brunner-
meier, 2016; Girardi and Tolga Ergün, 2013). However, very little is known about
the asymptotic properties (e.g., consistency or asymptotic normality) of systemic
risk forecasts issued from these or other models. This contrasts with the large
literature developing asymptotic theory for forecasts of univariate risk measures,
such as the Value-at-Risk (VaR) or the expected shortfall (ES) (Chan et al., 2007;
Francq and Zakoïan, 2015; Gao and Song, 2008; Hoga, 2019). Therefore, it is the
main aim of this paper to fill this gap for systemic risk forecasts. Specifically, we
establish conditions under which systemic risk forecasts issued from a general
class of multivariate GARCH-type models are (consistent and) asymptotically
normal.

Of course, consistency is vital for the point forecasts to reflect actual levels of
systemic risk. However, point forecasts of systemic risk are only of limited value,
since they lack a measure of uncertainty. To illustrate the importance of confidence
intervals around point risk forecasts, Christoffersen and Gonçalves (2005) give
the example of a portfolio manager allowed to take on portfolios with a VaR of
at most 15% of current capital. A VaR point estimate of 13% would not indicate
any need for rebalancing, yet a (say) 90%-confidence interval of 10–16% would
induce the prudent portfolio manager to do so. Clearly, a similar case can be made
for the importance of confidence intervals for systemic risk forecasts, which our
asymptotic normality result allows us to construct.

As our systemic risk measure, we use the marginal expected shortfall (MES)
of Acharya et al. (2017). We do so because of the ability of MES to identify key
contributors to systemic risk during financial crises and due to its predictive content
for downturns in real economic activity (Acharya et al., 2017; Giglio et al., 2016).
Furthermore, MES has an additivity property that is crucial for attributing systemic
risk (Chen, Iyengar, and Moallemi, 2013). This may be useful for individual banks
as well as the financial system as a whole. For the purposes of risk management or
asset allocation, an individual bank may want to break down firm-wide losses into
contributions from single units or trading desks. From the wider perspective of the
financial system, the additivity property allows to decompose the system-wide ES
into the sum of the MESs of all banks in the system. We also refer to the empirical
application for an illustration of this property.

For MES to truly capture systemic risk, it needs to be forecasted far out in
the tail. For instance, Acharya et al. (2017, p. 13) state that “[w]e can think of
systemic events [. . .] as extreme tail events that happen once or twice a decade.”
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Consequently, only few meaningful observations are available for forecasting
MES. To deal with this, our MES estimator is motivated by extreme value theory
(EVT). By imposing weak assumptions on the joint tail, EVT-based methods
alleviate the problem of data scarceness outside the center of the distribution.
Indeed, numerous studies show that EVT-based estimators improve the forecast
quality of univariate risk measures, such as the VaR or the ES (Bali, 2007; Bao,
Lee, and Saltoğlu, 2006; Hoga, 2022; Kuester, Mittnik, and Paolella, 2006; McNeil
and Frey, 2000). Hence, these methods have caught on in empirical work as well
(Gupta and Liang, 2005). We stress that the case for using EVT-based estimators
for systemic risk measures, where joint extremes are of interest, seems to be even
stronger than in the univariate case because data are even scarcer in the joint tail.

A key ingredient of our MES forecast is the MES estimator of Cai et al.
(2015), and in deriving asymptotic properties of MES forecasts, we build on
their work. However, Cai et al. (2015) deal with unconditional MES estimation
for independent and identically distributed (i.i.d.) random variables and, thus,
their framework is inherently static. In contrast, we consider (conditional) MES
forecasting in dynamic models. In particular, this requires taking volatility dynam-
ics into account in the forecasts. From an econometric perspective, conditional
MES has the advantage of incorporating current market conditions. Therefore,
changes in market conditions are reflected in conditional MES, but not in its static
version. This is akin to the standard deviation as a measure of risk. The conditional
standard deviation (a.k.a. volatility) is a good measure of current risk, whereas the
unconditional standard deviation only provides an average measure of risk.

We also extend our results (and the results of Cai et al., 2015) to a higher-
dimensional setting, where we consider MES forecasts for multiple variables
jointly. This is important because one of the main purposes of systemic risk
measures is to explore linkages in complex systems. We prove the joint asymptotic
normality of MES forecasts in the higher-dimensional case. To enable inference,
we propose an estimator of the asymptotic variance–covariance matrix and show
its consistency. Then, we demonstrate how our results can be used to test for equal
systemic risk contributions of the different units in the system. This test is later
on used in the empirical application. From a technical perspective, our higher-
dimensional results draw on Hoga (2018), who explores tail index estimation for
multivariate time series.

We confirm the good finite-sample coverage of our asymptotic confidence
intervals for MES in simulations. We do so for the constant conditional correlation
(CCC) GARCH model of Bollerslev (1990). Our main findings are that coverage
improves the more extreme the risk level of the MES forecasts. Also, the better the
(marginal and joint) tail can be approximated using extreme value methods, the
more precise the forecasts tend to be in terms of root mean square error (RMSE)
and the lengths of the forecast intervals.

Our empirical application considers the eight G-SIBs from the US. As expected,
there is significant time variation in the levels of systemic risk as measured by the
MES. Significant peaks in systemic risk can be observed during the financial crisis
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of 2007–2009, the European sovereign debt crisis in 2011 and the Corona stock
market crash of March 2020. Computing our MES forecast intervals over time
shows that it is particularly during times of crises (when accurate systemic risk
assessments are needed most) that forecasts tend to be least precise (as measured by
the lengths of the forecast intervals). We also apply our test for equal systemic risk
contributions of each of the eight banks. Not surprisingly, the null of equality can
be rejected for every single time point in our sample. This is consistent with the fact
that the eight banks are assigned to different buckets in the G-SIB classification.

The remainder of the paper is structured as follows: Section 2 introduces the
multivariate volatility model and our MES forecasts together with all required
regularity conditions. Section 3 derives limit theory for MES forecasts and Sec-
tion 4 extends this to multiple MES forecasts. Coverage of the confidence intervals
for MES is assessed in the simulations in Section 5. The empirical application in
Section 6 investigates MES forecasts for the eight U.S. G-SIBs. The final Section 7
concludes. All proofs are relegated to the Appendix.

2. PRELIMINARIES

We adopt the following notational conventions. Throughout, we use bold letters to
denote vectors and matrices. In particular, I is the (2×2)-identity matrix. For any
matrix A = (aij), we will use the norm defined by ‖A‖ =∑i,j |aij|. The transpose
of a matrix A is denoted by A′ and its vectorization by vec(A), where the columns
of A are stacked on top of each other. The diagonal matrix containing the elements

of the vector v on the main diagonal is diag(v). We let
d= stand for equality in

distribution. For some random variable X, put X+ = max{X,0} and X− = X −X+.
For scalar sequences an and bn, we write an � bn if both an = O(bn) and bn = O(an)

hold, as n → ∞, and we write an ∼ bn if an/bn → 1.

2.1. Defining MES

Consider a sample {(Xt,Yt)
′}t=−�n+1,...,n from the random variables of interest.

In a forecasting situation, interest focuses on predicting systemic risk based on
the current state of the market, which is captured by the information set Fn =
σ
(
(Xn,Yn)

′,(Xn−1,Yn−1)
′, . . .

)
. Define Fn(x,y) = P{Xn+1 ≤ x,Yn+1 ≤ y | Fn} to be

the conditional joint distribution function (d.f.) with marginals Fn,0(x) = Fn(x,∞)

and Fn,1(y) = Fn(∞,y). Then, the (conditional) MES is defined as

θn,p = E
[
Yn+1 | Xn+1 > VaRn(p),Fn

]
,

where VaRn(p) = F←
n,0(1−p), with “←” indicating the left-continuous inverse, is

the VaR of the reference position for some “small” p ∈ (0,1). Thus, under current
market conditions, MES measures next period’s average loss Yn+1 given that Xn+1

is in distress.
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An MES forecast (based on Fn) may be of interest in a number of situations, for
instance, when the Yt are losses of one’s own portfolio, and the Xt denote losses
of some reference index, such as the S&P 500. The Yt may also denote the losses
of a single trading desk, and the Xt firm-wide losses. Alternatively, the Yt may
be the losses of a financial institution with Xt standing for system-wide losses.
In each case, it may be of interest to understand how the two risk factors are
connected, e.g., for the purposes of stress testing or to assess portfolio sensitivities.
In these situations, the MES can serve as a (real-valued) summary of the degree of
connectedness.

2.2. The Data Generating Process

Throughout, we suppose that the losses are generated from the model(
Xt

Yt

)
= Σ t(θ

◦)εt, (1)

where the true parameter vector θ◦ is an element of some parameter space Θ

and the diagonal matrix Σ t(θ
◦) = Σ t = diag(σ t) with σ t = (σt,X,σt,Y)′ is Ft−1-

measurable. Moreover, the εt = (εt,X,εt,Y)′ are independent of Ft−1 and i.i.d. with
mean zero, unit variance and correlation matrix R. Thus, Σ t contains the individual
volatilities on the main diagonal, since

Var
(
(Xt,Yt)

′ | Ft−1
)= Σ t Var(εt)Σ

′
t = Σ tRΣ ′

t =
(

σ 2
t,X ρX,Yσt,Xσt,Y

ρX,Yσt,Xσt,Y σ 2
t,Y

)
,

where ρX,Y = corr(εt,X,εt,Y) is the CCC of (Xt,Yt)
′ | Ft−1. We already mention

here that estimating the correlation ρX,Y of εt is not required for conditional MES
forecasting. Rather, it is the unconditional MES of εt that will be required (see (2)).

The best known among the class of models in (1) is the CCC–GARCH model of
Bollerslev (1990). But our framework also covers models incorporating volatility
spillover, such as the extended (E)CCC–GARCH of Jeantheau (1998).

Remark 1. We work with CCC–GARCH-type models here. However, DCC–
GARCH models, due to Engle (2002), have attained benchmark status among
multivariate GARCH models because of their forecasting accuracy (Laurent,
Rombouts, and Violante, 2012). We focus here on the former class of models
for several reasons. First, the former models continue to be studied extensively in
the literature (Conrad and Karanasos, 2010; He and Teräsvirta, 2004; Jeantheau,
1998; Nakatani and Teräsvirta, 2009). Second, as Francq and Zakoïan (2016,
p. 620) point out, a full estimation theory for DCC–GARCH models is not
available. Since MES forecasts necessarily require a parameter estimator with
known asymptotic properties, developing limit theory for MES forecasts based on
DCC–GARCH models is beyond the scope of the present paper. Third, our EVT-
based estimation method exploits dependence between εt,X and εt,Y . However, in
DCC–GARCH models, the innovations are decorrelated (to ensure identification),
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in which case our MES estimator cannot be expected to work well. Fourth, higher-
order measures of risk, such as MES, are not properly identified in DCC–GARCH
models (Hafner, Herwartz, and Maxand, 2022). To see this, recall that in a DCC–
GARCH framework, (Xt,Yt)

′ = Σ tεt for i.i.d. εt ∼ (0,I) and not necessarily
diagonal Σ t. However, only Var

(
(Xt,Yt)

′ | Ft−1
)= Σ tΣ

′
t =: Ht is modeled, while

the model stays silent on the choice of (the non-unique) Σ t. However, different
Σ t imply different conditional distributions (Xt,Yt)

′ | Ft−1 and, hence, different
values for MES. For instance, Σ t may denote the symmetric square root implied
by the eigenvalue decomposition (Σ s

t ), or it may be the lower triangular matrix
of the Cholesky decomposition (Σ l

t). Both decompositions are equivalent in the
sense that both imply the same dynamics in second-order moments (as given in
Ht). Yet, when it comes to higher-order measures of risk (such as MES), the two
decompositions imply different values for MES, as the next example illustrates.

Example 1. Suppose that εt,X and εt,Y have a (standardized) Student’s
t5-distribution, independently of each other. Assume for simplicity that

Hn+1 =
(

5 4
4 5

)
, implying Σ s

n+1 =
(

2 1
1 2

)
and Σ l

n+1 =
(

2.23. . . 0
1.78. . . 1.34. . .

)
.

Then, when the underlying structural model is Σ s
t εt (resp. Σ l

tεt), we have that
θn,p = 3.82. . . (resp. θn,p = 4.00. . .). Thus, while second-order (cross-)moments
of Xt and Yt are identical for both Σ s

t εt and Σ l
tεt, MES depends on the assumed

structural model. The underlying reason for this is that the conditional distribu-
tion P{Xn+1 ≤ ·,Yn+1 ≤ · | Fn} depends on the decomposition of the variance–
covariance matrix.

From a structural perspective, the triangular structure of Σ l
t implies that εt,X

is the idiosyncratic shock pertaining to (say) the market return Xt, which also
affects the (say) portfolio return Yt. However, the market is not affected by εt,Y .
This contrasts with, e.g., a symmetric assumption on Σ s

t , where a unit shock in
εt,X has the same effect on Yt as a unit shock in εt,Y on Xt.

2.3. Model Assumptions

Denote the d.f. of the innovations in (1) by F(x,y) = P{εt,X ≤ x, εt,Y ≤ y} (which we
assume to be continuous) and the marginal d.f.s by F0(x) = F(x,∞) and F1(y) =
F(∞,y). For model (1), we have that Xn+1 = σn+1,Xεn+1,X , such that VaRn(p) =
σn+1,XF←

0 (1−p). Therefore, it is easy to check that the MES becomes

θn,p = σn+1,Y E
[
εt,Y | εt,X > F←

0 (1−p)
]
. (2)

Hence, a forecast of θn,p consists of two parts. First, volatility σn+1,Y must be
forecasted and, second, we must estimate θp := E[εt,Y | εt,X > F←

0 (1 − p)], i.e.,
the unconditional MES of (εt,X,εt,Y)′. Thus, in the following, we have to impose
some regularity conditions on the parameter estimator and the volatility model (to
forecast volatility via some σ̂n+1,Y (̂θ)) and on the joint tail of the εt = (εt,X,εt,Y)′
(to estimate θp).
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We begin by imposing assumptions on the estimator and the volatility model.
Regarding the former, we work with a generic parameter estimator θ̂ that satisfies
the following assumption.

Assumption 1. The parameter estimator θ̂ satisfies nξ
(̂
θ − θ◦) = OP(1), as

n → ∞, for some ξ > 0.

The standard case of
√

n-consistent estimators is covered by ξ = 1/2. For some
examples of such estimators in multivariate volatility models, we refer to Francq
and Zakoïan (2010). When errors are heavy-tailed, Assumption 1 may only hold for
ξ < 1/2. For example, in standard univariate GARCH models, the quasi-maximum
likelihood estimator (QMLE) satisfies Assumption 1 with ξ = 1/2 (ξ < 1/2), when
the innovations have finite (infinite) fourth moments (Hall and Yao, 2003). Thus,
the generality afforded by Assumption 1 is not vacuous.

Next, we introduce some assumptions on the volatility model, i.e., Σ t. The
Σ t’s in sufficiently general volatility models often depend on the infinite past
(Xt−1,Yt−1)

′, (Xt−2,Yt−2)
′, . . .. Therefore, to approximate the Σ t’s, we use fixed

artificial initial values (X̂−�n,Ŷ−�n)
′, (X̂−�n−1,Ŷ−�n−1)

′, . . . in

Σ̂ t(θ) = Σ t
(
(Xt−1,Yt−1)

′, . . . ,(X−�n+1,Y−�n+1)
′,(X̂−�n,Ŷ−�n )

′,(X̂−�n−1,Ŷ−�n−1)
′, . . . ;θ),

where θ ∈ Θ . This suggests to approximate Σ t by Σ̂ t := Σ̂ t (̂θ) = diag
(
σ̂ t (̂θ)

)
,

where σ̂ t (̂θ) = (σ̂t,X (̂θ),σ̂t,Y (̂θ)
)′

.
We impose the following assumptions on the initialization and on the volatility

model.

Assumption 2. For any M > 0, there exists a neighborhood N (θ◦) of θ◦, and
p∗ > 0, q∗ > 0 with p−1∗ +q−1∗ = 1, such that for all i = 1, . . . , dim(Θ),

E

[
sup

θ∈N (θ◦)

∥∥∥Σ−1
t (θ)

∂Σ t(θ)

∂θi

∥∥∥Mp∗
]

< ∞,

E

[
sup

θ∈N (θ◦)

∥∥∥Σ t(θ)Σ−1
t (θ◦)

∥∥∥Mq∗
]

< ∞.

Assumption 3. There exist some constants C > 0 and ρ ∈ (0,1), and some
random variable C0 > 0, such that for all t ∈ N it holds almost surely (a.s.) that

sup
θ∈Θ

∥∥Σ−1
t (θ)

∥∥≤ C,

sup
θ∈Θ

∥∥Σ t(θ)− Σ̂ t(θ)
∥∥≤ C0ρ

t+�n−1.

Assumption 2 for M = 4 is almost identical to assumption A8 in Francq,
Jiménez-Gamero, and Meintanis (2017). Together with Assumption 1, it can be
used to show that parameter estimation effects in the MES forecasts vanish asymp-
totically. At first sight, the Hölder conjugate exponents p∗ and q∗ in Assumption 2
do not appear useful, since M is allowed to be arbitrarily large. Yet, when (e.g.)
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q∗ = C/M for some finite constant C, one may accommodate an infinite (C +ε)th
moment of supθ∈N (θ◦)

∥∥Σ t(θ)Σ−1
t (θ◦)

∥∥. This, however, comes at the price of
requiring moments of arbitrary order to exist for supθ∈N (θ◦)

∥∥Σ−1
t (θ)∂Σ t(θ)/∂θi

∥∥.
Assumption 3 is almost identical to assumptions A1 and A2 in Francq et al.

(2017), and ensures that initialization effects vanish asymptotically at a suitable
rate. Initialization effects may occur because Σ t often depends on the infinite
past in Ft−1, yet for estimation via Σ̂ t only the truncated information set F̂t−1 =
σ
(
(Xt−1,Yt−1)

′, . . . ,(X−�n+1,Y−�n+1)
′) is available.

Note that in Assumptions 2 and 3, we have tacitly assumed that Σ t(θ) is
differentiable (in a neighborhood of the true parameter) and invertible, where the
latter is equivalent to σt,X(θ) > 0 and σt,Y(θ) > 0, since Σ t(θ) = diag

(
σ t(θ)

)
. Of

course, assuming positive volatilities is rather innocuous.

Example 2. This example gives an instance of a model that satisfies Assump-
tions 2 and 3. Consider the ECCC–GARCH model of Jeantheau (1998), which
models the squared volatilities σ 2

t = (σ 2
t,X,σ 2

t,Y)′ as

σ 2
t = σ 2

t (θ) = ω+
p∑

j=1

Bj

(
X2

t−j

Y2
t−j

)
+

q∑
j=1

Γ jσ
2
t−j(θ), t ∈ Z, (3)

where θ = (
ω′, vec′(B1), . . . ,vec′(Bp),vec′(Γ 1), . . . ,vec′(Γ q)

)′
. The classical

CCC–GARCH model of Bollerslev (1990) only allows for diagonal Bj’s and Γ j’s,
while non-diagonal matrices (and, hence, volatility spillovers) are accommodated
only by ECCC–GARCH models. Under the conditions of their Theorem 5.1,
Francq et al. (2017) show that a solution to the stochastic recurrence equations (1)
and (3) exists, and Assumptions 2 and 3 are satisfied for

σ̂ 2
t (θ) = ω+

p∑
j=1

Bj

(
X2

t
Y2

t

)
+

q∑
j=1

Γ jσ̂
2
t−j(θ), t ≥ 1,

with fixed initial values (X−�n,Y−�n)
′ = (X̂−�n,Ŷ−�n)

′, (X−�n−1,Y−�n−1)
′ =

(X̂−�n−1,Ŷ−�n−1)
′, . . . and fixed initial σ̂ 2

−�n
(θ),σ̂ 2

−�n−1(θ), . . ..

As pointed out above, we also need to impose some regularity conditions on the
tail of the εt (to estimate θp). Specifically, we assume that the following limit exists
for all (x,y)′ ∈ [0,∞]2 \ {(∞,∞)}:
lim

s→∞sP
{
1−F0(εt,X) ≤ x/s, 1−F1(εt,Y) ≤ y/s

}=: R(x,y). (4)

Schmidt and Stadtmüller (2006) call R(·,·) the (upper) tail copula. Much like a
copula, R(x,y) only depends on the (extremal) dependence structure of εt, and not
on the marginal distributions. Regarding the marginals, we assume heavy right tails
in the sense that there exist γi > 0, such that

lim
s→∞Ui(sx)/Ui(s) = xγi for all x > 0, i = 0,1, (5)
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where Ui = (1/[1−Fi])← (de Haan and Ferreira, 2006). This condition means that
far out in the tail, the distribution can roughly be modeled as a Pareto distribution
(for which (5) holds even without the limit). Ever since the work of Bollerslev
(1987), heavy-tailed innovations are standard ingredients of volatility models. For
instance, the popular Student’s tν-distribution satisfies (5) with γi = 1/ν. In EVT,
γi is known as the extreme value index.

2.4. MES Estimator

To estimate θp, we build on Cai et al. (2015). They use an extrapolation argument
that is often applied in EVT, such as in estimating high quantiles (Weissman, 1978).
The general idea is to first estimate the quantity of interest at a less extreme level
(say, θk/n for k/n � p) and then, in a second step, to extrapolate to the desired level
(say, θp) by exploiting the tail shape. These arguments rely on p = pn tending to
zero, as n → ∞.

Specifically, under (4) and (5) with γ1 ∈ (0,1), Cai et al. (2015) show that

lim
p↓0

θp

U1(1/p)
=
∫ ∞

0
R(1,y−1/γ1)dy. (6)

Now, let k = kn be an intermediate sequence of integers, such that k → ∞ and
k/n → 0, as n → ∞. Then, for n → ∞,

θp
(6)∼ U1(1/p)

U1(n/k)
θk/n

(5)∼
( k

np

)γ1
θk/n. (7)

This relation suggests the following two-step procedure to estimate θp. First,
estimate the less extreme (“within-sample”) θk/n and, then, use the tail shape
(characterized here by γ1) to extrapolate to the desired (possibly “beyond the
sample”) θp.

One key difference to Cai et al. (2015) is that the εt are not available for
estimation, but need to be approximated by the standardized residuals

ε̂t = ε̂t (̂θ) = Σ̂
−1
t (Xt,Yt)

′.

To estimate θk/n, we then use the non-parametric estimator

θ̂k/n = 1

k

n∑
t=1

ε̂+
t,YI{̂

εt,X>̂ε(k+1),X

},
where ε̂(1),Z ≥ ·· · ≥ ε̂(n),Z denote the order statistics of ε̂1,Z, . . . ,̂εn,Z (Z ∈ {X,Y}),
such that ε̂(k+1),X estimates F←

0 (1 − k/n) in θk/n = E[εt,Y | εt,X > F←
0 (1 − k/n)],

and I{·} denotes the indicator function.

Remark 2. The estimator θ̂k/n uses ε̂+
t,Y instead of ε̂t,Y . Thus, it is in fact an

estimator of θ+
k/n = E[ε+

t,Y | εt,X > F←
0 (1−k/n)]. This is because the proofs closely
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exploit the relation that E[Z] = ∫∞
0 P{Z > z}dz for Z ≥ 0, such that

θ+
k/n = n

k

∫ ∞

0
P{εt,X > U0(n/k), ε+

t,Y > y}dy. (8)

However, since Cai et al. (2015, Proof of Theorem 2) show that θp/θ
+
p = 1 +

o
(
1/

√
k
)
, this does not impair the asymptotic validity of the (to be introduced)

estimator θ̂p based on θ̂k/n.

To estimate γ1, we use the Hill (1975) estimator

γ̂1 = 1

k1

k1∑
t=1

log
(̂
ε(t),Y /̂ε(k1+1),Y

)
,

where k1 is another intermediate sequence of integers. Plugging the estimators θ̂k/n

and γ̂1 into (7), we obtain the desired estimator

θ̂p =
( k

np

)γ̂1
θ̂k/n.

To establish the asymptotic normality of θ̂p, we impose essentially the same
regularity conditions as Cai et al. (2015). First, we specify the speed of convergence
in (4) via Assumption 4 and that in (5) via Assumption 5. Here and elsewhere,
x∧ y = min{x,y}.

Assumption 4. There exist β > γ1 and τ < 0 such that, as s → ∞,

sup
x∈[1/2,2]
y∈(0,∞)

∣∣sP{1−F0(εt,X) ≤ x/s, 1−F1(εt,Y) ≤ y/s}−R(x,y)
∣∣

yβ ∧1
= O(sτ ).

Assumption 5. For i = 0,1 there exist ρi < 0 and an eventually positive or
negative function Ai(·) such that, as s → ∞, Ai(sx)/Ai(s) → xρi for all x > 0 and,
for any x0 > 0,

sup
x≥x0

∣∣∣x−γi
Ui(sx)

Ui(s)
−1
∣∣∣= O{Ai(s)}.

Assumptions 4 and 5 provide second-order refinements of the convergences
in (4) and (5). They ensure that bias terms arising from extrapolation vanish
asymptotically. Note that the more negative τ (ρi) in Assumption 4 (Assumption 5),
the better the approximation.

Remark 3. (i) Replacing s with n/k in the probability in the numerator,
Assumption 4 requires (n/k)P

{
εt,X > U0(n/[kx]), εt,Y > U1(n/[ky])

}
to

converge uniformly to its limit. In view of (8), it is therefore sufficient to
impose uniformity only in a neighborhood of 1 for x (which, following Cai
et al., 2015, we take to be [1/2,2] here). However, uniformity in y over (0,∞)
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is required, as the integration in (8) extends over all positive y-values. For a
specific dependence structure of (εt,X,εt,Y)′, Assumption 4 may be checked by
drawing on the results in Fougères et al. (2015, Sect. 4) (see also Remark 3
in that paper). Some specific distributions for which Assumption 4 holds are
also given by Cai et al. (2015, Sect. 3).

(ii) As pointed out by Cai et al. (2015, Rem. 2), Assumption 4 excludes the case
of asymptotically independent (εt,X,εt,Y)′, where R ≡ 0 (to see this, let y = s).
This rules out Gaussian copulas, but covers t-copulas (Heffernan, 2000), which
seem to be empirically more relevant for financial data (Breymann, Dias, and
Embrechts, 2003). Building on Cai and Musta (2020), it may be possible
to allow asymptotically independent innovations in MES estimation. This is,
however, beyond the scope of the present paper.

Remark 4. (i) Cai et al. (2015) also impose Assumption 5 on the tail of
εt,Y . Together with

√
k1A1(n/k1) → 0 (see Assumption 6), it ensures that√

k1(γ̂1 −γ1) does not have any asymptotic bias terms (see Lemma 2 or also
de Haan and Ferreira, 2006, Example 5.1.5).

(ii) Note that Cai et al. (2015) do not have to impose Assumption 5 on the tail
of εt,X , because the MES does not depend on its distribution. However, in
estimating MES based on the estimated residuals (̂εt,X,̂εt,Y)′, we have to justify
the replacement of the unobservable εt,X by the feasible ε̂t,X even in the tails.
To that end, we require a sufficiently well-behaved tail also of the εt,X .

We stress that imposing Assumption 5 for εt,X (i.e., for i = 0) is mainly a
convenience. It can be replaced by any other condition ensuring the conclusion
of Lemma 4 holds, as a careful reading of the proofs reveals. For instance,
it can easily be shown that Lemma 4 remains valid, e.g., for light-tailed
(standardized) exponentially distributed εt,X . However, ever since the work
of Bollerslev (1987), heavy-tailed errors satisfying Assumption 5 (such as
tν-distributed errors with γi = 1/ν and ρi = −2) are regarded as more suitable
in volatility modeling. We refer to Hua and Joe (2011, Examples 1–3) for
further heavy-tailed distributions with corresponding values for γi and ρi.

We mention that the problem of estimating a MES based on approximated
conditioning variables (here, the ε̂t,X) also appears in the work of Di Bernardino
and Prieur (2018), who deal with unconditional MES estimation for i.i.d. random
variables. They have to ensure that replacing their (latent) conditioning variable
Zj with some feasible Z̃j has no asymptotic impact. Instead of imposing a distri-
butional assumption (as we do) on the conditioning variables, Di Bernardino and
Prieur (2018) assume that the Z̃j’s are estimated from an initial pre-sample of length
n2 to rule out any asymptotic effects. Their Assumption 1(a.3) (with p0 = q0 = 1/2
in their notation) then requires n1 = o(n(1−ε)/2

2 ) for the actual estimation sample
size n1. This allows them to justify the replacement of the latent Zj with the Z̃j

without imposing distributional assumptions, as we do here. However, adopting a
similar approach in our present time series context would be highly unnatural.

We need two additional assumptions.
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Assumption 6. As n → ∞,
√

kA0(n/k) → 0,
√

k1A1(n/k1) → 0,

k = O(nα) for some α < −2τ/(−2τ +1)∧2γ1ρ1/(2γ1ρ1 +ρ1 −1),

k = o(p2τ(1−γ1)),

min
{√

k,
√

k1/ log(dn)
}= O(nα̃) and

√
k1 = O(nα̃) for some α̃ < ξ,

with A0(·) and A1(·) from Assumption 5, ξ > 0 from Assumption 1, and dn :=
k/(np).

Assumption 7. E |ε−
t,Y |1/γ1 < ∞.

The purpose of Assumption 6 is to restrict the speed of divergence of k and k1.
While this is obvious for most items, it is less clear for the first conditions
involving A0(·) and A1(·). However, de Haan and Ferreira (2006, p. 77) show that
these conditions imply that k = o(n−2ρ0/(1−2ρ0)) and k1 = o(n−2ρ1/(1−2ρ1)), respec-
tively. While large values of the intermediate sequences k and k1 imply a small
asymptotic variance, a bias is incurred by using possibly “non-tail” observations
in the estimates. Therefore, a bound on the growth of k and k1 is required for
asymptotically unbiased estimates. The requirement that k = o(p2τ(1−γ1)) together
with Assumption 7 is only used to show that θp/θ

+
p = 1+o(1/

√
k) (cf. Remark 2).

This relation ensures that θ̂p, which actually estimates θ+
p , also estimates θp. The

final condition in Assumption 6 ensures that the parameter estimator (which is
nξ -consistent) converges sufficiently fast relative to our MES estimator (which is
min

{√
k,

√
k1/ log(dn)

}
-consistent by Proposition 3). In the standard case where

ξ = 1/2, this condition is redundant, because min
{√

k,
√

k1/ log(dn)
} ≤ √

k =
o(n1/2) and

√
k1 = o(n1/2) as k and k1 are intermediate sequences and hence o(n).

3. ASYMPTOTIC NORMALITY OF MES FORECASTS

With the MES estimator of the previous subsection, our MES forecast becomes

θ̂n,p = σ̂n+1,Y θ̂p, (9)

where σ̂n+1,Y = σ̂n+1,Y (̂θ). We can now state our first main theoretical result.

Theorem 1. Let (Xt,Yt)
′ be a strictly stationary solution to (1) that is

measurable with respect to the sigma-field generated by {εt,εt−1, . . .}. Sup-
pose Assumptions 1–7 hold, and γ1 ∈ (0,1/2). Suppose further that dn ≥ 1,
r := limn→∞

√
k log(dn)/

√
k1 ∈ [0,∞], q := limn→∞ k1/k ∈ (0,∞) and limn→∞

log(dn)/
√

k1 = 0. Moreover, suppose that the truncation sequence �n satisfies
�n/ logn → ∞. Then, as n → ∞,

min
{√

k,
√

k1/ log(dn)
}

log

(
θ̂n,p

θn,p

)
d−→
{

�+ r�, if r ≤ 1,

(1/r)�+�, if r > 1,
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where � and � are zero-mean Gaussian random variables with

Var(�) = γ 2
1 −1−b2

∫ ∞

0
R(1,s)ds−2γ1, b = 1/

∫ ∞

0
R(1,s)ds−γ1,

Var(�) = γ 2
1 ,

Cov(�,�) = γ1√
q

(
1−γ1 + b

qγ1

)
R(1,q)

− γ1√
q

∫ q

0

[
(1−γ1)+bs−γ1

{
1−γ1 −γ1 log(s/q)

}]
R(1,s)s−1 ds.

Proof. See Appendix A. �

The assumptions of Theorem 1 can be roughly divided into two parts.
Assumptions 1–3, which are similar to conditions maintained by Francq et al.
(2017), ensure that the innovations of the volatility model can be recovered from
the observations with sufficient precision (see Proposition 2). Assumptions 4–7,
which closely resemble the conditions in Cai et al. (2015), imply the asymptotic
normality of the MES estimator for the innovations. Then, Assumptions 1–7
jointly ensure that the MES estimator θ̂p based on the filtered residuals is
also asymptotically normal (see Proposition 3). Here, the requirement that the
truncation sequence �n be sufficiently long (i.e., �n/ logn → ∞) together with
Assumption 3 ensures that initialization effects are negligible in the limit.

The case most often considered in EVT is that where dn → ∞ (see, e.g., de Haan
and Ferreira, 2006, Thm. 4.3.1, for high quantile estimation). When additionally
k � k1, we have that r = ∞, implying that � is the asymptotic limit. The proof of
Theorem 1 shows that γ̂1 consistently estimates γ1 (see Lemma 2 in Appendix C).
Hence, a feasible asymptotic (1 − ι)-confidence interval for θn,p in case r = ∞ is
given by[
θ̂n,p exp

{∓�−1(1− ι/2)γ̂1 log(dn)/
√

k1
}]

, (10)

where �−1(·) denotes the inverse of the standard normal d.f.
This is not a “classical” confidence interval because θn,p is not a fixed parameter

but a random quantity. However, it can be interpreted as such, since (by Theorem 1
and Lemma 2)

P
{
θ̂n,p exp

{−�−1(1− ι/2)γ̂1 log(dn)/
√

k1
}≤ θn,p

≤ θ̂n,p exp
{
�−1(1− ι/2)γ̂1 log(dn)/

√
k1
}} −→

(n→∞)
1− ι.

Such a straightforward interpretation of confidence intervals for random quantities
is often not possible (Beutner, Heinemann, and Smeekes, 2021). Yet, it is possible
here, because in Theorem 1 the asymptotic estimation uncertainty comes solely
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from the non-random θp component in

log(θ̂n,p/θn,p) = log(̂σn+1,Y/σn+1,Y)+ log(θ̂p/θp).

Specifically, the proof of Theorem 1 shows that parameter estimation effects vanish
because volatility in θ̂n,p can be estimated nξ -consistently, yet the unconditional
MES estimate has a slower rate of convergence, thus dominating asymptotically.
In the context of EVT-based VaR and ES forecasting, this was noted before by,
e.g., Chan et al. (2007), Martins-Filho, Yao, and Torero (2018), and Hoga (2019).

Inference when r < ∞ remains an unsolved issue, even for unconditional
MES estimation; see Cai et al. (2015) and Di Bernardino and Prieur (2018).
However, the case k � k1 and dn → ∞ seems to be the case of most practical
interest, because dn → ∞ corresponds to situations of strong extrapolation, where
k/n � p. Furthermore, we demonstrate the good finite-sample coverage of (10) in
simulations in Section 5. Nonetheless, it may be possible to explicitly deal with the
case r < ∞. This may be possible by using self-normalization as in Hoga (2019)
or by employing suitable bootstrap methods along the lines of Li, Peng, and Song
(2023). We leave these challenging extensions for future research.

4. HIGHER-DIMENSIONAL EXTENSIONS

One desirable property of MES as a systemic risk measure is its additivity property.
To illustrate, suppose that Yt,1, . . . ,Yt,D denote the losses of all trading desks
of a business unit. The weighted losses of the business unit then sum to Xt =∑D

d=1 wt−1,dYt,d, where the weights wt−1,d are determined by how much capital
is allocated to each trading desk in advance and, thus, are known at time t−1. The
total riskiness of the business unit, as measured by the ES, can then be decomposed
as E[Xt | Xt > VaRt(p), Ft−1] = ∑D

d=1 wt−1,d E[Yt,d | Xt > VaRt(p), Ft−1]. In
allocating capital among the trading desks, one may want to ensure an equal risk
contribution of each trading desk, such that wt−1,1 E[Yt,1 | Xt > VaRt(p), Ft−1] =
·· · = wt−1,D E[Yt,D | Xt > VaRt(p), Ft−1]. Therefore, it becomes important to
develop tools for the joint inference on different MES forecasts.

Clearly, drawing inferences on many MES forecasts jointly is also important
in other contexts. For instance, suppose the Yt,1, . . . ,Yt,D denote individual losses
of all banks in the financial system. Then, the regulator seeks to control the
system’s total risk as measured by the ES E[Xt | Xt > VaRt(p), Ft−1] (see Qin
and Zhou, 2021). Since E[Xt | Xt > VaRt(p), Ft−1] = ∑D

d=1 wt−1,d E[Yt,d | Xt >

VaRt(p), Ft−1] =:
∑D

d=1 wt−1,dθt−1,p,d, it becomes clear that regulators should take
into account the estimation risk of the individual MES forecasts.

Remark 5. To the extent that E[Yt,d | Xt > VaRt(p), Ft−1] measures the
contribution of institution d to the total risk in the financial system, it may be
viewed as a measure of the systemic riskiness of that institution (Acharya et al.,
2017, p. 7). However, the measure with reversed conditioning, i.e., E[Xt | Yt,d >
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VaRt,d(p), Ft−1], also describes the systemic riskiness of bank d. The higher this
particular MES, the greater the impact of distress of institution d on the financial
system.1 Yet, using E[Yt,d | Xt > VaRt(p), Ft−1] has the advantage of the above
additivity property, which is a crucial property for systemic risk measures as it
allows for risk attribution (Chen et al., 2013). Acharya et al. (2017, p. 7), who
also use the definition E[Yt,d | Xt > VaRt(p), Ft−1], additionally mention risk
management, transfer pricing and strategic capital allocation as tasks where the
additivity is important. Therefore, we work with Acharya et al.’s (2017) original
definition in the following.

To enable joint hypothesis testing, we consider a high-dimensional extension of
model (1), viz.,

(Xt,Yt,1, . . . ,Yt,D)′ = Σ tεt. (11)

We take the diagonal matrix Σ t = diag(σ t) with σ t = (σt,X,σt,Y1, . . . ,σt,YD)′ to be
measurable with respect to Ft−1 = σ

(
(Xt−1,Yt−1,1, . . . ,Yt−1,D)′,(Xt−2,Yt−2,1, . . . ,

Yt−2,D)′, . . .
)
, and the εt = (εt,X,εt,Y1, . . . ,εt,YD)′ to be independent of Ft−1 and

i.i.d. with mean zero, unit variance and correlation matrix R. We again assume
the innovations εt to have a continuous d.f.

To forecast the individual MESs, we use the same estimator as before, i.e.,
θ̂n,p,d = σ̂n+1,Yd θ̂p,d with

θ̂p,d =
( k

np

)γ̂d
θ̂k/n,d,

where γ̂d = 1
kd

∑kd
t=1 log

(̂
ε(t),Yd /̂ε(kd+1),Yd

)
and θ̂k/n,d = 1

k

∑n
t=1 ε̂+

t,Yd
I{̂

εt,X>̂ε(k+1),X

}
are defined in the expected way.

To derive the asymptotic limit of
(
θ̂n,p,1, . . . ,θ̂n,p,D

)′
, Assumptions 1–3 do not

have to be changed. The remaining Assumptions 4–7 have to be generalized
slightly as follows. To that end, we extend the notation in the obvious way. For
example, we denote the d.f. of Yt,d by Fd(·), and set Ud = (1/[1 − Fd])←. The
extreme value index of the Yt,d is denoted by γd.

Assumption 4*. For all d = 1, . . . ,D, there exist βd > γd, τd < 0 and Rd(·,·)
such that, as s → ∞,

sup
x∈[1/2,2]
y∈(0,∞)

∣∣sP{1−F0(εt,X) ≤ x/s, 1−Fd(εt,Yd ) ≤ y/s}−Rd(x,y)
∣∣

yβd ∧1
= O(sτd ).

1Of course, the MES E[Xt | Yt,d > VaRt,d(p), Ft−1] can also be forecasted using the theory of Section 3 by reversing
the roles of X and Y.
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Moreover, for all i,j = 1, . . . ,D, there exists a function Ri,j(·,·), such that for all
x,y ∈ [0,∞]2 \ {(∞,∞)},

lim
s→∞sP{1−Fi(εt,Yi) ≤ x/s, 1−Fj(εt,Yj) ≤ y/s} = Ri,j(x,y). (12)

Assumption 5*. For all d = 0, . . . ,D, there exist ρd < 0 and an eventually
positive or negative function Ad(·) such that, as s → ∞, Ad(sx)/Ad(s) → xρd for
all x > 0 and, for any x0 > 0,

sup
x≥x0

∣∣∣x−γd
Ud(sx)

Ud(s)
−1
∣∣∣= O{Ad(s)}.

Assumption 6*. As n → ∞, for each d = 1, . . . ,D,

√
kA0(n/k) → 0,

√
kdA1(n/kd) → 0,

k = O(nα) for some α < −2τd/(−2τd +1)∧2γdρd/(2γdρd +ρd −1),

k = o(p2τd(1−γd)),

min
{√

k,
√

kd/ log(dn)
}= O(nα̃) and

√
kd = O(nα̃) for some α̃ < ξ,

with A0(·) and Ad(·) from Assumption 5*, and ξ > 0 from Assumption 1.

Assumption 7*. E |ε−
t,Yd

|1/γd < ∞ for all d = 1, . . . ,D.

The only nontrivial extension of Assumptions 4*–7* relative to Assumptions
4–7 is condition (12), which is closely related to (4). It is needed to derive the joint
convergence of (γ̂1, . . . ,γ̂D)′, and the limit function Ri,j(·,·) features prominently
in its asymptotic limit and that of Theorem 2. For simplicity, Theorem 2 only
considers the case where rd := limn→∞

√
k log(dn)/

√
kd = ∞ for all d = 1, . . . ,D,

which implies individual confidence intervals of the form in (10).

Theorem 2. Let (Xt,Yt,1, . . . ,Yt,D)′ be a strictly stationary solution to (11)
that is measurable with respect to the sigma-field generated by {εt,εt−1, . . .}.
Suppose Assumptions 1–3 and Assumptions 4*–7* hold, and γd ∈ (0,1/2) for all
d = 1, . . . ,D. Suppose further that dn ≥ 1, rd = limn→∞

√
k log(dn)/√

kd = ∞, qd := limn→∞ kd/k ∈ (0,∞) and limn→∞ log(dn)/
√

kd = 0 for
all d = 1, . . . ,D. Moreover, suppose that the truncation sequence �n satisfies
�n/ logn → ∞. Then, as n → ∞,

( √
k1

log(dn)
log

(
θ̂n,p,1

θn,p,1

)
, . . . ,

√
kD

log(dn)
log

(
θ̂n,p,D

θn,p,D

))′
d−→ (�1, . . . ,�D)′,

where (�1, . . . ,�D)′ is a zero-mean Gaussian random vector with variance–
covariance matrix Σ = (σi,j)i,j=1,...,D,
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σi,j := Cov(�i,�j) = γiγj√
qiqj

Ri,j(qi,qj)+Ri,j(qj,qi)

2
.

Proof. See Appendix E. �

For joint inference on the MES forecasts, we have to estimate Σ , i.e., the γd’s,
qd’s, Ri,j(qi,qj)’s, and Ri,j(qj,qi)’s. The extreme value indices γd can be consistently
estimated via γ̂d (see Lemma 2) and the qd’s can easily be “estimated” via kd/k.
We propose to estimate the remaining quantities Ri,j(qi,qj) and Ri,j(qj,qi) via

R̂i,j(qi,qj) = 1

k

n∑
t=1

I{̂
εt,Yi >̂ε(ki+1),Yi

, ε̂t,Yj >̂ε(kj+1),Yj

},
R̂i,j(qj,qi) = 1

k

n∑
t=1

I{̂
εt,Yi >̂ε(kj+1),Yi

, ε̂t,Yj >̂ε(ki+1),Yj

}.

The next proposition shows that these estimates are consistent:

Proposition 1. Under the conditions of Theorem 2, it holds, for all i,j =
1, . . . ,D, that R̂i,j(qi,qj)

P−→ Ri,j(qi,qj) and R̂i,j(qj,qi)
P−→ Ri,j(qj,qi), as n → ∞.

Proof. See Appendix F. �

In sum, the asymptotic variance–covariance matrix Σ from Theorem 2 may be
estimated consistently via Σ̂ = (̂σi,j)i,j=1,...,D with typical element

σ̂i,j = k
γ̂iγ̂j√
kikj

R̂i,j(qi,qj)+ R̂i,j(qj,qi)

2
.

Note that for i = j = d, we get (as expected from Theorem 1) that σ̂d,d = γ̂ 2
d .

We mention that Di Bernardino and Prieur (2018) also consider MES estimation
(albeit in an i.i.d. static setting) in a higher-dimensional framework. However, they
focus on limit theory for individual MES estimates. This contrasts with our joint
convergence result in Theorem 2, with appertaining inference tools provided by
Proposition 1 and Lemma 2.

As outlined above, in applications, one may want to test the equality of (value-
weighted) risk contributions by several trading desks. Similarly, one may want to
test the equality of the risk contributions by banks in a financial system. This latter
application is further explored in Section 6. In each case, the null is that

H0 : wn,1θn,p,1 = ·· · = wn,Dθn,p,D

for positive weights wn,D > 0 summing to one.
We test this null by comparing each of log(wn,1θ̂n,p,1), . . . , log(wn,D−1θ̂n,p,D−1)

with the “average” forecast (1/D)
∑D

d=1 log(wn,d θ̂n,p,d). Then, any “large”
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difference is evidence against the null. With the (D−1)×D-transformation matrix

T =
⎛⎜⎝1 0 0

. . .
...

0 1 0

⎞⎟⎠− (1/D)

⎛⎜⎝1 . . . 1
...

. . .
...

1 . . . 1

⎞⎟⎠
this suggests using

T

⎛⎜⎝ log(wn,1θ̂n,p,1)
...

log(wn,Dθ̂n,p,D)

⎞⎟⎠=
⎛⎜⎝ log(wn,1θ̂n,p,1)− (1/D)

∑D
d=1 log(wn,d θ̂n,p,d)

...
log(wn,D−1θ̂n,p,D−1)− (1/D)

∑D
d=1 log(wn,d θ̂n,p,d)

⎞⎟⎠
in a Wald test. To ease the exposition, we assume that k = k1 = ·· · = kD, such that
the test statistic becomes

Tn = k

log(dn)2

(
log(wn,1θ̂n,p,1), . . . , log(wn,Dθ̂n,p,D)

)
T′(TΣ̂T′)−1

×T
(
log(wn,1θ̂n,p,1), . . . , log(wn,Dθ̂n,p,D)

)′
,

where the inverse of TΣ̂T′ is assumed to exist.

Corollary 1. Suppose that the conditions of Theorem 2 hold and that k = k1 =
·· · = kD. Furthermore, assume that TΣT′ is positive definite. Then, it holds under

H0 that Tn
d−→ χ2

D−1, as n → ∞.

Proof. Note that under H0,

T

⎛⎜⎝ log(wn,1θ̂n,p,1)
...

log(wn,Dθ̂n,p,D)

⎞⎟⎠=
⎛⎜⎝ log(θ̂n,p,1/θn,p,1)− (1/D)

∑D
d=1 log(θ̂n,p,d/θn,p,d)

...
log(θ̂n,p,D−1/θn,p,D−1)− (1/D)

∑D
d=1 log(θ̂n,p,d/θn,p,d)

⎞⎟⎠

= T

⎛⎜⎝ log(θ̂n,p,1/θn,p,1)
...

log(θ̂n,p,D/θn,p,D)

⎞⎟⎠ .

Then, combine the continuous mapping theorem with Theorem 2, Proposition 1
and the consistency of γ̂d for d = 1, . . . ,D (from Lemma 2). �

5. SIMULATIONS

Here, we investigate the coverage of the confidence interval in (10) for ι = 0.05.
We do so for n ∈ {500, 1,000} and p ∈ {1%, 0.5%, 0.1%, 0.05%, 0.01%, 0.005%,

0.001%}. Throughout, we use 1,000 replications and we clip off the first �n = 10
residuals to reduce the impact of initialization effects on our MES estimator.
Following Qin and Zhou (2021, Footnote 6), we use identical k = k1 in the
simulations and the empirical application. Specifically, we set k = k1 = �0.1 ·
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log(n)4� to satisfy Assumption 6. Since the probabilities p are quite small relative
to the sample sizes n, our confidence intervals (valid when dn = k/(np) tends to
infinity) should provide reasonable coverage.

We simulate from the simple CCC–GARCH model (Xt,Yt)
′ = diag(σ t)εt, where

σ t = (σt,X,σt,Y)′ with

σ 2
t,X = 0.001+0.2 ·X2

t +0.75 ·σ 2
t−1,X,

σ 2
t,Y = 0.001+0.1 ·Y2

t +0.85 ·σ 2
t−1,Y .

(13)

The parameter values of the volatility equations are chosen to resemble typical
estimates obtained for financial data. The innovations εt are i.i.d. draws from a
t-copula with ν degrees of freedom and correlation coefficient ρX,Y . The marginals
of εt are from a (standardized and symmetrized) Burr(a,b)-distribution with d.f.

F(x) = 1− (1+ xb)−a, x > 0, a,b > 0. Hence, εt,Z
d= RtBt/

√
E[B2

t ] for Z ∈ {X,Y},
where Rt are Rademacher random variables (i.e., equal to ±1 with probability 1/2),
independent of the Bt ∼ Burr(a,b).

We choose the marginal Burr distribution because it allows to vary the quality of
the approximation in Assumption 5 via the parameters a and b without changing
the extreme value index γ . Example 2 in Hua and Joe (2011) shows that the
extreme value index of a Burr(a,b)-distribution is given by 1/(ab) and its second-
order parameter by −b. Thus, we have that γ0 = γ1 = 1/(ab) and ρ0 = ρ1 = −b in
the notation of Assumption 5. This implies that the larger b, the faster the conver-
gence of Ui(sx)/Ui(s) to the Pareto-type limit xγi takes place in Assumption 5. By
suitable choices of a and b, this allows us to assess the implications of a better tail
approximation on the precision of our MES estimator, while keeping the tail index
constant. Specifically, we choose (a,b) ∈ {(0.25,20), (0.2,25)} to always obtain
γ0 = γ1 = 1/5. However, the Pareto approximation is better for (a,b) = (0.2,25)

because b is larger.
The choice of the t-copula for εt implies that Assumption 4 is satisfied

with τ = −2/ν, β = 1 + 2/ν and R(x,y) = xFν+1

(
(x/y)1/ν−ρX,Y√

1−ρ2
X,Y

√
ν +1

)
+

yFν+1

(
(y/x)1/ν−ρX,Y√

1−ρ2
X,Y

√
ν +1

)
, where Fν+1(·) = 1 − Fν+1(·) denotes the survivor

function of the tν+1-distribution (see Fougères et al., 2015, Rem. 3 and Sect.
4.1). A more negative τ (smaller degrees of freedom ν of the t-copula) implies
a better approximation in Assumption 4. Our copula construction allows us to
vary the dependence structure (in particular, the quality of the approximation
in Assumption 4 as a function of ν) without changing the marginals of the
innovations. Specifically, we choose ν ∈ {3,5}, and set the correlation coefficient
of the copula to ρX,Y = 0.95.

To estimate the GARCH parameters in (13), we use the QMLE. Since we
choose a and b to give γ0 = γ1 = 1/(ab) = 1/5, the innovations have finite fourth
moments, implying

√
n-consistency of the QMLE (Francq and Zakoïan, 2010).
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Table 1. Bias, RMSEs, average interval lengths of (10) and coverage (in %) for
n = 500 and 1− ι = 95%

n ν (a,b) p Bias RMSE RMSE
ML

RMSE
NP Length Coverage

500 3 (0.25,20) 1% 0.3 2.6 2.1 4.8 6.6 83.9

0.5% 0.6 3.4 2.7 9.6 9.2 86.9

0.1% 1.3 6.0 4.9 46.1 18.0 90.5

0.05% 1.6 7.6 6.3 52.9 23.4 91.6

0.01% 3.2 12.9 10.8 72.7 41.3 93.1

0.005% 4.3 16.1 13.7 83.8 52.0 93.4

0.001% 11.0 27.7 23.1 114.0 86.9 93.9

3 (0.2,25) 1% 0.1 2.5 2.0 4.6 6.4 83.2

0.5% 0.3 3.3 2.6 9.3 8.9 85.2

0.1% 0.8 5.8 4.5 46.1 17.4 90.2

0.05% 1.2 7.3 5.6 53.1 22.6 01.4

0.01% 2.6 12.3 9.3 73.7 39.6 93.1

0.005% 3.9 15.4 11.4 84.9 49.8 93.6

0.001% 6.0 24.8 18.6 117.4 82.9 94.7

5 (0.25,20) 1% 0.7 2.7 2.0 4.6 6.7 82.7

0.5% 1.1 3.6 2.7 9.2 9.3 85.7

0.1% 2.6 6.6 4.7 45.9 18.2 88.9

0.05% 3.5 8.4 5.9 52.6 23.7 89.8

0.01% 6.8 14.5 9.9 72.6 41.8 90.4

0.005% 8.1 17.8 12.3 83.5 52.6 91.6

0.001% 10.2 27.6 20.5 117.6 88.0 94.1

Note: Bias, RMSEs, and interval lengths are all multiplied by 100 for better readability.

Thus, Assumption 1 is met for ξ = 1/2. By Example 2, Assumptions 2 and 3 are
also satisfied.

We draw the following conclusions from the simulation results in Tables 1 and 2:

1. The more extreme p, the better the coverage of the 95%-confidence intervals
(10). This may be explained as follows. For more extreme p, the pre-asymptotic
value of r in Theorem 1 (i.e.,

√
k log(dn)/

√
k1) is closer to infinity, suggesting

that the limit in Theorem 1 can be better approximated by �, i.e., the limit
distribution exploited in the construction (10) for r = ∞. As pointed out in
Section 1, it is precisely the small p’s for which systemic risk measures are of
most interest. For these small p’s, our confidence intervals are reasonably accu-
rate, particularly, when compared with other EVT-based confidence intervals
(see, e.g., Chan et al., 2007, Fig. 1). To improve coverage for less extreme p,
one may entertain self-normalized confidence intervals as in Hoga (2019) or one
may use bootstrap approximations, as explored by Li et al. (2023) in the context

https://doi.org/10.1017/S0266466623000233 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000233


THE ESTIMATION RISK IN EXTREME SYSTEMIC RISK FORECASTS 361

Table 2. Bias, RMSEs, average interval lengths of (10) and coverage (in %) for
n = 1,000 and 1− ι = 95%

n ν (a,b) p Bias RMSE RMSE
ML

RMSE
NP Length Coverage

1,000 3 (0.25,20) 1% 0.2 1.9 1.4 3.3 4.8 83.1

0.5% 0.4 2.5 1.8 5.3 6.7 86.3

0.1% 1.0 4.4 3.2 14.5 13.4 90.4

0.05% 1.3 5.6 4.1 53.2 17.4 90.8

0.01% 2.2 9.4 6.8 73.5 30.7 92.5

0.005% 2.4 11.6 8.5 83.3 38.6 93.1

0.001% 2.3 18.5 14.2 114.2 64.1 93.5

3 (0.2,25) 1% 0.1 1.9 1.5 3.3 4.7 82.1

0.5% 0.2 2.4 2.0 5.4 6.7 85.8

0.1% 0.5 4.3 3.4 15.5 13.2 89.6

0.05% 0.8 5.5 4.3 52.6 17.2 91.1

0.01% 1.9 9.3 7.0 72.2 30.2 92.5

0.005% 3.0 11.7 8.7 82.7 37.9 92.9

0.001% 7.9 19.9 14.2 114.5 62.9 92.9

5 (0.25,20) 1% 0.6 2.0 1.4 3.2 4.8 82.0

0.5% 0.8 2.7 1.9 5.2 6.8 85.2

0.1% 1.6 4.8 3.3 14.3 13.5 89.6

0.05% 2.2 6.1 4.2 52.3 17.5 90.6

0.01% 3.8 10.3 7.0 71.7 30.9 92.3

0.005% 4.8 12.8 8.7 82.1 38.8 92.7

0.001% 8.7 21.2 15.7 107.9 64.6 93.3

Note: Bias, RMSEs, and interval lengths are all multiplied by 100 for better readability.

of extreme VaR and ES forecasting. In principle, coverage for larger p could
also be improved by using forecast intervals based on the limiting distribution
(1/r)�+�. However, to the best of our knowledge, no consistent estimator has
been proposed for its asymptotic variance, which seems difficult to estimate.

2. As expected, the more extreme p, the larger the bias and the RMSE of the MES
forecasts. Also, the larger b and the smaller ν, the lower the bias and RMSE tend
to be for fixed risk level p. This may be explained by the fact that, for larger
b, the Pareto approximation is more accurate for the marginals. Similarly, for
smaller ν, the approximation in Assumption 4 (that is used in extrapolating) is
more precise, leading to lower bias and RMSE. Of course, bias and particularly
the RMSE are also reduced when the sample size n increases.

3. Similarly as the RMSE, the lengths of the confidence intervals also decrease
the larger n and the better the approximations in Assumptions 4 and 5 (i.e., the
smaller ν and the larger b). This is also as expected since confidence intervals
provide a measure of the statistical uncertainty around the point MES forecasts.
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4. For purposes of comparison, we have also included the RMSEs of two
additional MES forecasts with quite different robustness–efficiency trade-off:
one based on a parametric maximum likelihood (ML) estimator and another
based on a non-parametric (NP) estimator.2 Our semi-parametric estimator θ̂p

provides a balance between the advantages of these two estimators by producing
reasonably robust estimates with good efficiency. The results are as expected.
Because the assumptions underlying the use of the ML estimator and our θ̂p

are met, they are more efficient than the NP estimates in terms of RMSE, with
the ML estimator being the favorite. But of course the ML estimator may be
dangerous to use under misspecification. As Drees (2008, Sect. 2.2) warns, the
consequences of misspecification of model-based estimates are even magnified
in the tail and, therefore, such estimates are not recommended in applications of
EVT. Indeed, unreported simulations with the ML estimator based on assuming
(misspecified) marginal t-densities show an inferior performance compared to
θ̂p with RMSEs 2–4 times as large.

Overall, our MES forecasts are reasonably accurate, with the forecast inter-
vals providing good measures of their uncertainty (particularly, for extreme risk
levels p).

6. EMPIRICAL APPLICATION

Here, we consider the eight U.S. G-SIBs as determined by the FSB (2021).3 We
use daily data from 2001 to 2021, because data for JP Morgan Chase (one of the
G-SIBs) is only available after the merger of JP Morgan and Chase Manhattan
in 2000. This gives us N = 5,283 observations. All data are downloaded from
Datastream.

Since we consider eight banks, we have D = 8 in the notation of Section 4. The
Yt,d (d = 1, . . . ,D) then denote the log-losses of the individual institutions’ shares
(calculated based on adjusted closing prices). The value-weighted losses of the
whole financial system are Xt =∑D

t=1 wt−1,dYt,d. Specifically, the weights sum to
one (i.e.,

∑D
d=1 wt−1,d = 1) and are calculated as wt−1,d = Mt−1,d/(

∑D
d=1 Mt−1,d)

with Mt−1,d the market capitalization of institution d at time t − 1 (see Qin and
Zhou, 2021, for a similar approach). To forecast MES, we use a CCC–GARCH
model of the form (11) with standard GARCH(1,1) volatility models for the
marginals. Note that a model only for (Yt,1, . . . ,Yt,D)′ is not sufficient for this
purpose, as Xt is not only composed of the Yt,d’s but also of the time-varying
weights wt−1,d. We use rolling-window MES forecasts, where a window of length

2The ML estimator separately estimates the copula parameters (ν,ρX,Y ) and the marginal parameters (a,b) via
ML. It then computes the MES θp implied by the estimated values. In contrast, the NP estimate is simply θ̂NP

p =
1

np

∑n
t=1 ε̂t,Y I{̂εt,X >̂ε(�np�+1),X }. In both cases, the MES forecasts are obtained by pre-multiplying the MES estimate

with σ̂ Y
n+1 (cf. (9)).

3Specifically, the eight G-SIBs are Bank of America, Bank of New York Mellon, Citigroup, Goldman Sachs, JP
Morgan Chase, Morgan Stanley, State Street, and Wells Fargo.
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Figure 1. Top panel: Value-weighted MES forecasts for eight U.S. G-SIBs are Bank of America
(BAC), Bank of New York Mellon (BK), Citigroup (C), Goldman Sachs (GS), JP Morgan Chase (JPM),
Morgan Stanley (MS), State Street (STT), and Wells Fargo (WFC). Bottom panel: Time series of value-
weighted losses Xt .

(n+�n) is rolled through the N = 5,283 observations to yield N −(n+�n) one-step
ahead forecasts. We pick n = 1,000 and �n = 10, corresponding to roughly four
years of daily returns in each moving window. To reflect the scarcity of systemic
events, we choose p = 1/n = 0.001. Results for different values of p are available
upon request. As in the simulations, we set k = k1 = �0.1 · log(1,000)4�.

From a regulatory perspective, it is important (at each point t in time) to limit
the risk of the overall banking system as measured by the ES, viz.,

E[Xt | Xt > VaRt(p),Ft−1] =
D∑

d=1

wt−1,d E[Yt,d | Xt > VaRt(p),Ft−1] =
D∑

d=1

wt−1,dθt−1,p,d .

The bottom panel of Figure 1 shows a plot of the value-weighted losses Xt. During
periods of high volatility, aggregate risk of the system is high. Such periods are
noticeable during the financial crisis of 2007–2009, the European sovereign debt
crisis in the early 2010s, and the Corona stock market crash of March 2020.

The top panel of Figure 1 plots the systemic risk contributions of each bank
as measured by the value-weighted MES wt−1,dθt−1,p,d. Clearly, the contributions
vary through time. Notice also that the MES forecasts during 2021 largely reflect
the systemic risk contributions of the different institutions as determined by the
FSB (2021). For instance, JP Morgan Chase is listed as the systemically most risky
bank by the FSB (2021), which is mirrored by the high MES forecasts in the top
panel of Figure 1. At the other end of the spectrum, State Street, Bank of New York
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Figure 2. Top panel: MES forecasts (solid black line) together with 95% confidence intervals (shaded
grey area) for JP Morgan Chase. Bottom panel: Lengths of 95% confidence intervals.

Mellon, and Morgan Stanley are deemed least risky by the FSB (2021), similarly
as their low MES forecasts suggest.

The placement of the institutions in different buckets by the FSB (2021) (with
bucket 5 containing the most systemically risky institutions and bucket 1 the
least systemically risky ones) suggests that the systemic risk contributions of the
different banks may also be distinguishable in statistical terms. Thus, for each
point in time t, for which MES forecasts are issued, we test equality of the value-
weighted MES forecasts, i.e., wt−1,1θt−1,p,1 = ·· · = wt−1,Dθt−1,p,D. To do so, we use
the test statistic Tn from Corollary 1. For each point in time, the p-value is virtually
zero, indicating (as expected) large heterogeneity of systemic risk contributions
among banks.

To limit the overall riskiness of the system, it seems prudent for the regulator
to not only rely on the point MES forecasts, but also to take into account the
estimation risk associated with those forecasts. To illustrate the significant impact
of estimation risk, Figure 2 displays the MES forecasts together with the 95%-
confidence intervals given in (10). It does so exemplarily for JP Morgan Chase,
which is ranked as the world’s most systemically risky bank by the FSB (2021).
The financial crisis of 2007–2009 and the Corona stock market crash of March
2020 are associated with the largest spikes in systemic riskiness. It is exactly during
these times, where precise risk assessments are needed most, that our intervals
suggest that systemic risk is forecasted with the greatest uncertainty. This can
be seen most clearly from the bottom panel of Figure 2, where lengths of the
95%-forecast intervals are shown. During crises (e.g., around 2008) the estimation
risk in the forecasts is highest. In contrast, during calmer times, the estimation
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risk is comparatively smaller. Formula (10) suggests that the main driver of these
differences in forecast quality is the volatility of the JP Morgan Chase shares.

7. CONCLUSION

For univariate risk measures, such as VaR and ES, there is a voluminous lit-
erature on asymptotic properties of forecasts. In contrast, asymptotic properties
of systemic risk forecasts are largely unexplored. This paper fills this gap by
deriving limit theory for EVT-based MES forecasts. In doing so, we extend the
unconditional MES estimator of Cai et al. (2015) along two dimensions. First, we
prove its validity when applied to residuals of multivariate volatility models, thus
allowing it to be used for conditional MES forecasting and confidence interval
construction. In simulations, we illustrate the good finite-sample coverage of the
forecast intervals, which provide valuable information beyond the mere point
forecast of MES. Second, we derive limit theory also in higher-dimensional
systems, therefore enabling joint inference on multiple MES forecasts. This may
be beneficial as illustrated in the empirical application to the losses of the eight
U.S. G-SIBs.

The following avenues may be worth exploring in future research. First, one
may develop bootstrap-based confidence intervals for MES to improve coverage,
particularly for not so extreme p. Second, it may be interesting to explore the
properties of our forecasts for data-adaptive choices of k and k1, which may
improve finite-sample properties. The results of Drees et al. (2020) in the context
of extreme value index estimation suggest that this may influence the asymptotic
behavior. Third, we have exclusively focused on MES as a measure of systemic
risk in this paper. However, there are many other popular systemic risk measures
in the literature, such as the CoVaR and CoES of Adrian and Brunnermeier (2016).
Thus, future research could develop limit theory for (EVT-based) forecasts of these
measures as well.

APPENDICES

If not specified otherwise, all limits and all o(P)- and O(P)-symbols are to be interpreted
with respect to n → ∞. We denote by K > 0 a large positive constant that may change from
line to line, and by I the identity matrix of appropriate dimension.

A. Proof of Theorem 1

The proof of Theorem 1 requires Propositions 2 and 3.

Proposition 2. Suppose Assumptions 1–3 hold, and the truncation sequence �n satisfies
�n/ logn → ∞. Then, we have for any ι > 0 that, as n → ∞,

ε̂t = εt
{
1+oP(nι−ξ )

}
,

σ̂ t = σ t
{
1+oP(nι−ξ )

}
,

uniformly in t = 1, . . . ,n+1.
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Proof. See Appendix B. �

Proposition 3. Under the conditions of Theorem 1, we have that, as n → ∞,

min
{√

k,
√

k1/ log(dn)
}

log

(
θ̂p

θp

)
d−→
{

�+ r�, if r ≤ 1,

(1/r)�+�, if r > 1,

with r, �, and � defined as in Theorem 1.

Proof. See Appendix C. �

Proof of Theorem 1. Use (2) and (9) to write

min
{√

k,
√

k1/ log(dn)
}

log

(
θ̂n,p

θn,p

)
= min

{√
k,
√

k1/ log(dn)
}

log

(
σ̂n+1,Y

σn+1,Y
· θ̂p

θp

)
= min

{√
k,
√

k1/ log(dn)
}

log

(
σ̂n+1,Y

σn+1,Y

)
+min

{√
k,
√

k1/ log(dn)
}

log

(
θ̂p

θp

)
.

(A.1)

From Proposition 2 and Assumption 6, it follows that for ι < ξ − α̃,

min
{√

k,
√

k1/ log(dn)
}

log

(
σ̂n+1,Y

σn+1,Y

)
= min

{√
k,
√

k1/ log(dn)
}

log
(

1+oP(nι−ξ )
)

= min
{√

k,
√

k1/ log(dn)
}
oP(nι−ξ )

= O(nα̃)oP(nι−ξ )

= oP(nα̃+ι−ξ )

= oP(1), (A.2)

because logx ∼ x − 1, x → 1. For the second right-hand side term in (A.1) Proposition 3
applies. Overall, the conclusion follows. �

B. Proof of Proposition 2

Proof of Proposition 2. Fix ι > 0. Choose M > 0 from Assumption 2 sufficiently large,
such that 1/M < ι. Consider n sufficiently large, such that Assumption 2 holds for the
neighborhood N (θ◦) := {θ : nξ‖θ − θ◦‖ ≤ K0

}
for some K0 > 0. For θ ∈ N (θ◦), write

ε̂t(θ) = Σ̂
−1
t (θ)(Xt,Yt)

′ = Σ̂
−1
t (θ)Σ t(θ

◦)εt

= [Σ−1
t (θ)Σ̂ t(θ)

]−1[
Σ−1

t (θ◦)Σ t(θ)
]−1

εt

=
{

I +Σ−1
t (θ)

[
Σ̂ t(θ)−Σ t(θ)

]}−1{
I +Σ−1

t (θ◦)
[
Σ t(θ)−Σ t(θ

◦)
]}−1

εt. (B.1)
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Use Assumption 3 (where C0 is random) to conclude that

max
t=1,...,n+1

∥∥∥Σ−1
t (θ)

[
Σ̂ t(θ)−Σ t(θ)

]∥∥∥≤ max
t=1,...,n+1

∥∥Σ−1
t (θ)

∥∥ max
t=1,...,n+1

∥∥Σ̂ t(θ)−Σ t(θ)
∥∥

≤ CC0ρ�n = oP(n−K) (B.2)

for any K > 0, because

ρ�n = exp
{

log
(
ρ(�n/ logn) logn)}

= exp
{

log(n) log
(
ρ�n/ logn)}= (exp{logn})log

(
ρ�n/ logn

)
= nlog

(
ρ�n/ logn

)
= o
(
n−K),

since �n/ logn → ∞ by assumption, such that ρ�n/ logn → 0 and, hence,
log
(
ρ�n/ logn)→ −∞.

For the second right-hand side term in (B.1), we obtain that

max
t=1,...,n+1

∥∥∥Σ−1
t (θ◦)

[
Σ t(θ)−Σ t(θ

◦)
]∥∥∥≤ max

t=1,...,n+1

∣∣∣∣σt,X(θ)−σt,X(θ◦)
σt,X(θ◦)

∣∣∣∣
+ max

t=1,...,n+1

∣∣∣∣σt,Y (θ)−σt,Y (θ◦)
σt,Y (θ◦)

∣∣∣∣.
(B.3)

Consider the first term on the right-hand side of (B.3). Define σ̇t,X(θ) = ∂σt,X(θ)/∂θ . Use
the mean value theorem to deduce that for some θ∗ on the line connecting θ and θ◦,

max
t=1,...,n+1

∣∣∣∣σt,X(θ)−σt,X(θ◦)
σt,X(θ◦)

∣∣∣∣= max
t=1,...,n+1

∣∣∣∣ σ̇t,X(θ∗)(θ − θ◦)
σt,X(θ◦)

∣∣∣∣
= max

t=1,...,n+1

∣∣∣∣ σ̇t,X(θ∗)

σt,X(θ∗)
· σt,X(θ∗)

σt,X(θ◦) · (θ − θ◦)
∣∣∣∣

≤ max
t=1,...,n+1

{
sup

θ∈N (θ◦)

∥∥∥∥ σ̇t,X(θ)

σt,X(θ)

∥∥∥∥ · sup
θ∈N (θ◦)

∣∣∣∣ σt,X(θ)

σt,X(θ◦)

∣∣∣∣}∥∥θ − θ◦∥∥. (B.4)

We obtain that

P

{
max

t=1,...,n+1

{
sup

θ∈N (θ◦)

∥∥∥∥ σ̇t,X(θ)

σt,X(θ)

∥∥∥∥ · sup
θ∈N (θ◦)

∣∣∣∣ σt,X(θ)

σt,X(θ◦)

∣∣∣∣}> εnι

}

≤
n+1∑
t=1

P

{
sup

θ∈N (θ◦)

∥∥∥∥ σ̇t,X(θ)

σt,X(θ)

∥∥∥∥ · sup
θ∈N (θ◦)

∣∣∣∣ σt,X(θ)

σt,X(θ◦)

∣∣∣∣> εnι

}

≤
n+1∑
t=1

1

εMnMι
E

[
sup

θ∈N (θ◦)

∥∥∥∥ σ̇t,X(θ)

σt,X(θ)

∥∥∥∥M
· sup
θ∈N (θ◦)

∣∣∣∣ σt,X(θ)

σt,X(θ◦)

∣∣∣∣M]

≤
n+1∑
t=1

1

εMnMι

{
E

[
sup

θ∈N (θ◦)

∥∥∥∥ σ̇t,X(θ)

σt,X(θ)

∥∥∥∥Mp∗]}1/p∗
·
{

E

[
sup

θ∈N (θ◦)

∣∣∣∣ σt,X(θ)

σt,X(θ◦)

∣∣∣∣Mq∗]}1/q∗

≤ Kn1−Mι,
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where we used subadditivity in the first step, Markov’s inequality in the second step,
Hölder’s inequality in the third step, and Assumption 2 for the final inequality. Therefore,
since 1/M < ι,

max
t=1,...,n+1

{
sup

θ∈N (θ◦)

∥∥∥∥ σ̇t,X(θ)

σt,X(θ)

∥∥∥∥ · sup
θ∈N (θ◦)

∣∣∣∣ σt,X(θ)

σt,X(θ◦)

∣∣∣∣}= oP(nι),

whence from (B.4) and Assumption 1,

max
t=1,...,n+1

∣∣∣∣σt,X(θ)−σt,X(θ◦)
σt,X(θ◦)

∣∣∣∣= oP(nι)n−ξ nξ
∥∥θ − θ◦∥∥= oP(nι−ξ )K0 = oP(nι−ξ ).

(B.5)

Using identical arguments, we may also show that

max
t=1,...,n+1

∣∣∣∣σt,Y (θ)−σt,Y (θ◦)
σt,Y (θ◦)

∣∣∣∣= oP(nι−ξ ).

Thus, from (B.3),

max
t=1,...,n+1

∥∥∥Σ−1
t (θ◦)

[
Σ t(θ)−Σ t(θ

◦)
]∥∥∥= oP(nι−ξ ). (B.6)

Plugging (B.2) and (B.6) into (B.1), we get that for all θ ∈ N (θ◦),

ε̂t(θ) = εt
{
1+oP(nι−ξ )

}
,

where we recall that the matrices Σ(·) and Σ̂(·) in (B.1) are diagonal. Since, by Assump-
tion 1, θ̂ is an element of N (θ◦) with probability approaching 1, as n → ∞ followed by
K0 → ∞, the conclusion for the residuals follows.

The uniform approximability of the volatilities follows from∣∣∣∣ σ̂t,X(θ)

σt,X(θ◦) −1

∣∣∣∣= ∣∣∣∣ σ̂t,X(θ)−σt,X(θ)

σt,X(θ◦) + σt,X(θ)

σt,X(θ◦) −1

∣∣∣∣
≤
∣∣∣∣ σ̂t,X(θ)−σt,X(θ)

σt,X(θ◦)

∣∣∣∣+ ∣∣∣∣ σt,X(θ)

σt,X(θ◦) −1

∣∣∣∣
= oP(n−K)+oP(nι−ξ ) = oP(nι−ξ )

(from (B.2) and (B.5)) together with the nξ -consistency of θ̂ (from Assumption 1). A similar
result obtains for σ̂t,Y . �

C. Proof of Proposition 3

Let F+(·) denote the d.f. of ε+
t,Y , and set U+ = [1/(1−F+)]←. Then, the proof of Theorem

2 in Cai et al. (2015) shows that Assumptions 4 and 5 (phrased in terms of (εt,X,εt,Y )′)
continue to hold for (εt,X,ε+

t,Y )′ with the same constants and functions Ai(·). This will be
exploited in some of the following proofs without further mention.
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For (x,y)′ ∈ [0,∞]2 \ {(∞,∞)′}, we define

Rn(x,y) = n

k
P
{
F0(εt,X) > 1− kx/n, F+(ε+

t,Y ) > 1− ky/n
}
,

Tn(x,y) = 1

k

n∑
t=1

I{
F0(εt,X)>1−kx/n, F+(ε+

t,Y )>1−ky/n
},

T̂n(x,y) = 1

k

n∑
t=1

I{
F0 (̂εt,X)>1−kx/n, F+ (̂ε+

t,Y )>1−ky/n
}.

The limit distribution of θ̂p is characterized by the zero-mean Gaussian process{
WR(x,y)

}
(x,y)′∈[0,∞]2\{(∞,∞)′}

with covariance structure given by

E
[
WR(x1,y1)WR(x2,y2)

]= R(x1 ∧ x2,y1 ∧ y2).

Then,

� = (γ1 −1)WR(1,∞)+
{∫ ∞

0
R(1,s)ds−γ1

}−1
∫ ∞

0
WR(1,s)ds−γ1,

� = γ1√
q

{∫ q

0
s−1WR(∞,s)ds−WR(∞,q)

}
are the zero-mean Gaussian random variables from Theorem 1.

The proof of Proposition 3 requires Lemmas 1–3. These lemmas build on Proposition 3.1
in Einmahl, de Haan, and Li (2006). Invoking a Skorohod construction, the limit processes
involved in that proposition may be assumed to be defined on the same probability space.
This leads to an easier presentation of some of the subsequent results. We state the version
of Proposition 3.1 as given in Cai et al. (2015, Lemma 1).

Lemma 1. Suppose that (4) holds. Then, for any η ∈ [0,1/2) and T > 0, it holds that, as
n → ∞,

sup
x,y∈(0,T]

y−η
∣∣∣√k

{
Tn(x,y)−Rn(x,y)

}−WR(x,y)
∣∣∣ a.s.−→ 0,

sup
x∈(0,T]

x−η
∣∣∣√k

{
Tn(x,∞)− x

}−WR(x,∞)

∣∣∣ a.s.−→ 0, (C.1)

sup
y∈(0,T]

y−η
∣∣∣√k

{
Tn(∞,y)− y

}−WR(∞,y)
∣∣∣ a.s.−→ 0.

Lemma 2. Under the conditions of Theorem 1, we have that, as n → ∞,

√
k1
(
γ̂1 −γ1

) P−→ �.

Proof. See Appendix D. �
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For the next lemma, we introduce the following (with the exception of θ̂k/n) infeasible

estimators of θ+
k/n:

θ̃k/n = 1

k

n∑
t=1

ε+
t,Y I{

εt,X>ε(k+1),X

},
θ̃∗

k/n = 1

k

n∑
t=1

ε+
t,Y I{

εt,X>U0(n/k)
},

θ̂k/n = 1

k

n∑
t=1

ε̂+
t,Y I{̂

εt,X>̂ε(k+1),X

},
θ̂∗

k/n = 1

k

n∑
t=1

ε̂+
t,Y I{̂

εt,X>U0(n/k)
}.

Moreover, define

en = (n/k)
{
1−F0(ε(k+1),X)

}
, (C.2)

ên = (n/k)
{
1−F0 (̂ε(k+1),X)

}
, (C.3)

such that ênθ̂∗
k̂en/n = θ̂k/n and enθ̃∗

ken/n = θ̃k/n.

Lemma 3. Under the conditions of Theorem 1, we have that, as n → ∞,
√

k

U1(n/k)

(
θ̂k/n − θ̃k/n

)= oP(1).

Proof. See Appendix D. �

Now, we can prove Proposition 3.

Proof of Proposition 3. Write

θ̂p

θp
= dγ̂1

n

dγ1
n

· θ̂k/n

θ+
k/n

·
dγ1

n θ+
k/n

θ+
p

· θ+
p

θp
=: B1 ·B2 ·B3 ·B4.

First consider B1. By the mean value theorem and (∂/∂x)dx = dx logd, there exists
ϑ ∈ (0,1), such that
√

k1

logdn
(B1 −1) =

√
k1

logdn
(dγ̂1−γ1

n −d0
n)

=
√

k1

logdn
dϑ(γ̂1−γ1)

n log(dn)(γ̂1 −γ1)

=√k1(γ̂1 −γ1)exp
{

log
(
dϑ(γ̂1−γ1)

n
)}

=√k1(γ̂1 −γ1)exp
{
ϑ(γ̂1 −γ1) logdn

}
=√k1(γ̂1 −γ1)

{
1+oP(1)

}
= � +oP(1), (C.4)
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where the second-to-last line follows from ϑ(γ̂1 − γ1) logdn = OP(logdn/
√

k1) = oP(1)

(from Lemma 2 and our assumption that logdn/
√

k1 = o(1)), and the final line follows
from Lemma 2.

Combine our Lemma 3 with Proposition 3 in Cai et al. (2015) to get that

√
k(B2 −1) = √

k

(
θ̂k/n

θ+
k/n

−1

)
P−→ �.

Equation (32) of Cai et al. (2015) yields that

B3 = 1+o
(
1/

√
k
)
.

Finally, the proof of Theorem 2 in Cai et al. (2015) shows that

B4 = 1+o
(
1/

√
k
)
.

The rest of the proof follows as that of Theorem 1 in Cai et al. (2015). We give it here for
the sake of completeness. Combining the above displays leads to

θ̂p

θp
−1 = B1 ·B2 ·B3 ·B4 −1

=
[

1+ logdn√
k1

� +oP

( logdn√
k1

)][
1+ �√

k
+oP

( 1√
k

)][
1+o

( 1√
k

)][
1+o

( 1√
k

)]
−1

= logdn√
k1

� + �√
k

+oP

( logdn√
k1

)
+oP

( 1√
k

)
. (C.5)

Since logx ∼ x − 1 as x → 1, the claimed convergence follows. The variances and
covariances of � and � can be computed by using their definition and exploiting the
covariance structure of WR(·,·) together with Fubini’s theorem. �

D. Proofs of Lemmas 2 and 3

Define

sn(y) = sn,k1(y) = n

k1

[
1−F+

(
y−γ1 U+(n/k1)

)]
, y > 0.

Proof of Lemma 2. As a first step, we show that for any T > 0,

sup
y∈(0,T]

∣∣∣ sn(y)

y
−1
∣∣∣= o

(
1/
√

k1
)
. (D.1)

Since U1(s) = U+(s), for s > 1/{1 − F1(0)}, we have from Assumption 5 that for any
y0 > 0,

sup
y≥y0

∣∣∣y−γ1
U+(sy)

U+(s)
−1
∣∣∣= O{A1(s)}, s → ∞.

https://doi.org/10.1017/S0266466623000233 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000233


372 YANNICK HOGA

Insert s = n/k1 and y = 1/sn(y) in that relation to obtain that

sup
y∈(0,T]

∣∣∣∣( sn(y)

y

)γ1 −1

∣∣∣∣= O{A1(n/k1)}, n → ∞.

From A1(n/k1) = o
(
1/

√
k1
)

(by Assumption 6) and from a Taylor expansion, (D.1) follows.
Lemma 1 implies, for any η ∈ [0,1/2) and any T > 0, that

sup
y∈(0,T]

y−η
∣∣∣√k

{
Tn(∞,y)− y

}−WR(∞,y)
∣∣∣ a.s.−→ 0. (D.2)

Since k1/k → q ∈ (0,∞), we may replace y by y(k1/k) in that relation to obtain

sup
y∈(0,T]

(
y

k1

k

)−η
∣∣∣∣√k

{1

k

n∑
t=1

I{
F+(ε+

t,Y )>1−k1y/n
}− y

k1

k

}
−WR

(
∞,y

k1

k

)∣∣∣∣ a.s.−→ 0

or, multiplying through with
√

k/k1,

sup
y∈(0,T]

y−η
( k1

k

)−η
∣∣∣∣√k1

{ 1

k1

n∑
t=1

I{
F+(ε+

t,Y )>1−k1y/n
}− y

}
−
√

k1

k
WR

(
∞,y

k1

k

)∣∣∣∣ a.s.−→ 0.

Again, since k1/k → q ∈ (0,∞), we may drop the pre-factor (k1/k)−η to get that

sup
y∈(0,T]

y−η

∣∣∣∣√k1

{ 1

k1

n∑
t=1

I{
F+(ε+

t,Y )>1−k1y/n
}− y

}
−
√

k1

k
WR

(
∞,y

k1

k

)∣∣∣∣ a.s.−→ 0.

Due to the uniform continuity of the weighted Wiener process,

sup
y∈(0,T]

y−η

∣∣∣∣
√

k

k1
WR

(
∞,y

k1

k

)
− 1√

q
WR(∞,yq)

∣∣∣∣ a.s.−→ 0.

The last two displays imply that

sup
y∈(0,T]

y−η

∣∣∣∣√k1

{ 1

k1

n∑
t=1

I{
F+(ε+

t,Y )>1−k1y/n
}− y

}
−q−1/2WR(∞,qy)

∣∣∣∣ a.s.−→ 0. (D.3)

With this and sn(y) → y, as n → ∞, uniformly in y ∈ (0,T] from (D.1), it follows, for any
0 < T1 < T, that

sup
y∈(0,T1]

s−η
n (y)

∣∣∣∣√k1

{ 1

k1

n∑
t=1

I{
ε+

t,Y>y−γ1 U+(n/k1)
}− sn(y)

}
−q−1/2WR{∞,qsn(y)}

∣∣∣∣ a.s.−→ 0.

(D.4)

Our next goal is to show that sn(y) can be replaced by y at all three appearances in (D.4).
From (D.1), it follows that, without changing the limit, sn(y) may be replaced by y in (D.4)
at the first two appearances. Finally, the uniform continuity of the weighted Wiener process
ensures that, as n → ∞,

sup
y∈(0,T1]

y−ηq−1/2∣∣WR{∞,qsn(y)}−WR(∞,qy)
∣∣ a.s.−→ 0.
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Thus, since T and T1 < T can be chosen arbitrarily large, we get for any y0 > 0 that

sup
y≥y0

yη/γ1

∣∣∣∣√k1

{ 1

k1

n∑
t=1

I{
ε+

t,Y>yU+(n/k1)
}− y−1/γ1

}
−q−1/2WR

(∞,qy−1/γ1
)∣∣∣∣ a.s.−→ 0.

Because U+(n/k1) = U1(n/k1) > 0 for sufficiently large n, we get from this that

sup
y≥y0

yη/γ1
∣∣∣√k1

{
Tn(y)− y−1/γ1

}−q−1/2WR
(∞,qy−1/γ1

)∣∣∣ a.s.−→ 0, (D.5)

where Tn(y) = 1
k1

∑n
t=1 I{

εt,Y>yU1(n/k1)
}.

Our next goal is to show that Tn(y) in (D.5) can be replaced by T̂n(y) = 1
k1

∑n
t=1

I{̂
εt,Y>yU1(n/k1)

}. To task this, let δn = nι−ξ with ι > 0 chosen sufficiently small to

ensure that
√

k1δn = o(1) (which is possible due to the Assumption 6 requirement that√
k1 = O(nα̃)). By Proposition 2, ε̂t,Y = εt,Y

{
1+oP

(
nι−ξ

)}
uniformly in t = 1, . . . ,n. Thus,

since U1(n/k1) > 0 for sufficiently large n (by Assumption 5),

I{
εt,Y>(1+δn)yU1(n/k1)

} ≤ I{̂
εt,Y>yU1(n/k1)

} ≤ I{
εt,Y>(1−δn)yU1(n/k1)

}
holds for all t = 1, . . . ,n with probability approaching 1 (w.p.a. 1), as n → ∞. Hence, for
any ε > 0, we can ensure that P{W1} > 1− ε/3 for sufficiently large n, where

W1 :=
{

Tn
{
(1+ δn)y

}−Tn(y) ≤ T̂n(y)−Tn(y) ≤ Tn
{
(1− δn)y

}−Tn(y)
}

.

We now show that

sup
y≥y0

yη/γ1
∣∣∣√k1

[
Tn
{
(1± δn)y

}−Tn(y)
]∣∣∣ a.s.−→ 0. (D.6)

We only show (D.6) for Tn
{
(1+ δn)y

}
, as the proof for Tn

{
(1− δn)y

}
is similar. Bound

sup
y≥y0

yη/γ1
∣∣∣√k1

[
Tn
{
(1+ δn)y

}−Tn(y)
]∣∣∣

≤ sup
y≥y0

yη/γ1
∣∣∣√k1

[
Tn
{
(1+ δn)y

}− (1+ δn)−1/γ1 y−1/γ1
]

−q−1/2WR
(∞,q(1+ δn)−1/γ1 y−1/γ1

)∣∣∣
+ sup

y≥y0

yη/γ1
∣∣∣√k1

[
Tn(y)− y−1/γ1

]−q−1/2WR
(∞,qy−1/γ1

)∣∣∣
+ sup

y≥y0

yη/γ1 q−1/2
∣∣∣WR

(∞,q(1+ δn)−1/γ1 y−1/γ1
)−WR

(∞,qy−1/γ1
)∣∣∣

+√k1 sup
y≥y0

yη/γ1γ −1
1

{
δn +o(δn)

}
y−1/γ1

= o(1),

where we used (D.5), the uniform continuity of the weighted Wiener process, and the fact
that

√
k1δn = o(1) by our choice of δn. This proves (D.6).
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Now, we may use (D.6) to conclude that for any δ > 0 it holds for sufficiently large n that

P
{

sup
y≥y0

yη/γ1
∣∣∣√k1

[
T̂n(y)−Tn(y)

]∣∣∣≥ δ
}

≤ P
{

sup
y≥y0

yη/γ1
∣∣∣√k1

[
T̂n(y)−Tn(y)

]∣∣∣≥ δ, W1

}
+P
{
WC

1
}

≤ P
{

sup
y≥y0

yη/γ1
∣∣∣√k1

[
T̂n
{
(1+ δn)y

}−Tn(y)
]∣∣∣≥ δ, W1

}
+P
{

sup
y≥y0

yη/γ1
∣∣∣√k1

[
T̂n
{
(1− δn)y

}−Tn(y)
]∣∣∣≥ δ, W1

}
+P
{
WC

1
}

≤ ε

3
+ ε

3
+ ε

3
= ε.

Combine this with (D.5) to obtain that

sup
y≥y0

yη/γ1
∣∣∣√k1

[
T̂n(y)− y−1/γ1

]−q−1/2WR
(∞,qy−1/γ1

)∣∣∣= oP(1).

From this convergence, it follows as in the proof of Corollary 1 in Hoga (2017) that

sup
y≥y0

yη/γ1

∣∣∣∣√k1

[
1

k1

n∑
t=1

I{̂
εt,Y>ŷε(k1+1),Y

}− y−1/γ1

]

−q−1/2
[
WR
(∞,qy−1/γ1

)− y−1/γ1 WR(∞,q)
]∣∣∣∣= oP(1).

As in Hoga (2017, Exam. 4), we then obtain that

√
k1(γ̂1 −γ1) =√k1

∫ ∞
1

[ 1

k1

n∑
t=1

I{̂
εt,Y>ŷε(k1+1),Y

}− y−1/γ1
] dy

y

P−→
(n→∞)

q−1/2
∫ ∞

1
WR(∞,qy−1/γ1)

dy

y
−q−1/2

∫ ∞
1

y−1/γ1−1 dy ·WR(∞,q)

= q−1/2γ1

∫ q

0
s−1WR(∞,s)ds−q−1/2γ1WR(∞,q)

= �,

where we used the substitution s = qy−1/γ1 in the third step. This ends the proof. �

The proof of Lemma 3 builds on the preliminary Lemmas 4–6. These require the
following additional notation:

s±n (y) = sn,k
(
y{1± δn}−1/γ1

)
,

r±n (x) = n

k

[
1−F0

{
(1± δn)U0(n/[kx])

}]
, (D.7)

where δn = nι−ξ as in the above proof of Lemma 2. Also let sn(y) = sn,k(y) for brevity
from now on.
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Lemma 4. Under Assumptions 5 and 6, it holds that, as n → ∞,

sup
x∈[1/2,2]

∣∣r±n (x)− x
∣∣= o

(
1/

√
k
)
.

Proof. By the regular variation condition (5) and de Haan and Ferreira (2006, Thm.
1.2.1),

r±n (x)

x
=

n
k

[
1−F0{(1± δn)U0(n/[kx])}]

n
k

[
1−F0{U0(n/[kx])}] −→

(n→∞)
(1± δn)−1/γ0 . (D.8)

Moreover, Assumption 5 implies that there exists t0 > 0 such that for t > t0 and u > 1/2,∣∣∣∣u−γ0 U0(tu)/U0(t)−1

A0(t)

∣∣∣∣< K.

Inserting t = n
kx and u = x/r±n (x) in that relation, it follows that

∣∣∣∣
(

r±
n (x)

x

)γ0
(1± δn)−1

A0
( n

kx

) ∣∣∣∣< K.

Multiplying through with |A0
( n

kx

)| gives∣∣∣∣( r±n (x)

x

)γ0 −1± δn

( r±n (x)

x

)γ0
∣∣∣< K

∣∣∣A0

( n

kx

)∣∣∣.
By (D.8), this implies∣∣∣∣( r±n (x)

x

)γ0 −1

∣∣∣∣< K

[∣∣∣A0

( n

kx

)∣∣∣+ δn

]
.

Use the Taylor expansion( r±n (x)

x

)γ0 −1 = γ0

[ r±n (x)

x
−1
]
+o
( r±n (x)

x
−1
)

to deduce that∣∣∣ r±n (x)

x
−1
∣∣∣< K

[∣∣∣A0

( n

kx

)∣∣∣+ δn

]
.

By Assumption 6 and the Potter bounds (de Haan and Ferreira, 2006, Prop. B.1.9(5)), it
holds for any δ > 0 and n sufficiently large,

√
k
∣∣∣A0

( n

kx

)∣∣∣= √
k
∣∣A0(n/k)

∣∣A0
(
n/[kx]

)
A0(n/k)

= o(1)x−ρ0 max{xδ, x−δ} = o(1)

uniformly in x ∈ [1/2,2]. Since also
√

kδn = o(1) by Assumption 6, the conclusion follows.
�
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Lemma 5. Under the conditions of Theorem 1, we have that, as n → ∞,

sup
x∈[1/2,2]

∣∣∣∣
√

k

U1(n/k)

[
xθ̂∗

kx/n − xθ̃∗
kx/n

]∣∣∣∣= oP(1). (D.9)

Proof. Using the substitution s = U1(n/k)y−γ1 , we get that

−U1(n/k)
∫ ∞

0
T̂n{x,sn(y)}dy−γ1

= −U1(n/k)
∫ ∞

0

1

k

n∑
t=1

I{
F0 (̂εt,X)>1−kx/n, F+ (̂ε+

t,Y )>F+(y−γ1 U+(n/k))
} dy−γ1

= −U1(n/k)
1

k

n∑
t=1

∫ ∞
0

I{̂
εt,X>U0(n/[kx]), ε̂+

t,Y>y−γ1 U+(n/k)
} dy−γ1

= 1

k

n∑
t=1

∫ ∞
0

I{̂
εt,X>U0(n/[kx]), ε̂+

t,Y>s
} ds

= 1

k

n∑
t=1

∫ ε̂+
t,Y

0
I{̂

εt,X>U0(n/[kx])
} ds

= 1

k

n∑
t=1

ε̂+
t,Y I{̂

εt,X>U0(n/[kx])
}

= xθ̂∗
kx/n.

By similar arguments,

xθ̃∗
kx/n = −U1(n/k)

∫ ∞
0

Tn
{
x,sn(y)

}
dy−γ1 . (D.10)

Thus, in view of (D.9), we only have to show that

sup
x∈[1/2,2]

∣∣∣√k
∫ ∞

0

[
T̂n
{
x,sn(y)

}−Tn
{
x,sn(y)

}]
dy−γ1

∣∣∣= oP(1). (D.11)

By our choice δn = nι−ξ and Proposition 2, the following inequality holds w.p.a. 1, as
n → ∞,

T̂n{x,sn(y)} = 1

k

n∑
t=1

I{̂
εt,X>U0

(
n
kx

)
, ε̂+

t,Y>U+
(

n
ksn(y)

)}
≤ 1

k

n∑
t=1

I{
εt,X>(1−δn)U0

(
n
kx

)
, ε+

t,Y>(1−δn)U+
(

n
ksn(y)

)}
= 1

k

n∑
t=1

I{
εt,X>U0

(
n

kr−n (x)

)
, ε+

t,Y>U+
(

n
ks−n (y)

)}
= Tn{r−n (x), s−n (y)}.
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Similarly,

T̂n{x,sn(y)} ≥ Tn{r+n (x),s+n (y)}
w.p.a. 1, as n → ∞. Fix some arbitrary ε > 0 and define

W2 :=
{

Tn
{
r+n (x),s+n (y)

}−Tn
{
x,sn(y)

}≤ T̂n
{
x,sn(y)

}−Tn
{
x,sn(y)

}
≤ Tn

{
r−n (x),s−n (y)

}−Tn
{
x,sn(y)

}}
.

Then, by the above, P{W2} > 1−ε for sufficiently large n. Thus, to prove (D.11), it suffices
to show that

sup
x∈[1/2,2]

∣∣∣√k
∫ ∞

0

[
Tn
{
r±n (x),s±n (y)

}−Tn
{
x,sn(y)

}]
dy−γ1

∣∣∣= oP(1).

We only do so for Tn{r+n (x),s+n (y)}, as the claim for Tn{r−n (x),s−n (y)} can be established
analogously. Decompose

sup
x∈[1/2,2]

∣∣∣√k
∫ ∞

0

[
Tn
{
r+n (x),s+n (y)

}−Tn
{
x,sn(y)

}]
dy−γ1

∣∣∣
≤ sup

x∈[1/2,2]

∣∣∣∫ ∞
0

√
k
[
Tn
{
r+n (x),s+n (y)

}−Rn
{
r+n (x),s+n (y)

}]−WR(x,y)dy−γ1
∣∣∣

+ sup
x∈[1/2,2]

∣∣∣∫ ∞
0

√
k
[
Tn
{
x,sn(y)

}−Rn
{
x,sn(y)

}]−WR(x,y)dy−γ1
∣∣∣

+ sup
x∈[1/2,2]

∣∣∣∫ ∞
0

√
k
[
Rn
{
r+n (x),s+n (y)

}−R(x,y)
]

dy−γ1
∣∣∣

+ sup
x∈[1/2,2]

∣∣∣∫ ∞
0

√
k
[
Rn
{
x,sn(y)

}−R(x,y)
]

dy−γ1
∣∣∣

= C1 +C2 +C3 +C4.

We show in turn that C1, . . . ,C4 are asymptotically negligible.
By (D.10) and the fact that similarly xθkx/n = −U1(n/k)

∫∞
0 Rn{x,sn(y)}dy−γ1 ,

C2 = sup
x∈[1/2,2]

∣∣∣∣
√

k

U1(n/k)

[
xθ̃∗

kx/n − xθkx/n
]−∫ ∞

0
WR(x,y)dy−γ1

∣∣∣∣. (D.12)

Thus, C2 = oP(1) follows from Proposition 2 in Cai et al. (2015).
Carefully reading the proof of that proposition reveals that sn(y) in (D.12) (appearing

in both xθ̃∗
kx/n via (D.10), and xθkx/n = −U1(n/k)

∫∞
0 Rn{x,sn(y)}dy−γ1 ) can be replaced

by s+n (y) without changing the conclusion that the term is oP(1). This exploits the fact that
supy∈(0,1] sn(y)/y(γ1+η1) → 0 for η1 > γ1 and supy∈(0,T] |sn(y)− y| → 0 continue to hold

for s+n (y). Additionally, using Lemma 4, we see that x in (D.12) can be replaced by r+n (x),
such that

sup
x∈[1/2,2]

∣∣∣∫ ∞
0

√
k
[
Tn{r+n (x),s+n (y)}−Rn{r+n (x),s+n (y)}]−WR{r+n (x),y}dy−γ1

∣∣∣= oP(1).
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Hence, C1 = oP(1) follows if we can show that

sup
x∈[1/2,2]

∣∣∣∫ ∞
0

WR(x,y)−WR
{
r+n (x),y

}
dy−γ1

∣∣∣= oP(1). (D.13)

By Corollary 1.11 of Adler (1990), (x,y) �→ WR(x,y) is continuous on [1/2,2] × (0,∞).
This implies that

[1/2,2] � x �→
∫ ∞

0
WR(x,y)dy−γ1

is continuous and, hence, uniformly continuous on the bounded interval [1/2,2]. Thus,
(D.13) follows from Lemma 4, showing that C1 = oP(1).

The fact that C4 = o(1) follows directly from Cai et al. (2015, p. 439).
To prove C3 = o(1), consider the bound

C3 ≤ sup
x∈[1/2,2]

∣∣∣∫ ∞
0

√
k
[
Rn
{
r+n (x),s+n (y)

}−R
{
r+n (x),y(1+ δn)−1/γ1

}]
dy−γ1

∣∣∣
+ sup

x∈[1/2,2]

∣∣∣∫ ∞
0

√
k
[
R
{
r+n (x),y(1+ δn)−1/γ1

}−R
{
r+n (x),y

}]
dy−γ1

∣∣∣
+ sup

x∈[1/2,2]

∣∣∣∫ ∞
0

√
k
[
R
{
r+n (x),y

}−R(x,y)
]

dy−γ1
∣∣∣

= C31 +C32 +C33.

Recalling that s+n (y) = sn{y(1+ δn)−1/γ1 }, we obtain by a change of variables that

C31 = sup
x∈[1/2,2]

∣∣∣∫ ∞
0

√
k
[
Rn
{
r+n (x),s+n (y)

}−R
{
r+n (x),y(1+ δn)−1/γ1

}]
dy−γ1

∣∣∣
= (1+ δn)−1 sup

x∈[1/2,2]

∣∣∣∫ ∞
0

√
k
[
Rn
{
r+n (x),sn(y)

}−R
{
r+n (x),y

}]
dy−γ1

∣∣∣
= o(1),

where we used the fact that C4 = o(1) together with Lemma 4 in the final step. For C32, we
again use a change of variables to obtain∫ ∞

0
R
{
r+n (x),y(1+ δn)−1/γ1

}
dy−γ1 = (1+ δn)−1

∫ ∞
0

R
{
r+n (x),y

}
dy−γ1 .

Thus, since (1+ δn)−1 = 1− δn +o(δn) from a Taylor expansion,

C32 ≤ K
√

kδn sup
x∈[1/2,2]

∫ ∞
0

R{r+n (x),y}dy−γ1 = o(1).

Finally, Schmidt and Stadtmüller (2006, Thm. 1(ii)) establish homogeneity of the
R-function, i.e., R(sx,sy) = sR(x,y) for all s > 0 and x,y ≥ 0. Using this and a change
of variables,∫ ∞

0

√
k
[
R
{
r+n (x),y

}−R(x,y)
]

dy−γ1

= √
k

[∫ ∞
0

R
{
r+n (x),y

}
dy−γ1 −

∫ ∞
0

R(x,y)dy−γ1

]
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= √
k

[∫ ∞
0

r+n (x)R
{
1,y/r+n (x)

}
dy−γ1 −

∫ ∞
0

xR(1,y/x)dy−γ1

]
= √

k
[
r+n (x)1−γ1 − x1−γ1

]∫ ∞
0

R(1,y)dy−γ1

= o(1)

uniformly in x ∈ [1/2,2] by Lemma 4. Thus, C33 = o(1), and the conclusion follows. �

Lemma 6. Under the conditions of Theorem 1, we have that, as n → ∞,

√
k(en −1)

P−→ −WR(1,∞), (D.14)

√
k(̂en −1)

P−→ −WR(1,∞), (D.15)

where en and ên are defined in (C.2) and (C.3), respectively.

Proof. From (C.1),

sup
x∈(0,T]

∣∣∣∣√k
[1

k

n∑
t=1

I{
εt,X>U0(n/[kx])

}− x
]
−WR(x,∞)

∣∣∣∣ a.s.−→ 0. (D.16)

Put Tn,1(x) = 1
k
∑n

t=1 I{
εt,X>U0(n/[kx])

} for short. The proof draws heavily on Example

A.0.3 in de Haan and Ferreira (2006). Define

T �
n,1(x) := n

k

[
1−F0

(
ε(�kx�+1),X

)]
.

Then,

sup
x∈(0,T]

∣∣∣Tn,1
{
T �

n,1(x)
}− x

∣∣∣= sup
x∈(0,T]

∣∣∣�kx�
k

− x
∣∣∣≤ 1

k
,

which implies

sup
x∈(0,T]

∣∣T �
n,1(x)−T←

n,1(x)
∣∣= o

(
1/

√
k
)
. (D.17)

From (D.16), we obtain via Vervaat’s (1972) lemma that

sup
x∈[1/2,2]

∣∣∣√k
[
T←

n,1(x)− x
]+WR(x,∞)

∣∣∣ a.s.= o(1),

where “←” denotes the left-continuous inverse. Due to (D.17), this implies

sup
x∈[1/2,2]

∣∣∣√k
[
T �

n,1(x)− x
]+WR(x,∞)

∣∣∣ a.s.= o(1).

Putting x = 1 in that expression, (D.14) follows.
Arguing similarly as in the proof of Lemma 2, we may show that (C.1) remains valid if

the εt,X in Tn(x,∞) are replaced by ε̂t,X . Hence, (D.15) follows as before. �

Now, we are in a position to prove Lemma 3.
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Proof of Lemma 3. Recall that ênθ̂∗
k̂en/n = θ̂k/n and enθ̃∗

ken/n = θ̃k/n. With this, write

√
k

U1(n/k)

[
θ̂k/n − θ̃k/n

]
=

√
k

U1(n/k)

[̂
enθ̂∗

k̂en/n − enθ̃∗
ken/n

]
=

√
k

U1(n/k)

[̂
enθ̂∗

k̂en/n − ênθ̃∗
k̂en/n + ênθ̃∗

k̂en/n − enθ̃∗
ken/n

]
= oP(1)+

√
k

U1(n/k)

[̂
enθ̃∗

k̂en/n − enθ̃∗
ken/n

]
,

where the final line follows from Lemmas 5 and 6. Decompose the remaining term as
follows:

√
k

U1(n/k)

[̂
enθ̃∗

k̂en/n − enθ̃∗
ken/n

]
=

√
k

U1(n/k)
en

[
θ̃∗

k̂en/n − θ̃∗
ken/n

]
+

√
k

U1(n/k)

[̂
en − en

]
θ̃∗

k̂en/n

=: D1 +D2.

Consider D1 and D2 separately. For D1, we get that

D1 = en

{ √
k

U1(n/k)

[
θ̃∗

k̂en/n − θk̂en/n
]+∫ ∞

0
WR(1,s)ds−γ1

}
− en

{ √
k

U1(n/k)

[
θ̃∗

ken/n − θken/n
]+∫ ∞

0
WR(1,s)ds−γ1

}
+ en

√
k

U1(n/k)

[
θk̂en/n − θken/n

]
= en

√
k

U1(n/k)

[
θk̂en/n − θken/n

]+oP(1), (D.18)

where we have used that en = 1+oP(1) from Lemma 6 and
√

k
U1(n/k)

[
θ̃∗

ken/n − θken/n
] P−→

−∫∞
0 WR(1,s)ds−γ1 from the proof of Proposition 3 in Cai et al. (2015). The fact that

this convergence also holds when replacing en with ên follows similarly, since en and ên
are asymptotically equivalent by Lemma 6. For the remaining term, we need the following
result from Cai et al. (2015, p. 439):

enθken/n = e1−γ1
n θk/n +oP

{
U1(n/k)/

√
k
}
.

Again from Lemma 6, it follows that this continues to hold upon replacing en with ên, such
that

ênθk̂en/n = ê1−γ1
n θk/n +oP

{
U1(n/k)/

√
k
}
.

Using these two results, we deduce that

en

√
k

U1(n/k)

[
θk̂en/n − θken/n

]=
√

k

U1(n/k)

[en

ên

{̂
enθk̂en/n

}− θk/n

]
−

√
k

U1(n/k)

[
enθken/n − θk/n

]
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=
√

k

U1(n/k)

[ en

ên

{̂
e1−γ1

n θk/n +oP
{
U1(n/k)/

√
k
}}− θk/n

]
−

√
k

U1(n/k)

[
e1−γ1

n θk/n +oP
{
U1(n/k)/

√
k
}− θk/n

]
=

√
k

U1(n/k)

[ en

ên

(̂
e1−γ1

n −1
)
θk/n

]
−

√
k

U1(n/k)

[en

ên
−1
]
θk/n

−
√

k

U1(n/k)

[(
e1−γ1

n −1
)
θk/n

]
+oP(1)

= en

ên
·√k

(̂
e1−γ1

n −1
) · θk/n

U1(n/k)
− 1

ên
·√k

[
en − ên

] · θk/n

U1(n/k)

−√
k
(
e1−γ1

n −1
) · θk/n

U1(n/k)
+oP(1)

= oP(1), (D.19)

where the final step follows from

√
k
(̂
e1−γ1

n −1
) P−→ (γ1 −1)WR(1,∞),

√
k
(
e1−γ1

n −1
) P−→ (γ1 −1)WR(1,∞)

(as a consequence of the delta method applied to Lemma 6) and θk/n/U1(n/k) →∫∞
0 R(1,s−1/γ1)ds (from Prop. 1 of Cai et al., 2015). From (D.18) and (D.19), D1 = oP(1).

For D2, write

D2 = [√k(en −1)−√
k(̂en −1)

] · θk/n

U1(n/k)
· 1

ên
·

ênθ̃∗
k̂en/n

θk/n

= [−WR(1,∞)+WR(1,∞)+oP(1)
] ·[∫ ∞

0
R(1,s−1/γ1)ds+o(1)

]
· [1+oP(1)

]
·
[ 1√

k

U1(n/k)

θk/n

√
k

U1(n/k)

(̂
enθ̃∗

k̂en/n − θk/n
)+1

]
= oP(1) ·

[
1√
k

{∫ ∞
0

R(1,s−1/γ1)ds+o(1)
}−1

�

∫ ∞
0

R(1,s−1/γ1)ds+1

]
= oP(1),

where we used in the second-to-last step that (6) holds and that

√
k

U1(n/k)

(̂
enθ̃∗

k̂en/n − θk/n
) P−→ �

∫ ∞
0

R(1,s−1/γ1)ds,

which follows from the proof of Proposition 3 in Cai et al. (2015) (together with Lemma 6).
The conclusion of the lemma follows. �

https://doi.org/10.1017/S0266466623000233 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000233


382 YANNICK HOGA

E. Proof of Theorem 2

Proof of Theorem 2. It follows similarly as in the proof of Theorem 1 that

min
{√

k,
√

kd/ log(dn)
}

log

(
θ̂n,p,d

θn,p,d

)
= min

{√
k,
√

kd/ log(dn)
}

log

(
θ̂p,d

θp,d

)
+oP(1).

From analogous arguments used in the proof of Proposition 3 (see, in particular, (C.4) and
(C.5)), we obtain for all d = 1, . . . ,D that

min
{√

k,
√

kd/ log(dn)
}

log

(
θ̂p,d

θp,d

)
=√kd(γ̂d −γd)+oP(1) = �d +oP(1),

where �d ∼ N(0,γ 2
d ). Note that this exploits the assumption that rd = limn→∞

√
k log(dn)/√

kd = ∞. Therefore, the proof is finished if we show that, as n → ∞,(√
k1{γ̂1 −γ1}, . . . ,√kD{γ̂D −γD})′ d−→ (�1, . . . ,�D)′,

where Cov(�i,�j) = σi,j for i,j = 1, . . . ,D. To that end, we apply similar arguments as used
in the proof of Proposition 3 in Hoga (2018). Specifically, we have to verify his conditions
(M1)–(M4). Note that we cannot directly apply his Proposition 3, because it derives the joint
limit of the Hill estimates only for a common intermediate sequence, whereas we allow for
possibly distinct k1, . . . ,kD.

Since the εt are i.i.d., the β-mixing condition (M1) is immediate for any rn → ∞
with rn = o

(√
k/ log2(k)

)
in the notation of Hoga (2018). In the following, we let

rn = o
(

min{√k/ log2(k),n/k}).
For (M2), note by independence of the εt that

n

rnk
Cov

( rn∑
t=1

I{
εt,Yi>Ui(

n
kx )
}, rn∑

t=1

I{
εt,Yj>Uj(

n
ky )
})

= n

rnk

rn∑
t=1

Cov
(

I{
εt,Yi>Ui(

n
kx )
},I{

εt,Yj>Uj(
n
ky )
})

= n

rnk

rn∑
t=1

[
P
{
εt,Yi > Ui

( n

kx

)
, εt,Yj > Uj

( n

ky

)}
− kx

n

ky

n

]

= n

k
P
{
εt,Yi > Ui

( n

kx

)
, εt,Yj > Uj

( n

ky

)}
+ n

k

k2xy

n2

= Ri,j(x,y)+o(1)+o(k/n) −→
(n→∞)

Ri,j(x,y),

where the final line uses Assumption 4*. This establishes (M2).
For (M3), note that since the εt are i.i.d., their ρ-mixing coefficients are trivially zero,

such that, by Lemma 2.3 of Shao (1993) (for q = 4 in his notation),

n

rnk
E

[ rn∑
t=1

I{
Ud( n

ky )<εt,Yd ≤Ud( n
kx )
}]4

≤ n

rnk
K

{
r2
n E2

[
I2{

Ud( n
ky )<εt,Yd ≤Ud( n

kx )
}]+ rn E

[
I4{

Ud( n
ky )<εt,Yd ≤Ud( n

kx )
}]}
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≤ n

rnk
K

{
r2
n P2

{
Ud

( n

ky

)
< εt,Yd ≤ Ud

( n

kx

)}
+ rn P

{
Ud

( n

ky

)
< εt,Yd ≤ Ud

( n

kx

)}}
= n

rnk
K

{
r2
n

k2

n2
(y− x)2 + rn

k

n
(y− x)

}
≤ K

rnk

n
(y− x)2 +K(y− x) −→

(n→∞)
K(y− x),

since rn = o(n/k). This implies (M3).
Finally, condition (M4) follows from Assumption 5*.
Having verified the conditions of Proposition 3 of Hoga (2018), we may follow the steps

in that proof to derive that for any η ∈ [0,1/2),

sup
y∈(0,T]

y−η

∥∥∥∥∥∥∥
√

k

⎛⎜⎝Tn,1(y)− y
...

Tn,D(y)− y

⎞⎟⎠−
⎛⎜⎝W1(y)

...
WD(y)

⎞⎟⎠
∥∥∥∥∥∥∥

a.s.−→ 0, (E.1)

where Tn,d(y) := 1
k
∑n

t=1 I{
εt,Yd >Ud(n/[ky])

}, and W(y) = (
W1(y), . . . ,WD(y)

)′ is a

D-variate continuous, zero-mean Gaussian process with covariance function

Cov
(
W(y1),W(y2)

)=
[

Ri,j(y1,y2)+Ri,j(y2,y1)

2

]
i,j=1,...,D

;

see, in particular, Lemma 2 of Hoga (2018). Equation (E.1) is the analog of (D.2) in the
proof of Lemma 2.

Applying the steps in the proof of Lemma 2 to each of the components in (E.1) gives, as
n → ∞,

√
kd(γ̂d −γd)

P−→ γdq−1/2
d

[∫ 1

0
u−1Wd(qdu)du−Wd(qd)

]
= �d

for each d = 1, . . . ,D. Since E[�d] = 0, we obtain for i,j = 1, . . . ,D using Fubini’s theorem
that

Cov(�i,�j) = E[�i�j]

= γiγj√qiqj
E

[{∫ 1

0
u−1Wi(qiu)−Wi(qi)du

}{∫ 1

0
v−1Wj(qjv)−Wj(qj)dv

}]
= γiγj√qiqj

E
[∫ 1

0

∫ 1

0

{
u−1Wi(qiu)−Wi(qi)

}{
v−1Wj(qjv)−Wj(qj)

}
dudv

]
= γiγj√qiqj

∫ 1

0

∫ 1

0
E
[{

u−1Wi(qiu)−Wi(qi)
}{

v−1Wj(qjv)−Wj(qj)
}]

dudv

= γiγj√qiqj

∫ 1

0

∫ 1

0

E
[
Wi(qiu)Wj(qjv)

]
uv

− E
[
Wi(qiu)Wj(qj)

]
u

− E
[
Wi(qi)Wj(qjv)

]
v

+E
[
Wi(qi)Wj(qj)

]
dudv
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= γiγj√qiqj

∫ 1

0

∫ 1

0

Ri,j(qiu,qjv)+Ri,j(qjv,qiu)

2uv
− Ri,j(qiu,qj)+Ri,j(qj,qiu)

2u

− Ri,j(qi,qjv)+Ri,j(qjv,qi)

2v
+ Ri,j(qi,qj)+Ri,j(qj,qi)

2
dudv.

Due to Theorem 1(ii) of Schmidt and Stadtmüller (2006), the Ri,j(·,·)-function is homoge-
neous (i.e., Ri,j(sx,sy) = sRi,j(x,y) for all s > 0,x,y ≥ 0). Hence,

∫ 1

0

∫ 1

0

Ri,j(qiu,qjv)

2uv
dudv

=
∫ 1

0

[∫ v

0

Ri,j(qiu,qjv)

2uv
du

]
dv+

∫ 1

0

[∫ u

0

Ri,j(qiu,qjv)

2uv
dv

]
du

=
∫ 1

0

[∫ v

0

Ri,j(qiu/v,qj)

2u
du

]
dv+

∫ 1

0

[∫ u

0

Ri,j(qi,qjv/u)

2v
dv

]
du

=
∫ 1

0

[∫ 1

0

Ri,j(qiu,qj)

2u
du

]
dv+

∫ 1

0

[∫ 1

0

Ri,j(qi,qjv)

2v
dv

]
du

=
∫ 1

0

Ri,j(qiu,qj)

2u
du+

∫ 1

0

Ri,j(qi,qjv)

2v
dv.

Similar arguments yield that

∫ 1

0

∫ 1

0

Ri,j(qjv,qiu)

2uv
dudv =

∫ 1

0

Ri,j(qju,qi)

2u
du+

∫ 1

0

Ri,j(qj,qiv)

2v
dv.

Therefore,

Cov(�i,�j) = γiγj√qiqj

Ri,j(qi,qj)+Ri,j(qj,qi)

2
,

as claimed. This finishes the proof. �

F. Proof of Proposition 1

Here, we only show that R̂i,j(qi,qj)
P−→ Ri,j(qi,qj), since the other claim of the proposition

can be established analogously. The proof requires the preliminary Lemmas 7–10 for which
we have to introduce some additional notation.

Fix i,j ∈ {1, . . . ,D}, and define

ϕ̃k/n(x,y) = 1

k

n∑
t=1

I{
εt,Yi>ε(�kx�+1),Yi, εt,Yj>ε(�ky�+1),Yj

},
ϕ̃∗

k/n(x,y) = 1

k

n∑
t=1

I{
εt,Yi>Ui(n/[kx]), εt,Yj>Uj(n/[ky])

},

https://doi.org/10.1017/S0266466623000233 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000233


THE ESTIMATION RISK IN EXTREME SYSTEMIC RISK FORECASTS 385

ϕ̂k/n(x,y) = 1

k

n∑
t=1

I{̂
εt,Yi >̂ε(�kx�+1),Yi, ε̂t,Yj >̂ε(�ky�+1),Yj

},
ϕ̂∗

k/n(x,y) = 1

k

n∑
t=1

I{̂
εt,Yi>Ui(n/[kx]), ε̂t,Yj>Uj(n/[ky])

}
,

and

en,i = n

k

[
1−Fi

(
ε(ki+1),Yi

)]
,

ên,i = n

k

[
1−Fi

(̂
ε(ki+1),Yi

)]
.

In analogy to Rn(x,y) in Appendix C, we also define

Rn,i,j(x,y) = n

k
P
{
Fi(εt,Yi) > 1− kx/n, Fj(εt,Yj) > 1− ky/n

}
.

We have the following analog to Lemma 1, which again follows from Proposition 3.1 of
Einmahl et al. (2006).

Lemma 7. Suppose that (12) holds. Then, for any η ∈ [0,1/2) and T > 0, it holds that,
as n → ∞,

sup
x,y∈(0,T]

y−η
∣∣∣√k

{
ϕ̃∗

k/n(x,y)−Rn,i,j(x,y)
}−Wi,j(x,y)

∣∣∣ a.s.−→ 0,

sup
x∈(0,T]

x−η
∣∣∣√k

{
ϕ̃∗

k/n(x,∞)− x
}−Wi,j(x,∞)

∣∣∣ a.s.−→ 0, (F.1)

where Wi,j(·,·) is a zero-mean Gaussian process with covariance structure given by

E
[
Wi,j(x1,y1)Wi,j(x2,y2)

]= Ri,j(x1 ∧ x2,y1 ∧ y2).

The first step is to prove the following analog of Lemma 6.

Lemma 8. Under the conditions of Theorem 2, we have that, as n → ∞,

√
k
(

en,i − ki

k

)
P−→ −Wi,j(qi,∞),

√
k
(̂

en,i − ki

k

)
P−→ −Wi,j(qi,∞).

Proof. From (F.1),

sup
x∈(0,T]

x−η

∣∣∣∣√k
{1

k

n∑
t=1

I{
εt,Yi>Ui(n/[kx])

}− x
}

−Wi,j(x,∞)

∣∣∣∣ a.s.−→ 0.

Following the steps leading up to (D.3), this implies

sup
x∈(0,T]

x−η

∣∣∣∣√ki

{ 1

ki

n∑
t=1

I{
εt,Yi>Ui(n/[kix])

}− x
}

−q−1/2Wi,j(qix,∞)

∣∣∣∣ a.s.−→ 0.
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From this relation, we may argue as in the proof of Lemma 6 to obtain that√
ki

( k

ki
en,i −1

)
P−→ −q−1/2

i Wi,j(qi,∞)

and, because ki/k → qi,

√
k
(

en,i − ki

k

)
P−→ −Wi,j(qi,∞).

The claim for ên,i follows similarly by showing (as in the proof of Lemma 2) that
(F.1) remains valid upon replacing εt,Yi in ϕ̃∗

k/n(x,∞) with the ε̂t,Yi (cf. the proof of
Lemma 6). �

Lemma 9. Under the conditions of Theorem 2, it holds that, for any ε ∈ (0,1),

sup
x,y∈[ε,ε−1]

∣∣ϕ̂∗
k/n(x,y)− ϕ̃∗

k/n(x,y)
∣∣= oP(1).

Proof. In analogy to r±n (x) from (D.7), we define r±n,i(x) = n
k

[
1 − Fi

{
(1 ± δn)Ui

(n/[kx])
}]

. Set δn = nι−ξ for sufficiently small ι > 0 to ensure that
√

kδn = o(1). Then,

(a straightforward analog of) Proposition 2 allows us to deduce that w.p.a. 1, as n → ∞,

ϕ̂∗
k/n(x,y) ≤ 1

k

n∑
t=1

I{
εt,Yi>(1−δn)Ui(n/[kx]), εt,Yj>(1−δn)Uj(n/[ky])

}
= 1

k

n∑
t=1

I{
εt,Yi>Ui(n/[kr−

n,i(x)]), εt,Yj>(1−δn)Uj(n/[kr−
n,j(y)])

}
= ϕ̃∗

k/n
(
r−n,i(x),r

−
n,j(y)

)
.

Similarly, ϕ̃∗
k/n

(
r+n,i(x),r

+
n,j(y)

)≤ ϕ̂∗
k/n(x,y). Thus, the event

W3 :=
{
ϕ̃∗

k/n
(
r+n,i(x),r

+
n,j(y)

)− ϕ̃∗
k/n(x,y) ≤ ϕ̂∗

k/n(x,y)− ϕ̃∗
k/n(x,y)

≤ ϕ̃∗
k/n
(
r−n,i(x),r

−
n,j(y)

)− ϕ̃∗
k/n(x,y)

}
occurs w.p.a. 1, as n → ∞. To prove the lemma, it therefore suffices to show that

sup
x,y∈[ε,ε−1]

∣∣∣ϕ̃∗
k/n
(
r±n,i(x),r

±
n,j(y)

)− ϕ̃∗
k/n(x,y)

∣∣∣= oP(1).

To task this, write

sup
x,y∈[ε,ε−1]

∣∣∣ϕ̃∗
k/n
(
r±n,i(x),r

±
n,j(y)

)− ϕ̃∗
k/n(x,y)

∣∣∣
≤ sup

x,y∈[ε,ε−1]

∣∣∣ϕ̃∗
k/n
(
r±n,i(x),r

±
n,j(y)

)−Rn,i,j
(
r±n,i(x),r

±
n,j(y)

)∣∣∣
+ sup

x,y∈[ε,ε−1]

∣∣∣ϕ̃∗
k/n(x,y)−Rn,i,j(x,y)

∣∣∣
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+ sup
x,y∈[ε,ε−1]

∣∣∣Rn,i,j
(
r±n,i(x),r

±
n,j(y)

)−Ri,j
(
r±n,i(x),r

±
n,j(y)

)∣∣∣
+ sup

x,y∈[ε,ε−1]

∣∣∣Rn,i,j(x,y)−Ri,j(x,y)
∣∣∣

+ sup
x,y∈[ε,ε−1]

∣∣∣Ri,j
(
r±n,i(x),r

±
n,j(y)

)−Ri,j(x,y)
∣∣∣

=: E1 +E2 +E3 +E4 +E5.

The fact that E1 = oP(1) and E2 = oP(1) follows from Lemma 7 together with
supx∈[ε,ε−1] |r±n,i(x)− x| = o(1) for all i = 1, . . . ,D from (a straightforward generalization
of) Lemma 4. That E3 = o(1) and E4 = o(1) follows from Assumption 4*, where the
convergence in (12) is uniform by Theorem 1(v) of Schmidt and Stadtmüller (2006). Finally,
E5 = o(1) follows from supx∈[ε,ε−1] |r±n,i(x)− x| = o(1) and the (Lipschitz) continuity of
Ri,j(·,·) by Theorem 1(iii) of Schmidt and Stadtmüller (2006). �

Lemma 10. Under the conditions of Theorem 2, it holds that, as n → ∞,

ϕ̂k/n(ki/k,kj/k)− ϕ̃k/n(ki/k,kj/k)
P−→ 0.

Proof. Write

ϕ̂k/n(ki/k,kj/k)− ϕ̃k/n(ki/k,kj/k) = ϕ̂∗
k/n (̂en,i,̂en,j)− ϕ̃∗

k/n(en,i,en,j)

= [ϕ̂∗
k/n(̂en,i,̂en,j)− ϕ̃∗

k/n (̂en,i,̂en,j)
]

+ [ϕ̃∗
k/n(̂en,i,̂en,j)−Rn,i,j (̂en,i,̂en,j)

]
+ [Rn,i,j (̂en,i,̂en,j)−Ri,j (̂en,i,̂en,j)

]
+ [Ri,j(̂en,i,̂en,j)−Ri,j(en,i,en,j)

]
+ [Ri,j(en,i,en,j)−Rn,i,j(en,i,en,j)

]
+ [Rn,i,j(en,i,en,j)− ϕ̃∗

k/n(en,i,en,j)
]

=: F1 +F2 +F3 +F4 +F5 +F6.

By Lemmas 8 and 9, F1 = oP(1) follows. By Lemmas 7 and 8, F2 = oP(1) and F6 =
oP(1). That F3 = oP(1) and F5 = oP(1) follows from the fact that the convergence in (12)
is uniform (by Theorem 1(v) of Schmidt and Stadtmüller, 2006) together with Lemma 8.
Finally, F4 = oP(1) follows from Lemma 8 and the continuity of Ri,j(·,·) (Schmidt and
Stadtmüller, 2006, Thm. 1(iii)). �

Proof of Proposition 1. Write

R̂i,j(qi,qj)−Ri,j(qi,qj) = ϕ̂k/n(ki/k,kj/k)−Ri,j(qi,qj)

= [ϕ̂k/n(ki/k,kj/k)− ϕ̃k/n(ki/k,kj/k)
]

+ [ϕ̃k/n(ki/k,kj/k)−Rn,i,j(ki/k,kj/k)
]

+ [Rn,i,j(ki/k,kj/k)−Ri,j(ki/k,kj/k)
]

+ [Ri,j(ki/k,kj/k)−Ri,j(qi,qj)
]

=: G1 +G2 +G3 +G4.

We show that each term is asymptotically negligible. By Lemma 10, G1 = oP(1).
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To show that G2 = oP(1), we write

G2 = ϕ̃∗
k/n(en,i,en,j)−Rn,i,j(ki/k,kj/k)

= [ϕ̃∗
k/n(en,i,en,j)−Rn,i,j(en,i,en,j)

]
+ [Rn,i,j(en,i,en,j)−Ri,j(en,i,en,j)

]
+ [Ri,j(en,i,en,j)−Ri,j(ki/k,kj/k)

]
+ [Ri,j(ki/k,kj/k)−Rn,i,j(ki/k,kj/k)

]
=: G21 +G22 +G23 +G24.

Together, Lemmas 7 and 8 imply that G21 = oP(1). That the remaining terms are also oP(1)

can be established similarly as for the proof of F3 = oP(1), F4 = oP(1), and F5 = oP(1) in
the proof of Lemma 10. Hence, G2 = oP(1).

From Assumption 4* and the uniform convergence in (12) implied by Schmidt and
Stadtmüller (2006, Thm. 1(v)), G3 = o(1).

That G4 = o(1) follows from the continuity of Ri,j(·,·) (Schmidt and Stadtmüller, 2006,
Thm. 1(iii)) and ki/k → qi, kj/k → qj, as n → ∞.

Overall, the conclusion follows. �
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