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Abstract Starting from two Lagrangian immersions and a horizontal curve in S3(1), it is possible
to construct a new Lagrangian immersion, which we call a warped-product Lagrangian immersion. In
this paper, we find two characterizations of warped-product Lagrangian immersions. We also investi-
gate Lagrangian submanifolds which attain at every point equality in the improved version of Chen’s
inequality for Lagrangian submanifolds of CP n(4) as discovered by Oprea. We show that, for n � 4, an
n-dimensional Lagrangian submanifold in CP n(4) for which equality is attained at all points is necessarily
minimal.
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1. Introduction

In the early 1990s Chen [6] introduced a new invariant, δM , for a Riemannian manifold M .
Specifically, δM : M → R is given by

δM (p) = τ(p) − (inf K)(p),

where
(inf K)(p) = inf{K(π) | π is a two-dimensional subspace of TpM},

with K(π) being the sectional curvature of π, and τ(p) =
∑

i<j K(ei ∧ ej) denotes the
scalar curvature defined in terms of an orthonormal basis {e1, . . . , en} of the tangent
space TpM of M at p. In the same paper, he discovered, for submanifolds of real space
forms, an inequality relating this invariant with the length of the mean curvature vector
H. A similar inequality was proved in [7,8] for n-dimensional Lagrangian submanifolds
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of a complex space form M̃n(4c) of constant holomorphic sectional curvature 4c. Indeed,
it was shown that

δM � (n − 2)(n + 1)
2

c

4
+

n2

2
n − 2
n − 1

‖H‖2. (1.1)

Note that, for n = 2, both sides of the above inequality are zero.
Let CPn(4) denote complex projective n-space of constant holomorphic sectional cur-

vature 4. For n � 3, Lagrangian submanifolds of CPn(4) attaining equality in (1.1) at
every point were studied in, amongst others, [2, 3, 7, 8]. In particular, in [7, 8], it was
shown that such submanifolds are minimal, and a complete classification was obtained of
three-dimensional Lagrangian submanifolds of CP 3(4) attaining at each point equality
in (1.1). Such submanifolds are obtained by starting from minimal surfaces with ellipse
of curvature a circle in the unit 5-sphere.

However, Oprea [9] has recently shown that the inequality (1.1) is not optimal and,
for n � 3, can be improved to

δM � (n − 2)(n + 1)
2

c

4
+

n2

2
2n − 3
2n + 3

‖H‖2. (1.2)

A careful analysis of [9] shows that equality is attained if the second fundamental form
satisfies certain properties (described in detail in § 3).

It turns out that many of these properties are also satisfied by warped-product
Lagrangian immersions into CPn(4). We construct such immersions from two Lagrangian
immersions φi : Ni → CPni(4), where, for future convenience, we take i = 2, 3,
and a horizontal curve α̃(t) = (α̃2(t), α̃3(t)) : I → S3(1) ⊂ R

4 = C
2 by taking

φ = [(α̃2φ2, α̃3φ3)] : I × N2 × N3 → CP 1+n2+n3(4), where, for i = 2, 3, φ̃i is a horizontal
lift [10] to S2ni+1(1) ⊂ R

2ni+2 = C
ni+1 of φi. This construction slightly generalizes the

construction of [4], which itself is analogous to the well-known Calabi product in affine
differential geometry.

The purpose of this paper is twofold. Firstly, we will give two characterizations of a
generic warped-product immersion in terms of the second fundamental form. Secondly,
we will show that, for n � 4, an n-dimensional, Lagrangian submanifold in CPn(4)
attaining equality in (1.2) at every point is necessarily minimal (in which case (1.2)
reduces to the original inequality (1.1) obtained in [7,8]). Note that this is not the case
in dimension 3; a complete classification of the non-minimal three-dimensional case was
given in [1], while the minimal case was treated in [2,3]. In particular, the non-minimal
examples may be regarded as warped-product immersions for which the second factor
degenerates to a point.

The paper is organized as follows. In the next section we use the Codazzi equations
to study immersions whose second fundamental form has properties that are common to
both problems. In the following sections we then classify submanifolds attaining at every
point equality in (1.2), non-minimal warped-product immersions and minimal warped-
product immersions, respectively.
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2. A particular second fundamental form

Throughout this section we shall assume that M is a Lagrangian submanifold of the
complex projective space CPn(4). We shall moreover assume that M admits three mutu-
ally orthogonal differentiable distributions, D1, D2 and D3 of dimension 1, n2 and n3,
respectively, with 1 + n2 + n3 = n and

h(T, T ) = λ1JT,

h(T, V ) = λ2JV,

h(T, W ) = λ3JW,

h(V, W ) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)

for all V ∈ D2, W ∈ D3, with T being a unit vector spanning D1. Here, λ1, λ2 and λ3 are
smooth functions on M , and we assume that λ1, 2λ2 and 2λ3 are mutually distinct real
numbers at each point of M . It is clear that λ2 �= λ3 is necessary in order to distinguish
the distributions D2 and D3, but the other conditions are more technical and it would
be worthwhile investigating what happens when they are not satisfied.

In the following, V , Ṽ and V ∗ will be vector fields belonging to D2, and {V1, . . . , Vn2}
will be a local smooth moving orthonormal framing of D2. Similarly, W , W̃ , W ∗ will
be vector fields belonging to D3, and {W1, . . . , Wn3} will be a local smooth moving
orthonormal framing of D3. We recall that, for a Lagrangian immersion, the cubic form

C(X, Y, Z) = 〈h(X, Y ), JZ〉 (2.2)

is symmetric in X, Y and Z (see [5]), while the Codazzi equation states that the cubic
form

(∇h)(X, Y, Z) = ∇⊥
Xh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ) (2.3)

is also symmetric in X, Y and Z. We now investigate the consequences of the above for
the functions λ1, λ2, λ3 and for the connection ∇ of M .

Lemma 2.1. For any vector V ∈ D2, we have

gradλ1 − (λ1 − 2λ2)∇T T ≡ 0 mod D⊥
2 , (2.4)

(λ1 − 2λ2)∇V T − T (λ2)V − Jh(V, ∇T T ) ≡ 0 mod D⊥
2 , (2.5)

(λ1 − 2λ3)∇V T − (λ2 − λ3)∇T V ≡ 0 mod D⊥
3 . (2.6)

Proof. We use the symmetry of (2.2) and (2.3), together with our assumptions (2.1)
on the second fundamental form of M . Firstly, using (2.1) and (2.3), we have

(∇h)(V, T, T ) = ∇⊥
V h(T, T ) − 2h(∇V T, T )

= V (λ1)JT + λ1J∇V T − 2h(∇V T, T ). (2.7)

Similarly,

(∇h)(T, V, T ) = ∇⊥
T h(V, T ) − h(∇T V, T ) − h(V, ∇T T )

= T (λ2)JV + λ2J∇T V − h(∇T V, T ) − h(V, ∇T T ). (2.8)
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Taking inner products of the right-hand sides of (2.7) and (2.8) with JT and comparing
the results, we obtain, using the symmetry of (2.2) and (2.3),

V (λ1) = (λ1 − 2λ2)〈∇T T, V 〉,

which implies (2.4). Similarly, comparing the inner products of the right-hand sides
of (2.7) and (2.8) with JṼ for any Ṽ ∈ D2 shows that the left-hand side of (2.5) is
orthogonal to D2. Finally, comparing the inner products of the right-hand sides of (2.7)
and (2.8) with JW̃ for any W̃ ∈ D3 shows that the left-hand side of (2.6) is orthogonal
to D3. �

Interchanging the roles of the distributions D2 and D3, we obtain the following result.

Lemma 2.2. For any vector W ∈ D3, we have

gradλ1 − (λ1 − 2λ3)∇T T ≡ 0 mod D⊥
3 , (2.9)

(λ1 − 2λ3)∇W T − T (λ3)W − Jh(W, ∇T T ) ≡ 0 mod D⊥
3 , (2.10)

(λ1 − 2λ2)∇W T + (λ2 − λ3)∇T W ≡ 0 mod D⊥
2 . (2.11)

Using similar arguments, from the symmetry of (∇h)(T, V, W ) we have the following.

Lemma 2.3. For any vectors V ∈ D2, and W ∈ D3 we have

(λ2 − λ3)∇V W ≡ −Jh(V, ∇T W ) mod D⊥
2 (2.12)

≡ −W (λ2)V − Jh(V, ∇W T ) mod D⊥
2 , (2.13)

(λ3 − λ2)∇W V ≡ −Jh(W, ∇T V ) mod D⊥
3 (2.14)

≡ −V (λ3)W − Jh(W, ∇V T ) mod D⊥
3 . (2.15)

Finally, considering the following consequences of the Codazzi equations,

〈(∇h)(T, V, Ṽ ), JV ∗〉 = 〈(∇h)(V, T, Ṽ ), JV ∗〉,
〈(∇h)(T, W, W̃ ), JW ∗〉 = 〈(∇h)(W, T, W̃ ), JW ∗〉,

〈(∇h)(W, V, Ṽ ), JW̃ 〉 = 〈(∇h)(V, W, Ṽ ), JW̃ 〉,

we may prove the following lemma.

Lemma 2.4. For any vectors V, Ṽ , V ∗ ∈ D2 and W, W̃ , W ∗ ∈ D3 we have

T (〈h(V, Ṽ ), JV ∗〉) − V (λ2)〈Ṽ , V ∗〉
= σ(〈h(V, Ṽ ), J∇T V ∗〉) − 〈h(Ṽ , V ∗), J∇V T 〉, (2.16)

T (〈h(W, W̃ ), JW ∗〉) − W (λ3)〈W̃ , W ∗〉
= σ(〈h(W, W̃ ), J∇T W ∗〉) − 〈h(W̃ , W ∗), J∇W T 〉, (2.17)

〈h(V, Ṽ ), J∇W W̃ 〉 = 〈h(W, W̃ ), J∇V Ṽ 〉, (2.18)

where σ denotes cyclic summation over V , Ṽ , V ∗ and W , W̃ , W ∗, respectively.
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We now prove a lemma that will be useful later on. In this lemma, we let V̄ denote
the D2 component of gradλ1, and W̄ the D3 component of gradλ1.

Lemma 2.5. For any vectors V, Ṽ ∈ D2 and W, W̃ ∈ D3, we have

W (λ2)V − λ2

λ1 − 2λ3
W (λ1)V +

λ1 − λ2 − λ3

λ1 − 2λ2

n2∑
k=1

〈∇T W, Vk〉Jh(V, Vk) ≡ 0 mod D⊥
2 ,

V (λ3)W − λ3

λ1 − 2λ2
V (λ1)W +

λ1 − λ2 − λ3

λ1 − 2λ3

n3∑
p=1

〈∇T V, Wp〉Jh(W, Wp) ≡ 0 mod D⊥
3 ,

and
(

λ3T (λ2)
(λ1 − 2λ2)

− λ2T (λ3)
(λ1 − 2λ3)

)
〈V, Ṽ 〉〈W, W̃ 〉

=
λ2(λ1 − λ2 − λ3)〈h(W, W̃ ), JW̄ 〉〈V, Ṽ 〉

(λ1 − 2λ3)2(λ2 − λ3)
+

λ3(λ1 − λ2 − λ3)〈h(V, Ṽ ), JV̄ 〉〈W, W̃ 〉
(λ1 − 2λ2)2(λ2 − λ3)

.

Proof. The first equation is obtained as follows. From (2.12) and (2.13) we have that,
for all Ṽ ∈ D2,

W (λ2)〈V, Ṽ 〉 = 〈h(V, ∇W T ), JṼ 〉 − 〈h(V, ∇T W ), JṼ 〉. (2.19)

However, using (2.1) and the symmetry of (2.2),

〈h(V, ∇T W ), JṼ 〉 = 〈h(V, Ṽ ), J∇T W 〉

=
n2∑

k=1

〈h(V, Ṽ ), JVk〉〈Vk,∇T W 〉 + 〈h(V, Ṽ ), JT 〉〈T, ∇T W 〉

=
n2∑

k=1

〈h(V, Ṽ ), JVk〉〈Vk,∇T W 〉 − λ2〈V, Ṽ 〉〈W, ∇T T 〉.

Thus, using (2.9), we find that

〈h(V, ∇T W ), JṼ 〉 =
n2∑

k=1

〈h(V, Ṽ ), JVk〉〈Vk,∇T W 〉 − λ2

λ1 − 2λ3
W (λ1)〈V, Ṽ 〉. (2.20)

Similarly, using (2.1),

〈h(V, ∇W T ), JṼ 〉 = 〈h(V, Ṽ ), J∇W T 〉

=
n2∑

k=1

〈h(V, Ṽ ), JVk〉〈Vk,∇W T 〉. (2.21)

Thus, from (2.19), (2.20) and (2.21), we obtain

W (λ2)〈V, Ṽ 〉 =
λ2

λ1 − 2λ3
W (λ1)〈V, Ṽ 〉 +

n2∑
k=1

〈h(V, Ṽ ), JVk〉〈Vk,∇W T − ∇T W 〉. (2.22)
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However, using (2.11), we obtain

〈Vk,∇W T 〉 =
λ3 − λ2

λ1 − 2λ2
〈Vk,∇T W 〉,

so that

〈Vk,∇W T − ∇T W 〉 =
λ1 − λ2 − λ3

λ1 − 2λ2
〈∇T Vk, W 〉.

The first equation of Lemma 2.5 now follows from this and (2.22).
The second equation is obtained by interchanging the roles of the distributions D2

and D3. In order to obtain the third equation, we use (2.18). On the one hand we have

〈h(V, Ṽ ), J∇W W̃ 〉 = 〈h(V, Ṽ ), JT 〉〈T, ∇W W̃ 〉 +
n2∑

k=1

〈∇W W̃ , Vk〉〈h(V, Ṽ ), JVk〉.

However, 〈h(V, Ṽ ), JT 〉 = λ2〈V, Ṽ 〉, while, using (2.9) and (2.10), we obtain

〈T, ∇W W̃ 〉 = −〈∇W T, W̃ 〉

=
1

λ1 − 2λ3
(−T (λ3)〈W, W̃ 〉 − 〈Jh(W, ∇T T ), W̃ 〉)

= − 1
λ1 − 2λ3

T (λ3)〈W, W̃ 〉 − 1
(λ1 − 2λ3)2

〈Jh(W, W̃ ), W̄ 〉.

From (2.14) and (2.4), we also have

〈∇W W̃ , Vk〉 = −〈∇W Vk, W̃ 〉

=
1

λ2 − λ3
〈h(W, ∇T Vk), JW̃ 〉

=
1

λ2 − λ3

{
〈h(W, W̃ ), JT 〉〈∇T Vk, T 〉 +

n3∑
r=1

〈∇T Vk, Wr〉〈h(W, W̃ ), JWr〉
}

=
−1

(λ2 − λ3)(λ1 − 2λ2)
〈h(W, W̃ ), JT 〉〈V̄ , Vk〉

+
1

λ2 − λ3

n3∑
r=1

〈∇T Vk, Wr〉〈h(W, W̃ ), JWr〉.

Combining the above equations, we see that

〈h(V, Ṽ ), J∇W W̃ 〉 = − λ2T (λ3)
λ1 − 2λ3

〈V, Ṽ 〉〈W, W̃ 〉 +
λ2

(λ1 − 2λ3)2
〈h(W, W̃ ), JW̄ 〉〈V, Ṽ 〉

+
1

λ2 − λ3

n2∑
k=1

n3∑
r=1

〈∇T Vk, Wr〉〈h(W, W̃ ), JWr〉〈h(V, Ṽ ), JVk〉

− λ3

(λ2 − λ3)(λ1 − 2λ2)
〈W, W̃ 〉〈h(V, Ṽ ), JV̄ 〉.

On the other hand, if we interchange the role of the two distributions, and use (2.18) to
equate the two expressions, the double summations cancel from the resulting equation,
which then simplifies to give the third equation of Lemma 2.5. �
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3. Submanifolds attaining equality

Throughout this section we assume that M is an n-dimensional Lagrangian submanifold
of the complex projective space CPn(4) attaining equality in (1.2) at every point. A
careful analysis of the arguments of Oprea [9] shows that equality at a certain point is
attained in (1.2) if and only if there exists an orthonormal basis {e1, e2, . . . , en} of the
tangent space such that the second fundamental form satisfies

h(e1, e1) = 12λJe1, h(e1, ep) = 4λJep, h(ep, eq) = δpq4λJe1,

h(e2, e2) = 3λJe1 + aJe2, h(e2, e3) = −aJe3, h(ej , ep) = 0,

h(e3, e3) = 3λJe1 − aJe2, h(ej , e1) = 3λJej

for some real number λ, where j ∈ {2, 3} and p, q ∈ {4, . . . , n}. Note that, with respect
to the above basis, the plane with the smallest sectional curvature is that determined by
e2 and e3.

We shall assume that n � 4 and that M has no minimal points, that is to say λ is
nowhere zero. In this case, Je1 is a multiple of the mean curvature vector, so that λ is a
globally defined differentiable function and the vector field corresponding to e1, which,
in accordance with § 2, we denote by T , is a globally defined differentiable vector field.
We let D1 denote the distribution spanned by T .

At every point, the linear symmetric operator AJT has three distinct eigenvalues 12λ,
3λ, 4λ of respective multiplicities 1, 2 and n − 3 (where the first eigenspace is spanned
by T ). Again in accordance with § 2, we let D2 be the two-dimensional distribution and
let D3 be the orthogonal (n−3)-dimensional distribution corresponding to the two other
eigenspaces. Let {V1, V2} be a local smooth moving orthonormal framing of D2 and let
{W1, W2, . . . , Wn3}, where n3 = n − 3, be a local smooth moving orthonormal framing
of D3.

As M attains equality in (1.2) at every point, it follows that there exist smooth local
functions b and c such that the second fundamental form has the following form:

h(T, T ) = 12λJT, h(T, Wp) = 4λJWp, h(Wp, Wq) = δpq4λJT,

h(V1, V1) = 3λJT + bJV1 + cJV2, h(V1, V2) = cJV1 − bJV2, h(Vj , Wp) = 0,

h(V2, V2) = 3λJT − bJV1 − cJV2, h(Vj , T ) = 3λJVj .

Hence, we may apply all the formulae of § 2 with λ1 = 12λ, λ2 = 3λ and λ3 = 4λ.

Theorem 3.1. Let M be a Lagrangian submanifold of CPn(4) attaining equality
in (1.2) at every point. If n � 4, then M is minimal. Hence, M is one of the submanifolds
of CPn(4) discussed in [7,8].

Proof. Assume that there exists a point x and hence a neighbourhood of x on
which M is not minimal. We construct a local smooth moving orthonormal framing
{T, V1, V2, W1, . . . Wn−3}, on a (possibly smaller) neighbourhood of x as described above.

We first show that λ is constant. To do this, we take V ∗ = Ṽ = V1 in (2.16) and add
this to (2.16) with V ∗ = Ṽ = V2. Using the special form of the second fundamental form,
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this gives

6V (λ) = −6λ〈T, ∇T V 〉 − 2〈h(V, V1), J∇T V1〉 − 2〈h(V, V2), J∇T V2〉.

Thus, using (2.4), we find that

6V (λ) = 12V (λ) − 2〈h(V, V1), JT 〉〈T, ∇T V1〉 − 2〈h(V, V2), JT 〉〈T, ∇T V2〉
− 2〈h(V, V1), JV2〉(〈V2,∇T V1〉 + 〈∇T V2, V1〉)

= 12V (λ) + 6λ〈∇T T, V 〉 = 24V (λ).

Hence, V (λ) = 0, that is to say, V̄ = 0. Similarly, it follows from (2.17) that W̄ = 0.
Equations (2.4) and (2.9) now show that ∇T T = 0, while the third equation of Lemma 2.5
shows that T (λ) = 0, so that λ is indeed constant.

Since ∇T T = 0, the first equation of Lemma 2.5 now implies that, for all V, Ṽ ∈ D2,
W, W̃ ∈ D3, we have

〈h(V, Ṽ ), J∇T W 〉 = 0. (3.1)

The symmetry of (2.2), together with (2.12), now shows that ∇V W is orthogonal to D2.
Using (2.5), we also have that 〈∇V Ṽ , T 〉 = 0, so that

∇D2D2 ⊂ D2, ∇D3D3 ⊂ D3. (3.2)

Since n is assumed to be greater than 4, we may choose non-zero vector fields V ∈ D2,
W ∈ D3, such that 〈∇T V, W 〉 = 0. From (2.6) and (2.11) we then get that

〈∇V W, T 〉 = 〈∇W V, T 〉 = 0.

From the Gauss equation we have that

〈R(V, W )W, V 〉 = (1 + 12λ2)〈V, V 〉〈W, W 〉,

while computing directly using (3.2), we find that

〈R(V, W )W, V 〉 = 〈∇V ∇W W, V 〉 − 〈∇W ∇V W, V 〉 − 〈∇∇V W−∇W V W, V 〉 = 0.

This contradiction completes the proof. �

4. Warped-product immersions

In this section we characterize warped-product Lagrangian immersions into CPn(4). We
begin by showing that the second fundamental form of such an immersion has the form
given in (2.1), with some extra conditions.

Taking our notation from § 1, we let φ be a warped-product Lagrangian immersion
into CPn(4). For tangent vectors v to N1 and w to N2 we introduce local vector fields
Et, Ev and Ew by

Et =
φ∗(∂/∂t)
|φ∗(∂/∂t)| , Ev =

φ∗(0, v, 0)
|φ∗(0, v, 0)| , Ew =

φ∗(0, 0, w)
|φ∗(0, 0, w)| .
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It is easily verified that the second fundamental form satisfies

h(Et, Et) = λ1JEt, h(Et, Ev) = λ2JEv,

h(Et, Ew) = λ3JEw, h(Ev, Ew) = 0,

where

λ1 =
〈α′′, Jα′〉

|α′|3 , λ2 =
〈α′

1, Jα1〉
|α′| |α1|2

, λ3 =
〈α′

2, Jα2〉
|α′| |α2|2

.

In particular, we see that the second fundamental form has the properties given in (2.1).
We note, however, that in this case the functions λ1, λ2 and λ3 are functions of t only,
and we also note that

〈[Ev, Ew], Et〉 = 0.

We will now characterize warped-product immersions. We use the notation developed
in §§ 1 and 2, and assume in this section that M is a Lagrangian submanifold of CPn(4)
whose second fundamental form satisfies (2.1) with, as usual, λ1, 2λ2 and 2λ3 being
mutually distinct real numbers at each point of M . We further assume, as indicated by
the above, that gradλ1 lies in D1 and that 〈[V, W ], T 〉 = 0 for all V ∈ D2, W ∈ D3. Note
that the former condition implies the latter on the open subset of M on which gradλ1 �= 0
and, as we shall see, these conditions are sufficient to prove that the distributions D2,
D3 and D2 ⊕ D3 are all integrable.

Lemma 4.1. The above assumptions imply that ∇T T = 0 and, for each V ∈ D2,
W ∈ D3, we have that ∇T V ⊥ D3, ∇T W ⊥ D2 ∇V W ∈ D3, ∇W V ∈ D2.

Proof. It follows from (2.4) and (2.9) that ∇T T = 0 if and only if gradλ1 is parallel
to T . Furthermore, using (2.6) and (2.11), we have

0 = 〈[V, W ], T 〉 = 〈∇V W − ∇W V, T 〉 = − λ2 − λ3

λ1 − 2λ3
〈∇T V, W 〉 +

λ2 − λ3

λ1 − 2λ2
〈∇T V, W 〉,

which implies that 〈∇T V, W 〉 = 0. That 〈∇W V, T 〉 = 0 and 〈∇V W, T 〉 = 0 follow imme-
diately from (2.11) and (2.6). Finally, the fact that 〈∇V W, Ṽ 〉 = 0 and 〈∇W V, W̃ 〉 = 0 for
all Ṽ ∈ D2 and all W̃ ∈ D3 follows from (2.13) and (2.15), using our assumptions (2.1)
on the second fundamental form of M . �

Corollary 4.2. The distributions D2, D3 and D2 ⊕ D3 are all integrable.

Proof. For each V , Ṽ in D2, using (2.5), we have

〈[V, Ṽ ], T 〉 = 〈∇Ṽ T, V 〉 − 〈∇V T, Ṽ 〉 =
T (λ2)

λ1 − 2λ2
{〈Ṽ , V 〉 − 〈V, Ṽ 〉} = 0.

That 〈[V, Ṽ ], W 〉 = 0 for all W ∈ D3 follows similarly from Lemma 4.1. Thus, D2 is
integrable, and the integrability of D3 follows in a similar way. It is now clear that
D2 ⊕ D3 is also integrable. �
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Lemma 4.3. In addition to the standard assumptions of this section, assume that
both of the following conditions are satisfied:

(i) dimD2 > 1 or 〈h(D2,D2), JD2〉 = 0;

(ii) dimD3 > 1 or 〈h(D3,D3), JD3〉 = 0.

Then gradλ2 and gradλ3 are parallel to T .

Proof. Using the symmetry of the cubic form C in (2.2), we may deduce immediately
from (2.16) that

V (λ2)〈Ṽ , V ∗〉 − 〈h(Ṽ , V ∗), J∇V T 〉 = Ṽ (λ2)〈V, V ∗〉 − 〈h(V, V ∗), J∇Ṽ T 〉.

Since, from Lemma 4.1, ∇T T = 0, we may use (2.5) to rewrite the above equation as

V (λ2)〈Ṽ , V ∗〉 = Ṽ (λ2)〈V, V ∗〉.

If dimD2 > 1, it follows immediately that gradλ2 is orthogonal to D2. The same conclu-
sion follows directly from (2.16), if 〈h(D2,D2), JD2〉 = 0. Similar arguments show that
gradλ3 is orthogonal to D3.

The fact that gradλ2 is perpendicular to D3 and gradλ3 is perpendicular to D2 now
follows immediately from the first two equations of Lemma 2.5. �

Theorem 4.4. Let φ : Mn → CPn(4) be a Lagrangian immersion of an n-dimensional
Riemannian manifold M . Assume that M admits three mutually orthogonal distributions
D1, D2 and D3 of dimension 1, n2 and n3, respectively, with 1 + n2 + n3 = n and, for all
vectors V ∈ D2 and W ∈ D3,

h(T, T ) = λ1JT, h(T, V ) = λ2JV,

h(T, W ) = λ3JW, h(V, W ) = 0,

where T is a unit vector spanning D1, with λi, i = 1, 2, 3, functions on M such that λ1,
2λ2 and 2λ3 are mutually distinct real numbers at each point of M . Suppose moreover
that gradλ1 lies in D1 and that 〈[V, W ], T 〉 = 0 for all V ∈ D2, W ∈ D3 on any open
set on which gradλ1 = 0. If the hypotheses of Lemma 4.3 are satisfied, then φ is locally
congruent to a warped-product Lagrangian immersion.

Proof. The integrability of the distributions D1, D2, D3 and D2 ⊕ D3 implies the
existence of local coordinates (t, p, q) for M based on an open subset containing the origin
of R × R

n2 × R
n3 , such that D1 is given by dp = dq = 0, D2 is given by dt = dq = 0, and

D3 is given by dt = dp = 0. In this case, it follows from Lemma 4.3 that λ1, λ2, λ3 are
functions of t only. We let λ′

i denote the derivative of λi with respect to t.
Since V̄ = W̄ = 0, it is immediate from Lemma 2.5 that

λ2λ
′
3

λ1 − 2λ3
=

λ3λ
′
2

λ1 − 2λ2
, (4.1)
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and we now derive a further differential equation satisfied by λi, i = 1, 2, 3. Using the
definition of the curvature tensor, together with (2.5) and (2.10), we find that for V ∈ D2

and W ∈ D3 we have

R(V, W, W, V ) = − λ′
2λ

′
3〈V, V 〉〈W, W 〉

(λ1 − 2λ2)(λ1 − 2λ3)
.

On the other hand, it follows from the Gauss equation that

R(V, W, W, V ) = (1 + λ2λ3)〈V, V 〉〈W, W 〉.

By comparing both expressions, we deduce that

− λ′
2λ

′
3

(λ1 − 2λ2)(λ1 − 2λ3)
= 1 + λ2λ3. (4.2)

We consider a horizontal lift φ̃ of φ, and identify T and φ̃∗T . We define φ̃i : M → C
n+1,

i = 2, 3, by
φ̃2 = fφ̃ + gT, φ̃3 = hφ̃ + jT,

where the functions f , g, h and j, which depend only on t, are determined by

g′ = −f − gλ1i,

j′ = −h − jλ1i,

and

f = −g

(
iλ3 +

λ′
3

λ1 − 2λ3

)
, h = −j

(
iλ2 +

λ′
2

λ1 − 2λ2

)
.

Here, as before, the prime denotes differentiation with respect to t.
We also assume the following initial conditions:

|g|2
(

λ2
3 + 1 +

λ′2
3

(λ1 − 2λ3)2

)
= |j|2

(
λ2

2 + 1 +
λ′2

2

(λ1 − 2λ2)2

)
= 1, f h̄ + gj̄ = 0.

Using (4.1) and (4.2), it is straightforward to verify that if f , g, h and j satisfy the initial
conditions at one point, they satisfy them everywhere. We also find that

f ′ = g, h′ = j.

Using this, it is not difficult to see that

T (φ̃2) = 0, W (φ̃2) = 0, T (φ̃3) = 0, V (φ̃3) = 0,

and
〈φ̃2, φ̃3〉 = 〈φ̃2, Jφ̃3〉 = 0.

So in particular, we recover φ̃ in terms of φ̃i by

φ̃(t, p, q) = (α̃2(t)φ̃2(0, p, 0), α̃3(t)φ̃3(0, 0, q)),

for any (t, p, q) ∈ I × R
n2 × R

n3 , where α̃ = (α̃2, α̃3) : I → S
3(1) ⊂ C

2 is a regular curve.
The properties of the lift φ̃ imply that φ̃i are horizontal immersions in the corresponding

S
2ni+1(1) ⊂ C

ni+1, which means that φ̃i are horizontal lifts of Lagrangian immersions
φi = Π(φ̃i), i = 2, 3, in CP

ni and also α̃ is a horizontal lift of a regular curve α = Π(α̃)
in CP 1(4). Hence, φ = [φ̃] is indeed a warped-product Lagrangian immersion. �
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5. Warped-product minimal immersions

In this section we consider warped-product immersions which are also minimal. In this
case, we show that the assumptions of Lemma 4.1 are automatically satisfied. Hence, we
prove the following.

Theorem 5.1. Let φ : Mn → CPn(4) be a minimal Lagrangian immersion of an n-
dimensional Riemannian manifold M . Assume that M admits three mutually orthogonal
distributions D1, D2 and D3 of dimension 1, n2 > 1 and n3 > 1, respectively, with
1 + n2 + n3 = n and, for all vectors V ∈ D2, W ∈ D3,

h(T, T ) = λ1JT, h(T, V ) = λ2JV,

h(T, W ) = λ3JW, h(V, W ) = 0,

where T is a unit vector spanning D1, with λi, i = 1, 2, 3, functions on M such that
λ1, 2λ2 and 2λ3 are mutually distinct real numbers at each point of M with λ2λ3 and
λ1 − λ2 − λ3 never zero. Then φ is locally congruent to a warped-product Lagrangian
immersion.

Proof. We first show that, in the minimal case, V̄ = W̄ = 0.
As before, we let {V1, . . . , Vn2}, {W1, . . . , Wn3} be local smooth moving orthonormal

framings of D2,D3, respectively. From the third equation of Lemma 2.5, it follows for
i �= j that

〈h(Vi, Vj), JV̄ 〉 = 0,

〈h(Vi, Vi) − h(Vj , Vj), JV̄ 〉 = 0.

From the symmetry of (2.2) and the assumption of minimality, we obtain

n2∑
k=1

〈h(Vk, Vk), JV̄ 〉 = 0.

This implies that for vector fields V, V ∗ ∈ D2 we have that

〈h(V, V ∗), JV̄ 〉 = 0, (5.1)

and similarly, for vector fields W, W ∗ ∈ D3,

〈h(W, W ∗), JW̄ 〉 = 0. (5.2)

It follows from (2.4) that

V̄ (λ1) = (λ1 − 2λ2)〈∇T T, V̄ 〉, (5.3)

whereas from the second equation of Lemma 2.5, (2.4) and (5.2), it follows that

V̄ (λ3) = λ3〈∇T T, V̄ 〉. (5.4)
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Finally, from (2.16) and (5.1) it follows that

V̄ (λ2)〈V̄ , V̄ 〉 = −3λ2〈∇T V̄ , T 〉〈V̄ , V̄ 〉.

Hence,

V̄ (λ2) = 3λ2〈∇T T, V̄ 〉. (5.5)

On the other hand, it follows from minimality that λ1 + n2λ2 + n3λ3 = 0 so, applying V̄

to this and using (5.3)–(5.5), it follows that

3n2λ2〈∇T T, V̄ 〉 = (n2 + 2)λ2〈∇T T, V̄ 〉.

As n2 �= 1 and λ2 �= 0, it follows that 〈∇T T, V̄ 〉 = 0 and hence V̄ = 0. Interchanging the
roles played by the two distributions, we find that W̄ = 0 also.

To complete the proof, we now assume that λ1 is constant on an open set, and show that
〈[V, W ], T 〉 = 0 for all V ∈ D2, W ∈ D3. Our assumption, together with (2.4) and (2.9),
implies that ∇T T = 0, so, by (2.5), 〈h(Ṽ , V ∗), J∇V T 〉 is symmetric in V , Ṽ , V ∗. Equa-
tion (2.16) now shows that V (λ2)〈Ṽ , V ∗〉 is also symmetric in V, Ṽ , V ∗, so, since n2 > 1,
it now follows that V (λ2) = 0 for all V ∈ D2. Similarly, using (2.17), W (λ3) = 0 for all
W ∈ D3. Minimality of the immersion now implies that W (λ2) = V (λ3) = 0. If either
T (λ2) �= 0 or T (λ3) �= 0, it follows straight away that 〈[V, W ], T 〉 = 0. Therefore, we may
assume that λ2 and λ3 are also constant. However, this is sufficient to carry out the proof
of (3.2), which thus holds in this situation.

For W ∈ D3 and V ∈ D2 we now find, using (2.6), (2.11) and (3.2) that

〈R(V, W )W, V 〉 = 〈∇V ∇W W, V 〉 − 〈∇W ∇V W, V 〉 − ∇∇V W−∇W V W, V 〉
= −〈∇V W, T 〉〈∇W T, V 〉 − 〈∇V W, T 〉〈∇T W, V 〉 + 〈∇W V, T 〉〈∇T W, V 〉

=
(

− (λ2 − λ3)2

(λ1 − 2λ2)(λ1 − 2λ3)
− (λ2 − λ3)

(λ1 − 2λ3)
+

(λ2 − λ3)
(λ1 − 2λ2)

)
〈∇T V, W 〉2

=
(λ2 − λ3)2

(λ1 − 2λ2)(λ1 − 2λ3)
〈∇T V, W 〉2.

On the other hand, by the Gauss equation we have

〈R(V, W )W, V 〉 = 1 + λ2λ3.

Hence,
(λ2 − λ3)2

(λ1 − 2λ2)(λ1 − 2λ3)
〈∇T V, W 〉2 = 1 + λ2λ3.

Since n3 > 1, we can find non-zero vectors V ∈ D2, W ∈ D3 such that 〈∇T V, W 〉 = 0.
Hence, we must have λ2λ3 = −1 and

〈∇T V, W 〉 = 0

for arbitrary V and W . From (2.6) and (2.11) we now get that

〈∇V W, T 〉 = 〈∇W V, T 〉 = 0,

and hence also in this case the assumptions of Lemma 4.1 are satisfied. �
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Remark 5.2. It is easy to verify that a warped-product immersion is minimal if and
only if both original immersions are minimal and the horizontal curve α satisfies

〈α′′, Jα′〉
|α′|3 + n2

〈α′
2, Jα2〉

|α′| |α2|2
+ n3

〈α′
3, Jα3〉

|α′| |α3|2
= 0.

We note that an example of such a horizontal curve α is given by

α(t) =
(√

1 + n2

2 + n2 + n3
exp

(
it
√

1 + n3

1 + n2

)
,

√
1 + n3

2 + n2 + n3
exp

(
− it

√
1 + n2

1 + n3

))
.
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