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ABSTRACT

We show how ruin probabilities for the classical continuous time compound
Poisson model can be approximated by ruin probabilities for a compound binomial
model. We also discuss ruin related results for a compound binomial model with
geometric claim amounts.
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1. INTRODUCTION

GERBER (1988) presented some results for the compound binomial model which
were analogues of results for the classical continuous time compound Poisson
model. These results were further discussed by Smu (1989). WILLMOT (1992)
presented some explicit results for ultimate ruin probabilities for the compound
binomial model.

In this note we derive some known results for the compound binomial model
using very elementary methods. We also present results for a binomial claim
numbers/geometric claim amounts model which correspond to results for the
classical continuous time Poisson/exponential model. Our main purpose is to
consider the conditions under which ultimate ruin probabilities for a compound
binomial model give good approximations to ultimate ruin probabilities in the
classical continuous time compound Poisson model.

We start by considering some basic results for a general discrete time risk
model.

2. A DISCRETE TIME RISK MODEL

We will consider a risk model with the following characteristics:

(a) Xj denotes the aggregate claim amount in the i-th time interval;
(b) {Xj}?= i is a sequence of independent and identically distributed random

variables, each distributed on the non-negative integers;
(c) the insurer's premium income per unit time is 1;
(d) £(X,-)<1.

* Part of this work was completed while the author was at Heriot-Watt University, Edinburgh.
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We will assume throughout that the insurer's initial surplus, denoted u, is an
integer.

The insurer's surplus at time t (t= 1, 2, 3,...) is denoted Z(t) and given by

i

Z{t) = u + t- X *i
i= \

The ultimate ruin probability for this model is defined by

O for some t, ?=1,2,3, . . . ]

This definition corresponds to that given by GERBER (1988) but differs from that
used by SHIU (1989) and WILLMOT (1992). The reason for choosing this definition
will become clear in Section 5. Note that ruin does not occur at time 0 if the initial
surplus is zero. The survival probability is denoted d(u) and d(u)=\ -tp(u).

We define the severity of ruin function G(u,y) for u = 0 ,1 ,2 , . . . and
y=l,2,3,... by

G(u, v) = P r [ r<oc and Z(T)>-y]

where T is the discrete time of ruin and is defined by

r=min {?:Z(f)<0, r= 1, 2, 3,...}

= oo if Z ( f ) > 0 for t=\,2,3,...

Thus G(w, y) represents the probability that ruin occurs and that the deficit at the
time of ruin is at most y — 1.

We denote by b(k) and B(k) respectively the probability function and distribu-
tion function of Xt.

3. GENERAL RESULTS

Result 1 : For « = 1, 2, 3 , . . .

(3.1) d(u) = d(0) + X d(k)[\-B(u-k)\
k = I

Proof: By considering the possible aggregate claim amounts in the first time
period we have that

<3(0) = 6(0) (5(1)

and for u = 2, 3, 4, ...
u- 1

(3.2) d(u-l) = b(0)d{u)+ Y
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Hence, for u-2,3,4,...
u- I u u k-I

X X d(k)+ X X
=\ k = 2 j = 1

* = i * = I

u- 1

<5(K) + X d(k)B(u-k)
k= I

Thus
« - 1

b(0)d(u) = d(0) + X <5(*)
* = I

u- 1

X 6{k)b(u-k) (by (3.2))
k = I

so that d(u- 1) = d(0) + X <5(*) [ 1 - B ( w - 1- i t ) ]
* = i

for M = 2, 3, 4 , . . . , or equivalently,
u

d ( u ) = d ( 0 ) + Y, d ( k ) \ \ - B ( u - k ) ] f o r w = l , 2 , 3 , . . .
k = I

Result 2: The ruin probability from initial surplus zero is given by

(3.3) V(0) = £(*,-)

Proof: For y = 0, 1,2,... define g (0,y) to be the probability that ruin occurs from
initial surplus zero and that the deficit at the time of ruin is y. Note that when the
initial surplus is w(>0), g(0,y) can be interpreted as the probability that the
surplus falls below its initial level for the first time and by amount y. When y = 0,
g(0,y) gives the probability that the surplus returns to its initial level for the first
time without previously having been below its initial level. Using this interpretation
we can write

(3.4) d(u) = d(0)+ X g(0,u-y)d(y)
v = 1

The first term on the right hand side gives the probability that the surplus never
falls below its initial level. For a fixed value of y(<u), g(0, u — y) d(y) gives the
probability that the surplus falls below its initial level for the first time to y and that
survival occurs from surplus level y. A similar interpretation applies when y = u.
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Summing over y gives the probability that survival occurs and that the surplus
process has not always been above its initial level.

By (3.1) we also have
U

d(u) = d(0) + £ d(y) [1 -B(u-y)\
y - 1

Since equations (3.1) and (3.4) hold for M = 1 , 2 , 3 , . . . , it follows that
g(0, y ) = 1 -B(y). Equation (3.3) follows since

oo

V(0)= E 9(0, y)

If we write the premium income of 1 as (1 + 6) £(X,), then

(3.5) V(0)= 1/(1+0)

as in the classical continuous time model.
We can easily obtain further ruin related results when the initial surplus is zero,

starting with the joint distribution of the surplus prior to ruin and the deficit at ruin.
We define a new function f(u,x,y) for * = 1 , 2 , 3 , . . . and y = 0, 1,2,... as
follows:

f(u,x,y) = Pr[T<*>,Z(T)= -y and Z(T- l)=x]

Thus/(w, x, y) gives the probability that ruin occurs from initial surplus u, with a
deficit of y at the time of ruin and a surplus of x one time unit prior to ruin. When
M = 0, the function is defined for x-0,1,2,..., and / (0 , 0, y) simply gives the
probability that ruin occurs at time 1 with a deficit of y at ruin. Thus
f(O,O,y) = b(y + 1).

By considering the possible aggregate claim amounts in the first time period we
can write

u

f(u,x,y)=Yj b(j)f(u+\-j,x,y) for w = 0, 1, 2, ..., x- 1, x+ 1,...

and
u

f(u,x,y)= £ b(j)f(u+ I -j,x,y) + b(x + y + ]) when u = x

Assuming that

(3.6) X/(«,x,y)
M = 0
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we have that

X f(u,x,y)= X I
w = 0 « = ( ) ; = ( )

= X /(",*, >0
« = 1 7 = 0

Hence

(3.7) f(0,x,y) = b(x + y+l)

As an immediate consequence of this we have that
y - I •*• y - 1

G ( O , . V ) = X Z * u + y + i ) = I n -
/ = () x=0 7 = 0

and

V(0)= X H-BO")]

Similarly
X - 1 cc

(3.8) Pr\T<^ and Z ( f - 1 ) < J C - llw = 0 ] = £ S
/ = 0 v = 0

We have not discussed the conditions under which (3.6) holds. The most obvious
situation when (3.6) holds is when Lundberg's inequality applies. Formula (3.7)
does however hold when the sum in (3.6) is infinite.

The results presented above are in terms of a general distribution B(k). However,
they are in fact the same as results given by GERBER (1988) and SHIU (1989). This
follows since the distribution of X, can be expressed as a compound binomial
distribution with binomial parameters 1 and I -b(0) and probability function for
individual claims b(j)/[l-b(O)\ for 7 = 1, 2, 3, . . . .

4. THE BINOMIAL/GEOMETRIC MODEL

Throughout this section we assume that the distribution of the number of claims per
unit time is binomial with parameters 1 and p, and the individual claim amount
distribution is geometric with distribution function P(x) and probability function

p(x) = (\ -a)ax~x for x = l , 2 , 3, ...

Then

B(k)=\-pak for k = Q, 1,2,...

https://doi.org/10.2143/AST.24.1.2005079 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.1.2005079


38 DAVID CM. DICKSON

Since we have assumed that E(Xi)< 1, the parameters p and a must be such that
pl{\-a)<\.

We can rewrite equation (3.1) as

and inserting for ip (0) we have

The continuous time compound Poisson analogue of this equation can be found in,
for example, GERBER (1979).

Now insert for B(k) to find that
u ^

k=\ k= u

and
u + I x

(4.2) ^ ( " + 1 ) = X *P(k)pau+x~k + ^ pak

k=\ k=u+\

If we multiply (4.1) by a, subtract from (4.2) and rearrange we find that

V ( « + l ) - -^— V(«) = 0
\-p

The solution to this difference equation is

a

\-p

from which it follows that c = ip(Q). In fact, we can write yj(u) = rp(O) exp { -/?«},
where R is the adjustment coefficient for this process. R is the unique positive
number satisfying

E[exp {*(*,--1)}]=1

and it is an elementary exercise to show that for this model exp (/?) =(1 -p)la.
Thus we have a complete analogy with the form of the ruin probability for the
Poisson/exponential model which can be written in exactly the same way. (See, for
example, GERBER (1979)). We note that this solution matches that given by
WiLLMOT (1992) for d(u), allowing for different definitions of ruin/survival.

We now extend the analogy to the severity of ruin. We can use the function
g(0, y) to write down an equation for G(u, y) by considering the first occasion on
which the surplus falls below (or returns to without previously having been below)
its initial level.
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We have
M + V - 1 U - 1

G(u,y)= X 0«M)+ I, g(0,k)G(u-k,y)
k = U k = 0

u + v - I w

Now insert g(O,k)= 1 -B(k)=pak to give
« + y - 1

and
u + y u + 1

G ( M + l , ; y ) = X />«* + E p
k = u+ I t = I

Using the same technique as before we find that

G(u+ \,y) - a

\-p

and hence

G(u,y) = G(0,y)

Finally

v - I y - i , _ v

G(O,y)= X 9(0,*)= Z pak = P — for y=l,2,3,...
k = 0 k = 0 \ - a

and so we can write

Thus the form of G(u,y) is identical to that for the Poisson/exponential model.
(See, for example, DICKSON (1992)). However, unlike the Poisson/exponential
model, the distribution of the deficit at the time of ruin is not identical to the
individual claim amount distribution. The deficit is geometrically distributed with
parameter a, but on 0, 1, 2 , . . . , since G(u,y)/ip(u) gives the probability that the
deficit is less than or equal to y— 1, given that ruin occurs, and so

P r [ - Z ( 7 ) < > > i : r < r c ] = l - a v for y = l , 2 , 3 , . . .

Let us now consider the situation when u = 0 further. We have already noted that
the deficit at the time of ruin is geometrically distributed on 0, 1,2,... with
parameter a, and by (3.8) the distribution of the surplus at time T— 1 is the same.
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The conditional probability function of the deficit at T and of the surplus at T- 1,
conditioning on the event that ruin occurs, is

g(0,x) = (l-a)a\ x = 0, 1,2,...

If we consider the conditional distribution of the surplus one time unit before ruin
and of the deficit at ruin, conditioning on the event that ruin occurs, and again use a
tilde to denote a conditional probability, then

b(x + y+\) p{\-a)ax + y .
f(0jc,y)= — - = — = 9(0,*) g(0, v)

V(0) p/(\-a)
so that, conditionally, the surplus one time unit before ruin and the deficit at ruin
are independent and identically distributed. This situation also exists in the
Poisson/exponential model where the surplus prior to ruin and deficit at ruin are
independent, identically distributed variables, and the conditional distribution of
the claim causing ruin is Gamma (2).

Finally, if we define the conditional probability function of the claim causing ruin
as h(0,z) for z = 1, 2, 3, ... then

z-i z-\

h(0,z)= X f(0,x,z-x-l)= X ( l -a ) 2 a -" '=z( l -a ) 2 a : - '
x = 0 x = 0

The conditional distribution of the claim causing ruin is thus negative binomial with
parameters 2 and 1 - a, shifted one unit to the right.

5. CALCULATION OF RUIN PROBABILITIES

GERBER (1988) states that the compound binomial model can be used to approxi-
mate the continuous time compound Poisson model. In this section we investigate
this statement by considering ultimate ruin probabilities.

To calculate ruin probabilities for the compound binomial model, we will adapt
the framework described by DICKSON and WATERS (1991, Sections 1 and 8) who
use a discrete time compound Poisson model to approximate a classical continuous
time compound Poisson model under which both the Poisson parameter and mean
individual claim amount are 1. The characteristics of this model are as follows:

(a) individual claim amounts are distributed on the non-negative integers with
mean /?, where j3(> 1) is an integer;

(b) the Poisson parameter for the expected number of claims per unit time is

(c) the premium income per unit time is 1.

We will replace this discrete compound Poisson model by a compound binomial
model. We simply change (b), replacing the Poisson distribution by a binomial
distribution with parameters 1 and 1/[(1 + 9)j3]. For reasons given by DICKSON and
WATERS (1991) we can regard ip(fiu) as an approximation to ipc(u), the
ultimate ruin probability for the continuous compound Poisson model. Note that the
definition of ip(u) given in Section 2 corresponds to that used in this approxima-
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tion. In effect all we are doing is approximating a discrete compound Poisson model
(which approximates a continuous compound Poisson model) by a compound
binomial model. The approximation to the discrete compound Poisson model is
reasonable for large values of /?, since the Poisson distribution with parameter
l/\(\+6)fi] is then very close to the approximating binomial distribution. For
example, if j3 = 100 and # = 0.1, then the probability of more than one claim per unit
time under the compound Poisson model is 0.00004. Note that there is one small
difference between this formulation of the compound binomial model and that used
by previous authors. In this formulation, individual claim amounts are distributed
on the non-negative integers rather than the positive integers. The reason for this is
simply that in order to approximate ruin probabilities in the classical continuous
time compound Poisson model, we have to discretize the continuous individual
claim amount distribution in that model. In our first two examples, we will use the
discretization proposed by DE VYLDER and GOOVAERTS (1988), which discretizes
the distribution on the non-negative integers. If we had chosen a discretization on
the positive integers then our model would correspond to that used by previous
authors.

We will calculate ruin probabilities recursively from the formulae

(5.1) V ( 0 = * ( 0 ) ~ ' [ V ( 0 ) - l + B ( 0 ) ]

and for u = 2, 3, 4, ...

[
u — 1

ip(u-\)-\+B(u- 1) - X
7 = 1

These formulae correspond to GERBER'S (1988) formulae (5) and (6). In each of the
following examples the premium loading factor, 6, is 10%.

Example 1 : Let the individual claim amount distribution in the continuous time
model be exponential with mean 1. Then it is well known (see, for example,
GERBER (1979)) that

xpc(u) = exp(-/?< M) where Rc = 0l{\+d)
1+0

Table 1 shows exact and approximate values of \l)c{u). The approximate values
are calculated from (3.5), (5.1) and (5.2). The legend for this table is as
follows:

(1) denotes the exact value of ipc (u);
(2) denotes the approximate value when /3 = 5O;
(3) denotes the ratio of the value in (2) to that in (1);
(4) denotes the approximate value when /3=100;
(5) denotes the ratio of the value in (4) to that in (1);
(6) denotes the approximate value when /? = 200;
(7) denotes the ratio of the value in (6) to that in (1).
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TABLE 1

(SEE EXAMPLE 1 FOR DETAILS)

« = 0
w = 2
u = 4
« = 6
M = 8
M=10
M = 2 0

« = 40
« = 80

(D

0.9091
0.7580
0.6319
0.5269
0.4393
0.3663
0.1476
0.0240
0.0006

(2)

0.9091
0.7567
0.6299
0.5243
0.4364
0.3632
0.1451
0.0232
0.0006

(3)

1.0000
0.9983
0.9967
0.9950
0.9934
0.9917
0.9835
0.9673
0.9357

(4)

0.9091
0.7573
0.6309
0.5256
0.4378
0.3647
0.1463
0.0236
0.0006

(5)

1.0000
0.9992
0.9983
0.9975
0.9967
0.9959
0.9917
0.9836
0.9674

(6)

0.9091
0.7576
0.6314
0.5262
0.4386
0.3655
0.1470
0.0238
0.0006

(7)

1.0000
0.9996
0.9992
0.9988
0.9983
0.9979
0.9959
0.9918
0.9836

We note the following points about Table 1:

(a) When u > 0, the approximate values are less than the exact ones. This is to be
expected since the compound binomial model excludes the possibility of
multiple claims per unit time.

(b) As the value of /3 increases, the approximate values become closer to the exact
ones. This is as expected for reasons given by DICKSON and WATERS (1991,
Section 2).

(c) The larger the value of u, the poorer the approximation becomes.
(d) Even with a large value of /?, the approximate values do not always agree with

the exact values to four decimal places.

Example 2 : Let the individual claim amount distribution in the continuous time
model be Pareto with parameters 2 and 1. Table 2 shows exact and approximate
values of tyc(u). (The exact values have been calculated using DICKSON and
WATERS' (1991) algorithm and are "exact" at least to three decimal places). The
legend for Table 2 is the same as for Table 1. The only additional comment that we
would make about Table 2 is that, for the same magnitude of ruin probability, the
approximate values are slightly closer to the exact values than in Example 1.

TABLE 2

(SEE EXAMPLE 2 FOR DETAILS)

u = 0
« = 2
« = 4
M = 6
« = 8
H=IO
« = 20
« = 40
« = 80

(1)

0.9091
0.8102
0.7498
0.7021
0.6620
0.6271
0.4981
0.3479
0.2040

(2)

0.9091
0.8097
0.7491
0.7014
0.6613
0.6264
0.4974
0.3473
0.2036

(3)

1.0000
0.9994
0.9991
0.9990
0.9989
0.9988
0.9985
0.9982
0.9981

(4)

0.9091
0.8100
0.7494
0.7018
0.6617
0.6267
0.4978
0.3476
0.2038

(5)

1.0000
0.9997
0.9996
0.9995
0.9994
0.9994
0.9992
0.9991
0.9990

(6)

0.9091
0.8101
0.7496
0.7020
0.6619
0.6269
0.4980
0.3477
0.2039

(7)

1.0000
0.9998
0.9998
0.9997
0.9997
0.9997
0.9996
0.9995
0.9995
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In Section 4 we discussed the binomial/geometric model as the discrete analogue
of the Poisson/exponential model. In Example 3 we illustrate how ruin probabilities
for the binomial/geometric model can be used to approximate those for the
Poisson/exponential model. We have included this example purely for interest as
the approach does not generalise to other compound Poisson models.

Example 3 : We will use the same framework as in Examples 1 and 2, but will
discretize the exponential individual claim amount distribution as a geometric
distribution with mean /?. This discretization is a reasonable one for large values of
/? since when (i is large

P(x)- 1 - ( 1 -j3~lY= 1 -exp { -x/j3) for x = Q, 1,2,...

As noted in Section 4, for the geometric individual claim amount distribution,

exp ( - Rfiu) where R = logf

1+0 {(l + 8)(J3-l)

It is easy to show that
0

lim flR =
£->* 1+0

so that for large values of /3, ip (fiu) should give a good approximation to
xpc{u).

0.0955 -

0.095 -

0.0945

0.094

0.0935 -

0.093

0.0925 -

0.092 -

0.0915 -

0.091 -

0.0905

0 100 200 300 400 500 600 700 800 900 1000

FIGURE I. fiR as a function of fi when 6 is 10%.

Figure 1 shows the function j3R (when 9 is 10%) and Table 3 shows exact and
approximate values of ipc(u). The legend for Table 3 is as follows:

(1) denotes the exact value of ipc(u);
(2) denotes the approximate value when /?=100;
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(3) denotes the ratio of the value in (2) to that in (1);
(4) denotes the approximate value when /? = 1,000;
(5) denotes the ratio of the value in (4) to that in (1);
(6) denotes the approximate value when /3 = 10,000;
(7) denotes the ratio of the value in (6) to that in (1).

TABLE 3

(SEE EXAMPLE 3 FOR DETAILS)

K = 0
H = 2
H = 4
» = 6
M = 8
«=10
« = 20
M = 4 0

« = 80

(1)

0.9091
0.7580
0.6319
0.5269
0.4393
0.3663
0.1476
0.0240
0.0006

(2)

0.9091
0.7566
0.6297
0.5241
0.4362
0.3631
0.1450
0.0231
0.0006

(3)

1.0000
0.9982
0.9965
0.9948
0.9930
0.9913
0.9826
0.9656
0.9323

(4)

0.9091
0.7578
0.6317
0.5266
0.4390
0.3659
0.1473
0.0239
0.0006

(5)

1.0000
0.9998
0.9997
0.9995
0.9993
0.9991
0.9983
0.9965
0.9931

(6)

0.9091
0.7579
0.6319
0.5269
0.4393
0.3662
0.1475
0.0239
0.0006

(7)

1.0000
1.0000
1.0000
0.9999
0.9999
0.9999
0.9998
0.9997
0.9993

Table 3 shows the same features as Tables 1 and 2. The great advantage of using
the geometric discretization is that approximate values for tyl (u) can be calculated
from a formula. This allows us to use very large values for j3, and shows that even
with a large value of/3 (i.e. 10,000) the approximate values do not all match the
exact ones to four decimal places. By contrast, if b(x) and B{x) in (5.1) and (5.2)
are values from a compound Poisson distribution, then a relatively small value of ft
produces the same degree of accuracy. (See, for example, DICKSON and WAT-

ERS (1991, Table 5)).
We conclude that it is possible to successfully approximate ruin probabilities for

the classical continuous time compound Poisson model by those for a compound
binomial model. The main advantage in using the compound binomial model is that
it is not necessary to perform recursive calculations to find the probability function
b(x) to use formulae (5.1) and (5.2). However, this advantage is outweighed by the
fact that a large value of/? is required when using the compound binomial model in
order to obtain a good approximation to xpc(u).
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