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Abstract 

The family of polychoric models (PM) categories ordinal data with latent multivariate normal variables. 

This modeling framework is commonly used to study the association between ordinal variables, often 

leading to a polychoric correlation model (PCM). Moreover, PM subsumes several well-known 

psychometric models, such as the structural equation modeling (SEM) with ordinal data. That said, the 

identifiability of PM has not been addressed in the literature. Meanwhile, in recent years researchers 

have suggested that the latent variables underlying PM could be generalized to the family of elliptical 

distributions, such as the multivariate logistic and t distributions. This article concerns the identifiability 

of PM and PCM with latent elliptical distributions, for which we show that PM is not identifiable and 

PCM is identifiable. In particular, we prove the identifiability of the polychoric t correlation model based 

on the copula representation. We then move on to find the set of identifiability constraints of PM 

through an ``equivalence-classes approach of identifiability’’, and demonstrate its use in two 

applications: one concerns the identifiability of PM on Likert scales and on comparative judgment, and 

the other concerns the identifiability of ordinal SEM and item factor analysis. Possible implications 

induced by these identifiability constraints are discussed. 

 

Keywords: elliptical distributions, identifiability constraints, just-identified models, polychoric 

correlations, polychoric models 
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Identifiability of Polychoric Models with Latent Elliptical Distributions 

Treating ordinal variables as interval or continuous variables might produce biased 

results (Olsson, 1979). The (family of) polychoric models (PM) deals with ordinal data by 

categorizing them with latent multivariate normal variables. PM mainly appears in two situations. 

First, PM is used to study the association between ordinal variables, often leading to a polychoric 

correlation model (PCM). PCM assumes that the latent variables underlying two ordinal variables 

follow the bivariate normal distribution with zero mean and a correlation matrix known as the 

polychoric correlation (Olsson, 1979). In particular, if both variables are binary, a polychoric 

correlation reduces to a tetrachoric correlation (Bonett & Price, 2005; Pearson, 1901).  

Second, PM subsumes several commonly used psychometric models. In particular, PM 

is a general model of the structural equation modeling with ordinal data (ordinal SEM; Muthén, 

1984). Ordinal SEM models PM's mean vector and covariance matrix as a function of some 

parameters. Several models are special cases of ordinal SEM, such as the graded response 

model (Samejima, 1968; Samejima, 1997) and the family of item factor analysis models (Wirth & 

Edwards, 2007).  

Although PM is the basis of several models, its identifiability has not been addressed in 

the literature; only the identification of PCM (which, as mentioned above, is a special case of 

PM) has been proved (Almeida & Mouchart, 2003a). The importance of establishing the 

identifiability of a statistical model cannot be overstated. If a model is not identifiable, one may 

have two sets of parameters with the same probability distribution, even when the sample size 

approaches infinity. In this case, all estimators would not be consistent estimators. 

To make the issue a bit more complicated, the normality assumption underlying PM has 

been challenged recently; researchers have suggested that the latent variables underlying PM 

could be generalized to the family of elliptical distributions such as the multivariate logistic 

distribution and the multivariate t distribution (Jin & Yang-Wallentin, 2017; Kolbe et al., 2021; 

Roscino & Pollice, 2006). In light of this, in this article we explore these more general elliptical 
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distributions. Two unsolved questions can be posited: (a) Are PM and/or PCM with latent 

elliptical distributions identifiable? (b) If any of them is not identifiable, can we find the minimal 

identifiability constraints? Practically, even if PCM is identifiable, it is not practical in some 

situations. For instance, when modeling the developmental changes of children, it is 

unreasonable to assume sthat all of the mean vectors are zero (McArdle et al., 2015; Muthén, 

1984). Therefore, finding some other reasonable identifiability constraints is a task with practical 

significance.  

 

This article aims at answering the above two questions, and is organized as follows. Section 

1 gives formal definitions of PM and PCM with elliptical distributions. We address the issue of (a) in 

Section 2. By generalizing Almeida and Mouchart's (2003a) argument, we show that PCM with 

elliptical distributions is identifiable. In particular, we prove the identification of the polychoric t 

correlation model based on the copula representation. On the other hand, PM with elliptical 

distributions is not identifiable. We address the issue of (b) in Section 3. We show that one can 

find the identifiability constraints of PM through the equivalence-classes approach of Tsai (2000, 

2003). This approach can also help determine the measurement scales of latent variables. The 

minimal identifiability constraints of PM on Likert scales and also on comparative judgment are 

demonstrated. Moreover, we prove a theorem stating the necessary and sufficient conditions for 

the identifiability of ordinal SEM and item factor analysis. Section 4 is devoted to the discussion 

of possible implications and applications induced by these identifiability constraints. 

1. Definitions of PM and PCM with Elliptical Distributions 

Suppose there are K ordinal-scale item scores, 1,..., KW W with support {1,..., },kr  

respectively. Let 1 ),. .( . , KW WW  be the response vector. The family of polychoric models (PM) 

assumes that for an ordinal variable ,kW  there is a corresponding vector of cut-offs (or 

thresholds) )
0 1

( ) ( ) ( ( ) ( )( : ... )
k

k k k k k
j ra a a a a  and a latent random variable *

kX  
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such that  

 * ( ), 1,..., .k
k k j kW X jj a r  

That is,  

 
1

* (1) ( )
1( ,..., ) ) ( ,..., ) ).( (

K

K
K j jP jj a aPW X  (1) 

where * * *
1 ,. )( .., KX XX follows a distribution function .F  Thus, PM can be parametrized by  

 ,( , )PM PMF  

where ( ){ : 1,..., },ka k K  and PM  is the parameter space for this parametrization.  

In the following, we review the concept of spherical and elliptical distributions with some 

examples.  

Definition 1.1. (Fang et al., 1990) 

(i) Let X be a p-dimensional random vector. X is said to have a spherical distribution if for any 

orthogonal transformation Γ, ,
d

ΓX X  where 
d

 means "equal in distribution." 

(ii) Let Y be an n-dimensional random vector. Y is said to have an elliptical distribution with 

parameters nμ and n nΣ if 

 ,
d

Y μ A X  

where ,p nA A A Σ  with rank( ) .pΣ  

The following proposition characterizes the spherical and elliptical distributions. 

Proposition 1.2. (Fang et al., 1990)  

(i) X is spherically distributed if and only if there is a scalar function ( ) such that the 

characteristic function of X satisfies ( ).( )X t t t The function ( ) is called the 

characteristic generator of the spherical distribution. 

(ii) Under Definition 1.1 (ii), The characteristic function of Y satisfies ( ).( ) ie t
Y

μt t tΣ

https://doi.org/10.1017/psy.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.25


IDENTIFIABILITY OF POLYCHORIC MODELS   6 

Therefore, an elliptical distribution can be parametrized by ,, ,μ Σ denoted ( , ).nEC μ Σ,  

The parameters of (a family of) elliptical distributions are named below. 

Definition 1.3. ~ ( , )nECY μ Σ, , where μ  is the location vector, Σ  is the dispersion matrix or 

scatter matrix. If Σ  is positive definite, then 

1 1

2 2diag( ) diag( )P Σ Σ Σ  is called the pseudo-

correlation matrix. If the first and second moments of Y exist, then μ  is called the mean vector, 

Σ  is called the covariance matrix, and P is called the correlation matrix. 

Some commonly used elliptical distributions include the normal, logistic, uniform, and t 

distributions. 

Example 1.4. ~ ( , ).nECY μ Σ,  Then Y follows 

(i) a multivariate Normal distribution if 
2

( ) exp( ).uu  Also, we denote ~ .,( )pN μ ΣY  

(ii) a multivariate logistic distribution if 2( ) 4exp( ) / .(1 exp( ))uu u  

(iii) a multivariate uniform distribution if { 1}( ) 2 .zu I  

(iv) a multivariate t distribution if ( 2)/2.( ) (1 / )u u  Also, we denote , .(~ , )ptY μ Σ  The 

characteristic function of a multivariate t distribution depends on the degrees of freedom 

parameter ν. 

Definition 1.5.  

(i) PM with a latent elliptical distribution characterized by  is ,PM
P  where

( ( , , ), ).P pM EC μ Σ  

(ii) PCM with a latent elliptical distribution characterized by  is ,PCM
P  where

( ( , , ), ).pPCM EC 0 Ρ  

Unless specifically stated, in this article we study PCM and PM within the realm of 

elliptical distributions.  

2. Identifiability of PCM with Elliptical Distributions 
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We first define some terms concerning model identifiability: 

Definition 2.1. { : }P  is a parametric model. Let * * .( )g  Then  

(i) For any 1 2, ,  1 2, are empirically indistinguishable if 
1 2

,P P i.e., for any response 

w, 
1 2
( ) ( ).P wPw  

(ii) is identifiable (or is identifiable) if 
1 2 1 2P P  for all 1 2, .  

(iii) is just-identified (or is just-identified) if ,P  there is a unique  such that .P P  

(iv)  is partially identifiable over * (or * is partially identifiable) if 
1 2

* *
1 2P P  for all 

*
1 2, .  

(v) For any 0 , the identified set of 
0

P  is 
0

{ : }.P P   

In ordinary language, two sets of parameters are empirically indistinguishable if they 

have the same probability structure for all possible outcomes. A model is identifiable if distinct 

sets of parameters correspond to distinct distribution functions; thereby, constructing consistent 

estimators is possible. Similarly, a model is partially identifiable over * if distinct sets of *  

correspond to distinct distribution functions. 

The following proposition states that if the model is parametrized by , then the model is 

identifiable if and only if the model is just-identified. Therefore, if the model is parameterized by 

,  there is no need to distinguish between whether the model is just-identified or over-identified. 

The distinguishment between just-identified or over-identified is meaningful only when 

considering the restricted model of a parameterized model (see Section 3.1). 

Proposition 2.2. { : }.P is identifiable iff is just-identified. 

Proof. ( )  The uniqueness of  implies the identification of .  

( )  The P is parametrized by ,  so for any ,P there is a  such that .P P The uniqueness 

of  is guaranteed by the identification of .P  
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□ 

Note that parameter identification is a necessary condition for the existence of a 

consistent estimator. This proposition has been implicitly stated in some studies (such as Gu & 

Xu, 2019; Ouyang & Xu, 2022). San Martín and Quintana (2002) provided a formal formulation 

and a proof of the proposition (see below, where we also provide an alternative proof). 

Proposition 2.3. (San Martín & Quintana, 2002)  { : }P  is a statistical model and  

1, , nX X  are independently, identically distributed random variables from P . Further, g is an 

invertible function of 𝜃. If is not identifiable, then there is no consistent estimator of )( .g  That 

is, the identifiability of the parameter is a necessary condition for the existence of a consistent 

estimator. 

Proof. If the estimator 1 ),...,(n nX X  is a consistent estimator of )( ,g  then ( )n g under

P for any . Given 
1 2

P P while 1 2,we have 1( )n g under
1

P and 2( )n g under

2
.P Because 

1 2
,P P  n has the same distribution under 

1
P  and 

2
P  based on the inversion 

formula. Since a convergence sequence has a unique limit, 1 2( ) ( ).g g Because g is 

invertible, we have 21 .  --- a contradiction.    

□ 

Identifiability is a property of a statistical model, sometimes defined as a property of 

parameters (Casella & Berger, 2002, p. 523). However, the statement "  is identifiable" is 

ambiguous because it does not specify the statistical model in consideration. For example, 

Almeida and Mouchart (2003a) showed that PCM under the normality assumption is identifiable 

in PCM but not in PM. Indeed, the latter fact was derived from a proposition in Almeida and 

Mouchart (2003a). 

Proposition 2.4. (Almeida and Mouchart, 2003a) For any monotonic increasing functions 
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1,..., ,kg g define 1( ,..., )kg g g as a component-wise transformation. Then ( , )PM F A  is 

empirically indistinguishable from , ( , ),PM g g gF A where 1
gF F g and

( ){ ( ) : 1,..., 1, 1,..., }.jg j k
kA g a j r k K  

2.1. Olsson's (1979) Argument of Identification of PCM 

Olsson (1979) worked on the identification problem under PCM (with the normality 

assumption) by counting the difference between the number of parameters and the number of 

independent proportions. For convenience, we define the degrees of freedom, df, as  

 # independent proportions - # parameters.df  

This definition is consistent with the common usage of degrees of freedom (Rodgers, 

2019). Olsson (1979) argued that PCM is identified because 0.df In particular, the model is 

just-identified if 0df and over-identified if 0.df  However, Proposition 2.4 implies that 

Olsson's (1979) argument of identifiability is flawed, in that even for PCM under the normality 

assumption, ( ( , ), )PCM K 0 P  satisfying 0,df there could be a model

, ( ( , ) , )PCM g K g g0 P  indistinguishable from it. Thus, merely observing 0df  for a model 

does not guarantee that the model is identifiable. A similar statement (showing that 0df  is a 

necessary but not sufficient condition for model identification) also can be found in the SEM 

literature (the t rule in Bollen, 1989).  

In the literature, Almeida and Mouchart (2003a) provided the first rigorous proof of 

identifiability of PCM under the normality assumption. In the following, we generalize their proof 

to the elliptical distribution case. Specifically, using Proposition 2.2, we show that PCM is always 

just-identified under its model assumptions (see Theorem 2.5).1 

 

1 At first glance, the statement of just-identifiability of PCM seems somewhat counter-intuitive, especially it 

is contradictory to the statement that 0.df  However, we only state that PCM is just-identified under its 

model assumptions, but not under a more general framework. For instance, consider a set of data 
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2.2. Generalization of Almeida and Mouchart's (2003a) Proof 

Motivated by Theorem 3.1 in Almeida and Mouchart (2003a), we now establish the 

conditions of identification under PCM with any latent continuous elliptical distributions. 

Theorem 2.5.  Under PCM with a latent elliptical distribution characterized by ,  ,
PCM

P  where 

( ( , , ), )PMC KEC 0 Ρ and is known. If 

(i) defines a continuous distribution with strictly increasing univariate and bivariate CDFs on 

its support; 

(ii) the polychoric (pseudo-)correlation matrix Ρ  is positive definite, 

then PCM (
PCM

P ) is just-identified. 

Proof.   It suffices to prove that if two pairs of parameters correspond to the same response 

probability vector, say, ( , )Ρ  and , ( , )Ρ  then ( , ) ( , ). Ρ Ρ  Our proof is composed of two 

parts: 

(i) The cut-offs (or thresholds) are identifiable: 

Without loss of generality, consider the j-th cut-off of item k, say, ( )k
ja  and ( )k

ja . Let the 

response vector 1 1 1( , , , , , , ).k k Kr r j r rw  Then 

( ) ( )
(0,1, ) (0,1, )( ) ( ) ( )k k

EC j EC jP F a F aW w . Since the CDF is injective, ( ) ( ).k k
j ja a  Because 

( )k
ja can be any cut-off in , we have  . 

(ii) The pseudo-correlation matrix is identifiable: 

Consider a response vector 1 1 1 1 1( , , , , , , , , , ),,l l k k Kr r r r ji r rw  for which the l-th 

response is i, and the k-th response is j. We define

 

consisting of K ordinal-scale items, and each item has kr  possible categories with probability .kp Then we 

can treat PCM as a model nested in this framework. In such a case, PCM may not be just-identified (see 
Almeida and Mouchart, 2003a). 
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2

* ( ) ( ) ( ) ( )
( , , ) ,( , )( ) ( ,) ( )) (

lk

l k l k
lk j EC ijig P a a F a aP 0 PW w X where 

1
.

1l

lk
lk

k

P

Because Ρ  is positive definite, lkP is also positive definite. So the Cholesky decomposition 

is unique: 
2 2

1 0 1
,

1 0 1lk lk l

l

k

k

lkP ΛΛ and Λ is invertible. We have 

2 2

1 * 1 ( ) ( ) ( ) ( ) ( )
( , )

2 2
( ) ( ( ).

1
( , ) ) ,

1 1

lk
i

k

l k l l k
lk j EC j j i

l lk

g a a F a aP a0,IΛ X Λ  

Since the bivariate CDF is monotone, ( )lkg is strictly decreasing iff  

( ) ( )

2 2

1
( )

1 1

l klk
lk

lk lk

j iah a is strictly decreasing. Based on the calculus, we know 

that ( )lkh  is strictly decreasing. Thus ( )lkg is strictly decreasing, and so lk is identified. 

Because i and j can be any pair of items, we have .Ρ Ρ    

Based on Proposition 2.2, the model is just-identified, because it is identifiable and also a 

parametrized model. 

□ 

Corollary 2.6.  The multivariate normal distribution, multivariate t distribution with known 

degrees-of-freedom, multivariate logistic distribution, and multivariate uniform distribution all 

satisfy the conditions in Theorem 2.5, so their corresponding ( ( , , ), )PMC KEC 0 Ρ is 

identifiable. In particular, the multivariate normal case corresponds to Theorem 3.1 in Almeida 

and Mouchart (2003a). 

Remark 2.7.  The multivariate t distribution ( ( , )t μ Σ ) does not satisfy the conditions in Theorem 

2.5, because the function ( 2)/2( ) (1 / )u u depends on the degrees-of-freedom parameter

, which could be unknown.  

As mentioned in Remark 2.7, Theorem 2.5 cannot cover the case of PCM with a latent 
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multivariate t distribution (abbreviated as polychoric t correlation model). In the following, we 

provide a proof for this case based on the copula approach proposed by Almeida and Mouchart 

(2003b). For brevity, in the following paragraphs, we denote the CDF of a distribution simply by 

the symbol of that distribution. For example, we denote the CDF of the t distribution with 

degrees of freedom  as .t  And the CDF of a multivariate t distribution ( , )t μ Σ  is abbreviated 

as , , .t μ Σ  

2.3. The Copula Approach to the Identifiability of PCM 

First, we introduce the concept of copula and define the copulas of elliptical distributions, 

under which the bivariate t copula will be a special case. 

Definition 2.8. (Hofert, 2018)  A copula is a multivariate CDF with standard uniform univariate 

margins, that is, the Unif(0,1) margins. 

Definition 2.9.  The elliptical copula characterized by  with pseudo-correlation 

1 1

2 2diag( ) diag( )P Σ Σ Σ is defined as 

 
1 1

1 1
1 ( , ) (0 1, ) 1 (02 1, )( , ,..., ) ( ( ),..., ( )).

KE ECK KC ECC u F Fu u uFuΡ 0 P, , ,  

Definition 2.10.  Let | | 1 and 0.  Then ,
tC is a bivariate t copula if  

 1 1
2, 21 , , 1( , ) ( ( ), ( )),tC u u t t u t u0 Ρ  

 where 
1

1
P , 1,u  and 2u  are within 0,1 .  

Remark 2.11.  The elliptical copula does not depend on the scale of the elliptical distribution. 

That is,  

 
1 1

2 2
1 1 1 1 1 1

1 1 1 1
( , ) (0 1, ) 1 (0 1, ) ( , ) 1( , ) ( , )

( ( ),..., ( )) ( ( ),..., ( )),
K KEC EC EC EC EC ECK KF F Fu u uF F F u0 P, , , μ Σ, , ,

 

where 

1 1
22 2diag( ) diag( ,,() )kk kP Σ Σ Σ Σ and 1,..., .( )Kμ Therefore, to avoid over-

parameterization, the parameters of elliptical copula do not contain , , 1,..., .k k k K  
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Almeida and Mouchart (2003b) found that PCM can be reparametrized by the copulas. 

Under this parametrization, the cut-offs are no longer the parameters to be considered. We 

formulate this property as a lemma. 

Lemma 2.12. (Almeida & Mouchart, 2003b)  Let ( ( , , ), ).pPCM EC 0 P If  is a continuous 

distribution with strictly increasing univariate and bivariate CDFs on its support. Also, the k-th 

marginal is 
1(0 1, ).ECF , Let 

1

( ) ( )
( 10 , )( ), 1, ,...,k

j j
k

EC kF au j r, and  

1
( ) ( )

0
( ) ( ) ( )( : 0 ... 1).

kr
k k k k k

ju u u uu Then PCM can be reparametrized by a one-to-one 

correspondence function : ,PCM
CO
PCM defined by ( ) ,, CΡP where 

 ( , ) P
CO CO
PCM CMC UΡ , 

( ){ : 1,..., },kU u k K  and O
PCM
C  is the parameter space for this parametrization.  

Proof.  The proof can be derived from Equation (1): 

 

1

1 11

1

* (1) ( )
1

(1) ( )
(0 1, ) (0 1, )

(1) ( )

( ,..., ) ) ( ,..., ) ).

( ,..., ) )

( ..., ).

( (

( ) ( )

,

K

K

K

K
K j j

K
EC ECj j

K

j j

P j a a

F a F a

u u

j P

C

C

Ρ , ,

Ρ

XW

 

That is, two sets of parameters PCM and )( PCM  define the same CDF. Moreover, the 

assumption of  guarantees that 
1(0 1, )ECF ,  is invertible. It implies that the cut-offs can be 

uniquely determined through ( )
j

ku by 
1

1 ( ) ( )
( 1,0 ) ) .( , 1,...,k k

EC j kjF a j ru, So the function defines 

a one-to-one correspondence between two parameter spaces. 

□ 

Using Lemma 2.12, in the following, we construct another proof of Theorem 2.5 based 

on the parametrization of copulas. 

Proof of Theorem 2.5 based on copula parametrization.  Based on condition (i) and Lemma 

2.12, the identifiability of PCM under the copula parametrization ( PCM ) implies the identifiability 
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of PCM ( O
PCM
C ). We claim that if two pairs of copula parametrized parameters, ( , )C UΡ  and 

( , )C U
Ρ

, correspond to the same response probability vector, then ( , ) ( , ).CU UCΡ Ρ
 This can 

be done by the following: 

(i) The marginals are identifiable: 

 For any k and j, by definition, we have ( ) ( ).jj
ku P W j  Based on the law of large 

numbers, 
#{ }jW j

n
is a consistent estimator of ( ).j

ku  So based on Proposition 2.3, ( )
j

ku

is identifiable.  

(ii) The pseudo-correlation matrix is identifiable: 

Let 
1

.
1l

lk
lk

k

P  Define (( ) , ).lk l kg C u uΡ  Similar to the proof of Theorem 2.5, we can 

show that ( )lkg  is strictly decreasing. 

□ 

We note by passing that the identifiability of the pseudo-correlation matrix also leads to a 

property of elliptical copulas: 

Corollary 2.13.  0( , )
lk l kC u uΡ for all 1,..., ;l K 1,..., ;k K .l k  

2.4. Identification of PCM with a Latent Multivariate t Distribution 

The following theorem establishes the identification of the polychoric t correlation model, 

that Theorem 2.5 cannot cover. As aforementioned, the proof is based on the 

reparameterization of parameters by the copula. 

Theorem 2.14.  Let , ( ( , ), ).PCM t t 0 P  If the polychoric (pseudo-)correlation matrix Ρ  is 

positive definite, then the polychoric t correlation model (
,PCM t

P ) is just-identified. 

Proof.  If two pairs of parameters correspond to the same response probability vector, say, 

( )( , )UCΡ  and ( )( , ),UC
Ρ

we claim that ( , ) ( , ).CU UCΡ Ρ
 Based on Lemma 2.12 and Corollary 
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A.3, establishing ( , ) ( , )U UC CΡ Ρ
 suffices to complete the proof. Also, CΡ can be uniquely 

determined by all bivariate copulas implied by ,CΡ  i.e., ,{ ( , ) | 1,..., ; 1,..., ; },
lk

t
l kC u u l K k K l k

so establishing 
12 ( 1) 12 ( 1), , , ,( , ) ( , ),..., ,...,

K K K K

t t t tCU UC C C  suffices to complete the proof. 

Our proof is composed of two parts: 

(i) The marginals are identifiable:  

The proof is the same as the corresponding part of the “Proof of Theorem 2.5 based on 

copula parametrization” in the previous section. 

(ii) The bivariate copulas are identifiable: 

Consider a response vector 1 1 1 1 1( , , , , , , , , , ),,l l k k pr r r r ji r rw  for which the l-th 

response is i, and the k-th response is j. We claim that both , ( , 0)
lk lk

t
l kuC u and

, .( , ) 0
lk

t
l kC u u  For 

( ) ( )
,( ) ( , ),

lk

lt k
i jP C u uW w there is a unique copula ,lk

tC  

satisfying the equation. Thus ,lk

tC is identified, which completes this part of proof. The 

fact that  , ( , 0)
lk lk

t
l kuC u has been established by Corollary 2.13. It remains to show 

that  , .( , ) 0
lk

t
l kC u u  Let .  Without loss of generality, we may assume that both 

( ) 0.5,l l lu P W w  and ( ) 0.5.kk ku P W w If lu  or 0.5,ku then the response 

can be reversely coded to achieve both lu  and 0.5.ku  Because Ρ  is positive 

definite, lkP is also positive definite. Thus, the Cholesky decomposition lkP ΛΛ  is 

unique and Λ is invertible. Based on Lemma A.4 and the property of the multivariate t 

distribution, we have 

( )

( )
( ) ( ),

i

l
j

k

a
P P

V a

ΛZ
W w where 2 2~ ( , )NZ 0 I and 2~ .V  

Therefore, 
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( )
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( )
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( )
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l
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V VP V

u

t t

a V

u

u

u

u

P
a

u

V

Z

Z

Z Λ ).

 

That is, ,2, 1 1 2( , ) ( , ),
lk lk

t tC u u C u u  and so 2, 1( , ) 0.
lk

tC u u Because l and k are not specific, 

we have that , 0( , )
lk

t
l kC u u for any l and k. 

We have proved that 
12 ( 1) 12 ( 1), , , ,( , ) ( , ),..., ,...,

K K K K

t t t tCU UC C C  if two pairs of 

parameters correspond to the same response probability vector, and this leads to the 

identification of the polychoric t correlation model. 

□ 

3. Identifiability and Identifiability constraints of PM 

In Section 2, we proved the identification of PCM. In comparison with PCM, the more 
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general model PM is not identifiable, for which we now describe. We first present a proposition. 

Proposition 3.1.  For a polychoric model ( ( , , ), ),PM KEC μ Σ  suppose the transformation

( ) ,g x Bx c with 1{ ,..., 0,}, K
K kB diag b b b c  holds. Then PM is empirically 

indistinguishable from , ,PM g  where , ( ( , , ), )PM g KEC μ Σ and 

 

( )
,

.

: { | 1,..., 1; 1,..., }k
B c k j k kb a c j r k K

μ μ c

Σ B Σ

B

B  

Proof. Let * * .X BX c  Then  

 

1

1

1

* (1) ( )
1

* (1) ( )

* (1) ( )
1 1

( ,..., )) ( ,..., ) )

( ,..., ) )

( ,..., ) ).

( (

(

(

K

K

K

K
K j j

K

j j

K
K Kj j

j a a

a a

b a c

P j P

P

P b a c

X

cX B

X

W

B c  

□ 

Corollary 3.2.  PM is not identifiable because PM and ,PM g  are empirically indistinguishable, 

and both of them belong to .
PM

P  

Thus, some workable identifiability constraints are needed to make PM identifiable. 

Indeed, the polychoric correlation model is constructed by putting some constraints on the 

location vector μ and the dispersion matrix Σ of PM. However, these identifiability constraints 

are not practical in some situations. For instance, when modeling the developmental changes of 

children, it is not well grounded to assume that the location vector μ is zero (McArdle et al., 

2015; Muthén, 1984). Therefore, finding some other reasonable identifiability constraints is a 

task with practical significance.  

3.1. The Equivalence-Classes Approach of Identifiability (ECAI) 

An effective way to find the identifiability constraints was proposed by Tsai (2000, 2003) 

in the context of Thurstonian modeling of comparative judgment. Because this approach 
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depends on the mathematical concept of equivalence classes (Dummit & Foote, 2004), we call 

it the Equivalence-Classes Approach of Identifiability (ECAI). 

Traditionally, the identifiability of models needs to be proved case by case. ECAI 

provides a different route for derivation. Importantly, Tsai (2003) applied ECAI and proved that 

Case III and Case V of the Thurstonian models of comparative judgment are identifiable.  

ECAI can help researchers to find a model's identifiability constraints. Furthermore, it 

can be utilized to determine whether a (restricted) model is just-identified or over-identified. It 

utilizes the following two principles to construct the identifiability of the restricted model: 

(i) For a non-identified general model, find the set of all parameters empirically 

indistinguishable from the true parameter, i.e., the identified set. 

(ii) After adding some constraints to the model, if there is at most one element in the 

predefined set, then the restricted model is identified and the constraints are identifiability 

constraints. Moreover, if there is one and only one element in the predefined set, then the 

restricted model is just-identified; Otherwise, the model is over-identified. 

We can formulate ECAI as follows. 

Proposition 3.3.  Under Definition 2.1, 

(i) 
1 2

P P  defines an equivalence relation on ,  denoted by 21 ~ .  

(ii) The identified sets are the equivalence classes defined by the relation.  

Therefore, the identified set of 
0

P can be denoted as [ ]  for all  satisfying
0
.P P  

is called a representative of the equivalence class. That is, 

0 0 0.{ | } [ ] [ ] ~P P for  

(iii) The set of equivalence classes forms a partition of ,  that is, for any 0 ,  0  belongs to 

one and only one of the equivalence classes. 

(iv) is (just-)identifiable if and only if for each identified set 0[ ] , there is a unique element,

0 , in it, i.e., 0 0[ ] { }.Namely, 0[ ] is a singleton. 
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(v) is partially identifiable over * if and only if for each identified set 0[ ] , there is a unique 

element in * *
0 0[ ] { ~ }| ( ),g g . 

Proof. (i) is straightforward by the definition of the equality of functions. (iii) follows by 

Proposition 2 in 0.1 of Dummit and Foote (2004). (iv) and (v) can be proved by (iii), Proposition 

2.2 and the definition of identifiability. 

□ 

Proposition 3.3 (iv) shows the sufficient and necessary condition for model identification. 

A statistical model might not be identifiable unless one adds some identifiability constraints to it. 

As mentioned above, Thurstonian models are identifiable with the Case III or Case V 

assumptions (Thurstone, 1927; Tsai, 2000). Here is another example. The confirmatory factor 

analysis model assumes that either the variance of the latent factor is any positive constant, or 

the loading of an indicator is any nonzero constant; otherwise, the model is not identifiable 

(Kline, 2023).  

Definition 3.4. (Identifiability constraints) Under Definition 2.1, let 1,..., J be functions of .

Then is identifiable with constraints 1,..., J  if the model with the parameter space under 

constraints, 
0 1 .{ | },, ( ) 0,. ., ( ) 0c JP P is identifiable. We call 1,..., J  the 

identifiability constraints if is identifiable with these constraints but not identifiable without 

these constraints.  

Proposition 3.5.  Let 
1 0,. ,0 1..[ ] { | }, ( ) 0,..., ( ) 0

J JP P and c is not empty. 

The following three statements are equivalent: 

(i) is identifiable with constraints 1,..., J   

(ii) For any *
0 ,c  

1,...
* *

0 0,[ ] { }.
J

 

(iii) For any 0 ,  
1, ,0 ...[ ]

J
has at most one element. 

Proof. (ii) can be easily derived from Proposition 3.3 (iv). (iii) implies (ii) naturally. (ii)  (iii) can 
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be proved through contraposition. If there is a 
0

such that 
1, ,0 ...[ ]

J
has more than one 

elements. Because 
1 . ,0 ,. .[ ]

J c , then (ii) is violated. Thus  (ii)  (iii). 

□ 

The distinction between just-identified and over-identified (restricted) models can be re-

characterized below using the concept of identifiability constraints. 

Definition 3.6.  Under Definitions 2.1 and 3.4, 

(i) is just-identified with constraints 1,..., J
if for any 0 ,  

1, ,0 ...[ ]
J
has a unique 

element. Moreover, 1,..., J are called minimal constraints if removing any of it leads to 

non-identification. 

(ii) is over-identified with constraints 1,..., J if there exists 0 ,  such that 
1, ,0 ...[ ]

J
is 

empty. 

We take the one-way ANOVA model (Rice, 2007) as an example to demonstrate the 

relation of non-identified, just-identified, and over-identified models. Let K be the number of 

groups. In this model, the parameters 4
1, ,...( ), K are not identifiable because both

1 .( , ,. ., )K and 1 .( 1, , ..,1 1)K belong to 1[ , ,..., ]( ) .K
0kk

is an identifiability 

constraint because 
1 10

.[ , ,..., ] , ,. .( ) ).( ,{ }
k

k

K K
Also, “ 0kk

 and 1 0 ” are 

identification constraints because a subset of the constraints ( 0kk
) can identify the 

model. Moreover, 0kk
is a minimal constraint because for any 4

1, ,..., ,( )K there 

exists a unique element 1 .( , . ),. ,k Kk k k belonging to 1[ , ,.. ]( )., K that 

removing 0kk
 leads to non-identification. However, “ 0kk

 and 1 0 ” produce 

an over-identified model because there is a vector .( , ,1, .0 ).,1 such that 
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10, 0
[ , ,1,...,1 ] .( 0 )

k k

That is, there is no parameter which is empirically equivelent to 

.( , ,. .0 ),1  and simultaneously satisfies both 0kk
 and 1 0.  

Another characterization of just-identification is the existence of a one-to-one 

correspondence between the identified parameters and the parameters with identification 

constraints (see Chang et al., 2017). It turns out this characterization is equivalent to the 

definition of just-identification: 

Proposition 3.7.  Under Definitions 2.1, 3.4, and 3.6., let the model with 1,..., J  constraints 

be just-identified with the parameter space under constraints .c Then the model with 1,..., L  

constraints is just-identified with the parameter space under constraints c  if and only if there is 

a one-to-one correspondence (of empirically indistinguishable models) between c and .c  

Proof. ( )Because the model with 1,..., J  constraints is just-identified, for any 0 ,  

1, ,0 ...[ ]
J
has a unique element. Then 

1, ,0 ...[ ]
L
is also not empty based on the one-to-one 

correspondence. It indicates that the model with 1,..., L  constraints is just-identified. 

( )Based on just-identification of the two models, both 
1, ,0 ...[ ]

J
 and 

1, ,0 ...[ ]
L
are singletons 

mapped by 0. Thus, we can construct the correspondence between c and c based on these 

mappings. This completes the proof. 

□ 

The following theorem links ECAI to identifiability constraints. 

Definition 3.8.  , { : }A AP  and , { : }BB P  are two models where .B A

Then ,A  is a general model of ,B  and ,B  is a restricted model of , ,A  denoted by 

, , .B A  

Theorem 3.9.  Let 1,..., J  be functions of .  1{ | ( ) 0,..., ( ) 0}.B A J  Thus 
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, , .B A
 Then 

(i) If  
,A

 is identifiable, then 
,B

 is identifiable. 

(ii) If 
,B

 is identifiable, then 
1,..., J

 are identifiability constraints of 
, .A

In particular, If 
,B

 

is just-identified and removing any of 1,..., J
 leads to non-identification., then 1,..., J

 

are minimal constraints. 

(iii) (ECAI) 
,A

 is not identifiable. *
0 .B  Under 

,A
, if  

1,.
*

0 ..,[ ]
J
 is a singleton or empty, 

then ,B  is identifiable. Moreover, 1,..., J  are identifiability constraints of , .A  Further, if 

1, ,0 ...[ ]
J
 is a singleton for any 0 ,A  then ,B  is just-identified. Otherwise ,B  is over-

identified. 

Proof. The results are immediate consequences of Proposition 3.3 (iv) and Definition 3.6.  

□ 

Another related issue is that the equivalent class of a non-identifiable model consists of 

all permissible transformations of a model, which can determine the scale of measurement 

(Luce et al., 1990, Chapter 20; Stevens, 1946). The scale of a measurement can be identified 

as follows. 

Definition 3.10.  Let { : }P be a model and X be a random variable .~X P  Define 

}.{ : )(XG g g  

(i) X is a nominal scale if G consists of all injective functions.  

(ii) X is an ordinal scale if G consists of all monotone increasing functions. 

(iii) X is an interval scale if { ( ) : ( ) , 0}.G g x g x bx c b   

(iv) X is a ratio scale if { ( ) : ( ) , 0}.G g x g x bx b   

(v) X is an absolute scale if { }.G id   
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3.2. Identified sets of PM 

Theorem 3.11 below finds the equivalent class for PM. The theorem states that all 

empirically equivalent PMs can be linearly transformed into each other. So, the equivalent class 

of PM is the set of all possible linearly transformed PMs of it, and the latent vectors 

corresponding to PM are interval scales. 

Theorem 3.11.  Given the conditions in Theorem 2.5, consider PM ( ( , , ), ).PM KEC μ Σ  Also, 

 , 1 .[ ] { : ( ) , { ,..., 0,}, }K
K kPM PM g g diag b b bx B cx c B  (2) 

  

Then all entries of * * *
1 ,..., )( KX XX  are interval scales, and the equivalent class of PM 

consists of models , , ( ( , , ), )PM E pC g EC μ Σ  satisfying 

 

( )
,

.

: { | 1,..., 1; 1,..., }k
B c k j k kb a c j r k K

μ μ c

Σ B Σ

B

B  

 

Proof.  ( )  is straightforward by Proposition 3.1. 

( )  Consider two PMs, ( ( , , ), )pPM EC μ Σ  and * * * *( ( , , ), ),PM pEC μ Σ where *~ .PM PM

We claim that 

 *
1,{ : ( ) , { ,..., }, },0,P

K
K kPM M g g diag b b bx B cx c B  

 that is, there is a function g  such that *
, ,PM g PM where ( ) ,g x Bx c  Define 

( )g x Bx c  where 

1

2diag( )B Σ  and 

1

2diag( ) ,c Σ μ  and *( )g * *x B x c  where

1
* 2diag( )*B Σ  and 

1
* *2diag( .)*c Σ μ Based on Proposition 3.1, we have 

*

* *
, ,

~ ~ ~ .PM g PM PM PM g
 Both ,PM g and ,

*
PM g are PCM. Because of the identification of PCM 
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(i.e., Theorem 2.5 and Theorem 2.14), there cannot be two different PCMs that are empirically 

indistinguishable. Therefore *

*
, ,

,PM g PM g
and so * 1

*

,( )
,PMPM g g
 i.e., * 1( ) .g g g  

□ 

By applying Proposition 3.7, Theorem 3.9, and Theorem 3.11, we show in the following 

that the constraints of 
PCM

are minimal constraints. We then construct the criteria for the 

minimal constraints of the identifiability constraint in PM. 

Corollary 3.12.  For PM the constraints that μ c  and ( )diag Σ b  (where Kb with 

,Kc ) are the minimal constraints. In particular, for PCM, the constraints that μ 0  and 

( )diag KΣ 1  are the minimal constraints. 

Proof. Equation (2) shows that [ ]PM will not be a singleton when any of the two constraints 

μ c and ( )diag Σ b  is removed. Therefore μ c  and ( )diag Σ b  consist of the minimal 

constraints. The particular scenario concerning the minimal constraints of PCM is also 

supported by the application of Theorem 3.9 (ii).  

□ 

Corollary 3.13.  Under PM, let ( ( , , ), ).KPM EC μ Σ The following three statements are 

equivalent:  

(i) 1,..., J are the minimal constraints. 

(ii) There is a bijection from { }PCM to 1| ( ) ... ( ) 0},{ P JM PM PM  and removing any 

of 1,..., J  leads to non-identification. 

(iii) 1,..., J are identifiable constraints, there is a surjection (of empirically indistinguishable 

models) from { }PCM to 1| ( ) ... ( ) 0},{ P JM PM PM  and removing any of 1,..., J  

leads to non-identification. 

Proof.  ( ) ( )i ii By Proposition 3.7 and Corollary 3.12, 1,..., J are the minimal constraints if 
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and only if there is an injection from { }PCM
to 1| ( ) ... ( ) 0}.{ P JM PM PM  

( ) ( )ii iii  The identification can guarantee the injection. The reverse is also true. 

□ 

In the following, we demonstrate two applications of the ECAI approach along with our 

theorems concerning the identified sets of PM. First, we will use ECAI to find the identifiability 

constraints of PM on Likert scale (LS) and on comparative judgment (CJ) items. Second, using 

the ordinal SEM and item factor analysis as an example, we will illustrate the use of ECAI in 

establishing the identifiability of (restricted) models of PM. 

3.3. Application 1: Identifiability constraints of PM on Likert Scales and on 

Comparative Judgment 

As mentioned earlier, PM subsumes several commonly used psychometric models in 

analyzing LS and CJ items. For LS, the graded response model (Samejima, 1968; Samejima, 

1997) and item factor analysis models (Wirth & Edwards, 2007) are restricted PMs. For CJ, 

Thurstonian models (Thurstone, 1927) and its advances (Bockenholt & Tsai, 2001; Brown & 

Maydeu-Olivares, 2013) are also restricted models of PM. The following theorem shows some 

identifiability constraints of PM on LS and CJ items. For convenience, CJ with r-point ordinal 

preference responses is called r-point CJ (Agresti, 1992; Brown & Maydeu-Olivares, 2018), 

whereas LS with r-point ordinal responses is called r-point LS. 

Theorem 3.14. 

(i) Consider K items in a Q-point LS (Q>2). If the first cut-offs of items are set to zero, and the 

final cut-offs are set to one ( (
1
( ) )

10, 1k k
Qa a ), then these constraints are minimal and the 

PM is just-identified. Moreover, all entries of * * *
1 ,. )( .., KX XX  are absolute scales. We 

call the above constraints the “global scale constraints (GSC).” 

(ii) Consider K items in a (2H)-point LS/CJ (H≥1). If the middle cut-offs of LS/CJ items are set 
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to zero ( ( )
1 0H

ka ), then , 1 .[ ] { : ( ) , { ,..., }, 0}PM PM g K kg diag b b bx Bx B  So all entries 

of * * *
1 ,. )( .., KX XX  are ratio scales. Moreover, if ,diag( ) KΣ 1 namely, ,Σ Ρ  then 

these constraints are minimal and the PM is just-identified. We call diag( ) KΣ 1 the “unit 

variance constraints (UVC)” because it assumes that the variances of scales in X1
* to Xk

* 

are one. 

(iii) Consider K items in a (2H+1)-point LS/CJ items (H≥1). If the middle cut-offs of LS/CJ items 

are symmetric around 0 ( (
1

( ) ) 0H H
k ka a ), then 

, 1 .[ ] { : ( ) , { ,..., }, 0}PM PM g K kg diag b b bx Bx B So all entries of * * *
1 ,. )( .., KX XX  are 

ratio scales. Moreover, if ,diag( ) KΣ 1 namely, ,Σ Ρ  then these constraints are minimal 

and the PM is just-identified. 

(iv) Consider K items in a Q-point LS/CJ (Q>2). If the cut-offs of extreme preferences are set to 

be -1 and 1 (i.e., ( ) ( )
11 1, 1k k

Qa a ), then these constraints are minimal and the PM is just-

identified. Moreover, all entries of * * *
1 ,. )( .., KX XX  are absolute scales. We call the 

above constraints the “extremity constraints (EC).” 

Proof.  Because , 1 ,[ ] { : ( ) , { ,..., 0,}, }K
K kPM PM g g diag b b bx B cx c B  we only need 

to consider whether 1kb  and 0kc  for all k. If both hold, then any PM-based model with 

these constraints is identifiable. Moreover, by Corollary 3.13, if there is a surjection from PCM to 

PM with the aforementioned constraints, then the PM is just-identified. 

(i) For any k, )
1
( 0,ka  ( )

1 1,k
Qa  so 

 
( )

1

1
( ) 0 1

0.1

k
k k k k

k
kk Q k k k

b

b

ba c c

cb a c c
 

Therefore ( ) .g x x  For any PCM, we can construct a surjection by rescaling )
1
(ka to 0  and 

( )
1

k
Qa to 1 for all items. Therefore, the model is just-identified. These constraints are minimal 
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because they are linearly independent. 

(ii) For any k, (
1

) 0,k
Ha  and (

1
) 0.k

k H kb a c  So 0kc for all k. We now prove the 

identification under the UVC. Let , ,PM EC g be empirically indistinguishable from ,PM EC for 

some ( ) .g x Bx c  Because 2 2 2
kk kb= and ,diag( ) diag( ) KΣ Σ 1  we have .kB I  For 

any PCM, we can construct a surjection by shifting 1
( )k
Ha  to 0  for all items. Therefore, the 

model is just-identified. These constraints are also minimal because they are linearly 

independent. (iii) can be proved in a similar way.  

(iv) For any k, ( ) ( )
11 1, 1k k

Qa a  so 

 
( )

1

1
( ) 1 1

0.1

k
k k k k k

k
kk Q k k k

b

b

a c

c

b c

cb a c

b
 

Therefore ( ) .g x x  For any PCM, we can construct a surjection by rescaling )
1
(ka  to -1 and 

( )
1

k
Qa  to 1 for all items. Therefore, the model is just-identified. 

□ 

Theorem 3.14 (i) and (iv) show that PM is identifiable with GSC or EC for LS items. 

Indeed, GSC or EC would be appropriate for LS with different context labels. For instance, 

Casper et al. (2020) enumerated several types of labels, such as agreement, similarity, and 

frequency. Within this context, EC might be better than GSC for the agreement anchor because 

agreement and disagreement are two extreme attitudes. For example, for a 7-point LS from 1 

(strongly disagree) to 7 (strongly agree), we could set the bound of responding "strongly 

disagree" to -1 and "strongly agree" to 1. In contrast, for the similarity and frequency anchor, 

GSC might be better than EC, because GSC is better at representing the context of similarity or 

frequency. For example, for a 7-point LS from 1 (not at all like me) to 7 (extremely like me), we 

could set the cut-offs of "not at all like me" to 0 and "extremely like me" to 1. 
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Under GSC, because the zero and unit are prespecified, the scale is an absolute scale, 

i.e., a scale with an absolute zero and absolute unit (Zwislocki & Goodman, 1980). The absolute 

scale is a type of measurement scale that extends Stevens' (1946) classification (Luce et al., 

1990). An absolute scale might be helpful in practice because all calculations are permissible for 

the absolute scale. 

Moreover, Theorem 3.14 (ii) and (iii) show that PM is identifiable with UVC or EC for CJ 

items. Under the Thurstonian modeling framework, μ  is the differences of the means of latent 

processes. In order to overcome the identifiability problem, researchers have made 

assumptions such as Case III or Case V to identify the model parameters (Thurstone, 1927; 

Tsai, 2000). Here we demonstrate that other constraints, such as UVC and EC, can help 

researchers to identify .μ  (Note that the latent scales under PCM and UVC share a common 

unit but have different origins. The relation between these two is similar to a standardized scale 

)( /z x  and a scale normalized by the standard deviation: / .y x ) 

We mentioned earlier that Case V implies the covariance matrix underlying CJ items 

cΣ I  for some c, where Σ  is the covariance matrix of latent differences (Thurstone, 1927; 

Tsai, 2000). Let the variance of the discriminal process be 1/2, then ,Σ I  indicating that UVC 

( ( ) Kdiag Σ I ) is a general model of Case V. The identification of UVC implies that the 

independence assumption in Case V is unnecessary for identifying the covariance matrix 

underlying CJ items. Assuming UVC rather than Case V can avoid the risk of making wrong 

uncorrelated assumptions. In practice, UVC can be applied to multidimensional scaling (MDS). 

Recall that MDS utilizes μ  to infer multidimensional relative positions among different 

alternatives, for which Case V is typically assumed (Torgerson, 1952). UVC can identify μ  

without assuming that the latent variables are uncorrelated. 
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3.4. Application 2: Identifiability of restricted models of PM 

PM subsumes several commonly used psychometric models. We can use this hierarchy 

to prove the identifiability of some commonly used psychometric models. We first prove a 

lemma. 

Lemma 3.15.  

Let ( ) ( ( ), ( ), )KEC μ Σ be an elliptical distribution parametrized by a real vector 

 , then the empirically indistinguishable relation defines the family of equivalence classes 

* * * *[ ( )] { ( ) : ( ) ( ), ( ) ( ), }.μ μ Σ Σ Consequently, the equivalence class of the PM 

with parameter 0 0 0( ( ( ), ( ), )( ) ),PM KEC μ Σ  is  

 0 1 0, .[ ( )] { ( ) : ( ) , { ,..., } (, , , }0 [ )]PM P kg
K

KM g x x c diag b b bB B c  (3) 

Proof.  Based on Theorem 3.11,

0

,0 1

[ ( )]

[ .( )] { ( ) : ( ) , { ,..., }, 0, }K
Kg kPM PM g x x diag b b bB cc B The union of 

equivalence relations satisfies reflexivity and symmetry natually. Also, the equivalence of 

probability structure satisfies transitivity. Thus, the union froms another equivalence class. 

□ 

Based on the above lemma, we can easily derive that If ( ) ( ( ), ( ), )KEC μ Σ  is just-

identified/identifiable, then PM with parameter ( ( ( ), ( ), ), )( )PM KEC μ Σ  is an interval 

scale. An application is stated in the following theorem, which presents necessary and sufficient 

conditions for the identifiability of the ordinal SEM. Notably, the item factor analysis (FA) model, 

also named as the confirmatory multidimensional item response theory (IRT), can be granted as 

a special case of ordinal SEM (Asparouhov & Muthén, 2020; Reckase, 2009; SAS Institute Inc., 

2024; Takane & de Leeuw, 1987; Wirth & Edwards, 2007). 

Corollary 3.16.  An SEM model, ( ) ( ( ), ( ), )KEC μ Σ , is identifiable if and only if the 
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corresponding ordinal SEM model is an interval scale.  

Proof.  ( )  Based on the identification of the SEM model, there is only one element, 0 , in

0[ ( )] . Thus Equation (3) reduce to 

0 1,( )] { ( ) : ( ) , { ,..., }, }[ 0,PM PM g
K

K kg x x c diag b b b cB B , which is the definition of 

the interval scale. Reversely, if the ordinal SEM model is not an interval scale, then 0[ ( )]  has 

more than one elelments. Thus, the SEM model is not identifiable. 

□ 

Theorem 3.17. (Sufficient and necessary condition for (just-)identifiability of ordinal SEM) 

The ordinal SEM model, ( ) ( ( ( ), ( ), ), ),PM KEC μ Σ with constraints 1,..., ,J is  identifiable 

if and only if the SEM model is identifiable and 
1,...,( )][

JPM admits both kB I and 0c  in 

Equation (3). Moreover, it is just-identifiable if and only if the SEM model is just-identifiable and 

for any 0 such that 0( ) ( , , )KEC 0 P there is one and only one corresponding 
1,...0 ,( )] .[

JPM

In addition, 1,..., J  are minimal constraints if removing any of 1,..., J  leads to non-

identification. 

Proof.  ( ) Using an argument similar to that of Corollary 3.16, the ordinal SEM model with 

constraints admits a partition finer than that of an interval scale, and so the SEM model is 

identifiable. Moreover, we have  

 , 1 .[ ( )] { ( ) : ( ) , { ,..., }, , }0KPM PM g
K

kg diag b b bx Bx c B c  

Now that the ordinal SEM model is identifiable. It implies ( ) ,g x x which is equivalent to kB I

and .c 0   

( ) Because the SEM model is identifiable, and 1,..., J admits both kB I and c 0 , the 

equivalence class 
, ..,1 .0 )][ (

J
PM  will not have more than one element. Therefore, the ordinal 

SEM model is identified. 
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The remaining parts can be easily proved through Corollary 3.13. 

 □ 

Corollary 3.18. (Sufficient and necessary condition for (just-)identifiability of item factor 

analysis) An item factor analysis model (setting all of the error variances to be one) is 

identifiable/just-identifiable if and only if the corresponding factor analysis model (through 

correlation matrix) is identifiable/just-identifiable. 

 

Proof.   

Consider an m-dimensional item factor analysis with discriminant parameter vectors 

( ) mka and threshold vectors ( ) mkb for item k, k = 1,…,K. Based on the formulas (6) and 

(13) in Takane and de Leeuw (1987), the model can be expressed as  

 (1) ( ) (1) ( ) (1) ( ) (1) ( )( , ) ( ( , ,,..., ,..., ,.. (,., ,. ,( ) , )..) )K K K
K

K
PM Na a b b 0 Σ a a b b  (4) 

where (1) ( ) ( ),..., { : 1,..., }( )K k k Kb b b and (1) ( ),..., ( ) .( )K
K

(k) (j)Σ aa a Ia We now check the 

conditions in Theorem 3.17. Because there is a one-one correspondence (through 

standardization and its inverse transformation) between (1) ( ),..., ( )( )K
K

(k) (j)Σ aa aa I  and the 

FA model through correlation matrix, (1) ( )
1 2,..., ( ) { , ,..., }( )K

Kdiag q q q(k) (j)a aP a a ,  we can 

reparametrize the model as a PCM. Thus, it is identifiable/just-identifiable when the 

corresponding factor analysis model (through correlation matrix) is identifiable/just-identifiable. 

 □ 

Remark 3.19.  Based on the formulas (6) and (13) in Takane and de Leeuw (1987), the model 

can be parameterized as an IRT or as an FA. The IRT parametrization corresponds to Equation 

(4), and the FA parametrization corresponds to the following equation 

 (1) ( ) (1) ( ) (1) ( ) (1) ( )( , ) ( ( , ,,..., ,..., ,.. (,., ,. ,( ) , )..) )K K K
K

K
PM Na a b b 0 Σ a a b b  
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where (1) ( ) ( ),..., { : 1,..., }( )K k k Kb b b  and (1) ( )
1 2,..., ( ) { , ,... ,( }) ,K

Kdiag(k) (j)Σ aa aa  

where k  is the error variance corresponding to item k. Note that the FA parametrization also 

corresponds to the theta parametrization in MPLUS (Asparouhov & Muthén, 2020). Because 

(1) ( ) ),...,( KΣ a a  corresponds to more than one (1) ( ) ,,...,( )KP a a  the FA parametrization is not 

identifiable unless one sets = = = =1 2 ... 1K  (Takane & de Leeuw, 1987). 

4. General Discussion 

Two unsolved questions concerning the identifiability of PM or PCM have been raised: 

(a) Are PCM and/or PM with latent elliptical distributions identifiable? (b) If any of them is not 

identifiable, can we find the minimal identifiability constraints?  For (a), we proved the just-

identifiability of PCM and non-identifiability of PM by generalizing Almeida and Mouchart's 

(2003a) argument. In particular, we proved the just-identification of the polychoric t correlation 

model based on the copula representation. For (b), we found the sets of identifiability 

constraints of PM using ECAI of Tsai (2000, 2003). Our results showed that PM of LS with GSC 

or EC is just-identified, and that PM of CJ with UVC or EC is just-identified. Moreover, all of 

GSC, EC, and UVC are minimal constraints for identification. We also showed that for CJ, the 

latent differences underlying the Thurstonian models are ratio scales. 

Identifiability is the premise of constructing consistent estimators. While researchers 

have advanced in proving the identifiability of several commonly used psychometric models 

(Fariña et al., 2019; Gu & Xu, 2019; Ouyang & Xu, 2022), the issue of non-identified models 

have not been fully addressed. ECAI provides an alternative by focusing on model hierarchy, 

and can help researchers find identifiability constraints of non-identified general models. In 

particular, we showed in Theorem 3.9 (i) that if the general model is identifiable, then the 

restricted model is identifiable. This theorem justifies the common practice that if the most 

general model among a set of model hierarchies is identifiable, then there is no need to prove 

the restricted models in the model hierarchy. For example, if a confirmatory factor analysis 
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model is identifiable, then the model with more constraints is also identifiable.  

The scales under PM with GSC or EC have more merits than PCM. Linking the results 

from two LS attitude tests might be more manageable. If the labels of extremities of the anchors 

in the two LS tests are the same, then the two constructed polychoric models will have the same 

unit. We may assume that people have a consensus on understanding what the anchors mean. 

For example, the corresponding PM may have the same unit if two tests with the same LS 

anchor from 1 (strongly disagree) to 7 (strongly agree). Alternatively, if two LSs have different 

anchors or different numbers of points, then these two scales might have different scale origins 

and units. Future studies should investigate how to equate two LS scales with different anchors 

or different numbers of points. 

Traditionally, most researchers adopt PCM rather than PM to model LS. For researchers 

interested in modeling changes in longitudinal data, however, PCM does not meet the need to 

identify mean differences among different ages. Instead, researchers usually adopted PM with 

some scalar invariance assumptions to identify the mean differences (McArdle et al., 2015; 

Muthén, 1984). If longitudinal studies can adopt GSC, then the mean differences among 

different ages can be identified without further assumptions.  

Identifiability has been an issue for Thurstonian models. Theorem 3.14 (iv) provides a 

novel approach to the identifiability problem. If one adopts CJ items with more than two points, 

then PM is identifiable with EC. The intuition behind EC is that we define -1 and 1 as the points 

when a participant shows the strongest preference for one over another. Because EC can only 

apply to CJ with more than two points, we suggest researchers to adopt CJ with more than two 

points for identifiability purposes. Similar to the LS case, if two CJ items have different numbers 

of points, they have two different units. Future studies should also investigate how to equate 

these two scales constructed by CJ items with different numbers of points. 

Moreover, we have proved the necessary and sufficient conditions for the ordinal SEM 

model to be just-identifiable/identifiable. Specifically, we demonstrated that when the FA based 
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on the correlation matrix is identifiable, the item factor analysis model within an IRT 

parametrization is also identifiable. However, the model within the FA parametrization remains 

unidentifiable unless all error variances are fixed at one. This result is consistent with the 

established literature about item factor analysis (Takane & de Leeuw, 1987; Wirth & Edwards, 

2007). These theorems might help investigators to determine the identification of more 

advanced ordinal SEM models. Also, we note that these theorems release the normality 

assumption of ordinal SEM, providing more flexibility for statistical modeling. 

We have focused on the identifiability issue of PCM and PM with latent elliptical 

distributions. Distributions not belonging to the family of elliptical distributions, such as the 

skewed normal distribution (Jin & Yang-Wallentin, 2017), need further investigation. 

We mention that the approach we proposed in this article is not confined to the 

identifiability issue of PM and/or PCM models. In Figure 1, we provide a flowchart for 

establishing model identifiability and finding identifiability constraints, in which each process is 

annotated with the corresponding theorem(s) and example(s) in this article. The steps of this 

principled approach are as follows. (1) Select a parametric model. If it proves to be identifiable, 

then it is deemed just-identified. If, however, the model is not identifiable, we search for 

identifiability constraints through ECAI. (2) Upon applying some constraints, if each identified set 

contains at most one element, then the model is identified. If, on the other hand, at least one set 

is empty, then the model is over-identified, which implies a probable need to relax some 

constraints. (3) If each set contains a unique element and removing any constraint makes the 

model to be non-identifiable, then the model is just-identified and these constraints are minimal 

constraints.  

In this article, the concept of identifiability discussed is global identifiability. There may 

be some weaker conditions which might be useful. First, some commonly used latent variable 

models struggle to ascertain whether they are globally identifiable. In such cases, researchers 

can verify whether the model possesses the characteristics of local identifiability (see Bekker et 
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al., 1994; Skrondal & Rabe-Hesketh, 2004). Second, we may conceive a weaker concept as 

identifiability from lower-order margins. In this study, the polychoric correlation models show 

“identifiability from bivariate distributions”. In such a scenario, it may be possible to find 

consistent estimators of the parameters by only assuming bivariate distributions (without 

assumptions about higher order joint distributions)2. These estimators, which coincide with the 

limited-information estimator of the elliptical cases, may lead to robust estimators. These 

discussions potentially open a new direction for future research. 

 

  

 

2 We thank one of the reviewers for pointing this out. 
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Figure 1  

A flowchart for establishing model identifiability and finding identifiability constraints 

  

 

Note. In the flowchart, each process is annotated with the corresponding theorem(s) and 

example(s) in this article.  
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Appendix 

The statements shown here are used in the proof of Theorem 2.14 for the identification of PCM 

with a latent multivariate t distribution.  

Lemma A.1.  Suppose that X and Y are independent random variables with 1~ ( , ),X Gamma a b

2~ ( , ),Y Gamma a b  for 21, , 0.a a b  Then 1 2~ ( , ).X Y Gamma a a b  

Lemma A.2 is used to establish the monotonicity of the CDF of the product of a jointly 

distributed random variable. 

Lemma A.2.  If X and Y are two independent, continuous random variables and ,Z XY  then 

Z is a continuous random variable. Moreover, if X is supported on the positive values and Y is 

supported on the whole real line, then Z is supported on the whole real line, and the CDF of Z is 

strictly increasing and injective on the real line.  

Proof.  Suppose that there exists 0z such that 0
0

1
( ) ( ) ( ) 0.

| |
X Y

z
f z f x f dx

x x
 Because 

0 1
( ) ( ) 0,

| |
X Y

z
f x f

x x
we have 0 1

( ) ( ) 0
| |

X Y

z
f x f

x x
 almost everywhere. However, ( )Xf x  and 

0( )Y

z
f

x
 are nonzero almost everywhere, so 0z cannot exist. Thus Z is supported on the whole 

real line. Now because for any b > a,  where ϵ is the infimum of  within [a,b]. Thus the 

distribution of Z is strictly increasing, and so the function is injective on the real line. 

□ 

Corollary A.3.   A t distribution is supported on the whole real line, and the CDF is strictly 

increasing and injective on the real line. 

Lemma A.4.  Let t  be the CDF of a t distribution with degrees of freedom .  Then for any 

2 1 0,  
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1

21

2

( ) ( ), 0

( ) ( ), 0.

t x t x x

t x t x x
 

Therefore, ( | )F x  and x  have the same sign. More generally, let ( | )F x  be the CDF of a 

multivariate t distribution ( , )t μ Σ , and 1 2( , ,..., ).px x x x If 2 1,  then 

 
1 2

1 2

( | ) ( | ), ,

( | ) ( | ), .

F F

F F

x x x μ

x x x μ
 

Proof.  By the definition of t distribution, if
1
,~X t then

1/

Z
X

S
 for some 

1

2~S  and

~ (0,1).Z N Without loss of generality, for any 0,x  

 

1

2 1

1

1

1

1

2
1

2

2
1

2

2
2

2

2
22

1 1 1 12

2
2

2 2 12

( ) ( | )
/

( | )

( | ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ~ , ;  is non-negative)

( ) ( ) ( :

Z

Z

Z

Z

Z

Z
t x P x

S

Z
P S

x

z
P S Z z dF z

x

z
P S dF z S Z

x

z
P S dF z

x

z
P S S dF z S S S S

x

z
P S dF z S S

x

2

2

2

2
2

2 2

2

~ )

( | ) ( )
/

( )

;By Lemma A.1,S S

Z
P x S Z

S

t x
 

Likewise, for any 0,x
21

( ) ( ).t x t x  The multivariate case can be proved using a similar 

method.  

□ 

Proposition A.5 shows that the quantile of the t distribution is an implicit function of the 
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degrees of freedom. Figure A1 demonstrates this property. 

Proposition A.5.  Let q be the u-quantile of the t distribution, i.e., ( ).u t q  Given u, if 

0 0.5u  then ( )q  is strictly increasing and invertible on 0;q  if 0.5 1u  then ( )q  is 

strictly decreasing and invertible on 0.q  In other words, for any 2 1 0,  

 

1

2

2

1

1 1

1 1

( ) ( ), 0 0.5

( ) ( ), 0.5 1.

t u t u u

t u t u u
 

Proof.  Fix 0.5 1,u  and let 1q  and 2q  be the u quantile of t distributions with degrees of 

freedom 1  and 2,  respectively. The uniqueness of the quantiles is guaranteed by Corollary 

A.3. Also, based on the property of t distributions, 1 2, 0.q q  Then, based on Lemma A.4, for 

any 12 ,
21 11 2 2( ) ( ) ( ).u t q t q t q By Corollary A.3, 2 1,q q therefore, ( )q  is strictly 

increasing. Similarly, for 0 0.5,u  ( )q  is strictly decreasing. Also, for any fixed values of u 

and ,  there is a value q  such that ( ).u t q  Thus ( )q  is invertible on both 0q and 0.q   

□ 
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Figure A1  

The CDF of the t distribution with different degrees of freedom 

 

Note. Fixing the target probability 0.5,p  then the quantile is a strictly increasing function of ν; if

0.5,p  then the quantile is a strictly decreasing function of ν. 
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